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Abstract: Two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayers exhibit unique
physical properties, such as self-terminating surfaces, a direct bandgap, and near-unity photolumi-
nescence (PL) quantum yield (QY), which make them attractive for electronic and optoelectronic
applications. Surface charge transfer has been widely used as a technique to control the concentra-
tion of free charge in 2D semiconductors, but its estimation and the impact on the optoelectronic
properties of the material remain a challenge. In this work, we investigate the optical properties
of a WS2 monolayer under three different doping approaches: benzyl viologen (BV), potassium
(K), and electrostatic doping. Owing to the excitonic nature of 2D TMDC monolayers, the PL of
the doped WS2 monolayer exhibits redshift and a decrease in intensity, which is evidenced by the
increase in trion population. The electron concentrations of 3.79 × 1013 cm−2, 6.21 × 1013 cm−2, and
3.12 × 1012 cm−2 were measured for WS2 monolayers doped with BV, K, and electrostatic doping,
respectively. PL offers a direct and versatile approach to probe the doping effect, allowing for the
measurement of carrier concentration in 2D monolayer semiconductors.

Keywords: photoluminescence; doping; 2D semiconductor; monolayer; TMDC

1. Introduction

Two-dimensional (2D) semiconducting material has attracted great attention over
recent years. Its unique properties including self-terminated surfaces, capability of forming
van der Waals heterostructures, and layer number-dependent electrical and optical char-
acteristics enabled 2D semiconductors as candidates to be applicable for next-generation
optoelectronic and electronic devices [1–5]. In particular, a transition metal dichalcogenide
(TMDC), a representative type of 2D semiconducting materials such as MoS2, WS2, and
WSe2, exhibits an indirect-to-direct bandgap transition at a monolayer thickness level [6–8].
Despite its peculiar properties, its widespread applications for practical devices have been
limited due to a lack of a reliable and controllable doping technique and approach to evalu-
ate the precise doping concentrations and distributions, which are prevalently implemented
in conventional complementary metal–oxide–semiconductor (CMOS) technology.

The types of doping strategy for 2D monolayer semiconductors include substitution
of atoms, creation of vacancy defects, and surface charge transfer [9–11]. Substitutional
doping is performed by replacing the transition metal or chalcogenide atoms in a mono-
layer semiconductor and tuning the composition between different elements. Although
the doping effect can persist as long as the elemental composition is maintained, it is
challenging to achieve desirable doping concentration and distribution during synthesis.
Unlike in bulk semiconductors, the bombardment of high energy ions onto 2D monolayer
semiconductors not only induces doping via vacancy creation but also impairs the ma-
terials, thus degrading the performance of monolayer semiconductors because of their
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atomically thin nature [12]. Surface charge transfer, on the other hand, induces the doping
effect without structural or chemical changes in a monolayer semiconductor. With physical
or chemical adsorption of the layer applied, charge carriers migrate from the deposited
layer to the adjacent material by diffusion [13–15]. Moreover, the electrostatic field can
drive the transport of charge carriers by drift. There have been many approaches and
studies on surface charge transfer reported as accessible and efficient methods of doping
for 2D monolayer semiconductors [16–20]. However, the surface charge transfer method
still involves bottlenecks in the sense that it lacks controllability. In fact, it is demanding to
quantify the amount of charge carriers that are transferred to the 2D monolayer semicon-
ductor. Therefore, a systemic approach for determining the effectiveness of surface charge
transfer doping on 2D monolayer semiconductors needs to be developed for their practical
application, but no such directions have been studied so far.

Recently, recombination physics in 2D TMDC monolayer semiconductors has been ex-
plored, which is largely distinct from bulk semiconductors owing to the reduced Coulomb
interactions [21–23]. Photoluminescence (PL) quantum yield (QY) is a parameter that is
calculated as a ratio of the number of photons emitted to the number of photons absorbed
in a material, which is also decided with a relative rate between radiative recombination
and nonradiative recombination. PL QY is of significance as a key metric for optoelectronic
applications since it directly determines the ultimate efficiency limit that the device can
achieve. TMDC monolayers, however, suffer from poor PL QY at room temperature. A
number of strategies have been proposed to enhance the low PL QY of TMDC monolayer
semiconductors, leading to the demonstration of a near-unity PL QY in monolayer MoS2
at low exciton generation rates [24–26]. Since neutral exciton recombination is entirely
radiative even at high defect densities, the photophysics of 2D TMDC monolayer semi-
conductors is dictated by the relative population of neutral excitons and trions, which are
formed from excitons interacting with background charge carriers [27–29].

In this work, the optical properties of a doped 2D monolayer semiconductor were
investigated. Since free carriers form trions to have nonradiative recombination, PL QY
of the doped monolayer semiconductor at a certain exciton generation rate offers infor-
mation on the population of excitons and trions, which the carrier concentration can be
extracted from. We further leverage the recombination model of a 2D TMDC monolayer
semiconductor to compare and analyze the effect of two surface charge transfer methods:
chemical and electrostatic doping. Without perturbating the characteristics of doped 2D
monolayer semiconductors, PL promptly reflects the results of doping applied in a mono-
layer semiconductor. Moreover, it serves as an efficient probe to estimate a wide range of
carrier concentration-dependent optical property variations. Our study shows the potential
of PL to be employed for characterizing semiconducting materials with various doping
conditions even with high defect density.

2. Materials and Methods

WS2 was mechanically exfoliated from a single crystal source (HQ Graphene, Gronin-
gen, The Netherlands) onto a 50 nm SiO2/p+-Si substrate. Then, monolayers were identi-
fied under microscopes with their optical contrast. For a back-gated field-effect transistor
(FET), source and drain contacts were patterned via electron beam (e-beam) lithography
using PMMA (C4, MicroChem, Austin, TX, USA) as an e-beam resist followed by the
e-beam evaporation of Ti/Au (5/25 nm) for electrodes. Electrical measurements were
performed with the B1500A semiconductor device parameter analyzer (Keysight, Santa
Rosa, CA, USA).

Benzyl viologen (BV) molecules were prepared as a solution for chemical n-doping.
Starting with benzyl viologen dichloride (20 mg, Sigma-Aldrich, St. Louis, MO, USA)
dissolved in deionized (DI) water and toluene (5 mL/5 mL), the solution was kept for
one day after adding sodium borohydride (4 g, Sigma-Aldrich). Doping was performed
by extracting and drop-casting the upper layer (toluene) of the bilayer solution onto the
sample, followed by N2 gas to remove the excess molecules and solvents under ambient
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conditions. K doping was carried out under vacuum conditions (~5 × 10−5 Torr) inside a
home-built chamber where a 5 A current flows through a filament to heat up a boat and K
vapor is generated to be evaporated onto the sample for a controlled exposure time. For K
doping, a minimum time of 250 s is required to vaporize the K dopants.

Optical measurements were performed in a customized micro-PL setup under ambient
conditions (298–300 K, ~20–30% relative humidity). A laser diode with a 532 nm peak
emission wavelength (CNI Laser, Changchun, China) was used as an excitation source
and the PL signal was collected with a 50× (NA = 0.55) objective lens (Olympus, Tokyo,
Japan) and sent to a spectrometer (DXG) and CCD detector (iDus 420 BEX2-DD, Andor,
Abingdon, UK). The detailed calibration procedure of the setup to extract PL QY is provided
in previous work [24]. A reference sample (Rhodamine 101, Sigma-Aldrich) of which the PL
QY is known was used to confirm the extracted PL QY value and cross-calibrate our setup.
For time-resolved PL spectroscopy, the sample was excited by a picosecond (10–20 ps pulse
duration) 48 MHz pulsed laser with a 532 nm peak emission wavelength (CNI Laser). The
PL signal was detected using a single photon avalanche diode (PDM-50, MPD, Bolzano,
Italy) and the time-correlated single photon counting (TCSPC) module (PicoHarp 300,
PicoQuant, Berlin, Germany) acquired the synchronized PL decay to deduce the lifetime.
Micro-absorption spectroscopy was performed by obtaining micro-reflection and micro-
transmission spectra from the sample using a supercontinuum laser (FIU-6, NKT Photonics,
Birkerod, Denmark).

Top-gated WS2 devices were fabricated using a poly(methyl2methacrylate) (PMMA;
950 A11, MicroChem)-assisted pick-and-place dry transfer method. Hexagonal boron
nitride (hBN) (HQ Graphene) with ~50~100 nm thickness and monolayer graphene (HQ
Graphene) were exfoliated from single crystal sources and used for the gate dielectric and
electrodes, respectively. For gate voltage-dependent PL measurement, gate voltages were
applied with a source meter (Model 2410, Keithley, Cleveland, OH, USA) through the top
graphene electrode, while the WS2 monolayer was electrically ground during measurement.

3. Results and Discussion

We applied two chemical doping methods for surface charge transfer onto the WS2
monolayer, which are BV and K doping. Figure 1a illustrates the BV doping process, where
the neutral BV molecule donates electrons to an acceptor material, which is monolayer
WS2 in this case. Since the BV possesses significantly low reduction potentials, n-doping is
enabled and maintained under ambient conditions [16]. Figure 1b describes the process
of K doping. When the K vapor is deposited onto the WS2 monolayer, the small electron
affinity of K yields the transfer of electrons from K to WS2, achieving n-doping in the
monolayer semiconductor.
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3.1. BV-Doped 2D Monolayer Semiconductor

In order to estimate the effectiveness of n-doping with BV, we fabricated an FET
based on the WS2 monolayer and measured its transfer characteristics. Figure 2a shows
an optical micrograph of the fabricated WS2 monolayer FET and Figure 2b illustrates the
device structure where the gate voltage is applied through the backgate of the SiO2/p+-Si
substrate. In Figure 2c, the Id-Vg transfer curves of the monolayer WS2 FET are provided
with respect to BV doping durations. Here, the device was immersed into the BV solution
for controlled times and dried under N2 prior to measurement. The as-fabricated monolayer
WS2 FET exhibits an ambipolar characteristic with both electron and hole conduction,
determined by applied gate bias. Upon BV doping, the transfer curves of the device start to
change significantly, with its electron conduction drastically increasing with a threshold
voltage shift toward a more negative voltage. After 600 s of BV doping, the on-current
level increases more than an order of magnitude, and only a small gate control over Id is
observed, indicating a strong doping effect by BV molecules. The electron concentration
after BV doping in the WS2 monolayer can be calculated from the equation:

n2D =
IdL

qWVdµ
(1)

where n2D is a carrier density in a 2D sheet, L is the channel length, q is the elementary
charge, W is the channel width, and µ is the field-effect mobility. From the transfer curve,
we obtained the field-effect mobility of µ = 26.1 cm2V−1s−1 and thus the 2D electron
density of n2D = 3.79 × 1013 ± 8.18 × 1014 cm−2.
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Figure 2. (a) Optical microscope images of the WS2 monolayer FET. The scale bar is 20 µm.
(b) Schematic of the FET device structure with a p+-Si backgate electrode and a 50 nm SiO2 gate
dielectric. (c) Id-Vg transfer curves of the monolayer WS2 FET at Vd = 1 V with increasing BV
doping times.

3.2. Potassium-Doped 2D Monolayer Semiconductor

Doping the WS2 monolayer with K results in strong n-type surface charge transfer
doping. Owing to its reduction potential of −2.93 V, K doping has been used for improving
contact resistance, which often restricts the performance of electronic devices [17]. To
evaluate the doping effect with K, we fabricated a backgated FET, as shown in Figure 3a,b. In
contrast with BV-doped WS2 devices, the devices were measured under vacuum conditions
as air exposure diminishes the doping effect due to the oxidation of K. In Figure 3c, it is
shown that the Id-Vg curve changes drastically as soon as the WS2 monolayer is exposed
to K vapor, which is why only a small dynamic range of K exposure time was covered
in this experiment. After K doping, the Id lost gate voltage dependence and the on-
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current level increased more than orders of magnitude, exhibiting a clear consequence of
degenerate n-doping. Similarly to the BV-doped WS2 monolayer, the 2D electron density
of n2D = 6.21 × 1013 ± 5.74 × 1014 cm−2 was calculated, which is higher than the value
obtained for the same material but with BV doping and corresponds to the degenerate limit.
This high electron concentration after K doping shows that there will be surface-dominant
electronic transport, which can vary significantly with the different layer numbers of WS2.

Materials 2024, 17, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 2. (a) Optical microscope images of the WS2 monolayer FET. The scale bar is 20 µm. (b) Sche-
matic of the FET device structure with a p+-Si backgate electrode and a 50 nm SiO2 gate dielectric. 
(c) Id-Vg transfer curves of the monolayer WS2 FET at 𝑉ௗ = 1 V with increasing BV doping times. 

3.2. Potassium-Doped 2D Monolayer Semiconductor 
Doping the WS2 monolayer with K results in strong n-type surface charge transfer 

doping. Owing to its reduction potential of −2.93 V, K doping has been used for improving 
contact resistance, which often restricts the performance of electronic devices [17]. To eval-
uate the doping effect with K, we fabricated a backgated FET, as shown in Figure 3a,b. In 
contrast with BV-doped WS2 devices, the devices were measured under vacuum condi-
tions as air exposure diminishes the doping effect due to the oxidation of K. In Figure 3c, 
it is shown that the Id-Vg curve changes drastically as soon as the WS2 monolayer is ex-
posed to K vapor, which is why only a small dynamic range of K exposure time was cov-
ered in this experiment. After K doping, the Id lost gate voltage dependence and the on-
current level increased more than orders of magnitude, exhibiting a clear consequence of 
degenerate n-doping. Similarly to the BV-doped WS2 monolayer, the 2D electron density 
of 𝑛ଶ = 6.21 × 10ଵଷ  ±  5.74 × 10ଵସ cmିଶ was calculated, which is higher than the value 
obtained for the same material but with BV doping and corresponds to the degenerate 
limit. This high electron concentration after K doping shows that there will be surface-
dominant electronic transport, which can vary significantly with the different layer num-
bers of WS2. 

 
Figure 3. (a) Optical microscope images of the WS2 monolayer FET. The scale bar is 20 µm.
(b) Schematic of the FET device structure with a p+-Si backgate electrode and a 50 nm SiO2 gate
dielectric. (c) Id-Vg transfer curves of the monolayer WS2 FET at Vd = 1 V with increasing K
doping times.

3.3. Luminescence Properties of the Chemically Doped 2D Monolayer Semiconductor

Next, we characterized the optical properties of BV- and K-doped WS2 monolayers. We
first analyzed the PL of the WS2 monolayer as a function of BV doping time. In Figure 4a,
the decreasing behaviors of PL intensity are observed with increasing BV doping durations.
The PL intensity decrease with increasing BV doping is attributed to the increase in trion
populations in the WS2 monolayer. The recombination kinetics in the WS2 monolayer is
depicted using the following equation:

G =
nX
τX

+
nT
τT

+ CbXn2
X (2)

where G is the generation rate of excitons, nX and nT are the neutral exciton and trion con-
centrations, respectively, τX and τT are the neutral exciton and trion lifetimes, respectively,
and CbX is the biexciton annihilation coefficient [27]. Then, PL QY is determined based on
the equation below:

PL QY =
1
G

(
nX
τXr

+
nT
τTr

)
(3)

This provides us with theoretical guidance on the generation and recombination rates
of quasi-particles consisting of monolayer semiconductors. The relationship between a
negative charge concentration (N), trion concentration, and free electron concentration (ne)
is described as N = ne + nT . In particular, when electrons are dominant in a monolayer
semiconductor, this relationship further expands to the following equation:

nT =
TnX

1 + TnX
N (4)

where T is the trion formation coefficient. Unless the exciton concentration is extremely
high, meaning TnX ≫ 1, which is the case when the trion concentration becomes equivalent
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to the negative charge concentration (nT ≈ N), free electrons transferred into a monolayer
semiconductor by doping contribute to the negative trion formation with excitons. Because
the radiative lifetime of trions in the WS2 monolayer (τTr = ~0.032 µs) is about 300 times
longer than the nonradiative lifetime of trions in the WS2 monolayer (τTnr = ~0.1 ns),
this leads to a dramatic increase in the nonradiative recombination rate and thus the PL
intensity decreases [27]. Figure 4b presents the Urbach tail of the WS2 monolayer with
different BV exposure times. The slope of Urbach tails remains the same for increasing BV
exposure times, indicating that there is no evidence of additional defect states produced by
BV doping.
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The redshift of the PL emission spectra is observed with increasing BV doping times,
as shown in Figure 4c. Given that the additional binding energy is required to form a trion
from a neutral exciton, this result validates the PL intensity decrease which is associated
with the increased trion population in the BV-doped WS2 monolayer. Figure 4d shows the
PL QY of the WS2 monolayer after BV-doping at different amounts of time. We observed a
monotonic decrease in the PL QY for all incident power ranges as the BV exposure time
became longer, which is attributed to the high nonradiative recombination rates of trions.

Similarly, WS2 monolayers with K doping were characterized by their PL emission
spectra, as provided in Figure 5a. The same trend of decrease in PL intensity is observed
in the WS2 monolayer after K doping. In contrast to the BV-doped WS2 monolayer, the
neutral exciton emission peak remains and coexists with a trion emission peak when K
doping is applied. This is possibly a consequence of a change in trion formation coefficient,
triggered by strong binding between the K dopant and S plane in the lattice structure of
WS2 [17]. K doping does not bring about the introduction of defects or disorders which can
act as recombination centers. As shown in Figure 5b, the preserved slope of Urbach tails
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suggests that there is no lattice distortion or change in the density of states near the band
edge upon K doping. With the increasing amount of K doping, the PL emission peak is
shifted to a lower photon energy, owing to the increase in the trion population, as shown
in Figure 5c. In the same way as BV doping, Figure 5d shows the decreased PL QY of the
WS2 monolayer after K doping. It should be noted that the maximum duration of BV and
K doping is determined to the highest level possible within the range where the PL signal
can still be distinguished from the background. In order to maximize the signal-to-noise
ratio and widen the range of incident powers for evaluating the optical properties of BV-
and K-doped WS2 monolayers, the strategy to enhance light-matter interactions can be
employed. For example, the introduction of nanostructures to increase outcoupling modes
will enable a broader range of doping conditions and excitation powers. Furthermore,
as a follow-up study, the altered photocarrier dynamics can also be examined upon the
inclusion of nanostructures or nanoparticles based on free-carrier semiconductors [30,31].
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Moreover, dynamic luminescence behaviors were investigated for the WS2 monolayer
before and after BV doping. Figure 6a presents the time-resolved PL decay of a WS2
monolayer to show the effect of BV doping on its recombination kinetics. Here, the radiative
decay curves were fit by single exponential decay curves to extract lifetimes. As a result,
the pristine WS2 monolayer exhibits a luminescence lifetime of ~0.4 ns, which is consistent
with a previous report [32]. The lifetime of the WS2 monolayer then decreased to ~0.1 ns
after 1000 s of BV exposure. Time-resolved PL measurements were performed with varying
pump fluences, as shown in Figure 6b. At all pump fluences, it appears that BV doping
shortens the lifetime of the WS2 monolayer, arising from the fact that the luminescence
decay is mainly dictated by the trion nonradiative recombination after BV doping to transfer
the high density of electrons in the monolayer. It should be noted that the lifetime becomes
shorter with increasing pump fluences owing to the exciton–exciton annihilation [27].
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Photocarrier dynamics can also be evaluated using transient absorption spectroscopy,
which enables one to capture the ultrafast decay of excited states. However, transient
absorption spectroscopy requires higher pump intensity compared to time-resolved PL
spectroscopy, limiting the dynamic range of measurement for recombination kinetics [33].
Figure 6c shows the absorption spectra of the pristine WS2 monolayer in comparison with
the WS2 monolayer after 1000 s of BV exposure. While there was no measurable difference
in terms of shapes and resonances between the two absorption spectra, the peak near the
band edge of WS2 shows ~30 meV redshift after BV doping. This is consistent with the PL
shift induced by doping, which is associated with the trion formation from neutral excitons.
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3.4. Luminescence Properties of the Electrically Doped 2D Monolayer Semiconductor

Besides the chemical doping methods, doping can also be achieved with electrostatic
approaches. We evaluated the effectiveness of electrostatic doping by fabricating and
characterizing a device where a gate voltage is applied with varying generation rates.
Figure 7a displays a schematic of the two-terminal capacitor device structure with the top
graphene as a gate electrode and the bottom graphene as a source electrode. Through
simultaneous modulation of the gate voltage and generation rate, dominant recombination
pathways in monolayer semiconductors are altered. As depicted in Figure 7b, at a negative
Vg, electrons are taken away, and predominant recombination in the WS2 monolayer
becomes radiative due to neutral excitons. At a positive Vg, more electrons are injected into
the WS2 monolayer, leading to an increase in nonradiative recombination from negative
trions. This gate voltage-dependent PL modulation of the WS2 monolayer is measured
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and provided in Figure 7c. As the applied gate voltage is modulated from a negative to
positive bias, the higher concentration of trions formed from many electrons induces the PL
intensity to decrease and the redshift of the PL spectrum, which coincides with the effect of
chemical n-doping, such as BV and K. Here, the incident power (P) is converted into the
exciton generation rate (G) according to the equation below:

G =
αP

A
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where α is the absorption at the excitation photon energy, A is the area of the laser spot,
and
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Figure 7. (a) Schematic describing the top-gated device structure. The top graphene layer acts as a
gate electrode to apply electrostatic doping onto the WS2 monolayer, while the bottom graphene is
electrically ground. (b) Gate voltage-dependent modulation of PL in the WS2 monolayer enabled by
adjusting the exciton and trion density. (c) PL spectra of the WS2 monolayer with gate voltages of
Vg = −20 V, 0 V, and +20 V measured at an incident power of 1 W/cm2.

Figure 8a shows the PL QY of the WS2 monolayer measured under simultaneous
variation of P and Vg. In the two-terminal capacitor device configuration, the total negative
charge concentration (N) is calculated by the equation:

N = COX
Vg − Vth

q
(6)

where Vth is the threshold voltage. Since the applied gate voltages adjust the total negative
charge concentration (N) and the incident powers tune the generation rate (G), the free
electron concentration (ne) in the electrically-doped WS2 monolayer can be extracted by
numerically solving Equations (3) and (4) with substitution of the experimental param-
eters as well as the values for WS2, including τXr = 2 ns, τTr = 0.032 µs, τTnr = 0.1 ns,
T = 5 × 10−12 cm2, and CbX = 2.4 cm2s−1 reported in a previous work [27]. The free
electron concentration of the WS2 monolayer device at Vg = 20 V is therefore calculated as
3.12 × 1012 cm−2.

The relationship between the maximum PL QY and the PL peak position of the
WS2 monolayer under electrostatic and chemical doping is presented in Figure 8b. This
result suggests that both doping methods (Electrostatic and BV) cause plenty of free
electron injection followed by trion formation, leading to the dominance of nonradiative
recombination. It is shown that BV doping suppresses the PL QY of the WS2 monolayer
more significantly than electrostatic doping, curtailing the maximum PL QY by almost
three orders of magnitude. This discrepancy between the two doping types originates from
the fact that the free electron concentration of the BV-doped WS2 monolayer is higher than
the electrically-doped WS2 monolayer. Moreover, it has been reported that the chemical
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doping methods (BV and K) studied in this work are known to induce degenerate doping
effects, lifting the Fermi level near to the conduction band edge [16,17].
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4. Conclusion

In summary, the optical properties of an electrically doped WS2 monolayer with
surface charge transfer have been examined. BV doping and K doping both induce the
PL spectra to be redshifted and the PL intensity to decrease, which is associated with
the increased trion concentration. This is also supported by time-resolved PL and micro-
absorption measurements. Based on the exciton and trion recombination model, the
electron concentration of an electrically-doped WS2 monolayer was extracted. The approach
we took was to numerically solve the PL QY equation which is a function of the trion
nonradiative recombination rate and the exciton radiative recombination rate at different
generation rates.

In comparison with electrostatic doping, chemical doping methods such as BV and
K doping cause degenerate doping in 2D TMDC monolayers. Therefore, further studies
are required to unravel the correlation between the electrical parameters (electron con-
centration and mobility) and optical properties, especially for degenerately doped 2D
monolayer semiconductors. Moreover, this work will provide opportunities for developing
advanced doping technology, which can reversibly tune the exciton and trion density in
2D semiconductors.
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