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Abstract: A series of characterization methods involving high-resolution X-ray diffraction (HR-XRD),
electron channel contrast imaging (ECCI), cathodoluminescence microscopy (CL), and atomic force
microscopy (AFM) were applied to calculate the dislocation density of GaN-on-Si epitaxial wafers,
and their performance was analyzed and evaluated. The ECCI technique, owing to its high lateral
resolution, reveals dislocation distributions on material surfaces, which can visually characterize the
dislocation density. While the CL technique is effective for low-density dislocations, it is difficult
to accurately identify the number of dislocation clusters in CL images as the density increases.
The AFM technique analyzes surface dislocation characteristics by detecting surface pits caused by
dislocations, which are easily affected by sample and probe conditions. A prevalent method for
assessing the crystal quality of GaN is the rocking curve of HR-XRD (ω-scan), which calculates the
dislocation density based on the FWHM value of the curves. By comparing the above four dislocation
characterization methods, the advantages and limitations of each method are clarified, which also

verifies the applicability of DB =
β2

9b2 for GaN-on-Si epitaxial wafers. This provides an important
reference value for dislocation characterization in GaN-on-Si materials. The accuracy evaluation
of dislocation density can truly and reliably reflect crystal quality, which is conducive to further
optimization. Furthermore, this study can also be applied to other heterogeneous or homogeneous
epitaxial materials.

Keywords: GaN-on-Si; epitaxial wafers; dislocation density; characterization methods; high-resolution
X-ray diffraction

1. Introduction

With the rapid development of modern electronic technology, the performance re-
quirements for semiconductor materials have grown increasingly stringent, yet silicon, the
traditional material, which dominates the microelectronics industry, has limited perfor-
mance in high-frequency and high-power devices. GaN-on-Si materials have attracted the
attention of researchers. By integrating GaN with Si, it inherits the stability and applica-
bility of silicon and combines the excellent electronic properties of GaN. Furthermore, the
heteroepitaxial growth of GaN on Si substrates is conducive to the realization of large-size,
high-quality GaN films [1–10]. In wireless communications, the high-frequency capabilities
of GaN-on-Si make it a key material for next-generation wireless communications technolo-
gies (5G and 6G), which are expected to achieve higher data transmission rates and lower
signal losses [11,12]. In power electronics, the high power density and miniaturization of
GaN-on-Si facilitate efficient and compact device design, which improves power conversion
efficiency and reduces energy consumption and cost [4,9,13–15].

For heteroepitaxy, the differences in lattice constants and thermal expansion coef-
ficients between the epitaxial layer and substrate lead to the formation of dislocations,
which will destroy the crystal structure and lower the performance of the epitaxial layer.
Dislocations, as a common defect in semiconductor crystals, mainly affect the electrical and
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optical properties of semiconductors. In power devices, dislocations can serve as effective
channels for carrier leakage, leading to a decrease in breakdown voltage. Meanwhile,
dislocations are also important scattering factors, and an increase in dislocation density
leads to a decrease in electron mobility. Dislocations acting as non-radiative recombination
centers in optical devices will reduce luminescence efficiency. Therefore, it is necessary to
efficiently and accurately characterize the dislocation density of semiconductor materials.
Dislocation density is a crucial indicator for evaluating the crystal quality of the epitaxial
layer, which is of great significance for optimizing preparation processes and promoting
material applications [16]. High-resolution X-ray diffraction (HR-XRD) is a non-destructive
testing method that is widely utilized for evaluating material crystal quality due to its
advantages of simplified sample preparation and convenient analysis. The full width at
half maximum (FWHM) of the rocking curve (ω-scan) is typically chosen to calculate the
dislocation density of GaN-on-Si epitaxial wafers [17]. Scanning transmission electron
microscopy and transmission electron microscopy (STEM-TEM) are commonly used to
characterize dislocation distribution and can also be used to evaluate dislocation density
when necessary. However, their limitation lies in their small field of view, which can lead
to significant statistical errors [18]. Based on various theoretical models, researchers have
proposed several formulas for calculating dislocation density [19–28]. Two of the most

commonly used formulas are DB = β2

9b2 , proposed by Kurtz et al. [28], and DB = β2

4.35b2 ,
proposed by Dunn et al. [26]. Both formulas are grounded in the mosaic model proposed
by Gay et al. [27], albeit with differing derivation processes that lead to variations in the
parameters. As can be seen from the equation, the dislocation densities calculated by these
two formulas can differ by more than a factor of two [25].

In this paper, we provide an in-depth analysis of the dislocation density of GaN-on-Si
epitaxial wafers by applying a series of advanced characterization techniques. These tech-
niques include the rocking curve of HR-XRD (ω-scan), cathodoluminescence microscopy
(CL) [29,30], electron channel contrast imaging (ECCI) [31,32], and atomic force microscopy
(AFM) [33]. Each of these techniques is distinctive and offers comprehensive, accurate, and
multi-dimensional information on the dislocation density of GaN-on-Si epitaxial wafers,
leveraging distinct physical principles and operational methods. By analyzing the per-
formance test results of GaN-on-Si epitaxial wafers, we can systematically compare the
effectiveness of various characterization techniques in detecting dislocation density and
gain insight into their technical principles and limitations. This research finding provides a
scientific foundation for the analysis of dislocation density in GaN-on-Si epitaxial wafers,
further facilitating their application and development in the field of semiconductor devices.

2. Experimental Section

In this study, 8-inch GaN-on-Si epitaxial wafers were successfully prepared using
the Metal–Organic Chemical Vapor Deposition (MOCVD) technique on the Aixtron AIX
G5+ equipment. HR-XRD technology, specifically a Rigaku SmartLab instrument (Rigaku
Corporation, Akishima City, Tokyo, Japan), was employed to evaluate the crystal quality of
the epitaxial wafers. Additionally, AFM was utilized to characterize the surface morphology,
resulting in high-resolution AFM images acquired through the Bruker ICON Dimension
system (Bruker Corporation(BRKR), Billerica, Massachusetts, USA). To observe surface
dislocation features more intuitively, SEM technology was further adopted, capturing
ECCI images in the Backscattered Electron (BSD) mode with the Zeiss Sigma 300 SEM
instrument (Carl Zeiss AG, Oberkochen, Germany). Furthermore, a Horiba H-CLU testing
instrument (HORIBA Jobin Yvon, Paris, France) was used, combined with CL technology,
to comprehensively observe and analyze surface dislocations.

Figure 1 depicts the growth structure of GaN-on-Si epitaxial wafers. From bottom to
top, a 200 nm-thick high-temperature AlN (HT-AlN) layer as nucleation layer was grown
at 1100 ◦C, and composition gradient AlxGa1−xN layers were used as buffer layer to block
dislocations and relieve stress, including a 100 nm-thick Al0.75Ga0.25N layer, followed by a
120 nm-thick Al0.5Ga0.5N layer, and finally a 340 nm-thick Al0.2Ga0.8N layer. The growth
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temperature of the 2 µm-thick GaN layer was 1050 ◦C. By changing the growth temperature
of the AlxGa1−xN buffer layer, a series of GaN-on-Si epitaxial wafers were obtained. To
investigate the influence of dislocation density magnitude on various characterization
techniques, three groups of samples with varying dislocation densities were selected and
named samples A, B, and C. In order to further enhance the accuracy and reliability of
characterization, the chosen detection area was kept consistent when utilizing different
techniques for dislocation characterization, and each sample was tested three times and
averaged to minimize errors.
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Figure 1. The schematic design of the GaN-on-Si epitaxial growth structure.

3. Results and Discussion

Figure 2 presents the rocking curves of HR-XRD (ω scans) for three groups of samples
on the (0002) and

(
1012

)
planes, respectively. Typically, FWHM values can be used to

measure dislocation density, with a larger FWHM indicating higher dislocation density.
Utilizing Equations (1) and (2), the dislocation densities of GaN-on-Si epitaxial wafers (sam-
ples A, B, and C) were calculated with corresponding FWHM values and are summarized
in Table 1. For the (0001) plane of GaN films, the Burgers vector b1 = <0001> is defined as
the screw dislocation, and the Burgers vector b2 = <11–20> represents the edge dislocation.
Consequently, the screw and edge dislocations should be calculated independently, and
the total dislocation density is the sum of the two, calculated as follows [22]:

Ddis = Dscrew + Dedge =
β2
(0002)

4.35b2 +
β2
(1012)

4.35b2 (1)

Ddis = Dscrew + Dedge =
β2
(0002)

9b2 +
β2
(1012)

9b2 (2)

Table 1. The dislocation density of samples A, B, and C with Equations (1) and (2).

Sample

With Equation (1) With Equation (2)

β2
(0002)

4.35b2 +
β2

(10
¯
1 2)

4.35b2
β2

(0002)

9b2 +
β2

(10
¯
1 2)

9b2

Dscrew
×108 cm−2

Dedge
×109 cm−2

Ddis
×109 cm−2

Dscrew
×108 cm−2

Dedge
×109 cm−2

Ddis
×109 cm−2

A 2.97 ± 0.04 1.31 ± 0.02 1.61 ± 0.02 1.44 ± 0.02 0.64 ± 0.01 0.78 ± 0.11
B 4.45 ± 0.15 2.85 ± 0.05 3.27 ± 0.07 2.15 ± 0.07 1.34 ± 0.25 1.58 ± 0.32
C 5.62 ± 0.11 6.19 ± 0.20 6.75 ± 0.21 2.72 ± 0.05 2.99 ± 0.97 3.26 ± 0.10
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It is worth noting that, while the (0001)-plane GaN films also contain mixed disloca-
tions characterized by the Burgers vector b3 = <11–23>, they are not calculated separately,
because the mixed dislocation b3 is a combination of b1 and b2, specifically b3 = b1 + b2.

Figure 3 shows the ECCI line-scan images of three groups of samples. The ECCI
technique, which relies on SEM backscattered electron (BSD) imaging through the electron
channeling effect, is suitable for observing and analyzing dislocation structures in materials.
When the orientation relationship between the incident electron beam and the crystal grains
changes, the BSD signal intensity varies significantly, resulting in a contrast difference in
the ECCI image. This contrast difference makes the dislocation regions clearly visible in the
image. It is worth mentioning that the signals collected using the ECCI technique primarily
originate from a few nanometer ranges on the surface of the material, and its lateral resolu-
tion is extremely high, reaching the order of several nanometers. The dislocation points are
distinguishable, and the faintly visible lines between the dislocations represent atomic steps
on the sample surface. By counting the number of dislocations in the three ECCI images for
each group of samples, the dislocation densities of samples A, B, and C were found to be
(6.00 ± 0.14) × 108 cm−2, (1.06 ± 0.02) × 109 cm−2, and (2.12 ± 0.05) × 109 cm−2, respec-
tively. The accuracy of ECCI technology in characterizing dislocation density is affected
by the surface roughness. For example, when the surface exhibits a rough morphology
characterized by step bunching, the identification of dislocations may be limited.
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Figure 3. (a–c) ECCI images of samples A, B, and C, respectively.

The cathodoluminescence (CL) imaging technique, combining scanning electron mi-
croscopy and spectroscopic analysis, exposes the microscopic structure and defects of
the crystal by exciting the crystal surface with a high-energy electron beam to produce
fluorescence. This technique can sensitively detect the effect of dislocations on fluorescence,
allowing the visualization of dislocation characteristics and making it a powerful tool for
analyzing the dislocation density of crystals. Figure 4 shows the CL images of three groups
of samples taken at an accelerating voltage of 10 kV, where each ‘black dot’ represents a
penetrating dislocation. It can be observed that sample A has the fewest and clearest ‘black
dots’, indicating the lowest dislocation density. However, a small number of ‘black dots’
overlap and form short, thick black lines due to their proximity, exceeding the resolution of
CL, as shown in Figure 3a, and making it difficult to distinguish individual dislocations.
The dislocation density calculated from Figure 3a is approximately 7.2 × 108 cm−2. With
an increase in dislocation density, more ‘black dots’ overlap to form ‘black lines’ in the CL
image, leading to significant errors in the counting of dislocation density, as illustrated in
Figure 3b (sample B). At a higher dislocation density, the numerous ‘black dots’ represent-
ing dislocations overlap, forming tangled black clusters, rendering an accurate count of
dislocations impossible. The resolution of dislocation observation using CL is dependent
on the diffusion length of GaN minority carriers, as well as the electron beam spot size
and accelerating voltage of the CL. Generally, the lateral resolution of CL ranges from
tens to hundreds of nanometers, while the longitudinal signal is collected from a depth of
hundreds of nanometers. From this perspective, CL resolution is inferior to ECCI and is
not suitable for analyzing thin films with high dislocation densities.
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Figure 4. (a–c) CL images of samples A, B, and C, respectively.

AFM technology achieves high precision in the characterization of surface topography
through the interaction forces between the tip of the probe and atoms on the sample surface.
Although the resolution of AFM is influenced by various factors, including the tip radius
of the probe and the scanning speed, it typically achieves nanometer-scale resolution,
making it a reliable tool for studying the microscopic surface morphology of materials.
During the epitaxial growth process, threading dislocations can induce subtle changes in
surface morphology, resulting in nanoscale pits. AFM is capable of identifying surface
pits induced by dislocations and utilizing them to estimate the dislocation density of the
epitaxial layer. However, the scanning range of AFM is relatively small, so collecting images
from more different locations is necessary to reduce errors in estimating the dislocation
density. Figure 5 shows the AFM images of three groups of samples with a scanning range
of 5 µm × 5 µm. The ‘black dots’ in the images are considered to be surface pits caused by
the outcroppings of dislocations on the surface. By counting the number of dislocations
in three AFM images for each group of samples, the dislocation densities of samples A,
B, and C were determined to be (4.40 ± 0.15) × 108 cm−2, (7.72 ± 0.17) × 108 cm−2, and
(1.64 ± 0.34) × 109 cm−2, respectively. It is important to note that, because AFM tests the
outermost layer of atoms on the sample surface, the AFM may not be able to characterize all
surface dislocations due to factors such as the roughness of the sample surface, dislocation
outcrops covered with surface-adsorbed atoms, and the tip radius of the probe.
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The results of the dislocation densities measured using the CL, ECCI, and AFM detec-
tion techniques are compared with those calculated using the FWHMs of rocking curves
(ω-scan) according to Equations (1) and (2), respectively, and the results are summarized
in Table 2. The ECCI and AFM observations provide dislocation densities at the sample
surface, whereas CL shows the dislocation density within a depth range of a few hundred
nanometers [30]. Since X-rays can penetrate GaN crystals to a depth of tens of microm-
eters [23], and the thickness of GaN-on-Si film used in this study is only approximately
2 µm, it can be assumed that the XRD signal originates from the entire GaN epitaxial
layer. Since the XRD signal incorporates contributions from the high-defect region located
near the AlGaN buffer layer, it may, therefore, lead to an overestimation of dislocation
density. As can be observed from Table 2, the dislocation densities calculated based on the
FWHMs of rocking curves (ω-scan) are conspicuously higher than those obtained using
other detection methods. Moreover, the main factors affecting the FWHMs of rocking
curves are the test conditions and the sample itself. For example, the size of the XRD
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beam spot, dislocation density, film stress state, and wafer warp can cause deviations in
the FWHMs. When dislocation density is significant, the broadening of the diffraction
peak is primarily attributed to dislocations. Neglecting the impact of other factors in the
calculation formula can further exacerbate the overestimation of the dislocation density.
As indicated in Table 2, the dislocation densities calculated using Equations (1) and (2) are
approximately 1.5 and 3 times higher, respectively, than those counted using ECCI. Despite
inherent errors in calculating dislocation density using XRD methods, the estimation of the
dislocation density for GaN-on-Si epitaxial wafers, when combined with Equation (2), has
relatively smaller errors.

Table 2. Comparison of the dislocation densities of samples A, B, and C measured using ECCI, CL, and
AFM, and those calculated using the FWHMs of the XRD rocking curves under Equations (1) and (2),
respectively.

Sample ECCI
×109 cm−2

CL
×109 cm−2

AFM
×109 cm−2

XRC Equation (1) XRC Equation (2)
β2

(0002)

4.35b2 +
β2

(10
¯
1 2)

4.35b2
β2

(0002)

9b2 +
β2

(10
¯
1 2)

9b2

×109 cm−2 ×109 cm−2

Sample A 0.60 ± 0.01 0.72 0.44 ± 0.02 1.61 ± 0.02 0.78 ± 0.11
Sample B 1.06 ± 0.02 - 0.77 ± 0.02 3.27 ± 0.07 1.58 ± 0.32
Sample C 2.12 ± 0.05 - 1.64 ± 0.34 6.75 ± 0.21 3.26 ± 0.10

4. Conclusions

In this study, GaN-on-Si epitaxial wafers with different dislocation densities ranging
from approximately 5 × 108 cm−2 to 5 × 109 cm−2 were prepared using MOCVD technol-
ogy, and various characterization techniques were used to conduct detailed comparative
studies and an analysis of the dislocation densities in these samples. The ECCI technology,
with its excellent high-resolution characteristics, performs well in revealing the dislocations
on the material surface, offering an intuitive and efficient method to accurately character-
ize the dislocation densities of GaN-on-Si epitaxial wafers, particularly those exhibiting
step-flow morphologies with low roughness. The CL imaging technique demonstrates
remarkable advantages when characterizing samples with low dislocation densities (below
1 × 109 cm−2) yet encounters challenges when dealing with samples exhibiting high dis-
location densities (above 1 × 109 cm−2). The AFM technique, while capable of detecting
surface pits caused by dislocations, is often influenced by the surface roughness of the
sample and the state of the probe tip, thus limiting its accuracy. In the further XRD ω-scan
rocking curve analysis, two formulas based on FWHMs were employed to evaluate the
dislocation density. Notably, for GaN-on-Si epitaxial wafers with dislocation densities in
the order of 108 to 109 cm−2, the calculation results from Equation (2) exhibit a higher
degree of consistency with the ECCI, CL, and AFM measurements. This research could
offer valuable insights into the dislocation properties of GaN-on-Si epitaxial wafers and
their respective evaluation methods.
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