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Abstract: New materials and the interactions between them are the basis of novel energy storage
devices such as supercapacitors and batteries. In recent years, because of the increasing demand for
electricity as an energy source, the development of new energy storage materials is among the most
actively studied topics. Conductive polymers (CPs), because of their intrinsic electrochemical activity
and electrical conductivity, have also been intensively explored. While most of the high capacitance
reported in the literature comes from hybrid materials, for example, conductive polymers composed
of metal oxides and carbon materials, such as graphene and carbon nanotubes, new chemistry and
the 3D structure of conductive polymers remain critical. This comprehensive review focuses on the
basic properties of three popular conductive polymers and their composites with carbon materials
and metal oxides that have been actively explored as energy storage materials, i.e., polypyrrole
(PPy), polyaniline (PANi), and polythiophene (PTh), and various types of electrolytes, including
aqueous, organic, quasi-solid, and self-healing electrolytes. Important experimental parameters
affecting material property and morphology are also discussed. Electrochemical and analytical
techniques frequently employed in material and supercapacitor research are presented. In particular,
cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are discussed in detail,
including how to extract data from spectra to calculate key parameters. Pros and cons of CP-based
supercapacitors are discussed together with their potential applications.

Keywords: energy storage; conductive polymer; supercapacitor; electrochemistry; polypyrrole

1. Introduction

Global economic development and population growth increase fossil fuel consumption
and pollution, forcing us to search for clean energy sources and new energy conversion and
storage methods. Electrochemical energy is an essential part of the clean energy portfolio.

The most common electrochemical energy storage systems are batteries, fuel cells, and
electrochemical supercapacitors (ESCs or SCs). Among these systems, SCs are characterized
by their high power density, long life cycle, and fast charging.

The capacitance of supercapacitors can reach thousands of Farads (F). Unlike batteries,
charge storage in supercapacitors is controlled by surface reaction instead of ion diffusion
in the material. Therefore, supercapacitors are better than batteries in terms of power
density in the same volume. Supercapacitors can be used in smart applications such as
wearable devices, sensors, and portable energy storage systems. A higher specific surface
area in supercapacitors can provide not only higher capacitance but also higher energy
density [1]. While the capacitance of conventional capacitors is in the range of micro- and
milli-Farads (µF and mF), in supercapacitors it can reach thousands of Farads. Figure 1
shows the history of supercapacitor development and the revolution of active materials [2].
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Figure 1. Development of supercapacitors and electrode materials. Reproduced with minor modifica-
tions from Ref. [2] with permission from MDPI AG.

SCs provide an excellent balance between power density and energy density by
bridging the gap between batteries that have high energy density and traditional capacitors
that have high power density [3–5]. They can be used as an energy storage source in
outlying places where there is no public energy network because wiring costs are too high,
or in places where wiring is dangerous. They can also be used as a power supply in portable
devices such as cellphones, notebooks, and electric or hybrid vehicles [6]. The Ragone chart
in Figure 2 shows the difference between the level of energy density and power density of
different energy storage devices [7].
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An SC, also called an ultracapacitor, is an electrical component that can store electrical
energy in its structure. SCs have been developed since the 1950s of the 20th century. The
first SC had a capacity of around 1 F, which was patented in 1971 by Standard Oil of
Ohio (SOHIO). The first commercial product was marketed by Panasonic in 1982 and was
named Gold Cap [7]. The Gold Cap had high equivalent series resistance (ESR). In 1992, a
commercial SC, called electrochemical double-layer capacitor, or EDLC at the time, with
low ESR, was introduced to the market by Maxwell Laboratories, with the brand Boost Cap
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and a nominal capacity of about 1 kF [7]. Today’s SCs have capacities higher than several
thousand F and are used in devices that need to release a huge amount of energy in a short
time. They can also be used in electric and hybrid vehicles, fuel cell vehicles, electronic
devices, energy harvesting systems, solar cells, and wind turbines [8].

The selection of electrode material and appropriate electrolytes, such as polyvinyl
alcohol (PVA), which is one of the commonly used water-soluble polymeric electrolytes,
should follow some criteria [9,10]. Compared with aqueous electrolytes, organic and ionic
gel electrolytes can increase the working potential of supercapacitors because of their
wide potential window [11,12]. The critical factors that have to be taken into considera-
tion include operating potential, chemical stability, ionic conductivity, solubility, working
temperature window, and viscosity, as well as mechanical properties [13].

Cycle stability is another factor that should be taken into consideration. This factor is
related to the energy storage mechanism, which can be categorized in three different groups.
The first group is the EDLC type, such as carbon materials, in which the charge/discharge
process is based on physical absorption of ions at the interface of the electrode and elec-
trolyte. Stability of these kinds of materials can decrease significantly during long cycles.
The second group has battery-type and pseudocapacitive behaviors, such as metal oxides,
metal carbides, and metal nitrides, which is based on self-activation reactions. During a
self-activation process, specific capacitance increases with respect to the initial value, but
drops to the initial value or less than 100% after finishing the self-activation step. The third
group belongs to conductive polymers, of which the energy storage mechanism is based
on reversible redox reactions, i.e., the doping–dedoping of p-type or n-type counter ions
that produce Faradic current. But because of the volume expansion/contraction during
charge/discharge cycles, capacity retention is less than 100% for this group of materials [14].
Figure 3 shows a brief classification of different factors that can affect cycle stability.
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permission from the Royal Society of Chemistry.

Conducting polymers with conjugated structures, such as polypyrrole (PPy), polyani-
line (PANi), and polythiophene (PTh) and their derivatives, are interesting materials to
be used as active materials in supercapacitors because of their unique electrochemical
properties. They can also be composed with other electrode materials, such as graphene,
metal oxides, and carbon nanotubes (CNT), to adjust their properties to achieve special
functionalities [15–17].

Other than electrolytes and electrode materials, the structural design of an electrode
also plays a key role in supercapacitor performance. For example, a 3D structure increases
the surface area and can facilitate the charge and discharge process [18]. The substrate on
which the electrode material is loaded also plays an important role. It can improve flexibility,
stretchability, self-healing ability, and waterproof functions of supercapacitors [19–21].

To design a high-performance supercapacitor, it is critical to select the electrode
material, electrolyte, and structure according to its application. Current research shows that
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the available supercapacitors are still not satisfactory in large-scale applications. There are
important issues to be resolved, such as energy density, power density, durability, and good
mechanical properties [13]. Study of the electrochemical process between electrolyte and
electrode material, electrical double-layer configuration, charge–discharge, mass transfer
mechanism, and all electrochemical reactions related to pseudocapacitance is of significance
to establish the theoretical foundation of polymer-based supercapacitors [22–24].

Despite many achievements in this field, the research about supercapacitors, espe-
cially flexible supercapacitors, needs to be improved for large-scale industrial applications.
Developing novel materials with high electrochemical capacitance, long durability, good
mechanical properties, and fast charge/discharge ability is essential in the case of flexible
supercapacitors. Based on updated information, this review provides the state of the art of
conductive polymer-based electrode materials and supercapacitors, focusing on material
chemistry, fundamentals governing conductive polymer conductivity, critical factors af-
fecting capacitance, typical characterization methods, and how to extract data to calculate
typical performance parameters describing electrodes and supercapacitors. It provides
researchers in the field with updated information and furnishes beginners with a relatively
comprehensive background and tools.

2. Supercapacitors Based on Conducting Polymers

Conducting polymers (CPs) are exciting candidates for supercapacitor electrodes. PPy,
PANI, and PTh are the main CPs that have been heavily investigated in recent years [25,26].

A supercapacitor consists of two electrodes, a separator, and electrolyte. The charge
can be stored at the interface of electrode and electrolyte in the form of an electrical double
layer, and its capacitance can be calculated from Equation (1):

C =
Aε

d
(1)

where:

C: capacitance between two electrodes;
A: area of the two surfaces of the electrodes that face each other;
ε: dielectric constant of the electrolyte; and
d: separation distance between two electrodes.

Energy density, power density, and cycle life are the critical parameters to evaluate
the performance of a supercapacitor, which can be calculated from the below equations.
Based on Equation (2), two different types of capacitance in their structure (Cp and Cn) are
connected in series and make the total capacitance (CT) [27].

Total capacitance:
1

CT
=

1
Cp

+
1

Cn
(2)

where:

Cp: positive electrode/electrolyte; and
Cn: negative electrode/electrolyte.

Actually, capacitance shows the amount of charge in the presence of electrical potential,
which depends on the amount and the surface area of the active material. Capacitance can
be calculated based on weight (Cm, F/g), area (Cs, F/cm2), or volume (Cv, F/cm3) [22], as
shown in Equations (3)–(5).

Cv =
1

ϑr∆V

∫ V0+∆V

V0

IdV =
I∆t

ϑ∆V
(3)

Cm =
1

mr∆V

∫ V0+∆V

V0

IdV =
I∆t

m∆V
(4)
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Cs =
1

sr∆V

∫ V0+∆V

V0

IdV =
I∆t
s∆V

(5)

where r: scan rate (V/s);

V0: lower potential limit (V);
∆V: potential window (V);
I: current (A); and
∆t: discharge time (s).

Current and test duration must be normalized by weight, volume, or area.
Other parameters that are very important in supercapacitors are output power and

stored energy, which are shown in the Equations (6) and (7) [22]:

EX =
1
2

CX∆V2 (6)

PX =
1

4R
∆V2 =

EX
∆t

(7)

X = m for mass, s for area, or v for volume

2.1. Electric Double-Layer Capacitors or EDLC Supercapacitors

EDLCs are the most common supercapacitors in the marketplace. The charge transfer
mechanism is based on electrostatic interactions. In these types of supercapacitors, a
layer called a Helmholtz double layer is formed at the interface between electrode and
electrolyte, where energy (charge) is electrostatically stored, as illustrated in Figure 4.
Because there is no electron exchange and redox reaction between electrode and electrolyte,
the current discharged by EDLCs is non-faradaic. The critical parameters that can affect
EDCL capacitance are electrode surface area and Helmholtz layer thickness. The most
used electrode material is activated carbon (AC) because of its large surface area and
low price. The dielectrics used in EDCLs can be liquid electrolytes, and there is not any
electrochemical reaction on the electrode during the charging/discharging process [6].
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2.2. Pseudo-Supercapacitors or Faradaic Supercapacitors

In these types of supercapacitors, a reversible faradaic process of redox reaction,
or reversible electrochemical doping–dedoping, and reversible adsorption occur on the
electrode surface. Reversible adsorption of hydrogen can occur on the surface of a gold
or platinum electrode. A reversible redox reaction can occur on the surface of metal oxide
electrodes, such as RuO2, MnO2, CoO3, NiO, and Fe3O4. And reversible electrochemical
doping–dedoping can occur on the surface of conductive polymer electrodes, such as PPy,
PANi, and PTh. All of these processes generate faradaic current [27–29].
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With the electrochemical or faradaic process, working voltage is extended and specific
capacitance is increased [30]. Conway et al. have shown that a faradaic supercapacitor can
have a capacitance of 10 - 100 times higher than electrostatic supercapacitance [31].

As mentioned before, in these types of supercapacitors, the charging/discharging
process occurs on the electrode surface in the form of both reversible redox reactions
and an electric double layer. Because of the doping and dedoping process during redox
reactions, the electrode is stressed and degrades faster than electrostatic supercapacitors.
The difference in charge/discharge mechanisms between electrostatic supercapacitance and
pseudocapacitance is shown in Equations (8) and (9). Actually, in an electrostatic capacitor
(Equation (8)) [23], there is no charge transfer and ion exchange across the electrode and
electrolyte interface, while in pseudocapacitors (Equation (9)), a reversible chemical reaction
occurs at the electrode surface.

Ep + En + A− + C+
Charging

−−−−−−−−−→←−−−−−−−−−
Discharging

EP//A− + En//C+ (8)

{
[X]0n

}
m
+ A−

Charging(−e−)
−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−

Discharging(+e−)

{
[X]+n A−

}
m

(9)

2.3. Hybrid Supercapacitors

By combining pseudocapacitance and electrostatic capacitance, another type of super-
capacitor can be created, which are called hybrid supercapacitors. With this combination,
one can increase both volumetric and gravimetric energy densities. Consequently, a higher
amount of current can be produced. Additionally, due to the faradaic reaction from the
pseudocapacitance part, energy density is also increased. Right now, hybrid supercapaci-
tors still need to be improved and are not commercially available [32]. Table 1 compares
the characteristics of these three types of supercapacitors and lithium-ion batteries.

Table 1. Important characteristics of different electrochemical energy storage systems [7,33,34].

Supercapacitors (SC) Lithium-
Ion BatteryEDLC SC Pseudo SC Hybrid SC

Cycle life 106 105 5 × 105 500

Energy density (Wh·kg−1) 3–5 10 180 250

Power density (W·Kg−1) 3 × 103 107 103 100

Operating temperature (◦C) −40 to 65 −40 to 65 −40 to 65 −20 to 60

Self-discharge per month (%) 60 60 Not available 4

Type of electrolyte Aprotic or protic Protic Aprotic Aprotic

3. Electrode Material

To design a high-performance supercapacitor, choosing the right active material is very
important [35]. Selection of polymers, polymer chain modification, and polymer blending
with other materials are important techniques that are essential to create new polymer
structures or compositions based on their final usage. These modifications can improve
mechanical, electrical, and electrochemical properties [36].

The electrode materials chosen for supercapacitors must have critical characteristics,
such as high conductivity, high electrical capacity, good mechanical property, high corrosion
resistivity, good chemical stability, being environmentally friendly, and low cost. Among
the various materials, conducting polymers have attracted significant attention because of
their unique and fascinating characteristics.
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3.1. Conducting Polymers (CPs)

CPs are organic materials with a conjugated band system that can conduct electricity
without any conductive filler. The most common CPs include PPy, PANi, and PTh. CPs can
be synthesized through chemical polymerization in the presence of oxidant and dopant
or through electrochemical polymerization in the presence of dopants and monomers in
a specific solvent [37]. To increase the conductivity and electrochemical performance of
CPs, they have to be doped with appropriate dopants [38]. The doped CPs can be n-type or
p-type, and the charge/discharge process occurs simultaneously with the doping and de-
doping processes. Equations (10) and (11) show the charging process in the n-doping and
p-doping states, respectively [38]. The discharge process is the reverse of these equations.

Cp → Cn+
p

(
A−)n + ne− (p doping) (10)

Cp + ne− →
(

C+)nCn−
p (n doping) (11)

The polymer’s nature determines the type of dopant. PPy and PANi cannot be n-
doped because of inappropriate potential, and they can only be p-doped. However, PTh
is p- and n-dopable. Generally, the specific capacitance of n-doped PTh is lower than that
of the p-doped form. In low potential (less than −2.0 V vs. Ag/AgCl), PTh is n-doped.
However, n-doped PTh is unstable and can’t be used in practice, even its conductivity is
comparable with that of the p-doped form [38]. Therefore, choosing the right material for a
specific application is very important [38].

The conductivity of these polymers can be tuned from 10−10 up to104 S/cm with
different dopants or doping levels [39–41]. Based on their electrical conductivity and redox
states, they can be used as the active materials of pseudocapacitors. They can have a large
specific capacitance, such as 1284 F/g for PANI [42], 480 F/g for PPy [43], and 210 F/g,
for PEDOT [44]. Table 2 shows a list of typical conducting polymers with their chemical
structures [45].

Table 2. Typical conducting polymers and structures.

Polymers Theoretical Structures

Polyacetylene (Pac)
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3.1.1. Polypyrrole

Among CPs, PPy is very attractive because of its balanced properties, such as thermal
stability, high conductivity, environmental stability, and ease of synthesis [40]. PPy is read-
ily synthesized on various substrates of various shapes to provide a high electrochemical
performance [46]. The charge storage capability of PPy can be increased by improving the
ion diffusion rate and contact surface area [47]. Based on these unique advantages, PPy has
been considered a promising candidate to fabricate flexible and light-weight supercapaci-
tors. However, the poor cyclic stability, low electrical conductivity of PPy composites, and
the poor mechanical properties of pure PPy are still significant challenges [48].

To overcome such problems, many different techniques have been designed, for
example, PPy with designed morphology or PPy composed with carbon materials or metal
oxides. The electrical capacitance and cyclic stability of PPy must be improved before it can
be used in energy storage devices.

Polymerization conditions, such as the type of polymerization, temperature, potential
range, oxidant, solvent, etc., are very important. The ideal polymerization of pyrrole occurs
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when the α carbons (Figure 5) are oxidized, either by chemical oxidants or through an
oxidative electrical potential, into cation radicals. These cation radicals then join one with
the other and deprotonate to form a dimer. The dimers will be oxidized again to form cation
radicals and join to form oligomers [49], and so on. However, PPy can have a high degree of
crosslinking [50–52]. As shown in Figure 5, there are two reaction sites, α (positions 2 and 5)
and β (positions 3 and 4), on a pyrrole ring. Chain propagation at α sites leads to a regular
and linear structure, while propagation involving β sites leads to irregular structures and
crosslinks. Since high temperatures can increase the probability of the reactions at the
β position, if a highly ordered structure of PPy is desired, a low reaction temperature is
preferred to reduce the degree of crosslinking [53].
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Figure 5. (a) Pyrrole and the possible structures of pyrrole dimers, (b) α-α and α-β couplings leading
to chain branching and crosslinking in PPy structure. Figure 5a is reproduced from Ref. [53] with
permission from Elsevier.

PPy has different oxidation states. As shown in Figure 6, it can switch reversibly
between the first three states during the redox process. There is no change in covalent bond
in the first three states. The last state, which is called the overoxidized state, is irreversible.
The irreversible state occurs because one or more oxygen atoms are covalently attached to
the pyrrole ring, leading to the loss of the structural conjugation and hence the decrease
in conductivity. In fact, undoped PPy can easily react with atmospheric oxygen and
become overoxidized.
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Polymers are insulators in general. However, in the case of conducting polymers, when
they are doped with the proper counterions, they become electrically conductive [54,55].
When doped, PPy obtains a dynamic electrical structure that can transport electricity from
one side to another with the help of polarons or bipolarons [56].

Next, the critical parameters that affect the final conductivity of the CPs will be
discussed in detail. These parameters include the experimental conditions, such as the
polymerization method, polymerization temperature, electrode material in case of electro-
chemical polymerization, solvent, counterion/electrolyte, monomer substitutions, oxidant
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type, nature of the counterions, molar ratio of dopant/monomer, and application tempera-
ture of the CPs [57].

Dian and Lacroix have shown that during polymerization, nucleophiles can decrease
conductivity and mechanical properties. Water molecules can act as nucleophiles and
attack the pyrrole ring to form carboxyl groups, breaking up the conjugation of polymer
chains [58].

Counterions also have a dramatic effect on conductivity [59]. The presence of bulky
functional groups on the pyrrole ring can decrease the degree of conjugation and, con-
sequently, conductivity. To avoid such negative effects, it is needed that these groups be
separated at least by four carbons in the polymeric chain, and it is better to use a flexible
chain as a linker between the pyrrole ring and the functional group [60]. Based on some
studies, thermal conductivity can be increased by stretching the polymer because of poly-
mer chain alignment [61]. Stretching makes polymer chains aligned in the stretch direction.
As a result, thermal transfer becomes more efficient along the oriented polymer chains
(Figure 7) [62].
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Synthesis temperature affects the conductivity of PPy. By reducing the temperature,
the conductivity of PPy increases. This increment is because of reducing the number of side
reactions leading to overoxidation and non-planar structures [61,63].

Doping level directly affects conductivity. By increasing the doping level, conductivity
can increase as high as 15 orders of magnitude [64]. A dopant can enter the PPy structure
during or after polymerization to create a conjugation defect along the polymeric backbone.
This defect is involved in the double-bond rearrangement of the conjugated system by
forming a polaron or a bipolaron, which is the charge carrier that transfers the charge along
the chain [65,66]. The conductivity normally increases with an increase in doping level that
is affected by the dopant/monomer molar ratio and the nature of the dopant. Dopant can
be either added into polymerization solution or generated by the oxidant. For example,
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by using ferric chloride (FeCl3) as the oxidant, it forms a donor–acceptor complex in the
conjugated system and leaves a chlorine anion as a counterion.

The polarons act as charge carriers and are formed at a low concentration of the
dopant. The mobility of the polarons is not high, and consequently, the conductivity of
the PPy is relatively low as well. By increasing the amount of dopant, more Cl− anions
are inserted into pyrrole rings to create more polarons. When the polymer chain becomes
crowded with polarons, they form bipolarons that have a higher energy level. This process
increases the number of charge carriers and also their mobility, leading to an increase in
conductivity [67].

Application temperature also affects conductivity. It has been shown that a high-
temperature application environment can increase the conductivity of conductive polymers.
It was found that at low temperatures, charge carriers are electrostatically bound to the
counterions, such as Cl− anions, and therefore, they are not expected to move fast. However,
at higher temperatures, the charge carriers have enough energy to overcome the electrostatic
attachment to the counterions, and consequently, they can easily move, leading to higher
conductivity [68]. Electron spin resonance (ESR) studies show that by increasing the
temperature in doped PPy, the g-value of the polymer increases linearly from 1.9504 to
1.9925 in a temperature range of 30–200 ◦C [69]. The g-value is a factor that has direct
relation to the specific energy of a particle; this value in a free electron is 2.0023, and the
g-values of free radicals are very close to this value [69].

Polarons and bipolarons are a kind of self-localized defection associated with their
quantum state in an energy gap. The quantum state and energy gap of these two particles
are different in terms of spin and charge. A polaron has a spin of ±1/2 and an electric
charge of ±e; however, a bipolaron is spinless and its electric charge is ±2e [70,71].

Transition from the polaron level (t < 80 fs) to the bipolaron level (t > 100 fs) occurs
after the adiabatic removing of an electron. Figure 8 shows the time evolution of this
transition by decreasing energy levels and energy gap. The small oscillation of the energy
levels is because of lattice oscillation by hole perturbation [70,72].
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The separation of energy bands determines what is metal, semiconductor, or insulator,
as illustrated in Figure 9. In metals, the band gap between the valance band (VB) and
conducting band (CB) is zero (Eg = 0 Ev); that is why electrons can move freely in metals.
However, in insulators, this gap is larger than 3.16 eV, so large that the electrons do not
have enough energy to jump from VB to CB. In semiconductors, the gap between VB and
CB is decreased by a treatment known as doping that generates electrons and holes as
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charge carriers in inorganic semiconductors and polarons and bipolarons as charge carriers
in CPs [73–75].

Materials 2024, 17, x FOR PEER REVIEW 13 of 36 
 

 

 

Figure 9. Electronic bands illustrating (a) undoped; (b) polaron; (c) bipolaron; and (d) fully doped 

states of PPy. Reproduced from Ref. [74], CC-BY 3.0. 

3.1.2. Polyaniline 

Polyaniline, or PANi, also called aniline black, is another CP that has been used in 

energy storage applications. It can be synthesized by chemical and electrochemical 

polymerization methods. Its light weight, high conductivity, low cost, and good mechan-

ical properties make PANi an interesting material to be used in supercapacitors. Figure 10 

shows the chemical structure of PANi. 

 

Figure 10. Polyaniline chemical structure. 

PANi can be deposited on the surface of metal oxides (MOs)/carbon to form a 

PANi/MOs/nanocarbon ternary hybrid [76]. Because of the color change of PANi during 

the redox process, it can be used in electrochromic supercapacitors. Comparing the three 

popular CPs, PPy and PTh are more stable than PANi and can be synthesized directly in 

doped form [27]. According to the studies on the PANi synthesized under different con-

ditions, only the one that has the potential window of 0.8–1.0 V can be used in superca-

pacitors, and any PANi with a potential window of less than 0.6 V is not in the superca-

pacitor class. This is because that energy density is proportional to the square of the cell 

voltage (E = (CV2)/2), meaning that a low potential does not provide enough energy to a 

supercapacitor [77,78]. PANi can be doped in n-type or p-type. Doping can be done during 

polymerization or after polymerization [79]. Some dopants in PANi can attach covalently 

to the polymeric chain and cannot be removed during the subsequent electrochemical re-

dox process, which blocks a portion of the capacitance of PANi. Dedoping can work in 

favor of electroactivity because it can form structural micropores, consequently increasing 

capacitance. On the other hand, initial doping can affect the morphology of CPs, so that 

directly affects the overall performance of the supercapacitor [80–84]. 

Morphology is one of the crucial factors that can affect the electrochemical behaviors 

of PANi. Since the electrode–electrolyte interface area plays a significant role [85], by in-

creasing the surface porosity of the PANi electrode, the specific capacitance of the super-

capacitor can be increased. For example, Sharma et al. synthesized a nanoporous PANi 

Figure 9. Electronic bands illustrating (a) undoped; (b) polaron; (c) bipolaron; and (d) fully doped
states of PPy. Reproduced from Ref. [74], CC-BY 3.0.

3.1.2. Polyaniline

Polyaniline, or PANi, also called aniline black, is another CP that has been used
in energy storage applications. It can be synthesized by chemical and electrochemical
polymerization methods. Its light weight, high conductivity, low cost, and good mechanical
properties make PANi an interesting material to be used in supercapacitors. Figure 10
shows the chemical structure of PANi.
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PANi can be deposited on the surface of metal oxides (MOs)/carbon to form a
PANi/MOs/nanocarbon ternary hybrid [76]. Because of the color change of PANi during
the redox process, it can be used in electrochromic supercapacitors. Comparing the three
popular CPs, PPy and PTh are more stable than PANi and can be synthesized directly
in doped form [27]. According to the studies on the PANi synthesized under different
conditions, only the one that has the potential window of 0.8–1.0 V can be used in su-
percapacitors, and any PANi with a potential window of less than 0.6 V is not in the
supercapacitor class. This is because that energy density is proportional to the square of the
cell voltage (E = (CV2)/2), meaning that a low potential does not provide enough energy
to a supercapacitor [77,78]. PANi can be doped in n-type or p-type. Doping can be done
during polymerization or after polymerization [79]. Some dopants in PANi can attach
covalently to the polymeric chain and cannot be removed during the subsequent electro-
chemical redox process, which blocks a portion of the capacitance of PANi. Dedoping can
work in favor of electroactivity because it can form structural micropores, consequently
increasing capacitance. On the other hand, initial doping can affect the morphology of CPs,
so that directly affects the overall performance of the supercapacitor [80–84].

Morphology is one of the crucial factors that can affect the electrochemical behav-
iors of PANi. Since the electrode–electrolyte interface area plays a significant role [85],
by increasing the surface porosity of the PANi electrode, the specific capacitance of the
supercapacitor can be increased. For example, Sharma et al. synthesized a nanoporous
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PANi with a specific capacitance of 410 F/g [86]. Another method by which we can increase
the surface area and then the specific capacitance is to deposit PANi on a substrate of high
surface area, such as a highly ordered metal oxide, porous carbon, or a template, such as a
nanofiber template that can be removed after polymerization [87–90].

Nanostructured PANi can be easily synthesized by chemical and electrochemical
methods. PANi has excellent electrochemical cyclability and reversibility, which make
it appropriate to be used in a supercapacitor [79]. There are many parameters that can
affect the electrochemical properties of PANi during both chemical and electrochemical
polymerizations, such as polymer chain length, crosslink degree, types of dopant, doping
level, morphology, and diffusion pathways. These characteristics can be controlled with
different parameters, such as temperature, concentration of the solution, and dopant [91].
It was reported that a crosslinked PANi electrode retained 100% of its specific capacitance
after 1000 cycles [92].

There are generally three main types of PANi nanocomposites, i.e., carbon/PANi,
metal oxide/PANi, and metal oxide/carbon/PANi, which have been investigated for use
in pseudocapacitors.

In the case of carbon/PANi composite, carbon nanomaterials provide a high specific
area, and PANi provides good electrical conductivity. PANi can be composited with carbon
nanotubes, either in the form of single-walled (SWCNT) or multi-walled (MWCNT), to benefit
from both the high surface area and high conductivity of the nanotubes [93–95]. A disordered
polymeric chain can limit diffusion of electroactive species and redox site accessibility. In
order to solve these kinds of problems, it is better to use ordered mesoporous carbon as a
template to synthesize PANi on the external surface of ordered mesoporous carbon, which can
lead to a high surface area structure and consequently, high capacitance [96,97]. The presence
of appropriate functional groups at the surface of carbon nanotubes can form active sites for
the growth and attachment of PANi, which is in favor of higher capacitance. Graphene with a
2D structure is an important type of carbon nanomaterial that has been widely investigated in
PANi/graphene nanocomposites [98]. The nature of interactions between PANi and graphene
affects the electrical capacity of the composite. When this interaction is non-covalent, such as
Π- Π interaction (PANi and graphene have rich Π system), the cyclability of the supercapacitor
drops by up to 45% after 1000 cycles [99]. PANi molecules can be deposited on the graphene
sheet vertically with ordered alignment, leading to 1665 F/g specific capacitance [100].

Metal oxides are also good candidates for supercapacitors because they show pseudo-
capacitance behavior in a wide potential range. Metal oxides such as RuO2, MnO2, V2O5,
Fe2O3, NiO, MoO3, and WO3 can be used in PANi-based supercapacitors [79]. In another
approach, metal oxides can be used as oxidizing agents to initialize the polymerization.
With this method, PANi has been shown to grow with the metal oxide and form a nanocom-
posite [101]. In such composites, PANi acts as a conductive material that compensates for
the low electrical conductivity of metal oxides. The best example is MnO2, which has been
used in batteries and supercapacitors and suffers from low conductivity. PANi effectively
improved the electrochemical performance of the PANi/MnO2 nanocomposite [102,103].

There are also ternary composites made of PANi, metal oxide, and carbon, of which, all
the advantages of the components, such as high conductivity, high specific surface area and
high accessible electrochemical sites, are combined to achieve a high performance [104,105].
In these composites, metal oxides are attached to the graphene surface to form a good
substrate, on which PANi can grow vertically. A research group has shown a specific
capacitance of 1360 F/g with a graphene/ZrO2/PANi system [106,107].

3.1.3. Polythiophene (PTh)

PTh is a conducting polymer with high environmental stability and tunable conduc-
tivity. PTh can be synthesized in the form of powder or film [108]. There are many different
methods to synthesize PTh, including chemical and electrochemical [109], photochemi-
cal [110], ultrasonic-assisted, and template-assisted syntheses [110,111]. PTh is synthesized
from thiophenes, as showed by Figure 11.
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Figure 11. Polythiophene-forming process.

Normally, n is between 2 and 4, A− is a counterion required to maintain the oxida-
tion state, and m is the number of repeat units and is related to molecular weight. The
electrochemical polymerization of PTh is a process considered a paradox, meaning that at
the potential that thiophene needs to be oxidized, the synthesized polymeric chain can be
overoxidized, changing the final chemical and physical properties. At a constant current or
potential, the synthesized material is a mixture of the oxidized and overoxidized polymers.
Some research groups have been able to reduce the overoxidation by using bithiophene
or terthiophene instead of thiophene. However, the results have shown that the PTh that
is synthesized with these initial dimers or trimers has lower conductivity [112–114]. Fu
et al. synthesized a PTh film with the specific capacitance of 110 F/g by the electrochemical
polymerization method [115]. Senthil Kumar et al. reported a PTh film with a specific
capacitance of 70 F/g by the chemical polymerization method [116]. Figure 12 shows the
reaction mechanism of PTh formation in chemical polymerization [117].
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The specific capacitance of the electrode made of PTh derivatives (ex. PEDOT) is
relatively lower than that made of PANi and PPy [38]. PTh can also be n-doped or p-
doped. Consequently, they can be used as the negative electrode material or the positive
electrode material. Comparing n-doped and p-doped materials, the n-doped PTh has lower
capacitance and conductivity than the p-doped ones [38]. The n-doped PTh is produced at
low potential and is sensitive to oxygen and water. Consequently, it can be easily oxidized
and can severely self-discharge, which degrades the electrochemical performance of the
electrode [118,119]. In order to overcome this problem, an electron-withdrawing group can
be added to the thiophene ring so that the n-doped PTh can be synthesized at less negative
potential [120].

Among the three CPs mentioned above, PPy often shows a high capacitance and
cyclic stability in the literature, while PANi may show a high conductivity and PEDOT
a high chemical stability. For example, flexible electrodes made of PPy/FeCl3 nanorods
coated on cotton fabrics recorded 578 F/g at 0.2 A/g [121]; PEDOT deposited on a carbon
paper showed 126 F/g at 1mA/cm2 [122]; and nanostructured PANi deposited on graphite
electrodes demonstrated 460 F/g at zero scan rate (by interplotting) [123]. However, the
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values in the literature often cannot be directly compared because of variations in other
parameters, such as current density, scanning rate, area vs. weight, frequency, etc.

4. Electrode Arrangement: Two vs. Three Electrodes

Electrode arrangement plays a crucial role in the characterization of electrochemical
devices. The choice between two-electrode or three-electrode systems depends on the
purpose of the measurement.

4.1. Three-Electrode System

Three-electrode systems are commonly used in the research and development of
electrode materials. The material of interest is used as the working electrode, together with
a reference electrode, such as silver chloride (Ag/AgCl), placed near the working electrode,
and a counter- (also called an auxiliary) electrode that should have a sufficient surface
area, such as a platinum mesh. A potentiostat ensures that most current passes through
the working and counter electrodes, while the working potential is measured between the
reference and working electrodes. This means that only a half cell (working electrode) is
measured. This configuration can also accurately control the potential between reference
and working electrodes. A three-electrode setup is often preferred during the initial testing
and development stages of flexible electrodes [124]. This is because the precise control
and accurate measurement of electrical potential provided by the three-electrode system
are critical in understanding the electrochemical behaviors of the flexible materials [125].
Issues such as mechanical deformation, which can alter the electrochemical response, are
more easily identified and mitigated using a three-electrode configuration [126].

4.2. Two-Electrode System

In a two-electrode system, there are only working and counter electrodes. The cur-
rent passes between the two, and the voltage drop is measured. One can combine the
reference lead with the counter-electrode lead to convert a three-electrode system into
a two-electrode system. The main advantage of a two-electrode system is its simplicity
and ease of implementation. Obviously, what is studied is the full cell instead of a single
electrode. That is why this configuration is often used to study the performance of devices
such as supercapacitors and batteries. It is particularly useful for large-scale energy storage
devices where the primary focus is on overall performance rather than detailed mechanistic
studies. However, this simplicity comes with certain drawbacks. The two-electrode setup
does not allow for independent control or monitoring of the potential at the working
electrode, which can lead to inaccurate measurements due to the potential drop across
the counter-electrode. This can particularly affect the performance evaluation of flexible
electrodes, where uniform current distribution and minimized resistance are crucial [127].
Flexible electrodes are typically implemented in a two-electrode configuration for wearable
and portable devices due to their simplicity and low profile [128].

In conclusion, three-electrode systems offer precise control and measurement of elec-
trochemical activities and are preferred in material research, and two-electrode systems
measure entire electrochemical cells and are used to characterize full cell devices.

5. Electrolyte

The electrolyte contains salts and solvents and plays a key role in supercapacitor
performance. Important parameters are ion type, size, and concentration; solvent type;
interactions between solvent and ions; interactions between electrolyte and electrode; and
electrolyte potential window. The electrolyte can affect power and energy density and
self-discharge of supercapacitors. Figure 13 below shows the electrolyte classification. Each
electrolyte has some advantages and disadvantages. For example, aqueous electrolytes
have high conductivity and high capacitance, but their working voltage is limited because
of the relatively low decomposition potential of water (1.23 V) [129]. On the other hand,
an organic electrolyte can be used at a higher potential, but they suffer from lower ionic
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conductivity. Solid-state electrolytes don’t have leakage problem, but sometimes they suffer
from low ionic conductivity.
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5.1. Liquid Electrolyte

Liquid electrolyte is classified into two main groups, i.e., aqueous electrolyte and
non-aqueous electrolyte.

Aqueous electrolytes consist of acidic, alkaline, and neutral water solutions. Because
they have narrow potential windows (1.0–1.3 V) [129], they are generally not used in
commercial products but rather, in the research area, because they are inexpensive and
easy to use without any special conditions. The important parameters that affect solvent
conductivity and specific capacitance include ion (cation and anion) size in bare and
hydrated states, and ion mobility. The potential window and corrosion degree of the
electrolyte also have to be considered when choosing an appropriate electrolyte for a
system. Table 3 shows a list of aqueous electrolytes, together with their performance in
supercapacitors. The most frequently used acidic, alkaline, and neutral aqueous electrolytes
are made of H2SO4, KOH, and Na2SO4, respectively. The operation voltage of these
electrolytes is about 1 V. Parameters such as water decomposition voltage and water
freezing and boiling points must be considered. One molar H2SO4 is the most common
acidic solution reported in the literature because, in this concentration, it has the maximum
ion conductivity, which can increase the specific capacitance of supercapacitors. EDLCs, in
the presence of H2SO4, have higher specific capacitance than neutral aqueous electrolytes
and organic electrolytes [130–132].

Generally, the specific capacitance and energy densities in EDLCs do not have a huge
difference when using an alkaline (KOH) aqueous electrolyte or an acidic (H2SO4) elec-
trolyte [132]. A KOH solution with a concentration of 6 M has high ionic conductivity
and so has frequently been used among other alkaline solvents. Compared with alka-
line and acidic solvents, neutral electrolytes have lower ionic conductivity, which causes
lower specific capacitance, but on the other hand, they can provide a higher operating
voltage [133,134]. Table 3 shows the performance of some aqueous electrolytes.
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Table 3. Aqueous electrolyte-based supercapacitors and their performance.

Electrode Type Electrolyte Cell Voltage
(V)

Specific Capacitance
(F/g)

Energy
Density
(W h/kg)

Power
Density
(W/kg)

Temp.
(◦C) Refs.

Mesoporous MnO2 0.65 M K2SO4 1 224.88 at 1 mV/s 24.1 70 RT [135], 2012

Mesoporous MnO2 1 M Li2SO4 1 284.24 at 1 mV/s 28.8 70 RT [135]

Mesoporous MnO2 1 M Na2SO4 1 278.8 at 1 mV/s 28.4 70 RT [135]

MnO2 nano flowers 1 M LiOH 0.6 363 at 2 mV/s - - - [136], 2015

MnO2@carbon
nanofibers composites 0.5 M Na2SO4 0.85 551 at 2 mV/s (75 1C) - - 0–75 [137], 2013

AC 0.5 M Na2SO4 1.6 135 at 0.2 A/g 10 - - [133], 2010

AC 4 M NaNO3-EG 2 22.3 at 2 mV/s 14–16 500 0–60 [138], 2014

AC 1 M NaNO3 1.6 116 at 2 mV/s - - RT [139], 2014

AC Na2SO4/0.5 M 1.6 135 at 0.2 A/g 10 - - [133]

AC fibers 1 M H2SO4 0.9 280 at 0.5 A/g - - RT [140], 2014

PANi-grafted rGO/AC 1 M H2SO4 0.8 1045.51 at 0.2 A/g 8.3 60,000 - [141], 2014

Graphene/mPANi 1 M H2SO4 0.7 749 at 0.5 A/g 11.3 106.7 - [142], 2014

PPy thin films 0.5 M H2SO4 1 510 at 0.25 mA/cm2 133 758 - [143], 2014

Pristine flexible PPy
membrane

Solid PVA/
H2SO4/EG 0.7 191.7 at 0.5 A/g 14.1 181.9 RT [144], 2021

Abbreviations: Temp: temperature; RT: room temperature; AC: activated carbon; PANi: polyaniline;
rGO: reduced graphene oxide; PPy: polypyrrole; mPANi: mesoporous PANi film on ultra-thin graphene
nanosheets; EG: ethylene glycol.

Another group is organic electrolytes, which have a high operation potential window
between 2.5 and 2.8 V. This high operation voltage can improve both energy density and
power density. Also, because they are less corrosive, organic electrolytes provide the
possibility of using cheaper material for current collectors. However, the supercapacitors
using organic electrolytes have a higher price and lower specific capacitance because of
lower ion conductivity, flammability, and toxicity. Also, a complicated process of purifi-
cation and assembly is required to remove residual impurities that can cause electrolyte
degradation and self-discharging [145]. Generally, an organic electrolyte consists of a
conducting salt dissolved in an organic solvent. Like for aqueous electrolytes, the nature of
organic electrolytes, such as ion size, ion–solvent interaction, conductivity, and viscosity,
can affect supercapacitor performance. The most used organic electrolytes in the literature
are propylene carbonate (PC), ethylene carbonate-dimethyl carbonate (EC-DMC), and
ethylene carbonate-diethyl carbonate (EC-DEC) [146–148]. Table 4 shows different organic
electrolyte-based supercapacitors and their performance.

Ionic liquid electrolytes are another type of liquid electrolyte, consisting of melted
cations and anions. Ionic liquids have high thermal, chemical, and electrochemical stability;
very low volatility; non-flammability; and highly tunable physical and chemical proper-
ties [11,149]. Because of these attractive properties, they have attracted much attention.
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Table 4. Organic electrolyte-based supercapacitors and their performance.

Electrode
Material Electrolyte Cell Voltage

(V)

Specific
Capacitance

(F/g)

Power Density
(W/Kg)

Energy
Density
(Wh/Kg)

Temp.
(◦C) Refs.

Electrode materials in double layer supercapacitors

AC 1.5 M
SBPBF4/PC 3.5 122 at 0.1 A/g - 52 RT [150], 2014

AC 1.6 M
TEAODFB/PC 2.5 21.4 at 1 A/g ~1000 28 (20 ◦C) −40 to 60 [151], 2012

AC 0.7 M
TEABF4/ADN 3.75 25 at 20 mV/s - 28 RT [152], 2012

AC 1 M
TEABF4/HFIP - 110 at 1 mV/s - - - [153], 2012

Microporous
carbide

derived carbon

1 M
NaPF6/(EC-
DMC-PC-EA

1:1:1:0.5)

3.4 120 at 1 mV/s ~90 ~40 −40 to 60 [154], 2014

Highly porous
interconnected

carbon
nanosheets

1 M
TEABF4/ACN 2.7 B120-150 at 1

mV/s 25,000-27,000 25 - [155], 2014

Heteroatom
doped porous
carbon flakes

M LiPF6/(EC-
DEC 1:1) 3 126 at 1 A/g 2243 29 RT [156], 2014

Carbon
(provided by

Batscap)

1 M
SBPBF4/ACN 2.3 109 - - −30 to 60 [157], 2013

Graphene-
CNT

composite

1 M
TEABF4/PC 3 110 at 1 A/g 400 34.3 - [158], 2013

Microporous
TiC-CDC

1 M
TEMABF4/(PC-

PS 95:5)
2.7 100 at 10 mV/s

(60 1C) ~1000 ~25–27 −40 to 60 [159], 2014

Electrode materials in pesedoucapacitors

PANi/graphite 0.5 M
LiClO4/PC 1 ~420 at 50

mV/s - - RT [160], 2013

MoO3
nanosheets

1 M
LiClO4/PC - 540 at 0.1

mV/s - - - [147], 2010

Nanoporous
Co3O4

-graphene
composite

1 M LiPF6/(EC-
DEC 1:1) - 424.2 at 1 A/g - - RT [161], 2014

Heterostructured
poly

(3,6-dithien-2-
yl-9H-

carbazol-9-yl
acetic

acid)/TiO2
nanoparticles

composite

0.5 M
Bu4NBF4/ACN 1.2 462.88 at 2.5

mA/cm2 - 89.98 RT [162], 2014

Abbreviations: Temp: temperature; RT, room temperature; CNT, carbon nanotube; HFIP, 1,1,1,3,3,3-
hexafluoropropan-2-ol; AC, activated carbon; ADN, adiponitrile; TEAODFB, tetraethylammonium diflu-
oro(oxalato)borate; TEMABF4: triethylmethylammonium tetrafluoroborate; PS, 1,3-propylene sulfite; TiC-CDC:
titanium carbide-derived carbon; SBPBF4, spiro-(1,10)-bipyrrolidinium tetrafluoroborate; EC: ethylene carbonate;
DEC: diethyl carbonate; DMC: dimethyl carbonate; EA, ethyl acetate; PANi, polyaniline.
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5.2. Solid and Quasi-Solid Electrolytes

A major type of solid electrolyte is polymer-based electrolytes, further classified into
three different groups, including solid polymer electrolytes (SPEs), gel polymer electrolytes
(GPEs), and inorganic electrolytes.

The most important advantage of solid electrolytes is the simplified packaging process,
because they are liquid-leakage-free and can be used as an electrolyte and an electrode
separator at the same time. Examples of solid electrolytes are Li3PS4, Li7P3S11, Li10GeP2S12,
and metal oxides like LiNbO3, and LiTaO3 [163].

SPE electrolytes are composed of polymers and salts without any solvent. The param-
eters that should be considered to develop a solid-state electrolyte are thermal, chemical,
and electrochemical conductivity, mechanical stability, and ionic conductivity.

Due to liquid in GPEs, some studies call this type of electrolyte a quasi-solid-state
electrolyte [164,165]. A GPE is composed of a polymeric matrix, such as polyvinyl alcohol
(PVA) and polyacrylic acid (PAA), and a liquid electrolyte that can be an aqueous electrolyte
or an organic solvent. PVA is a linear polymer that can be dissolved in an aqueous
solution, such as an alkaline solution (ex. KOH), a strong acid (ex. H2SO4), or a neutral
solution (ex. LiCl), to make a hydrogel electrolyte. PVA hydrogel electrolyte has many
interesting properties, such as high hydrophilicity, film-making properties, and non-toxicity.
In addition, it has a low cost, and the preparation process is really easy [166]. Poly(acrylate)
and PAA have also been studied as polymer hosts of electrolytes, and the resulting polymer
hydrogels showed increased proton conduction when the protons entered an aqueous
medium from polymer side chains [167,168].

A research group has shown the order of specific capacitance of a RuO2 electrode in the
presence of different electrolytes, including poly(2-acrylamido-2-methyl-1-propanesulfonic
acid (PAMPS), potassium polyacrylate (PAAK), PAA, as the following [167,169]:

PAMPS/H2O > 1 M H2SO4 (aqueous electrolyte) > PAA/H2SO4 > PAAK/H2SO4 >
PAMPS/H2SO4

As it is obvious that the PAMPS/H2O electrolyte has the best performance among the
others. This is because of the sulfonate groups at the side chains that can provide the best
proton accommodation and, as a result, the highest capacitance [169]

Another type of quasi-solid-state electrolyte is called organogel electrolytes, which
use organic solvents to replace water in order to increase the working voltage of the cell.
Different polymers, such as polyethylene oxide (PEO) [170], poly(methyl methacrylate)
(PMMA) [171], polyvinylprrolidone (PVP), polyether ether ketone (PEEK) [172], and copoly-
mers [173,174], can be used to host organic solvents, such as polycarbonates (PC), ethyl
cellulose (EC), dimethyl carbonate (DMC), dimethyl sulfoxide (DMSO), and dimethylfor-
mamide (DMF). This system can increase the cell voltage up to 2.5–3.0 V, which is higher
than aqueous electrolytes that have cell voltages up to 1.3 V [169]. However, organogel
electrolytes suffer from relatively low ionic conductivity.

The next group of quasi-solid-state electrolytes is ionic liquids (ILs), which have a
large working potential window of up to 4.0 V [169]. When ILs are used as electrolytes, the
IL is incorporated into a polymeric host. The properties of the electrolyte depend on the
interactions between the IL and the host polymer. The polymers that can be used with ILs
are the same as those used in organogel electrolytes, as mentioned above.

The last group of solid-state electrolytes is inorganic electrolytes. Inorganic electrolytes
are not bendable and flexible, but on the other hand, they have good mechanical and
thermal stability. A research group has reported a glass–ceramic electrolyte that is used as
both an electrolyte and a separator and has high Li-ion conductivity [175].
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5.3. Redox-Active Electrolytes

In these types of electrolytes, a redox reaction can occur in the electrolyte and in-
crease capacitance [176]. This kind of electrolyte is prepared by adding suitable redox
additives to an electrolyte system to improve the performance of the supercapacitor
system. Some examples of these redox additives are Na2MoO4, Ce2(SO4)3, and 1,4-
dihydroxyanthraquinonedone [177].

Heteropoly acids, such as phosphotungstic acid (PWA), can be used as redox-active
electrolytes, which can increase proton conductivity and provide multiple redox–electron
transfers [178,179]. The main problem with this type of electrolyte is self-discharging. The
reason for it is the migration of the electrolyte between electrodes. In order to inhibit this
migration, an ion-exchange membrane (e.g., Nafion) can be used as a separator or to use a
redox-active electrolyte that can be converted to an insoluble form during the charging–
discharging process [180]. These types of electrolytes can increase specific capacitance
and, consequently, energy and power densities. They can provide an electron source and
increase the speed of the Faradic reaction in pseudocapacitance electrodes. On the other
hand, they can decrease cycle stability [181,182]. Potassium iodide (KI) and hydroquinone
(HQ) are other examples of redox-active electrolytes.

Non-aqueous redox-active electrolytes are another type of redox-active electrolyte that
can increase cell working voltage and energy density. The last group is solid redox-active
electrolytes, which have almost the same electron transfer mechanism as the liquid ones.

5.4. Self-Healing Electrolytes

While solid and quasi-solid electrolytes are preferred in wearable and flexible elec-
tronics because of their low risk of leaking, they face the risk of structural damage during
repeated deformation. Self-healing electrolytes can, ideally, automatically repair small
damages such as cracks. The so-called self-healing electrolytes are largely based on two
mechanisms: the release of pre-stored reactive chemicals inside a material (electrolyte),
trigged by damages such as a crack. The released chemicals will eventually fill and bond
to the crack. The re-bonding of the racks can also come from the electrolyte itself without
involving the pre-stored chemicals. In such an electrolyte, the bonding between material
molecules is dynamic and reversible. When the force generated by deformation exceeds
the ultimate strength of the electrolyte, the bonds among electrolyte molecules are broken.
However, when deformation disappears, if the broken molecules can return to their prox-
imity, the bonds automatically reform among the molecules. A self-healing electrolyte is a
special case of self-healing materials, which has been nicely reviewed recently [183–185].

6. Characterization Methods

Electrical conduction in CPs is much more complicated than in classical semiconduc-
tors because the doping of CPs involves a redox reaction that changes the chemical and
electronic structures of the polymers. Also, CPs have a one-dimensional lattice that makes
them amorphous, and the charge carriers are not electrons and often change with the
degree of doping and the type of dopant. The appropriate methods used to evaluate elec-
trode materials include cyclic voltammetry (CV), electrochemical impedance spectroscopy
(EIS), conductivity measurement (ex: the four-point probe method), scanning electron
microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared
spectroscopy (FTIR).

6.1. Electrochemical Analysis

Based on electrode materials, their energy storage mechanisms can be different, which
further affect cyclic voltammogram and charge/discharge curve shapes. As mentioned
before, there are three categories of electrode materials. The first type is the ECDL type,
in which a reversible adsorption/desorption process of electrolyte ions is formed at the
interface between the electrode and electrolyte; no electrochemical reaction or phase change
occurs so that their cyclic stability is generally good. The second type shows pseudoca-
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pacitance, in which charge storage is based on a reversible redox reaction on the surface
of the material. Compared to the EDLC type, this type of electrode material has a larger
specific capacitance, but its cyclic stability is relatively poor. In the third type, or battery-
type materials, the electrochemical reaction is controlled by electrolyte ion diffusion that
undergoes intercalation reactions of phase change ions. Battery-type materials show high
energy density but poor cyclic stability [14]. The difference in electrochemical behaviors of
electrode materials is shown in Figure 14.
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6.1.1. Electrochemical Impedance Spectroscopy (EIS)

EIS is a non-destructive method to measure impedance (Z) as a function of the alternat-
ing current amplitude in a range of frequencies. The usual electrochemical measurements,
such as cyclic voltammetry (CV), which uses DC potential, does not provide enough infor-
mation about the electrochemical reactions that occurred at the interface of an electrode
and electrolyte. EIS, which can be performed in a broad range of frequencies in different
potentials, gives valuable information about electrical features, such as charge transfer
resistivity (Rc), solution resistivity (Rs), diffusion resistivity (Warburg impedance), and
equivalent electric circuit simulation. In a simple system, the equivalent circuit model is
called a Randle circuit (Figure 15).

In the EIS method, a small AC potential is applied to DC potential. Since no electro-
chemical reaction is 100% reversible when the applied potential is reversed, using a high
amplitude of AC potential can distort the electrochemical stability of the system [186]. To
minimize such perturbation caused by AC potential, a very small AC signal is applied on a
constant DC potential. The variation of impedance with frequency is often displayed in
two ways: a Bode plot and a Nyquist plot (Figure 16).
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Figure 15. Components of a simple electrochemical system, showing: (a) electric and electrochemical
phenomena occurred in the solution and interface area; (b) modeled circuit based on these phenomena.
Cd: double layer capacitor, RC: charge transfer resistivity, W: Warburg impedance, Rs: solution
resistivity.
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Figure 16. Bode and Nyquist plots representing the essential elements in a circuit that simulates the
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with a resistor, and (d) a capacitor in parallel with a resistor. Red curves correspond to left Y axis, and
green curves correspond to right Y axis.

In a Bode plot, log \Z\ and ϕ are both plotted against log ω, where Z is impedance
and ω is frequency. In a Nyquist plot, the imaginary part of impedance (ZIm) is plotted
versus the real part of impedance (ZRe) for different values of ω. Figure 16 shows the most
important components in a circuit and the Bode and Nyquist plots representing them.
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In a relatively short time of measurement, a Nyquist plot can provide information
about the inner state of a system in terms of electrolyte properties, diffusion layer, ion
migration, electrode surface property, and electrode reactions (Figure 17). This method
is independent of leakage current and fluctuating voltage. At low frequencies, migration
phenomena are dominant; at middle frequencies, electrode reaction is dominant; and
inductive effect and structure porosity are dominant at high frequencies [187].
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Figure 17. Typical impedance spectrum of a battery in an exaggerated Nyquist plot. Here, Rs is the
series resistance, R1 and R2 are the charge transfer resistances of the electrodes, Cdl1 and Cdl2 are the
double layer capacitances of the electrodes, σ is the Warburg coefficient, R3 is the intersection of the
Warburg impedance. Reproduced from Ref. [187], CC BY-NC-ND 4.0.

Every electrochemical cell has its special phenomena and, consequently, its impedance
curve models, which can be expressed analytically with an equivalent circuit consisting of
electrical elements such as capacitors, resistors, and inductors. This equivalent circuit can
simulate the internal electrical properties of a cell. To run an impedance test, one needs to
adjust an appropriate frequency range, dc potential, ad potential, and curve type.

6.1.2. Cyclic Voltammetry

Cyclic voltammetry (CV) is a potential sweep technique frequently used in electro-
chemical study and it provides abundant information about the redox reactions at an
electrode. It is among the most widely practiced electrochemical methods. Figure 18 shows
a linear (t, time) complete scan where the backward scan starts when the forward scan
reaches the switching potential Eλ. The potential at any time point is given by [188]:

(0 < t ≤ λ) E = Ei − vt

(t > λ) E = Ei − 2vλ + vt

where:

v: scan rate (v/s);
Eλ: switching potential;
Ei: initial potential; and
λ: run time at switching potential.
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Figure 18. Cyclic voltammetry. (a) Cyclic potential sweep, (b) resulting cyclic voltammogram.
Reproduced from [187] with permission from John Wiley & Sons.

The peak in the negative scan represents a reduction taking place at the working
electrode, and the peak in positive scan shows oxidation.

By this voltammogram, the capacitance of an electrode material can be calculated. The
charge (Q) accumulated on the electrode is calculated by the area under the CV curve in
one direction from E1 to E2 (see Figure 19), and the capacitance (Ci) of the electrode can be
calculated based on the equation below:

Ci =

∣∣∣∣ Q
E2 − E1
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6.1.3. Cyclic Charge–Discharge (CCD)

CCD is a technique frequently used to evaluate specific capacitance, power and energy
densities, and cycle stability. Normally, a charge–discharge cycle is performed under a
constant current in a determined voltage window. A loop of charge–discharge is called a
cycle. The capacitance (C) of each cycle is calculated in farad (F) based on the following
equation [189]:

C =
Q
V

where Q is the charge in coulomb (C), and V is the voltage window. Both are the function
of a cycle.

Q is calculated based on the equation below [190]:

Q =
I × ∆t

m(or A)
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where I/m or I/A is current density per weight (A/g) or current density per area (mA/cm2),
and ∆t is discharging time. So, the calculation of C is based on the following equation
where ∆V is the voltage window:

Cs =
I × ∆t

m(or A)× ∆V

Energy and power densities of the electrode are calculated based on the following
equations:

Energy density
(

Wh·Kg−1
)
=

1
2

Cs∆V2 1000
3600

Power density
(

W·Kg−1
)
=

E
td
× 3600

where Cs = specific capacitance (F/g or mF/cm2); ∆V (V) is the maximum potential window;
E is the energy density; and t (s) is the discharging time.

6.2. Four-Point Probe for Resistivity Measurement

The four-point probe technique is most commonly used to measure surface or sheet
resistivity. The set-up consists of four small metal tips lined up with the same separation,
as shown in Figure 20. A constant current is applied between the two outer tips, and the
voltage drop is measured between the inner tips. The resistivity of the surface is given by
the equation below, where CF is the correction factor based on the size of the specimen
relative to the dimension of the probe and the ratio of the thickness of the conducting layer
to probe separation [191].

σ =
V
I

CF
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6.3. Infrared Spectroscopy

Infrared spectroscopy (IR) is a conventional method to study the chemical nature of
substances, including polymers. IR is based on the interactions between the molecular
structures of a material and the electromagnetic radiation in the infrared range. When IR
radiation is in contact with a test material, the chemical bonds of the material absorb IR
energy at characteristic frequencies according to the chemical bond vibration modes, such
as stretching, bending, and scissoring [192]. The balls represent the atoms connected by
chemical bonds that act as springs. Based on how the atoms move, the vibration mode
can be determined. The movement of an atom toward or away from other atoms along
the line of the spring represents a stretching vibration. Stretching can be either symmetric
or asymmetric. A molecule with three or more atoms can experience multiple modes of
vibration, as summarized in Figure 21.
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Figure 21. Molecular vibration modes.

Each chemical group has particular interactions with infrared radiation, which causes
energy absorptions at characteristic frequencies that differ, one chemical group from another.
The region below 1800 cm−1 is the fingerprint of a material, where the peaks carry the
most useful information, and can be complicated to interpret. Figure 22 shows the typical
infrared absorption positions and intensities of important chemical bonds.
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6.4. X-ray Photoelectron Spectroscopy (XPS)

XPS is a non-destructive surface analysis method that allows identifying the chemical
and electronic structures of the top-most layer of a material. It gives information about the
electronic valance structures of chemical bonds. The atomic composition of a sample can
also be determined by this method. The under-test sample is excited by a high-energy X-ray
source. While the X-ray penetration depth into a sample is deep, the free path (λ) of the
photoelectrons escaping from the sample is very short, e.g., 5 to 20 Å, leading to a sampling
depth of 15 to 60 Å (3λ). By changing the take-off angle, the sampling depth can be further
reduced. Consequently, this method gives surface rather than bulk chemical information.
In this method, atoms absorb X-ray energy, then an electron from the K-shell, which is the
lowest energy shell of the atom, is ejected, and its kinetic energy (KE) is measured. The
binding energy (BE) of that photoelectron can be calculated based on the KE and the energy
of the incident beam (hv) [194]. Figure 23 shows the energy-ejecting mechanism.
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Figure 23. Electron excitation from K-shell’s atoms. Reproduced from [194] with permission from
Pavan M. V. Raja & Andrew R. Barron, Rice University (CC BY 4.0).

Because the BE of photoelectrons is characteristic for each element (except hydrogen),
the number of detected electrons with a specific BE is proportional to the number of atoms
of the corresponding element in the testing sample, which provide the relative percentage
of each element in that sample. Table 5 shows the electron BE and the orbitals from which
the electrons are ejected.

Table 5. Some important elemental binding energies. Reproduced from [194] with permission from
Pavan M. V. Raja & Andrew R. Barron, Rice University (CC BY 4.0).

Element Binding Energy (eV)

Carbon (C1S) 284.5–285.1

Nitrogen (N1S) 396.1–400.5

Oxygen (O1s) 526.2–533.5

Silicon (Si2p) 98.8–99.5

Sulfur (S2p3/2) 164.0–164.3

Iron (Fe2p3/2) 706.8–707.2

Gold (Au4f7/2) 83.8–84.2

6.5. Scanning Electron Microscopy (SEM)

In a material surface study, scanning electron microscopy (SEM) is one of the more
important methods that can provide useful information about the material surface structure.
Compared to optical microscopy, which is the oldest method with a maximum magni-
fication of 1000 times a sample’s original size, SEM works based on electrons, and the
magnification of the image can reach up to 300,000 times that of the sample’s original size.
SEM is a non-destructive method in which a high-energy beam of electrons is applied to
the surface of a sample and penetrates about 1 µm of depth to generate the secondary
electrons (SEs) and backscattered electrons (BSEs) that are used to produce an image of
sample topography. In order to have a clear, sharp image, parameters such as bright-
ness and intensity can be adjusted by the operator. Low accelerating voltages (less than
5 kV) can provide images with rich surface details; however, high accelerating voltages
(15–30 kV) that can penetrate underneath the surface will reflect signals that include some
details about the interior of the specimen [195].

7. Conclusions

Multiple factors affect the overall performance of electrodes and supercapacitors. Only
carefully designed strategies can lead to high capacitance, balanced energy and power
densities, and acceptable cyclic stability. Nanostructured CP electrodes provide a high
number of redox reaction sites at the electrode/electrolyte interface and, consequently,
a high capacitance. Such nanostructures can be formed through special polymerization
methods or by coating the nanostructured carbon and metal oxide surfaces. Nanostructures
may also improve the cyclic stability of CP electrodes because of less stress in thin-walled
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structures compared with thick structures that have undergone the same strain. Currently,
metal oxides and carbon-based nanomaterials, such as graphene and carbon nanotubes, are
the leaders. A Co3O4 electrode achieved 3560 F/g, while a PPy/CoO electrode recorded
2225 F/g, demonstrating the advantage of combining with metal oxide [196]. To compete
with carbon and metal oxide-based supercapacitors, CP electrodes are light, less expensive,
capable of being flexible, and environmentally friendly. These advantages make CP-
based electrodes and supercapacitors suitable for wearable, disposable, and low-energy-
density personal electronics. Supercapacitors made of CP may also be used in medical
implants because CPs such as PPy and PEDOT are biocompatible. However, CP-based
supercapacitors still need to improve their energy density and cyclic stability. To be used
in medical implants, biocompatible electrolytes are mandatory. Industry must identify
the best composition and structure based on specific applications. Another challenge is
how to form and maintain excellent contact between CP and metallic current collectors,
particularly when repeated deformation occurs. Obviously, there is still a gap between the
research and application of CP-based supercapacitors, which needs our continuous efforts.
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