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Abstract: Cancer is a complex disease that can also affect the younger population; however, it is
responsible for a relatively high mortality rate of children and youth, especially in low- and middle-
income countries (LMICs). Besides that, lipidomic studies in this age range are scarce. Therefore, we
analyzed blood serum samples from young patients (12 to 35 years) with bone sarcoma (osteosarcoma)
and compared their lipidomics to the ones from the control group of samples, named healthy
control (HC group), using NMR and LC-MS techniques. Furthermore, differences in the lipidomic
profiles between OS patients with and without metastasis indicate higher glycerophosphocholine
(GPC) and glycerophospholipid (GPL) levels in osteosarcoma and increased cholesterol, choline,
polyunsaturated fatty acids (PUFAs), and glycerols during the metastasis. These differences, detected
in the peripheral blood, could be used as biomarkers for liquid biopsy.

Keywords: bone tumor; osteosarcoma; metastasis; nuclear magnetic resonance spectroscopy; mass
spectrometry

1. Introduction

Cancer is a complex disease that alters a cell’s metabolism during its initiation and
progression [1]. There are an estimated 400,000 new cases of cancer globally each year in
children and adolescents aged 1 to 19 years [2]. As many as two-thirds of childhood cancer
survivors will experience complications related to cancer and its treatment received via
chemotherapy and/or radiotherapy that may adversely affect quality of life and increase
the risk of premature death [3,4]. Thus, research on pediatric tumors is essential both for a
better understanding of their biology, development, and progression and to facilitate the
discovery and development of treatment with fewer secondary effects [5]. Some studies
have revealed the potential role of metabolomics/lipidomics in gaining an understanding
of pathophysiological processes in cancer, improving tumor staging, characterizing tumors,
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and searching for biomarkers predictive of therapeutic responses [6–8]. However, it is
necessary to have a better understanding of how these measurements are associated with
human physiology and cancer disease [8]. In this sense, lipids have been highlighted in
cancer research since this compound class plays an important role in membrane structure,
energy storage, and signal transduction [7]. The investigation of lipid biochemistry using a
lipidomic approach can provide insights into the specific roles of lipid molecular species
in health and disease, allowing for the identification of lipid-related pathways that are
altered in various physiological conditions. Further, lipid biochemistry can assist in the
identification of potential biomarkers for establishing preventive or therapeutic approaches
for human health [9,10].

Osteosarcoma (OS) is the most common primary malignant bone tumor, which can
affect children, adolescents, and young adults and causes pain and swelling besides other
symptoms such as mobility and weight loss, restricting the life of the patient [11]. In current
research related to this issue, different biochemical alterations have been reported such as
changes in gene expression [12–14]; proteins [15,16]; and metabolites related to arginine,
glutathione, inositol, and fatty acid metabolic pathways [6].

Previously, in a reported metabolomics study, alterations in lipids, aromatic amino
acids, and histidine levels were observed [6]. Therefore, we aimed to gain a better under-
standing of the role of lipids in OS. Herein, we performed lipidomic studies of blood from
youth patients diagnosed with osteosarcoma using nuclear magnetic resonance (NMR)
spectroscopy and mass spectrometry techniques. These results provide a better understand-
ing of altered mechanisms related to osteosarcoma and disclose potential biomarkers for
diagnosis and disease monitoring.

2. Materials and Methods
2.1. Blood Serum Samples and Lipid Extracts

Twenty-one blood serum samples of patients diagnosed with osteosarcoma stored at
the biobank from Hospital do Amor (Barretos, Sao Paulo, Brazil) were selected. Seventeen
patients presented complete clinical and pathological information, as depicted in Table S1
(Supplementary Materials), while four patients’ data were not available. Blood samples
collected from healthy individuals were used as a control group (8 samples, Table S2,
Supplementary Materials). These samples have been used in previous studies [6]. The
serum samples were thawed at room temperature and centrifuged at 3939× g for 15 min
at 4 ◦C. Each serum sample was stored at −80 ◦C until lipid extraction before NMR and
LC-MS analyses.

Lipids were obtained as dissolved in a chloroform phase after extraction by applying
a chloroform-methanol mixture (2:1, v/v) on serum samples. The extraction process was
performed with ice-cold solvents and lasted around 40 min. The solvent was removed by
rota-evaporation, and lipids were dried in the mild nitrogen stream. Lipids were used as
fresh samples following sample preparation for NMR or MS analyses or dissolved in the
appropriate solvent and kept at 4 ◦C until analyses.

2.2. NMR Spectra Acquisition

The procedure for sample preparation and NMR spectra acquisition is based on
previous reports [17,18]. Lipids were dissolved in 600 µL of chloroform-d (CDCl3 with
0.03% (v/v) of tetramethylsilane (TMS), Sigma-Aldrich, Burlington, MA, USA) at room
temperature, and transferred into 5 mm NMR tubes. High-resolution 1H-NMR (zg30)
spectra were acquired on the Bruker AVANCE III 600 MHz spectrometer using the inverse
triple-core probe (TBI) at 25 ◦C. The acquisitions were performed with 128 scans, relaxation
delay of 1 s, acquisition time of 2097 s, receptor gain of 181, free-induction decay size of
65,536, and 13.02 ppm spectral width for 1D spectra. The two-dimensional experiments
(Heteronuclear Single-Quantum Coherence-1H,13C-HSQC, and Heteronuclear Multiple-
Bond Correlation-1H,13C-HMBC) were performed on randomly selected samples.
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All 1D NMR spectra were phased and baseline-corrected, and the chemical shifts were
referenced to TMS (δ 0.00). The NMR spectra of lipid extract samples were processed using
MestReNova software (14.0.1-23559). Samples were normalized to a constant sum (100) of
the entire spectra intensity to reduce the differences in concentration. After that, the spectra
were divided into regions with equal widths of 0.001 ppm (bins) and used to construct the
matrix for multivariate analysis.

2.3. Statistical Analysis of NMR Data

Spectral data obtained by processing and normalization of NMR spectra were trans-
ported into the matrix lines and organized into a single matrix containing the samples
(cases) in the columns and the bins in the lines (variables). The matrices were submit-
ted to the chemometric analyses and analyzed using the MetaboAnalyst 5.0 software
platform [19].

The chemometrics matrix was constructed using δ 0.20–6.80 of the 1H-NMR spectra
for osteosarcoma patients, including data from patients with metastasis at diagnosis, and
for healthy control (HC) patients, amounting to a total of 2951 variables. These data were
modeled with the supervised method of partial least-square–discriminant analysis (PLS-
DA) to discover the metabolite differences between the groups. According to the PLS-DA
models, the highest values from the variable importance in projection (VIP) scores were
used to depict the most significant chemical shifts for each class. Leave-one-out cross-
validation (LOOCV) was performed, and confusion matrices were constructed to evaluate
the classification models. Accuracy, specificity, and sensitivity values were commuted
and analyzed.

The metabolites were assigned based on chemical shifts, coupling constants, and
databases, namely The Human Metabolome Database (HMDB, ref. [20] and the Biological
Magnetic Resonance Data Bank (BMRB, ref. [21]).

2.4. LC-MS Analysis of Lipid Extracts

For untargeted lipidomic analysis, 25 µL volumes of chloroform solutions of lipids
separated for LC-MS analysis were dissolved in 975 µL of water–isopropanol mixture (pre-
pared from 1 mL of water and 2-propanol (LC-MS grade) until the volume reached 25 mL
in a volumetric flask) and injected into an ultra-high performance liquid chromatography
instrument (Waters Acquity Ultra Performance LC; Milford, MA, USA) connected to a
hybrid quadrupole orthogonal time-of-flight (Q-ToF) mass spectrometer (Waters Synapt
HDMS; Milford, MA, USA) equipped with an electrospray ion source, and MassLynx
software version 4.1 (Waters Corp., Milford, MA, USA). The separation of lipid compounds
was performed using an Acquity UPLC BEH C18 column (100 mm × 2.1 mm; 1.7 µm,
Waters). The mobile phase was composed of solvent A (water–acetonitrile (60:40, v/v))
and solvent B (isopropanol–acetonitrile (90:10, v/v)); both solvents contained 10 mmol L−1

ammonium formate and 0.1% formic acid. The following gradient program was used:
0–2 min 40–43% B, 2–2.1 min 43–50% B, 2.1–12 min 50–54% B, 12–12.1 min 54–70% B,
12.1–18 min 70–99% B, 18.0–18.1 min 99–40% B, and 18.1–20 min 40% B. The mobile-phase
flow rate was 0.40 mL min−1, the column temperature was 55 ◦C, and the injection
volume of samples and blanks was 5 µL. Positive ion mode was recorded in the m/z
range of 50–1000, under the following conditions: capillary voltage, 2.60 kV; cone volt-
age, 40 V; source temperature, 120 ◦C; desolvation gas temperature (nitrogen), 450 ◦C;
and desolvation gas flow (nitrogen), 500 L/h. Sodium formate solution (10% formic acid
solution/0.1 mmol L−1 sodium hydroxide solution/acetonitrile, 1:1:8, v/v/v) was used
to calibrate the mass spectrometer (within the scope of 50 to 1000 Da) and as the external
reference of Lock Spray TM m/z 566.8891 in positive ion mode, which was injected at a con-
tinuous flow of 10 µL min−1. Samples were randomly analyzed and local quality-control
samples, prepared by pooling aliquots from all serum specimens of each group, were
injected after every ten injections to monitor system stability. A blank sample, prepared by
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dissolving 25 µL of chloroform in 975 µL of the water–isopropanol mixture, was injected
between every two samples of lipid extracts.

2.5. LC-MS Data Processing and Statistical Analysis

The raw data from Waters (RAW) were converted to mzXML data format for peak
picking using MSConvert software version 3.0 (https://proteowizard.sourceforge.io/ ac-
cessed on 20 July 2024) [22]. Peak detection and retention-time alignment were performed
using the XCMS online platform within the R statistical programming environment [23–25].
For the collected data, XCMS parameters optimized for Waters QToF instruments include
centWave feature detection, orbitrap retention-time correction, the minimum fraction of
samples in one group to be a valid group = 0.50, p-value thresholds for patients ver-
sus control samples = 0.05, isotopic ppm error = 15, width of overlapping m/z slices
(mzwid) = 0.010, bandwidth grouping (bw) = 2, minimum peak width = 2 s, and maximum
peak width = 25 s. The resulting peak table comprising retention times, m/z values, and
peak intensities was exported for further processing and organized into a single matrix
containing the samples (cases) in the columns and the m/z values in the lines (variables),
with the division of a column referring to the classification of the samples (class vari-
able: OS—osteosarcoma patients and HC—healthy control). The matrix was constructed
with 44 chromatograms (32 for the osteosarcoma group and 12 for the HC group) and
140 variables and submitted to the subsequent chemometric analyses performed using the
MetaboAnalyst platform version 6.0 (www.metaboanalyst.ca accessed on 20 July 2024) [19].
The metabolites were assigned based on accurate mass measurements reported in the
literature and comparison with databases HMDB [20] and LipidMaps (LMSD) [26].

3. Results and Discussion
3.1. NMR-Based Lipidomics of Osteosarcoma

The results of the partial least-square–discriminant analysis (PLS-DA), which was
applied to blood serum lipids found in the NMR range between δ 0.00 and 6.80 (Figure 1),
indicated discrimination between osteosarcoma patients and the control group, with an
accuracy of 0.953, Q2 of 0.658, and R2 of 0.927, using three components. Examples of
1H-NMR spectra acquired from HC and Osteosarcoma samples are available in Figure S1
in the Supplementary Materials.

Analyzing the VIP scores (Figure 1b), it was found that δ 2.55–2.58 and δ 2.79 were
important variables with higher intensity in OS class, which distinguished the two groups,
while variables at δ 2.35, 3.59, 3.62, 4.18, and 4.73 were important for the classification and
showed higher intensities in the HC class. A visual inspection of the 1H-NMR mean spectra
(Figure 1c) indicated more intense peaks in the OS spectral regions at δ 1.99–2.06, 2.55–2.62,
2.85–2.96, 3.22–3.37, 3.70–3.90, 4.28–4.40, 5.32-5.40, and 5.53–5.62 and lower intensity at δ
0.83–1.57, 2.35–2.39, 3.59–3.62, 4.15–4.23, 4.60–4.74, 4.93, 6.50, and 6.59. Peak assignments
are shown in Figure 2.

A thorough analysis of the 1H-NMR spectral and VIP score data indicated a higher in-
tensity of peak at δ 2.35 and 4.18 in HC samples, assigned to monoacylglycerols (MAG) [27].
Many studies have reported a monoacylglycerol lipase (MAGL) overexpression in cancer
cells [28,29]. Furthermore, previous studies have indicated that MAGL may play a biologi-
cal role in attenuating osteosarcoma growth and metastasis (28). Therefore, a decrease in
MAG levels in OS patients could be due to the MAGL excess, since it is acting in defense
processes and catabolizing all the MAG available in the biological system into glycerol and
free fatty acids [30,31]. The same could be happening with triacylglycerols (TAGs) since
MAGL also decomposes these compounds [28]. Our results indicate a higher intensity of
peaks between δ 4.15 and 4.23 in the HC group, which corroborates with assignments for
TAG reported in the literature [32].

Changes in the NMR peak intensities assigned to diacylglycerols (DAGs) were also
observed (δ 3.72, 4.16, 5.07) in OS [33]. DAG levels regulate cell growth and differentiation,
and DAGs can be converted to phosphatidic acids mediated by diacylglycerol kinases

https://proteowizard.sourceforge.io/
www.metaboanalyst.ca
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(DGKs) [34,35], which corroborates with higher NMR peak intensities at δ 4.16 and 5.07
in the HC group in our results. Currently, diacylglycerol kinase zeta (DGKZ) is reported
as a potential gene associated with specific human carcinogenesis [34]. We also observed
increases in the intensities of assigned peaks to glycerophosphocholine (GPC) and choline
(Table S3, Figure 1c) in OS patients’ spectra, which corroborates with previous studies that
reported using osteosarcoma cell samples and in other cancer types [36,37]. GPC is one
important precursor for phosphatidylcholines (PCs), a membrane lipid. Perturbations in
phospholipid metabolism have been reported in apoptosis processes [38]. The activation of
the choline metabolism has been reported as a critical step in the progression of different
cancer types, which leads to the increase in choline-containing compounds [39].
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Figure 1. Illustration of the most significant NMR lipidomic results. The PLS-DA obtained for
osteosarcoma with and without metastasis (OS + M-OS) patients (red color) and healthy control (HC,
green color): (a) score plot using spectral region between δ 0.20 and 6.80, with 23.3% variance in PC 1,
11.0% in PC 2 and 4.7% in PC 3; (b) VIP values generated by PLS-DA model; (c) overlap of 1H-NMR
(δ 0.20–6.80) mean spectra of the lipids and above; the overlap of 1H-NMR (δ 1.90–6.50) mean spectra
with increased intensity. Chemometrics results were obtained on the MetaboAnalyst platform. OBS:
Samples were analyzed in duplicate; however, not all data were used for PLS-DA.
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Figure 2. 1H-NMR spectra (δ 0.00–6.80) acquired using zg30 pulse sequence: (a) representative se-
rum lipid extracts of OS patients and (b) healthy control. Abbreviations: Cho, choline; DAG, diacyl-
glycerol; FA, fatty acyls; GPC, glycerophosphocholine; GPL, glycerophospholipid; MAG, monoacyl-
glycerol; PE, phosphatidylethanolamine; SM, sphingomyelin; TAG, triacylglycerol. A more detailed 
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Figure 2. 1H-NMR spectra (δ 0.00–6.80) acquired using zg30 pulse sequence: (a) representative serum
lipid extracts of OS patients and (b) healthy control. Abbreviations: Cho, choline; DAG, diacylglycerol;
FA, fatty acyls; GPC, glycerophosphocholine; GPL, glycerophospholipid; MAG, monoacylglycerol; PE,
phosphatidylethanolamine; SM, sphingomyelin; TAG, triacylglycerol. A more detailed assignment of
the peaks of 1H-NMR spectra is shown in Table S3 in the Supplementary Materials.
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Other NMR-increased peak intensities observed in osteosarcoma samples and im-
portant for class discrimination (Figure 1b) were noted at δ 2.55 and 2.79 and assigned to
polyunsaturated fatty acids (PUFAs) [40] and glycerophospholipids (GPLs) [41]. PUFA
accumulation has been reported as a potential biomarker of cell ferroptosis in osteosarcoma
since iron participates in the lipid hyperoxidation process [42]. Alterations in glycerophos-
pholipid metabolic pathways have been previously reported in OS research, which indi-
cated a higher differentiation in the lecithin–cholesterol acyltransferase (LCAT) gene and
some GPLs, including phosphoethanolamine [43,44].

An increase in NMR peak intensities between δ 3.77 and 3.83 was assigned to choles-
terol. Cholesterol is a lipid component of cell membranes, together with GPLs and sph-
ingolipids [45]. Cholesterol was previously reported as a biomarker in osteosarcoma
prognosis since differentiation was observed in glycolysis and cholesterol synthesis-related
genes (GCSRGs) per tumor subtype and its microenvironments [46]. Figure 3 illustrates
box plots of important OS and HC classification variables.
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3.2. Differentiation between Osteosarcoma Patients with and without Metastasis

Metastasis affects the biological system in different ways, leading to biochemical
changes such as altered metabolic pathways, cellular behavior in the face of stimuli, and
responses to medications such as chemotherapy and radiation therapy [47]. Approximately
20% of the patients present metastasis at initial diagnosis, and more than 80% of the
cases occur with lung metastasis [48]. Currently, there is no specific laboratory test for
osteosarcoma, so the search for biomarkers is one of the strategies that have been elaborated
for this purpose [49].

A thorough analysis of the PLS-DA (Figure 4) results showed the classification of
the samples between osteosarcoma patients who suffered metastasis (M-OS) and with the
absence of metastasis (OS), with discrimination accuracy of 0.844, Q2 of 0.107, and R2 of
0.970, using three components.
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Figure 4. Illustration of classification results for the PLS-DA obtained for osteosarcoma patients with
metastasis (M-OS, red color) and without metastasis (OS, blue color) at diagnosis: (a) score plot using
spectral region between δ 0.20 and 6.80, with 32.9% variance in PC 1, 5.2% in PC 2 and 4.9% in PC 3;
(b) VIP values generated by PLS-DA model; (c) overlap of the 1H-NMR (δ 0.20–6.80) mean spectra
of the lipid extracts and above; the overlap of 1H-NMR (δ 1.90–6.50) mean spectra with increased
intensity. Chemometrics results were obtained using the MetaboAnalyst platform. OBS: Samples
were analyzed in duplicate; however, not all data were used in PLS-DA.
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An analysis of the VIP scores (Figure 4b) was indicative of δ 2.60, 3.32, 3.52, 3.87,
and 5.61 as variables with higher intensity in the M-OS class, which were important to
distinguish the two groups, while variables at δ 3.21, 3.25, 3.59, and 3.60 were important
and showed higher intensities in the OS class. The 1H-NMR mean spectra (Figure 4c) indi-
cated more intense peaks in the M-OS spectral regions at δ 2.50–2.60, 2.80–2.89, 3.22–3.39,
3.70–3.90, 5.10, and 5.53–5.62, while higher intensity of peaks in OS spectral regions were
at δ 0.83, 1.20–1.22, 1.90–2.40, 4.60–4.74, 5.38–5.40, 6.50, and 6.59.

Variables δ 2.60 and 5.61 in VIP scores (Figure 4b) were higher in the M-OS group, in
which respective chemical shifts were assigned to PUFAs. These data corroborate previous
research, which has reported that eicosanoids play an important role in cell growth and
metastasis since they act as inflammatory mediators [50]. Another metabolite annotated
with elevated concentrations in the M-OS group was choline (δ 3.52). This metabolite
was previously reported as a potential biomarker for differentiation between benign and
malignant bone tumors [51]. However, other studies indicated that the elevation in choline
levels may vary amongst tumors [52]. The increase in choline levels could be due to the
overexpression of phospholipase D commonly found in cancer development [51,53], which
helps in the conversion of phosphatidylcholines to choline [54].

An increased NMR peak intensity between δ 3.77 and 3.83 was observed in osteosar-
coma spectra, which was assigned to cholesterol (Figure 4c). Elevated cholesterol levels
have been reported as a metastatic biomarker in different cancer types, including osteosar-
coma [55,56]. A hypothesis for the cholesterol accumulation during the metastasis process
could be caused by a decrease in carbohydrates and amino acid metabolism and the
upregulation of lipid metabolism [57].

A higher concentration of glycerophospholipids (δ 3.21 and 3.60) in OS patients
without metastasis was observed. The reduction in GPLs during the metastatic process
is likely related to the increase in cytosolic phospholipase A2 (cPLA2) overexpression,
which catalyzes the hydrolytic reaction of GPLs, producing lysophospholipids and fatty
acids [58,59]. Figure 5 illustrates box plots of variables important for the two classes’
separation (with and without metastasis).

Metabolites 2024, 14, 416 10 of 18 
 

 

Variables δ 2.60 and 5.61 in VIP scores (Figure 4b) were higher in the M-OS group, in 
which respective chemical shifts were assigned to PUFAs. These data corroborate previ-
ous research, which has reported that eicosanoids play an important role in cell growth 
and metastasis since they act as inflammatory mediators [50]. Another metabolite anno-
tated with elevated concentrations in the M-OS group was choline (δ 3.52). This metabolite 
was previously reported as a potential biomarker for differentiation between benign and 
malignant bone tumors [51]. However, other studies indicated that the elevation in cho-
line levels may vary amongst tumors [52]. The increase in choline levels could be due to 
the overexpression of phospholipase D commonly found in cancer development [51,53], 
which helps in the conversion of phosphatidylcholines to choline [54]. 

An increased NMR peak intensity between δ 3.77 and 3.83 was observed in osteosar-
coma spectra, which was assigned to cholesterol (Figure 4c). Elevated cholesterol levels 
have been reported as a metastatic biomarker in different cancer types, including osteo-
sarcoma [55,56]. A hypothesis for the cholesterol accumulation during the metastasis pro-
cess could be caused by a decrease in carbohydrates and amino acid metabolism and the 
upregulation of lipid metabolism [57]. 

A higher concentration of glycerophospholipids (δ 3.21 and 3.60) in OS patients with-
out metastasis was observed. The reduction in GPLs during the metastatic process is likely 
related to the increase in cytosolic phospholipase A2 (cPLA2) overexpression, which cat-
alyzes the hydrolytic reaction of GPLs, producing lysophospholipids and fatty acids 
[58,59]. Figure 5 illustrates box plots of variables important for the two classes’ separation 
(with and without metastasis). 

 
Figure 5. Box plots obtained in MetaboAnalyst showing the normalized concentration of some im-
portant variables for the two classes; separation, namely osteosarcoma patients with metastasis (M-
OS, red color) and without metastasis (OS, blue color). 

3.3. ESI (+) LC-MS-Based Lipidomics of Osteosarcoma 
Multivariate analysis (Figure 6) was performed with LC-MS data and pointed to the 

discriminant m/z values of lipidic compounds that contributed to the class separation. The 

Figure 5. Box plots obtained in MetaboAnalyst showing the normalized concentration of some
important variables for the two classes; separation, namely osteosarcoma patients with metastasis
(M-OS, red color) and without metastasis (OS, blue color).



Metabolites 2024, 14, 416 10 of 17

3.3. ESI (+) LC-MS-Based Lipidomics of Osteosarcoma

Multivariate analysis (Figure 6) was performed with LC-MS data and pointed to
the discriminant m/z values of lipidic compounds that contributed to the class separa-
tion. The examples of the total ion chromatograms (TICs) obtained by ESI (+) LC-MS
for lipids of osteosarcoma patients and healthy controls are shown in Figure S2 in the
Supplementary Materials.
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Figure 6. PLS-DA of the ESI(+) LC-MS chromatograms using osteosarcoma (OS) samples, osteosar-
coma with metastasis (M-OS), and healthy control (HC): (a) score plot in OS + M-OS (red color) ×
HC (green color) analysis with 18.3% variance in PC 1, 20.9% in PC 2, and 6.4% in PC 3; (b) VIP
scores generated in OS × HC analysis; (c) score plot in M-OS (red color) × OS (blue color) analysis
with 23.5% variance in PC 1, 14.9% in PC 2, and 10.1% in PC 3; (d) VIP scores generated in M-OS ×
OS analysis.

Investigating the results obtained in the PLS-DA was indicative of the discrimination
between osteosarcoma patients and the control group, with an accuracy of 0.750, Q2 of
0.12027, and R2 of 0.3908, using a one-component model, as well as discrimination between
osteosarcoma with metastasis and without metastasis, with an accuracy of 0.71875, Q2 of
0.041696, and R2 of 0.80856 using four components. Table 1 shows assignments for the
most important m/z features selected according to VIP scores (Figure 6b,d).
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Table 1. Assignment of some relevant m/z features selected by the PLS-DA model (positive ion mode)
with increased levels in osteosarcoma (OS) (Figure 6b) and osteosarcoma with metastasis (M-OS)
(Figure 6d).

Entry Experimental m/z
and Class

Theoretical
m/z Ions Lipid

Assignments
Proposed
Formula

Reference/HMDB * ID
LipidMaps ID

1 289.2923
(OS and M-OS) 289.2890 [M+H-H2O]+ 14-methylic-en-1-

yn-3-ol C21H38O LMFA05000766

2 603.5379
(M-OS) 603.5352

[M+H-H2O]+

(DAG) or
[M-RCOO]+

(TAG)

Glycerols C39H72O5

HMDB0007030,
HMDB0007109,
HMDB0007137,
HMDB0007161,
HMDB0007218

[60,61]

3 664.4620
(OS) 664.46 [M+H2O+H]+ Cer(d18:2/24:1)-

Ceramide C42H79NO3
HMDB0240680

[62]

4 648.4664
(OS and M-OS) 648.4646 [M+H+1]+ PA (18:1/14:0) C35H67O8P HMDB0114921

LMGP10010882

5 649.4776 (M-OS) 649.4803 [M+H]+ PA (16:0/16:0) C35H69O8P LMGP10010027

6 758.5730
(OS) 758.5674 [M+H]+ PE-NMe

(18:1/18:1) C42H80NO8P HMDB0010565
LMGP02010338

* HMDB, The Human Metabolome Database.

Ceramide (m/z 664.4620) was annotated as a possible biomarker of osteosarcoma. Pre-
vious studies reported the inhibition of ceramide glucosyltransferase (UGCG) in cancerous
cells, which causes an increase in ceramide concentration, so it mediates the apoptosis pro-
cess through mechanisms still not understood [63]. Another annotated potential biomarker
for OS was the glycerophosphoethanolamine PE-NMe (18:1/18:1) (m/z 758.5730). This
result corroborates with the NMR data, which indicated elevated levels of GPLs in the
osteosarcoma group. Increased PE-NMe (18:1/18:1) levels have been reported in papillary
thyroid cancer [64]. This lipid class plays important biological functions in cell membranes
and is related to calcium (II) transport regulation in signaling [64,65].

In our results, m/z 648.4664 and 649.4776 were assigned to PA (18:1(9Z)/14:0) and
PA (16:0/16:0), respectively. These lipids were important variables as they not only
distinguished the OS group from the HC but were also altered during metastasis. PA
(18:1(9Z)/14:0) and PA (16:0/16:0) are phosphatidic acids, and these metabolites have not
been previously reported in osteosarcoma disease. However, increased phosphatidic acid
levels have been associated with the autophagic process, which is necessary for tumor
maintenance and the promotion of metastatic cascade [66,67]. Therefore, the increased
phosphatidic acid levels during osteosarcoma could be due to the catabolism of DAGs
by diacylglycerol kinases [34,35] and posteriorly in metastasis, due to the AMP-activated
protein kinase (AMPK) suppression by phospholipase D1 (PLD1) in autophagy [66].

14-Methyleicos-en-1-yn-3-ol was annotated as a metabolite in higher concentration in
osteosarcoma disease and metastasis. Fatty alcohols are commonly found in lysophospha-
tidic acids (LPAs) whose degradation may be a mechanism for LPA regulation [68,69].

The variable m/z 603.5379 indicated an increase in intensity after the metastasis process
(Figure 6d). The mass-to-charge ratio of 603.53 has been reported in the fragmentation
pattern of DAGs and TAGs [60,61]. Although glycerols were found in higher intensity in
HC samples (Figure 3) due to the increase in the expression of enzymes such as MAGL and
DGK during cancer [28,29,34], the increase in DAG and TAG levels during metastasis could
be a mechanism used to consume energy and release stored fatty acids from triglycerides
for the formation of cancerous cells [6]. Figure 7 shows a summary of potential biomarkers
for each group (HC, OS, and M-OS), and Figure 8 summarizes the potential biomarkers of
osteosarcoma and metastasis.

In health control (HC, Figure 8a), monoacylglycerols (MAGs), diacylglycerols (DAGs),
and triacylglycerols (TAGs) are intermediates and/or biosynthesized in the glycerol–



Metabolites 2024, 14, 416 12 of 17

phosphate pathway [70], while in osteosarcoma disease (Figure 8b), a higher overexpression
of monoacylglycerol lipases (MAGLs) and diacylglycerol kinases (DGKs) have been re-
ported [28,34]. These enzymes convert MAGs, DAGs, and TAGs to free fatty acids (FFAs)
and glycerol during lipolysis in adipocytes [70].

Elevated polyunsaturated fatty acid (PUFA) levels intermediate the four steps of
carcinogenesis (initiation, promotion, progression, and metastasis), where the reduced ex-
pression of chemokine receptors such as CXCR4 hampers the chemoattraction of metastatic
cells (Figure 8c) [71]. While overexpression of phospholipase D (PLD) contributes to
higher phosphatidic acids and choline levels [54], elevated cholesterol levels lead to an
accumulation of lipids and a protumorigenic state in reprogrammed lipid metabolism [72].

Lipids that were annotated in lipidomic studies via NMR and MS analyses may
contribute significantly to clinical studies since they are potential biomarkers. In this sense,
biomarkers indicate a patient’s biological state and pathological conditions. Therefore, it is
possible to use this information to help develop new diagnosis methods, monitor the cancer
stage, understand biochemical processes related to disease, and find new therapies [73,74].
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Figure 8. Biochemical pathways affected in osteosarcoma disease: (a) healthy control (HC); (b) os-
teosarcoma disease; (c) metastasis. Abbreviations: AGPAT, acyl-glycerol–phosphate acyltransferase;
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and adipocyte were adapted from smart.servier.com (free medical images).

4. Conclusions

The results of lipidomics by NMR and MS analyses indicated elevated levels of PUFAs,
GPLs, GPCs, and cholesterol in the peripheral blood of patients with osteosarcoma, which
followed previous studies reported in the literature. Glycerol levels were decreased, while
phosphatidic acid levels were increased in these patients, probably due to the overexpres-
sion of DGKs. Moreover, glycerols and choline levels were increased in patients with
metastasis at diagnosis, which could be due to phospholipases starting to perform a critical
role in the disease development. Future research with different patients and a larger sample
size will be necessary to validate these lipids as reliable osteosarcoma biomarkers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo14080416/s1, Figure S1: 1H-NMR spectra (δ 0.00–8.00) acquired
using zg30 pulse sequence; Figure S2: Total Ion Chromatograms (TIC) obtained by ESI(+) LC-MS for
lipids; Table S1: Clinical data of patients with bone tumor (osteosarcoma); Table S2: Clinical data of
control patients for bone tumor (osteosarcoma); and Table S3: 1H-NMR chemical shifts assignments of
the metabolites found in lipid extracts of sera from samples used in this lipidomics study.
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9. Hyötyläinen, T.; Orešič, M. Optimizing the lipidomics workflow for clinical studies–practical considerations. Anal. Bioanal. Chem.

2015, 407, 4973–4993. [CrossRef]
10. Stromberg, L.R.; Lilley, L.M.; Mukundan, H. Advances in lipidomics for cancer biomarker discovery. In Proteomic and Metabolomic

Approaches to Biomarker Discovery; Issaq, H.J., Veenstra, T.D., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 421–436.
[CrossRef]

11. Taran, S.J.; Taran, R.; Malipatil, N.B. Pediatric osteosarcoma: An updated review. Indian J. Med. Paediatr. Oncol. 2017, 38, 33–43.
[CrossRef]

12. Chen, K.; Zhu, C.; Cai, M.; Fu, D.; Cheng, B.; Cai, Z.; Li, G.; Liu, J. Integrative metabolome and transcriptome profiling reveals
discordant glycolysis process between osteosarcoma and normal osteoblastic cells. J. Cancer Res. Clin. Oncol. 2014, 140, 1715–1721.
[CrossRef]

13. Song, Y.-J.; Xu, Y.; Deng, C.; Zhu, X.; Fu, J.; Chen, H.; Lu, J.; Xu, H.; Song, G.; Tang, Q.; et al. Gene expression classifier reveals
prognostic osteosarcoma microenvironment molecular subtypes. Front. Immunol. 2021, 12, 623762. [CrossRef] [PubMed]

14. Wang, H.; Jin, X.; Zhang, Y.; Wang, Z.; Zhang, T.; Xu, J.; Shen, J.; Zan, P.; Sun, M.; Wang, C.; et al. Inhibition of sphingolipid
metabolism in osteosarcoma protects against CD151-mediated tumorigenicity. Cell. Biosci. 2023, 12, 169. [CrossRef] [PubMed]

15. Zhao, T.; Meng, Y.; Wang, Y.; Wang, W. NDRG1 regulates osteosarcoma cells via mediating the mitochondrial function and CSCs
differentiation. J. Orthop. Surg. Res. 2021, 16, 364. [CrossRef] [PubMed]

16. Sirikaew, N.; Pruksakorn, D.; Chaiyawat, P.; Chutipongtanate, S. Mass spectrometric-based proteomics for biomarker discovery
in osteosarcoma: Current status and future direction. Int. J. Mol. Sci. 2022, 23, 9741. [CrossRef] [PubMed]

17. Tasic, L.; Lacerda, A.L.T.; Pontes, J.G.M.; Costa, T.B.B.C.; Nani, J.V.; Martins, L.G.; Santos, L.A.; Nunes, M.F.Q.; Adelino, M.P.M.;
Pedrini, M.; et al. Peripheral biomarkers allow differential diagnosis between schizophrenia and bipolar disorder. J. Psychiatr. Res.
2019, 119, 67–75. [CrossRef] [PubMed]

https://doi.org/10.1007/s11306-016-1093-7
https://www.ncbi.nlm.nih.gov/pubmed/27616976
https://www.who.int/news-room/fact-sheets/detail/cancer-in-children
https://www.who.int/news-room/fact-sheets/detail/cancer-in-children
https://doi.org/10.1007/s11764-022-01317-6
https://www.ncbi.nlm.nih.gov/pubmed/36637631
https://doi.org/10.3322/caac.21445
https://www.ncbi.nlm.nih.gov/pubmed/29377070
https://doi.org/10.1038/s41392-021-00572-w
https://doi.org/10.3389/fonc.2020.506959
https://doi.org/10.1186/s40169-018-0199-0
https://www.ncbi.nlm.nih.gov/pubmed/30058036
https://doi.org/10.3322/caac.21670
https://www.ncbi.nlm.nih.gov/pubmed/33982817
https://doi.org/10.1007/s00216-015-8633-2
https://doi.org/10.1016/B978-0-12-818607-7.00025-6
https://doi.org/10.4103/0971-5851.203513
https://doi.org/10.1007/s00432-014-1719-y
https://doi.org/10.3389/fimmu.2021.623762
https://www.ncbi.nlm.nih.gov/pubmed/33959121
https://doi.org/10.1186/s13578-022-00900-9
https://www.ncbi.nlm.nih.gov/pubmed/36209197
https://doi.org/10.1186/s13018-021-02503-5
https://www.ncbi.nlm.nih.gov/pubmed/34099022
https://doi.org/10.3390/ijms23179741
https://www.ncbi.nlm.nih.gov/pubmed/36077137
https://doi.org/10.1016/j.jpsychires.2019.09.009
https://www.ncbi.nlm.nih.gov/pubmed/31568986


Metabolites 2024, 14, 416 15 of 17

18. Correia, B.S.B.; Pontes, J.G.M.; Nani, J.V.S.; Villalta, F.; Mor, N.C.; Bordini, D.; Brunoni, D.; Brentani, H.; Mari, J.J.;
Hayashi, M.A.F.; et al. 1H NMR metabolomics and lipidomics to monitor positive responses in children with autism spectrum
disorder following a guided parental intervention: A pilot study. ACS Chem. Neurosci. 2023, 14, 1137–1145. [CrossRef] [PubMed]

19. Xia, J.; Wishart, D.S. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr. Protoc. Bioinform. 2016, 55,
14.10.1–14.10.91. [CrossRef] [PubMed]

20. Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The
Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [CrossRef] [PubMed]

21. Romero, P.R.; Kobayashi, N.; Wedell, J.R.; Baskaran, K.; Iwata, T.; Yokochi, M.; Maziuk, D.; Yao, H.; Fujiwara, T.; Kurusu, G.; et al.
BioMagResBank (BMRB) as a resource for structural biology. Methods Mol. Biol. 2020, 2112, 187–218. [CrossRef]

22. Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.;
Egertson, J.; et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [CrossRef]

23. Grace, S.C.; Hudson, D.A. Processing and visualization of metabolomics data using R. In Metabolomics—Fundamentals and
Applications; Prassain, J.K., Ed.; IntechOpen: London, UK, 2016; pp. 67–94.

24. Partida-Martínez, L.; Winkler, R. Pre-processing and analysis of metabolomics data with XCMS/R and XCMS online. In Processing
Metabolomics and Proteomics Data with Open Software: A Practical Guide; Winkler, R., Ed.; Royal Society of Chemistry: London, UK,
2020; pp. 255–280. [CrossRef]

25. R Development Core Team. Available online: http://www.R-project.org/ (accessed on 3 June 2024).
26. Forsberg, E.M.; Huan, T.; Rinehart, D.; Benton, H.P.; Warth, B.; Hilmers, B.; Siuzdak, G. Data processing, multi-omic pathway

mapping, and metabolite activity analysis using XCMS online. Nat. Protoc. 2018, 13, 633–651. [CrossRef]
27. Hobuss, C.B.; da Silva, F.A.; dos Santos, M.A.Z.; Pereira, C.M.P.; Schulz, G.A.S.; Bianchini, D. Synthesis and characterization of

monoacylglycerols through glycerolysis of ethyl esters derived from linseed oil by green processes. RSC Adv. 2020, 10, 2327–2336.
[CrossRef]

28. Gong, X.; Zheng, X.; Huang, Y.; Song, W.; Chen, G.; Chen, T. Monoacylglycerol Lipase (MAGL) inhibition impedes the
osteosarcoma progression by regulating epithelial mesenchymal transition. Tohoku J. Exp. Med. 2022, 256, 19–26. [CrossRef]

29. Hu, W.-R.; Lian, Y.-F.; Peng, L.-X.; Lei, J.-J.; Deng, C.-C.; Xu, M.; Feng, Q.-S.; Chen, L.-Z.; Bei, J.-X.; Zeng, Y.-X. Monoacylglycerol
lipase promotes metastases in nasopharyngeal carcinoma. Int. J. Clin. Exp. Pathol. 2014, 7, 3704–3713. [PubMed]

30. Deng, H.; Li, W. Monoacylglycerol lipase inhibitors: Modulators for lipid metabolism in cancer malignancy, neurological and
metabolic disorders. Acta Pharm. Sin. B 2020, 10, 582–602. [CrossRef]

31. Roy, J.; Dibaeinia, P.; Fan, T.M.; Sinha, S.; Das, A. Global analysis of osteosarcoma lipidomes reveal altered lipid profiles in
metastatic versus nonmetastatic cells. J. Lipid Res. 2019, 60, 376–387. [CrossRef]

32. Mika, A.; Kaczynski, Z.; Stepnowski, P.; Kaczor, M.; Proczko-Stepaniak, M.; Kaska, L.; Sledzinski, T. Potential application of 1H
NMR for routine serum lipidome analysis-evaluation of effects of bariatric surgery. Sci. Rep. 2017, 7, 15530. [CrossRef]

33. Hatzakis, E.; Agiomyrgianaki, A.; Kostidis, S.; Dais, P. High-resolution NMR spectroscopy: An alternative fast tool for qualitative
and quantitative analysis of diacylglycerol (DAG) oil. J. Am. Oil Chem. Soc. 2011, 88, 1695–1708. [CrossRef]

34. Yu, W.; Tang, L.; Lin, F.; Yao, Y.; Shen, Z. DGKZ acts as a potential oncogene in osteosarcoma proliferation through its possible
interaction with ERK1/2 and MYC pathway. Front. Oncol. 2019, 8, 655. [CrossRef]

35. Lehmann, M. Diverse roles of phosphatidate phosphatases in insect development and metabolism. Insect Biochem. Mol. Biol. 2021,
133, 103469. [CrossRef]

36. Duarte, I.F.; Marques, J.; Ladeirinha, A.F.; Rocha, C.; Lamego, I.; Calheiros, R.; Silva, T.M.; Marques, M.P.M.; Melo, J.B.; Carreira,
I.M.; et al. Analytical approaches toward successful human cell metabolome studies by NMR spectroscopy. Anal. Chem. 2009, 81,
5023–5032. [CrossRef]

37. Glunde, K.; Bhujwalla, Z.M.; Ronen, S.M. Choline metabolism in malignant transformation. Nat. Rev. Cancer 2011, 11, 835–848.
[CrossRef]

38. Santini, M.T.; Romano, R.; Rainaldi, G.; Indovina, P.; Ferrante, A.; Motta, A.; Indovina, P.L. Temporal dynamics of 1H-NMR-visible
metabolites during radiation-induced apoptosis in MG-63 human osteosarcoma spheroids. Radiat. Res. 2006, 166, 734–745.
[CrossRef]
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