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Abstract: Given the lack of genetic characterization data for multidrug-resistant (MDR) Salmonella
in South Korean poultry, we analyzed 53 MDR Salmonella strains from 1232 poultry meat samples
(723 chicken, 509 duck) using whole-genome sequencing. Five serotypes were identified: S. Infantis
(30/53, 56.6%), S. Enteritidis (11/53, 20.8%), S. Virchow (9/53, 17.0%), S. Agona (2/53, 3.8%), and
S. Indiana (1/53, 1.9%). Sequence types (STs) included ST32, ST11, ST16, ST13, and ST17, with
three major clusters, each having two subclusters. Eight core genome sequence types (cgSTs) were
identified: 225993, 2268, 58360, 150996, 232041, 96964, 117577, and 267045. Salmonella Infantis and
S. Enteritidis had two (117577, 267045) and three (225993, 2268, 58360) cgSTs, respectively, whereas
S. Virchow showed allelic differences in identical cgSTs. The S. Enteritidis subcluster was classified
as chicken or duck. Twenty-eight antimicrobial resistance genes (ARGs), 10 plasmid replicons,
11 Salmonella pathogenicity islands (SPIs), and 230 virulence genes were identified, showing distinct
profiles by cluster and subcluster. Salmonella Infantis, the primary MDR Salmonella, carried the IncFIB
(pN55391) plasmid, 10–11 ARGs, nine SPIs, and approximately 163 virulence genes. Three major
MDR Salmonella serotypes (S. Infantis, S. Enteritidis, and S. Virchow) had specific genetic profiles that
can inform epidemiological surveillance.

Keywords: antimicrobial resistance; multidrug-resistance; poultry meat; Salmonella spp.; whole-
genome sequencing

1. Introduction

Salmonella is the major etiological agent of diarrheal diseases, presenting an important
worldwide health concern with 1.9 billion cases annually [1]. Poultry and egg products are
the primary sources of Salmonella infection [2]. This phenomenon is also observed in South
Korea. According to the Korean Ministry of Food and Drug Safety (MFDS), Salmonella is
the third most common foodborne pathogen associated with foodborne illnesses in South
Korea over the past two decades [3].

Various antimicrobials are widely used for disease prevention and treatment in the
global livestock industry [4]. However, continuous exposure to antimicrobials decreases
microbial diversity and increases the number of antimicrobial-resistant bacteria via selec-
tive pressure [5]. Therefore, livestock products continuously exposed to antimicrobials
are exposed to the threat of antimicrobial-resistant bacteria. Livestock contaminated with
antimicrobial-resistant bacteria serve as reservoirs and ensure transmission to the commu-
nity through food [6]. Several studies have shown a strong causal link between antimicro-
bial usage in livestock and the emergence of antimicrobial resistance (AR) in pathogenic
bacteria that cause human diseases [7,8].
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Whole-genome sequencing (WGS) has become an affordable, high-resolution method
for genome analyses, providing crucial information such as antimicrobial resistance genes
(ARGs), genomic mutations, multilocus sequence typing (MLST), and core genome MLST
(cgMLST) [9–11]. Thus, WGS is a useful method for tracking the source of foodborne
diseases and confirming the transmission of Salmonella infections between poultry sources
and humans [10,11].

Although multidrug-resistant Salmonella has been reported in poultry, genetic char-
acterization data remain limited. Therefore, in this study, we aimed to isolate multidrug-
resistant Salmonella spp. from South Korean poultry meat and analyze their genetic charac-
teristics using WGS. In this study, we isolated Salmonella from poultry meat and monitored
its susceptibility to 16 agents of 13 antimicrobial subclasses, including beta-lactams. In
addition, phylogenetic analyses, including cgMLST of multidrug-resistant Salmonella and
analysis of AR, plasmid, Salmonella pathogenicity island (SPI), mobile genetic element
(MGE), and virulent factor (VF) genes, were performed. Our findings provide valuable
data to enhance the understanding of foodborne, multidrug-resistant Salmonella in South
Korean poultry meat, focusing on AR and virulence mechanisms.

2. Materials and Methods
2.1. Sample Collection

Between February 2020 and November 2021, poultry samples (723 chicken and 509
duck meat) were collected from retail markets in Korea (Table 1). Samples were collected
from five regions. The samples were purchased from various companies, weighed between
200 g and 3 kg, and were immediately refrigerated and transported.

Table 1. Sample tested in this study.

Meat Type

Region

Seoul and
Gyeonggi-do Gyeongsang-do Chungcheong-do Jeolla-do Gangwon-do Total

Chicken 197 319 83 104 20 723
Duck 151 195 92 62 9 509
Total 348 514 175 166 29 1232

2.2. Salmonella Isolation and Identification

Salmonella spp. were isolated using an analytical method certified by the MFDS
Food Code [12]. Briefly, approximately 25 g of the sample was dispensed with 225 mL
of buffered peptone water (BPW, Merck, Darmstadt, Germany) into a sterilized blender
bag, homogenized for 30 s, and incubated at 37 ◦C for approximately 24 h. Then, 0.1 mL
and 1 mL of incubated BPW were transferred into 10 mL of Rappaport–Vassiliadis broth
(BD, Franklin Lakes, NJ, USA) and 10 mL of tetrathionate broth (MBcell, Seoul, Republic
of Korea), and incubated at 42 ◦C and 37 ◦C for 24 h, respectively. After incubation, each
culture solution was spread on xylose lysine deoxycholate agar (XLD; Oxoid, Basingstoke,
UK) as well as Brilliant Green Sulfa Agar (Remel, Lenexa, UK) and incubated at 37 ◦C
for 24 h. The presumed Salmonella colonies were selected, spread on Tryptone Soya Agar
(Oxoid), and incubated at 37 ◦C for 24 h. After incubation, the bacteria were identified at
the species level using matrix-assisted laser desorption ionization-time of flight. At least
one Salmonella isolate per sample was selected for further analysis. Salmonella isolates were
stored at −80 ◦C in Tryptic Soy Broth (Oxoid) with 10% glycerol.



Microorganisms 2024, 12, 1646 3 of 14

2.3. Antimicrobial Susceptibility

All identified Salmonella strains were subjected to an antimicrobial minimal inhibitory
concentration (MIC) assay. The MIC test was performed using the KRNV5F (TREK Diag-
nostic Systems, Cleveland, OH, USA) panel for this assay according to the manufacturer’s
instructions. E. coli ATCC 25922 was used as the reference strain. Each panel contained a to-
tal of 16 agents of 13 antimicrobial subclasses (Table 2). The MIC results were interpreted ac-
cording to the breakpoint guidelines of the Clinical and Laboratory Standards Institute [13].
As the CLSI has no breakpoint guidelines for ceftiofur and streptomycin, these data were
interpreted according to the National Antimicrobial Resistance Monitoring System [14].

Table 2. Antimicrobials tested in this study.

Antimicrobial Subclasses Antimicrobial Agents Range Tested

Aminoglycosides Gentamicin 1–64
Streptomycin 16–128

Aminopenicillin Ampicillin 2–64
β-lactam/β-lactamase inhibitor

combinations Amoxicillin/Clavulanic acid 2/1–32/16

Cephamycin Cefoxitin 1–32

Cephalosporin III Ceftiofur 0.5–8
Ceftazidime 1–16

Cephalosporin IV Cefepime 0.25–16
Carbapenem Meropenem 0.25–4

Fluoroquinolone Ciprofloxacin 0.12–16

Folate pathway inhibitors Trimethoprim/Sulfamethoxazole 0.12/2.38–4/76
Sulfisoxazole 16–256

Phenicols Chloramphenicol 2–64
Polymyxins Colistin 2–16
Quinolone Nalidixic acid 2–128

Tetracyclines Tetracycline 2–128

2.4. WGS Analysis

Based on the MIC assay, strains resistant to five or more antimicrobial classes (n = 53)
were selected for the WGS analysis. The selected strains were subjected to WGS at Seni-
gen, Inc. (Seoul, Republic of Korea). Briefly, a MagListo 5M Genomic DNA Extraction
Kit (Bioneer, Daejeon, Republic of Korea) was used for DNA extraction according to the
manufacturer’s instructions. WGS was analyzed using an Illumina MiSeq desktop se-
quencer (Illumina Inc., San Diego, CA, USA) with paired-end reads of approximately
300 bp in length. Trimmomatics (version 0.38) was used for the trimming process. SPAdes
(version 3.13.0) was used to assemble raw reads. The assembled sequence data were filtered
out with a length of 1000 bp and a depth of at least 5. The assembled contig number ranged
between 21 and 66 and from 101 to 236 with average depths of 39 and 153, respectively.

2.5. Serotyping and Homology Analysis

Salmonella serotypes were determined using SeqSero (version 1.2) [15]. Additionally,
bacteria whose serotypes were not confirmed using SeqSero were tested using a slide
agglutination test according to the Kauffman–White scheme using commercially available
antisera (S&A Reagents Lab, Bangkok, Thailand). Homologies were compared using MLST
and cgMLST. Seven housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thrA) were
obtained from the MLST database [16]. MLST (version 2.0) was used in silico on the Center
for Genomic Epidemiology (CGE) website to determine the sequence type. For cgMLST,
we used the cgMLSTfinder (version 1.2) on the CGE website to predict allelic profiles. A
cgMLST-based minimum-spanning tree was constructed using GrapeTree (version 1.5.0).
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2.6. In Silico Characterization of WGS

The genetic characterization of Salmonella was performed using WGS. ARGs were
identified using ResFinder (version 4.1), with minimum identity and coverage thresholds
set at 90% and 60%, respectively. Plasmid types and Salmonella pathogenicity islands
(SPIs) were predicted using Plasmidfinder (version 2.1) and SPIFinder (version 2.0), with
minimum identity and coverage thresholds of 95% and 60%, respectively. Mobile genetic
elements (MGEs) were identified using mobile element finder (software version 1.0.3 and
database version 1.0.2) [17], with minimum identity and coverage thresholds of 90% each.
Virulence factors were predicted using the Virulence Factor Database [18], with minimum
identity and coverage thresholds set at 90% and 50%, respectively.

2.7. Nucleotide Sequence Accession Numbers

The raw WGS data were deposited in GenBank under BioProject PRJNA1105733, with
the biosample accession number SAMN41108762 (2020_64), SAMN41108763 (2020_352),
SAMN41108764 (2020_572), SAMN41108765 (2020_975), SAMN41108766 (2020_997),
SAMN41108767 (2020_1205), SAMN41108768 (2020_1435), SAMN41108769 (2021_277),
SAMN41108770 (2021_360), SAMN41108771 (2021_436), SAMN41108772 (2021_623),
SAMN41108773 (2020_1362), SAMN41108774 (2020_1395), SAMN41108775 (2020_378),
SAMN41108776 (2020_422), SAMN41108777 (2020_475), SAMN41108778 (2020_537),
SAMN41108779 (2020_661), SAMN41108780 (2020_890), SAMN41108781 (2020_1459),
SAMN41108782 (2020_1513), SAMN41108783 (2021_1241), SAMN41108784 (2021_1567),
SAMN41108785 (2020_354), SAMN41108786 (2020_357), SAMN41108787 (2020_760),
SAMN41108788 (2020_1241), SAMN41108789 (2020_1396), SAMN41108790 (2020_1399),
SAMN41108791 (2020_1400), SAMN41108792 (2020_1401), SAMN41108793 (2020_1403),
SAMN41108794 (2020_1458), SAMN41108795 (2020_1509), SAMN41108796 (2021_16),
SAMN41108797 (2021_430), SAMN41108798 (2021_486), SAMN41108799 (2021_563),
SAMN41108800 (2021_761), SAMN41108801 (2021_849), SAMN41108802 (2021_888),
SAMN41108803 (2021_932), SAMN41108804 (2021_1100), SAMN41108805 (2020_1357),
SAMN41108806 (2021_1362), SAMN41108807 (2021_1429), SAMN41108808 (2021_1479),
SAMN41108809 (2021_1500), SAMN41108810 (2021_1584), SAMN41108811 (2021_1648),
SAMN41108812 (2021_1726), SAMN41108813 (2021_1741), and SAMN41108814 (2021_1759).

3. Results
3.1. Prevalence of Salmonella and MDR Salmonella in Poultry Meat Samples

The prevalence rates of Salmonella were 27.4% (n = 198) and 41.3% (n = 210) in 723 and
509 chicken and duck meats, respectively; 46.0% (n = 91) and 28.1% (n = 59) of Salmonella
isolated from chicken and duck meats were multidrug-resistant (MDR; resistant to three or
more antimicrobial classes) [19]. Of the 113 Salmonella resistant to at least five antimicrobial
classes, 53 strains were selected and subjected to WGS analysis.

3.2. Serotyping and Phylogenetic Analysis

Of the 53 tested Salmonella, five different Salmonella serovars were identified: S. Infantis
(30/53, 56.6%), S. Enteritidis (11/53, 20.8%), S. Virchow (9/53, 17.0%), S. Agona (2/53,
3.8%), and S. Indiana (1/53, 1.9%). These five Salmonella serotypes belonged to distinct
sequence types: S. Infantis, S. Enteritidis, S. Virchow, S. Agona, and S. Indiana belonged to
ST32, ST11, ST16, ST13, and ST17, respectively. Fifty-three Salmonella isolates were identi-
fied from eight core genome sequence types (cgSTs) (Figure 1). Salmonella Infantis isolates
were identified in two cgSTs (eight cgST117577 and 22 cgST267045), S. Enteritidis was iden-
tified in three cgSTs (four cgST225993, two cgST2268, and five cgST58360), S. Virchow was
identified in cgST96964, S. Agona was identified in cgST150996, and S. Indiana was identi-
fied in cgST232041. Each serotype was divided into four clusters (S. Infantis, S. Enteritidis,
S. Virchow, and S. Agona) and one singleton (S. Indiana). Three clusters (S. Infantis,
S. Enteritidis, and S. Virchow) were further classified into two subclusters each. Salmonella
Infantis was classified based on cgSTs (cgST117577 and cgST267045). Salmonella Enteri-
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tidis clusters were classified based on cgST and origin (i.e., subcluster A was identified as
cgST58360 and was isolated from chicken meat, whereas subcluster B was identified as
cgST225993 and cgST2268 and was isolated from duck meat). The S. Virchow cluster was
separated based on allelic differences.
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3.3. Antimicrobial Resistance Patterns of MDR Salmonella

The five serotypes showed different AR profiles, with S. Enteritidis and S. Virchow
subclusters showing notable differences (Figure 2). Both A and B clusters of S. Infantis were
resistant to seven antimicrobial classes (aminoglycoside, aminopenicillin, cephalosporin
III, folate pathway inhibitor, phenicol, quinolone, and tetracycline). No specific differ-
ences in AR were observed between the S. Infantis subclusters. Both A and B clusters of
S. Enteritidis were resistant to three antimicrobial classes (aminopenicillin, quinolone, and
tetracycline). In addition, S. Enteritidis subclusters showed clear differences in resistance
to four antimicrobial classes (aminoglycosides, cephalosporin III, cephalosporin IV, and
folate pathway inhibitors). Both A and B clusters of S. Virchow were resistant to three
antimicrobial classes (aminopenicillin, cephalosporin III, and quinolone). In addition,
S. Virchow subclusters showed clear differences in resistance to two antimicrobial classes
(β-lactam/β-lactamase inhibitor combination and tetracycline). Both A and B clusters of
S. Virchow were resistant to three antimicrobial classes (aminopenicillin, cephalosporin III,
and quinolone). In addition, S. Virchow subclusters showed clear differences in resistance
to two antimicrobial classes (β-lactam/β-lactamase inhibitor combination and tetracycline).
The S. Agona cluster was resistant to five antimicrobial classes (aminoglycoside, aminopeni-
cillin, folate pathway inhibitor, phenicol, and tetracycline). The S. Indiana singleton was
resistant to seven antimicrobial classes (aminoglycoside, aminopenicillin, fluoroquinolone,
folate pathway inhibitor, phenicol, quinolone, and tetracycline).
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3.4. Detection of Antimicrobial Resistance Genes, Plasmid Genes, Salmonella Pathogenicity Island,
and Mobile Genetic Elements

In this study, 10 classes of ARGs (beta-lactam, tetracycline, aminoglycoside, sulfon-
amide, phenicol, trimethoprim, disinfectant, quinolone, fosfomycin, and rifampicin) were
revealed (Figure 3). In this study, aac(6′)-Iaa (53/53) was the most commonly detected
gene. The S. Infantis subcluster A carried tet(A), blaCTX-M-65, aac(6′)-Iaa, aph(3′)-Ia (17/22),
aac(3)-IV, aadA1, aph(4)-Ia, sul1, floR, dfrA14, and qacE; S. Infantis subcluster B carried
tet(A), blaCTX-M-65, aac(6′)-Iaa, aph(3′)-Ia, aac(3)-IV, aadA1, aph(4)-Ia, sul1, floR, dfrA14 (7/8),
and qacE; S. Enteritidis subcluster A carried tet(A), blaCTX-M-15, aac(6′)-Iaa, and aac(3)-IId;
S. Enteritidis subcluster B carried tet(A) (4/6), blaTEM-1B, aac(6′)-Iaa, aph(3′′)-Ib, aph(6)-Id,
and sul2; S. Virchow subcluster A carried tet(A), blaCTX-M-15, aac(6′)-Iaa, aph(3′′)-Ib, aph(6)-Id,
and sul2; S. Virchow subcluster B carried blaCMY-2, and aac(6′)-Iaa; S. Agona carried tet(A),
blaTEM-1B, aac(6′)-Iaa, aph(3′′)-Ib, aph(3′′)-Ib, aph(6)-Id, sul3, floR, dfrA14, qnrS1, and fosA7;
and S. Indiana carried tet(A), blaTEM-1B, blaOXA-1, aac(6′)-Iaa, aac(3)-IV, aph(4)-Ia, aac(6′)-Ib-cr,
sul2, floR, catB3, catA1, qacE, and ARR-3.
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Moreover, 10 plasmid replicon types were identified, i.e., IncFIB (pN55391) (reference
accession no: CP016411), IncFIB(S) (FN432031), IncFII(S) (CP000858), IncQ1 (M28829),
IncHI2 (BX664015), IncHI2A (BX664015), IncX1 (JN935898, EU370913), IncI1-I(Alpha)
(AP005147), Col156 (NC009781), and ColpVC (JX133088) (Figure 3). All S. Infantis strains
were carried with IncFIB (pN55391); all S. Enteritidis isolates harbored both IncFIB(S) and
IncFII(S); S. Enteritidis subcluster B also carried IncX1; S. Virchow subcluster A carried
IncQ1, IncHI2, and IncHI2A; S. Virchow subcluster B did not contain any of the three
plasmids; all S. Agona isolates harbored IncI1-I(Alpha) and IncX1; and S. Indiana carried
both IncHI2 and IncHI2A.

A total of 26 MGEs were identified: S. Infantis subcluster A was identified with
MITEEc1, ISEch12, cn_14117_ISEch12 (11/22), IS102, ISEc59 (11/22), ISSen1, ISVsa3 (11/22),
and cn_7115_ISVsa3 (11/22); S. Infantis subcluster B was identified with MITEEc1, ISEch12,
cn_14117_ISEch12 (2/8), IS102, ISEc59 (5/8), ISSen1, ISVsa3 (3/8), and cn_7115_ISVsa3
(3/8); 14 S. Infantis were detected to carry floR within cn_7115_ISAsa3; S. Enteritidis
subcluster A was identified with ISKpn2, ISSty2, MITEEc1, ISSen7, ISEcl10, ISEc78, and
ISEc9; S. Enteritidis subcluster B was identified with Tn2, ISKpn2, ISSty2, MITEEc1, ISSen7,
and ISEcl10; five S. Enteritidis subcluster B were detected to carry blaTEM-1B with Tn2 and
one strain was detected four AMR genes (blaTEM-1B, aph(3′′)-Ib, aph(6)-Id, and sul2) and
the IncX1 plasmid gene with cn_35009_IS26; S. Virchow subcluster A was identified with
ISSty2, MITEEc1, ISEc78, ISEc9, ISSen1, Tn6024, ISKpn8, and IS421; S. Virchow subcluster
B was identified with ISSty2, MITEEc1, ISEc9, and ISSen1; S. Agona was identified with
ISKpn2, ISSty2, MITEEc1, ISEcl10, ISSen1, IS903, ISKpn19, and ISSen6; and S. Indiana was
identified with MITEEc1, ISEcl10, ISEc59, ISSen1, Tn6024, ISKpn8, IS100, and IS30.

Each Salmonella serotype carried identical pathogenicity island genes (Figure 3).
Salmonella Infantis, S. Enteritidis, S. Virchow, S. Agona, and S. Indiana carried nine, 11,
eight, seven, and six SPI genes, respectively. Eleven SPI genes were identified, and six
SPI genes (SPI1, SPI2, SPI3, SPI4, SPI5, and SPI9) were found to be common in this study.
Two SPI genes (SPI13 and SPI14) were commonly found in S. Infantis, S. Enteritidis, and
S. Virchow. Salmonella Infantis, S. Enteritidis, and S. Agona carried one (CS54), three (SPI10,
C63PI, and CS54), and one (C63PI) gene, respectively.

3.5. Detection of Virulence Factor Genes

In total, 230 pertinent genes belonging to 14 virulence factor classes were detected,
namely fimbrial adherence determinants, macrophage-inducible genes, magnesium uptake,
non-fimbrial adherence determinants, regulation, secretion system, serum resistance, stress
adaptation, toxin, adherence, iron uptake, autotransporter, immune evasion, and invasion.
The majority of genes belonged to fimbrial adherence determinants (94/230) and secretion
systems (98/230). In total, 120 genes were identified (Table 3), of which 110 had different
virulence gene profiles (Figure 4). Several genes were dominant in each serotype. For
example, in the fimbrial adherence determinant virulence factor class, eight (pefABCD
and pegABCD) and seven (staABCDEFG) genes were predominant in S. Enteritidis and S.
Agona, respectively. Iron uptake genes (irp2, psn/fyuA, and ybtAPQSTUX) were exclusively
found in S. Infantis. There were clear differences in several VFs, even between subclusters
of the same serotype, such as the secretion system (spvD) and immune evasion (gtrA)
in S. Enteritidis; the secretion system (spiC/ssaB) and invasion (ibeB) in S. Virchow; and
fimbrial adherence determinants (fimW and safD) in S. Infantis.
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Table 3. Identified common virulence factor genes of multidrug-resistant Salmonella spp.

VF Class Virulence Factor Related Gene

Fimbrial adherence
determinants

Agf/Csg csgA, csgB, csgC, csgD, csgE, csgF, csgG

Bcf bcfA, bcfB, bcfC, bcfD, bcfE, bcfF, bcfG

Fim fimA, fimC, fimD, fimF, fimH, fimI, fimZ

Saf safB, safC

Stb stbA, stbB, stbC, stbD, stbE

Std stdA, stdB, stdC

Stf stfA, stfC, stfD, stfE, stfF, stfG

Sth sthA, sthB, sthC, sthD, sthE

Macrophage inducible genes Mig14 mig14

Magnesium uptake Mg2+ transport mgtB, mgtC

Non-fimbrial adherence
determinants

MisL misL

SinH sinH

Regulation PhoPQ phoP, phoQ

Secretion system

TTSS (SPI1 encode)

hilA, hilC, hilD, iacP, iagB, invA, invB,
invC, invE, invF, invG, invH, invI, invJ,
orgA, orgB, orgC, prgH, prgI, prgJ, prgK,
sicA, sicP, sipD, spaO, spaP, spaQ, spaR,

spaS, sprB

TTSS (SPI2 encode)

ssaC, ssaD, ssaE, ssaG, ssaH, ssaJ, ssaK,
ssaL, ssaM, ssaN, ssaO, ssaP, ssaQ, ssaR,
ssaT, ssaU, ssaV, sscA, sscB, sseB, sseC,

sseD, sseE, ssrA, ssrB

TTSS effectors
translocated via

both systems
slrP

TTSS1 translocated
effectors

sipA, sipB, sipC, sopA, sopB/sigD, sopD,
sopE2, sptP

TTSS2 translocated
effectors pipB2, pipB, sifA, sifB, sseF, sseJ, sseL

4. Discussion

Recently, S. Infantis carrying the pESI-like megaplasmid has been reported world-
wide [20–22]. Several studies have reported that the presence of pESI or pESI-like megaplas-
mids increases antibiotic resistance and toxin levels in S. Infantis [23]. Salmonella Infantis
carrying the pESI plasmid was reportedly predominant in feces and dust from commercial
broiler farms in Korea [24]. Salmonella Infantis was the most frequently identified serovar
in eggs, and pESI-like megaplasmids have been identified in the broiler industry [25,26].
The pESI plasmid has the potential to spread S. Infantis carrying the pESI plasmid to the
community in a short period of time [20,21,27]. Despite these reports, the genetic analysis
and timing of the spread of S. Infantis remain unclear. Therefore, we performed a WGS
analysis of MDR Salmonella isolated from Korean poultry meat in 2020–2021, earlier than
the previous report. The analysis results showed that S. Infantis carrying the pESI plasmid
was isolated. In addition to S. Infantis, S. Enteritidis and S. Virchow were shown as the
major MDR Salmonella in Korean poultry.

In this study, 53 MDR Salmonella spp. isolates were identified from 1232 poultry
samples (723 chicken and 509 duck meat samples) collected in five areas of South Korea
from 2020 to 2021. Of the 53 strains, 94% (50/53) were serotypes (S. Infantis, S. Enteritidis,
and S. Virchow) typically found in poultry in South Korea [28–30]. Salmonella Infantis,
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S. Enteritidis, and S. Virchow, belonging to ST32, ST11, and ST16, respectively, showed the
same results as those reported previously [31,32]. Most Salmonella showed clearly different
homology depending on the source of isolation, even though they were the same serotype
and sequence type. However, in S. Infantis subcluster A strains, 21 strains were sourced
from chicken meat and one from duck meat, suggesting that cgST267045 may have been
transmitted from chickens to ducks or as a result of contamination in meat processing.

In this study, various antibiotic resistance, plasmid, Salmonella pathogenicity island,
mobile genetic element, and virulence factor genes were detected and clustered into similar
types according to serotype and cgST. S. Infantis was divided into two subclusters based
on cgST; however, the genetic difference was not clear. The IncFIB (pN55391) plasmid repli-
con was detected in all S. Infantis. Extended-spectrum beta-lactamase (ESBL)-producing
S. Infantis carrying an IncFIB(pN55391)-like plasmid was first isolated in Israel and quickly
disseminated worldwide [27,33,34]. Recently, S. Infantis carrying the pESI-like megaplas-
mid was reported for the first time in eggs in Korea in 2022 [24]. IncFIB(pN55391) was
one of the replicons typical of the “parasitic” pESI-like megaplasmid found [24]. In this
study, S. Infantis carrying the IncFIB(pN55391) showed resistance to various antimicrobial
subclasses (tetracycline, beta-lactam, aminoglycoside, sulfonamide, phenicol, trimethoprim,
and disinfectant), consistent with other reports [9,24,25,33]. This study used samples from
2020 to 2021, earlier than the previously reported 2022 [24–26]. S. Infantis carrying the
IncFIB(pN55391) has not been reported among Salmonella isolates from poultry samples
prior to 2020 in South Korea [10,11,35]. To the best of our knowledge, this study is the
earliest time to isolate S. Infantis carrying the IncFIB (pN55391) in Korea. Therefore, we
suspect the time when the new S. Infantis carrying the IncFIB(pN55391) began spreading
was in 2020.

Contrastively, S. Enteritidis and S. Virchow subclusters showed different genetic pro-
files. The ABR gene profile of the S. Enteritidis subcluster A was common among MDR
S. Enteritidis isolated from the chicken industry in South Korea [11,35]. Salmonella with
a genetic profile similar to that of S. Enteritidis subcluster B was also isolated from Chi-
nese ducks and is a strong candidate to be the major MDR Salmonella in ducks [36]. Both
subclusters carried the beta-lactam resistance gene (blaCTX-M-15 and blaTEM-1B), but in the
3rd and 4th clusters, cephalosporin (ceftiofur, ceftazidime, and cefepime) resistance was
clearly different. Additionally, a marked disparity in gentamicin resistance was observed,
which was S. Enteritidis subclass A carrying the aac(3)-IId gene [37]. Both subclusters
carried IncFIB(S) and IncFII(S), but only subcluster B contained the IncX1 plasmid. IncX1 is
reported to carry beta-lactam, aminoglycoside, and sulfonamide resistance genes [38,39],
which is consistent with our study. In addition, Tn2 in all cluster B strains carried blaTEM-1B,
and one strain was detected with the composite transposon cn_35009_IS26 that also carried
aph(6)-ld, aph(3′′)-lb, sul2, and blaTEM-1B with the IncX1 plasmid. Therefore, the composite
transposon cn_35009_IS26 was a strong candidate for increasing the antibiotic resistance
threat of duck-isolated Salmonella by carrying four AMR (blaTEM-1B, aph(3′′)-Ib, aph(6)-Id,
and sul2) and IncX1 plasmid genes. No mobile colistin resistance genes were detected
in S. Enteritidis despite the fact that most S. Enteritidis have colistin resistance. Colistin-
resistant mcr-negative S. Enteritidis may be associated with chromosomal mutations, such
as those in components of lipopolysaccharide and outer membrane synthesis and mod-
ification (RfbN, LolB, ZraR) and the multidrug efflux pump (MdsC) [40]. The S. Virchow
cluster showed extremely different ABR genetic profiles between subclusters and had the
lowest ARG presence. The S. Virchow cluster A was resistant to ampicillin, ceftiofur, cefox-
itin, nalidixic acid, streptomycin, and tetracycline, consistent with several reports [29,35].
Subcluster B carried only two ABR genes, with blaCMY-2 being unique among the 53 strains,
conferring resistance to amoxicillin/clavulanic acid, including penicillin and cephalosporin.
Although blaCMY-2 is a plasmid-mediated gene [41,42], no promising plasmid candidates
were detected in the current study.

Salmonella chromosomes and plasmid regions encoding virulence-related genes, such
as those involved in invasion, survival, and extraintestinal spread, are named SPIs [43]. In
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this study, 11 Salmonella SPIs (SPI1, SPI2, SPI3, SPI4, SPI5, SPI9, SPI10, SPI13, SPI14, C63PI,
and CS54) were identified, and the SPI profiles were found to be identical at the serotype
cluster level. SPI1, SPI2, SPI3, SPI4, and SPI5, which are more critical for Salmonella patho-
genesis than other SPIs [9], were commonly identified among the Salmonella strains tested.
SPI9 was also one of the most common SPIs in the current study, encoding a type 1 system
similar to SPI4 [43]. In this study, the three common MDR serotypes (S. Infantis, S. Enteri-
tidis, and S. Virchow) may have been influenced by SPI-13 and SPI-14, which promoted
the colonization of chicken spleen [44]. In total, 230 virulence factor genes were identified,
with 120 genes related to five virulence factor classes (fimbrial adherence determinants,
macrophage-inducible genes, magnesium uptake, non-fimbrial adherence determinants,
regulation, and secretion system) being common in this study. In contrast, 47.8% of the
virulence factor-related genes showed different virulence gene profiles among the serotype
clusters. In particular, diverse genes from two virulence factor classes (attachment and iron
uptake) have been identified in S. Infantis. The diverse attachment factor genes may play
distinct roles in chick infection [45], and a robust iron uptake system may contribute to
Salmonella fitness and pathogenicity in vivo, potentially allowing rapid dissemination [46].

This study has several limitations. Due to the nature of the poultry industry in Korea,
we were unable to identify which farm the meat samples originated from. If we could
identify which farm a particular sample originated from, we would be able to have a
more in-depth discussion. The study design was limited to bacterial selection for WGS
analysis. Of the 408 Salmonella isolates (198 from chicken and 210 from duck meat), 53
strains with high levels of MDR were selected and analyzed using WGS. Salmonella isolates
sensitive to antimicrobials were excluded from the study. Therefore, the distribution of
Salmonella serotypes in South Korean poultry may differ from those observed in this study.
To address these limitations, increasing the number of WGS analyses to cover all Salmonella
isolates would provide greater insight into the traceback investigation of Salmonella from
Korean poultry.

Our study suggests that S. Infantis carrying the pESI plasmid first emerged in Korea in
2020 and quickly became the major serotype in the poultry industry in 2022. This new major
serotype in the Korean poultry industry spreads rapidly and carries a large number of lethal
virulence genes. Therefore, we analyzed the genetic characteristics of MDR Salmonella from
the Korean poultry industry, including S. Infantis carrying the pESI plasmid. Ultimately,
this study may help to increase the understanding of MDR Salmonella in poultry meat in
Korea and to help control its spread.
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