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Abstract: Recent evidence has highlighted the role of the gut-brain axis in the progression of autism
spectrum disorder (ASD), with significant changes in the gut microbiome of individuals with this
condition. This report investigates the effects of probiotics and human milk oligosaccharide (HMO)
supplements on the gut microbiome, inflammatory cytokine profile, and clinical outcomes in an ASD
adolescent with chronic gastrointestinal dysfunction and cognitive impairment. Following treatment,
we observed a decrease in proinflammatory cytokines’ concentration alongside Sutterella relative
abundance, a bacterium reported to be linked with gastrointestinal diseases. Also, we reported a
notable increase in mood stability. The study aims to evaluate the use of gut microbiome-based
therapy in selected ASD patients, highlighting its potential to improve related clinical symptom:s.
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1. Introduction

Autism spectrum disorder (ASD) is a neurological and developmental disorder that
affects how people interact with others, communicate, learn, and behave, and it is mani-
fested by impaired social communication and other repetitive behavioral patterns. ASD is
caused by both genetic and environmental factors [1].

The ASD incidence rate has increased threefold in the last three decades, not only due
to the advanced diagnostic methods but also because of an increase in risk factors [2]. The
management costs associated with ASD are high [3] and usually extend throughout an
individual’s lifetime.

Communication between the gut and the brain has been shown to affect many neuro-
logical conditions including ASD [4]. In the last few years, the research on the microbiome
has gained significant importance thanks to the huge improvements in omics technolo-
gies [5]. Today, there is accumulated evidence about alterations in the gut microbiome in
individuals with ASD [6,7]. For instance, research has shown elevated levels of Sutterella
species in both gastrointestinal biopsies and fecal samples of children with this disorder [8].
Interestingly, a recent study revealed that Bacteroides may exert harmful effects and be
responsible for some autistic behaviors in mice regardless of sex [9].

Although there is no therapy for ASD, studies showed a possibility of treating some
autistic behaviors and making symptoms milder. Among the promising methods to allevi-
ate symptoms, manipulating the gut microbiota through microbiota transplant [10-12] has
been shown as a promising therapy for ASD.
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Probiotics are living microorganisms that offer benefits to the host organism when
ingested in appropriate quantities. They are thought to confer health benefits by promoting
a balanced gut microbiota and supporting various physiological functions. Several studies
highlighted the benefits of probiotics in the treatment of ASD. In rodent models of ASD,
a probiotics combination containing Lactobacillus spp. and Bifidobacterium spp. reduced
social and behavioral symptoms associated with this disorder [13]. Results of a phase Ib
study of a combination containing Lactobacillus reuteri showed important improvements in
behavioral and social scores for ASD patients [14].

Human milk oligosaccharides (HMOs) are the third component of human milk af-
ter lactose and lipids. More than 200 different types of HMOs have been identified so
far, all derived from lactose elongated with other monosaccharides such as galactose, N-
acetylglucosamine, N-acetylgalactosamine, fucose, and sialic acid [15]. Humans cannot di-
gest HMOs, with the exception of sialylated HMOs cleaved by intestinal neuraminidase [16],
and they are absorbed in only a small amount [17]. On the contrary, different microbial
taxa belonging to the gut microbiota are well equipped with a broad range of enzymes for
HMOs’ digestion: Bifidobacteria, and in particular Bifidobacterium bifidum, Bifidobacterium
breve, and Bifidobacterium longum strains, among the first colonizers of the infant’s gut, can
secrete glycosides and/or express specific transporters for HMOs’ utilization and degrada-
tion [18]. Some members of Bacteroides spp. are also able to utilize HMOs, while the growth
of a broad range of pathogens, such as some strains of Enterobacteriaceae, Streptococcus spp.,
and others, is inhibited by different types of HMOs, as demonstrated both in in vitro and
in vivo studies [17,19]. The digestion of HMOs by Bifidobacteria and Bacteroides fermentation
increases the production of short chain fatty acids (SCFAs), especially acetate and butyrate,
with local and systemic effects, while HMO-derived metabolites can be used as nutritional
substrates by other gut bacteria during cross-feeding microbial interactions [20]. The
symbiotic combinations of HMOs and probiotics were reported to exert beneficial effects
in several studies [21-23]. HMOs support the immune system, fight infections, inhibit
pathogens, promote gut health, and support cognitive development [17]. As just described,
the establishment of a healthy gut microbiota is linked to HMOs. Indeed, many animal
studies show that HMOs can affect brain activity and cognitive development, suggesting
that dietary management of the gut microbiota may influence several diseases, including
ASD [24].

In the present case report, we investigate the effect of a combined treatment with
probiotics and HMO supplements in a young man (17 years old) with ASD, suffering
from cognitive impairment and chronic gastrointestinal dysfunction including abdominal
pain and chronic constipation. By evaluating the impact on gut microbiome composition,
inflammation, and related clinical symptoms, we provide additional insights into the
potential use of microbiome-based therapies.

2. Materials and Methods
2.1. Clinical Samples and Therapy

Four fecal samples were collected at 4 different time points: Ty (October 2020) rep-
resents the physiological condition of the patient before the treatment, T; corresponds to
evaluations made after 6 months of therapy, T, corresponds to the evaluation 1 year after
the end of the treatment, while T3 is the condition of the ASD individual after 2 years
without the treatment.

The patient received antibiotics, precisely, Rifaximin (2 tablets three times daily for
10 days), which is used to treat conditions related to gut microbiota imbalance, potentially
modulating intestinal homeostasis [25]. Antibiotic therapy was then followed by a daily in-
take of 12.5 billion Bifidobacterium lactis Bi-07 and 12.5 billion Lactobacillus acidophilus NCFM®
(North Carolina Food Microbiology). Alongside the probiotics, supplementary therapy
included 2’-FL fucosylated HMO (250 mg), with one capsule recommended daily [26,27].
The regimen also included rice extract tocopherols (1 capsule per day preferably in the
morning on an empty stomach and away from antibiotic therapy) [28], monounsaturated
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fatty acids (oleic acid), and polyunsaturated linoleic acids (1 capsule of 250 mg twice
daily), known for their antioxidant, anti-inflammatory, hypocholesterolemic [29,30], and
hypotriglyceridemic properties. Additionally, sunflower oil (1 tablespoon per day), rich
in vitamin E with antioxidant properties, was included, which was reported to promote
intestinal health [31].

The study was conducted in accordance with the Declaration of Helsinki and approved
by the Institutional Review Board of Institute for Maternal and Child Health IRCCS Burlo
Garofolo (protocol code 37902 dd. 12.10.2021).

Written informed consent has been obtained from the patient for all procedures and to
publish this paper.

2.2. Biological Sampling Procedures, DNA Extraction, and NGS Sequencing

Upon arrival at the laboratory, the fecal samples were immediately stored at —80 °C
until the moment of analysis. Total nucleic acids were extracted using the Maxwell Promega
extractor with a CSC DNA Blood Kit (Promega, Madison, WI, USA), following the manu-
facturer’s instructions. Briefly, 100-200 mg of stool was lysed, and DNA was eluted in a
final volume of 50 uL.

The bacterial composition profiling was achieved by sequencing the V3 region of
the 165 rRNA gene following the library preparation procedure previously described [32].
Template preparation was carried out by the Ion OneTouch™ 2 System (Life Technologies,
Gran Island, New York, NY, USA), with the Ion PGM Hi-Q View OT2 kit (Life Technologies,
New York, NY, USA), and for quality control, the Qubit® 2.0 Fluorometer was used. Stool
samples were sequenced with the lon PGM™ System technology by using the lon PGM
Hi-Q View sequencing kit (Life Technologies, New York, NY, USA). For the raw data
processing, the QIIME 2.0 software, version 2022.2, was used. Reads with Q > 20 and a
read length of 180 bp, after DADA?2 denoising, were retained for the analysis. The taxonomy
assignment was performed by aligning the read to Silva v138 database, with a BLAST+
consensus. Statistical analysis was performed using R (version 4.4.0).

2.3. Dosage of Immune Factors

The concentration (pg/mL) of 27 cytokines, chemokines, and growth factors was
dosed in all 4 stool samples, using magnetic bead-based multiplex immunoassays (Bioplex
ProTM human cytokine 27-plex panel, Bio-Rad Laboratories, Milan, Italy), according to the
pre-optimized protocol [32]. Cytokines tested include FGF basic, Eotaxin, G-CSF, GM-CSF,
IFN-vy, IL-13, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15,
IL-17, IP-10, MCP-1 (MCAF), MIP-1«, MIP-13, PDGE-BB, RANTES, TNF-«, and VEGE. The
concentrations of the cytokines were acquired using the Bio-Plex-200 system (Bio-Rad Corp.,
Hercules, CA, USA) and Bio-Plex Manager software (v.6, Bio-Rad). The Kruskal-Wallis test
was performed to test the difference of the immune factors’ concentration over time.

3. Results
3.1. Microbiota Characterization

Sequencing was performed on four stool samples from a young man diagnosed
with ASD, collected at different time points. Microbial composition was analyzed to
observe changes in the patient’s intestinal microbiome over time, both during and after the
administration of the probiotic/HMO treatment.

Bacterial phyla detected by the analysis were studied and compared (Figure 1). The
microbiome changed considerably, especially when comparing T with the other time points
and with the reference microbiome, deduced from the scientific literature [33,34]. Figure 1
shows a substantial difference among the relative abundances of the different phyla: at
Ty, the ASD individual showed, compared to the reference sample, a high abundance of
Pseudomonadota (66%), which decreased considerably at T; (7%). Furthermore, at Ty, the
Bacillota percentage was not high (17%), but this is seen to increase after the treatment,
reaching 88% at T and remaining around 50% at the last two analysis times.
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Figure 1. Composition, at the phylum level (Ion PGM™ System technology), of the fecal microbiota
in the ASD individual at 4 different time points, compared to a reference microbiota.

/

We observed marked fluctuations in the abundance of specific bacterial genera through-
out the study period. Sutterella spp., initially prominent at Ty (61%), demonstrated a drastic
reduction following treatment, declining to 6% and 1% at subsequent time points (Figure 2).
The analysis of the sequencing data highlighted Sutterella massiliensis as the predominant
species in all the fecal samples.
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Figure 2. Relative abundance of Sutterella spp. over the four different time points described.

Similarly, Dialister spp. exhibited a reduction from 14% at T to 1% at T3. In contrast,
Lactobacillus spp. showed a substantial increase from Ty to T, peaking at 84% in the
latter period, before gradually declining. Bacteroides abundance fluctuated across analyses,
ranging from 13% at Ty to 39% at T, and concluding at 8% at T3 (Figure 3).
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Figure 3. Trend over different times of the relative abundances of bacterial genera detected by the
sequencing analysis.

3.2. Soluble Immune Mediators

The dosage of the concentration (pg/mL) of 27 cytokines, chemokines, and growth fac-
tors showed a decline from Tj to T3, suggesting a potential modulation of immune function
over time (Figure 4). All cytokines, both pro-inflammatory and anti-inflammatory ones, de-
creased over time. The reduction was confirmed by the Kruskal-Wallis test (p-value < 1074,
chi-squared = 21.56).

1000

pa/mL

500

Time

Figure 4. Cytokines’ variation over time (Kruskal-Wallis test | p-value < 10~#, chi-squared = 21.56).
The median trend line is shown in red, and the outlier values are represented as black dots.

A direct relationship between each cytokine and Sutterella was observed. For example,
Figure 5 describes the relationship between IL-1f3, IL-2, IL-6, and Sutterella. The drop from
Tp to T1 has a reduced slope compared to that which can be observed in the comparison
between T1-T, and T,—Tj3 (Figure 5).
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Figure 5. Reduction trend of Sutterella and IL-1§3, IL-2, and IL-6 over time. The relative abundance is
represented on the x-axis, while on the y-axis, the concentration in pg/mL of the three cytokines is
taken into consideration.

3.3. Clinical and Physical Aspects

As the levels of Sutterella spp. decreased alongside the reduction in inflammatory
factors, the boy achieved a complete recovery from all the symptoms of constipation.
Furthermore, this positive shift in his health profile was related to a notable decrease in
episodes of aggression and an increase in mood stability. In addition, he developed good
behavioral social relations as confirmed by the parents. The improvement in aggressiveness
and increased mood stability has been firmly reported by the parents of the young man.
Unfortunately, the Aberrant Behavior Checklist (ABC) and Child Behavior Checklist (CBCL)
matching the time points of the present case report were not available.

4. Discussion

The use of probiotics in intestinal dysfunction and related inflammation has been
documented, and their tolerability and beneficial effect were also reported. For instance, a
probiotic blend containing L. acidophilus NCFM® and B. lactis Bi-07 was used to treat the
functional bowel diseases [35]. This clinical study reported by Ringel et al. [35], indeed,
highlighted the safety of adopting microbiome-based therapies to improve the clinical
condition of subjects characterized by gastrointestinal disorders.

In another study published in 2013 by Hsiao et al. [36], the gut-microbiome-brain
connection was investigated. The results demonstrated that the restoration of gastrointesti-
nal function through microbiota-based treatment led to improvements in communicative,
stereotypic, anxiety-like, and sensorimotor behaviors in a mouse model of ASD. A further
recent study demonstrated comparable outcomes following treatment with B. lactis in a
mouse model [37].

Providing additional evidence, research has revealed that a probiotic formulation
composed of Lactobacillus paracasei HII01, B. breve, and B. longum exhibited notable improve-
ments in intestinal permeability, lipid profile, obesity index, and metabolic biomarkers in
an elderly population [38].

ASD is associated with high levels of inflammation not only in the nerves but also in
intestinal tissue. Hence, targeting inflammation pathways could be a potential strategy
to alleviate ASD symptoms. Shaaban et al. [39] observed significant improvements in
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gastrointestinal symptoms in a cohort of autistic children aged 4-9 years following a three-
month probiotic treatment regimen composed of B. longum, Lactobacillus rhamnosus, and
L. acidophilus. Similar results were also obtained by other studies [40—43].

Dysbiosis of the gut microbiota can compromise intestinal barriers. The barrier im-
pairment is reported to be implicated in several diseases, not only in gut-related disorders
but also in neurodegenerative conditions like Alzheimer’s and Parkinson’s [44]. Some
studies have underscored the effect of the harmful microbiota on brain function in autism
and other mental disorders. For example, lipopolysaccharides (LPSs), which are the en-
dotoxins of Gram-negative bacteria, can pass through the damaged intestinal barrier to
the brain and induce a proinflammatory environment, potentially leading to pathological
consequences [45,46]. Although some studies suggest that intestinal barrier dysfunction is
not a consequence of autism [47,48], our results provide strong evidence to consider the
link between autism and intestinal permeability.

In our report, we observed a significant decrease in cytokine concentration (Figure 4)
in stool samples following HMO-probiotic therapy, an event persisting 2 years after the end
of the treatment. This reduction can be explained, at least in part, by the enhanced func-
tionality of the gastrointestinal barrier, due to the restoration of a healthy gut microbiome.
An intact epithelial barrier prevents the translocation of pathogens, microbial peptides,
and toxins that can trigger inflammatory responses. This restoration can be evidenced, for
example, by the reduction in Sutterella levels (Figure 2), which was reported to be linked
with gastrointestinal diseases for its capacity to degrade IgA [49]. The reduction in Sutterella
is related to the decrease in the levels of proinflammatory cytokines like IL-13, IL-2, and
IL-6 (Figure 5).

While a previous study [50] did not highlight Sutterella as a significant contributor to
microbial dysbiosis, our findings suggest that the abundance of Sutterella could be a marker
for the integrity of the intestinal microbial component. Furthermore, our research indicates
alterations in other bacterial genera during treatment, such as Bacteroides, which increased
to around 37% by the study’s conclusion, nearing its percentage in the reference microbiome
(Figure 1). These shifts may have contributed to the favorable outcomes observed following
the treatment.

The novelty of the treatment involved the simultaneous intake of B. lactis Bi-07 and
L. acidophilus NCFM®, together with 2'-FL fucosylated HMOs. Among benefits related to
HMO functions are the development of immune system competence; the protection against
infectious disease; the inhibition of pathogens’ epithelial adhesion and biofilm formation;
the maturation of the intestinal barrier; the production of mucin, claudin, and occludin
proteins; and cognitive development [16,17,51]. In a study conducted by Elison et al. [52],
it was reported that HMO supplementation resulted in changes in the gut microbiota
composition, with an increase in the relative abundance of Bifidobacteria and a reduction
in Firmicutes and Proteobacteria. This effect occurred rapidly and was dose-dependent.
No relevant changes in blood parameters were observed, and the supplements were well
tolerated at all dosages, with minimal side effects. The results of this study suggest that
dietary supplementation with HMOs is an effective method to positively modulate the
composition of the intestinal microbiota, promoting the growth of beneficial bacteria, as
also reported in our case report. In another study using the Stimulator of the Human
Intestinal Microbial Ecosystem (SHIME®) (ProDigest-Ghent University, Ghent, Belgium),
Suligoj et al. [26] investigated the effect of HMO-derived metabolites on the gut barrier.
An increase in Bifidobacteria species and in butyrate production was observed. Moreover,
Suligoj et al. showed a significant increase in the expression of claudin-8 and claudin-5
genes, and a reduction in the secretion of IL-6 for 2’-FL and the mixture 2’-FL/Lacto-N-
neotetraose (LNnT) but not for LNnT alone. All together, these data support the beneficial
effects of HMOs on the gut barrier and intestinal permeability which is in agreement with
our findings.

Overall, our study together with those previously cited provides further support to
the hypothesis that the manipulation of the gut microbiota may be beneficial in patients
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with gastrointestinal disorders and to related specific clinical conditions. Major positive
effects on the intestinal barrier can be achieved by the combination of probiotic bacteria
and HMOs, also resulting in a general improvement in the subject’s clinical condition.

5. Conclusions

In conclusion, we evaluated the effects of a combined treatment with HMOs, B. lactis Bi-
07, and L. acidophilus NCFM® on the gut microbiome composition, inflammatory cytokine
profile, and clinical symptoms of a 17-year-old man with ASD. Precisely, we observed a
decrease in inflammatory cytokines’ concentration, such as IL-1§3, IL-2, and IL-6, together
with the reduction in Sutterella spp. in stool samples after the combined treatment. The
implications of our results are substantial and highlight the need for continued research
into microbiome-based therapies, which could pave the way for more effective approaches
to the management of gastrointestinal symptoms and related disorders in ASD subjects.
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