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Abstract: Interindividual variation in drug efficacy and toxicity is a significant problem, potentially
leading to adverse clinical and economic public health outcomes. While pharmacogenetics and
pharmacogenomics have long been considered the primary causes of such heterogeneous responses,
pharmacomicrobiomics has recently gained attention. The microbiome, a community of microorgan-
isms living in or on the human body, is a critical determinant of drug response and toxicity. Factors
such as diet, lifestyle, exposure to xenobiotics, antibiotics use, illness, and genetics can influence
the composition of the microbiota. Changes in the intestinal microbiota are particularly influen-
tial in drug responsiveness, especially in cancer chemotherapy. The microbiota can modulate an
individual’s response to a drug, affecting its bioavailability, clinical effect, and toxicity, affecting
treatment outcomes and patient quality of life. For instance, the microbiota can convert drugs into
active or toxic metabolites, influencing their efficacy and side effects. Alternatively, chemotherapy
can also alter the microbiota, creating a bidirectional interplay. Probiotics have shown promise in
modulating the microbiome and ameliorating chemotherapy side effects, highlighting the poten-
tial for microbiota-targeted interventions in improving cancer treatment outcomes. This opinion
paper addresses how environmental factors and chemotherapy-induced dysbiosis impact cancer
chemotherapy gastrointestinal toxicity.
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1. Introduction

Interindividual variation in drug response, in terms of efficacy and toxicity, is a
significant problem that leads to adverse clinical and economic public health outcomes. For
a long time, pharmacogenetics and pharmacogenomics have been claimed to cause such
heterogeneous responses [1]. Recently, pharmacomicrobiomics has gained attention as a
possible explanation for the variability in drug response and toxicity. It mainly highlights
the microbiome as a critical determinant [2].

The microbiome is a community of microorganisms (such as bacteria, fungi, protozoa,
and viruses) and their genomes living in or on the human body [3]. Diet, lifestyle, expo-
sure to xenobiotics, use of antibiotics, acute and chronic illness [4], geographic location,
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ethnicity, age, physical activity, genetics, and gender can influence the composition of the
microbiota [5]. For example, a high-fat diet has been shown to alter the gut microbiota
composition, leading to a higher abundance of bile-tolerant microorganisms [6]. Similarly,
antibiotic use can significantly reduce microbial diversity, affecting drug metabolism and
response [7].

Variations in the intestinal microbiota, a vital part of the human microbiome, and
their relationship with drug responsiveness have been extensively investigated [8–12].
Such interaction follows a bidirectional and complex interplay. Pharmacological treat-
ment can influence the composition of the microbiota [3,13,14], but the microbiota can
also modulate an individual’s response to a drug, influencing its bioavailability, clinical
effect, and toxicity [3,14]. For instance, age-related microbiome changes can affect drug
pharmacokinetics, as seen in the reduced efficacy of certain medications in older adults [15].
Gender differences have also been observed, with studies indicating that intestinal micro-
biota composition drives hormone metabolism and the regulation of autoimmunity [16].
Lifestyle factors, including voluntary wheel running and forced treadmill running, were
reproduced in rodents and have been demonstrated to alter the intestinal microbiome of
mice differentially [17]. Additionally, xenobiotics, including anticancer agents, can disrupt
the microbiome, leading to increased gastrointestinal toxicity [18].

Figure 1 summarizes some factors that influence the intestine microbiome balance.
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Figure 1. Factors that influence the intestinal microbiome balance. Interindividual variations in cancer
treatment response can be influenced by factors such as pharmacogenetics and pharmacogenomics,
gender, age, lifestyle, and changes in the microbiome. The microbiome can be influenced by diet, age,
sex, lifestyle, xenobiotics (including anticancer agents), low socioeconomic status, and poor sanitation.

Cancer chemotherapy presents a narrow therapeutic index and a high rate of indi-
vidual variation in treatment response. Remarkably, individual alteration in the level of
toxicity has recurrently been described [19]. Cancer chemotherapy side effects hamper
cancer treatment outcomes. Patients frequently manifest several gastrointestinal symp-
toms, such as nausea, vomiting, mucositis, and diarrhea [20]. Intestinal mucositis is a
dose-limiting side effect of chemotherapy occurring in about 50–80% of patients, neg-
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atively affecting their treatment and prognosis [21]. Changes in intestinal microbiota
composition are related to interindividual variations in patients undergoing intravenous
chemotherapy with 5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine,
and methotrexate. Probiotics modulate the microbiome and ameliorate chemotherapy side
effects in animal models and humans [21–26]. Herein, we address the relationship between
changes in the microbiome from any causes and how they impact cancer chemotherapy
and gastrointestinal toxicity development.

2. Environmental Factors Alter Intestine Microbiome Composition

The intestinal microbiota consists of more than 1500 species. The phyla Bacteroidetes
and Firmicutes are the most predominant and, together with Proteobacteria, Fusobacteria,
Tenericutes, Actinobacteria, and Verrucomicrobia, represent around 90% of the human micro-
bial population [27,28]. Figure 2 shows that microbiome variability in the gut is observable
among disease conditions, such as obesity, Crohn’s disease, ulcerative colitis, colon ade-
noma, and cancers of the colon and rectum, lung, and kidney. No phyla are universally
present among disease types, and every individual is characterized by their signature,
indicating the plurality of the microbial community, suggesting the relevance of environ-
mental factors. Additionally, diet changes and drug exposure account for over 20% of
interindividual microbiome variability [29].
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Figure 2. Impact of common clinical conditions on the composition of the most predominant gut
microbial phyla. Data were adapted from public Human Gut Microbiome Atlas databases, available at
https://www.microbiomeatlas.org (accessed on 28 May 2024). In this figure, the microbial data were
obtained at the phylum level from a total sample size of 1165 samples, comprising 164 samples from
subjects with obesity, 71 from subjects with Crohn’s disease, 21 from subjects with ulcerative colitis,
156 from subjects with colon adenoma, 534 from subjects with colorectal cancer, 118 from subjects with
non-small cell lung cancer, and 101 from subjects with renal cancers. The corresponding published
articles ensure that the necessary ethical approvals regarding data access were obtained. The primary
publications included the cohorts from the following bioprojects: Obesity (PRJEB4336); Crohn’s
disease (PRJEB15371; PRJEB2054); Ulcerative colitis (PRJEB2054); Colon adenoma (PRJDB4176;
PRJEB6070; PRJEB7774; PRJNA447983); Colorectal cancer (PRJDB4176; PRJEB10878; PRJEB12449;
PRJEB27928; PRJEB6070; PRJEB7774; PRJNA447983; PRJNA531273); Non-small cell lung cancer
(PRJEB22863); Renal Cancer (PRJEB22863).
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2.1. Diet

Dysbiosis is defined as changes in the function and composition of the intestinal
microbiota, which may be implicated in the pathogenesis of several diseases, including
cancer and inflammatory diseases [30]. Diet, host genetics, infection, and inflammation
are critical players that trigger the transition from healthy to dysbiosis states [30]. Among
the dietary metabolites, a high-fat diet [31], as well as sugar and processed foods [32],
significantly drive intestine dysbiosis. Epidemiological evidence indicates that individuals
with plant food- and fiber-based diets have greater microbial diversity and a predominance
of Prevotella over Bacteroides. By contrast, those with a diet rich in fat, sugar, and processed
foods have significant quantities of Proteobacteria [32].

An exploratory randomized controlled trial compared the effects of microcrystalline
cellulose, which is not fermented by the gut microbiota, and high supplementation doses of
arabinoxylan, a long-chain complex dietary fiber, on gut microbiota composition and short-
chain fatty acid production. The study was conducted over six weeks in individuals with
overweight and class-I obesity, and it was concluded that arabinoxylan supplementation
globally improves fecal bacterial community composition, promotes specific taxa, including
Bifidobacterium longum, Blautia obeum, and Prevotella copri, and increases the production of
propionate, a short-chain fatty acid (SCFA) [33].

Some strains of Prevotella are associated with more variable SCFA production from the
same substrate than Bacteroides [34]. SCFAs are critical factors in regulating the intestinal
epithelial barrier and anti-inflammatory properties of the rich-fiber diet [35]. Remarkably,
raising colonic propionate delivery in humans modifies gut bacterial diversity and signifi-
cantly lowers markers of systemic inflammation, such as interleukin-8 [36], a neutrophil
chemoattractant cytokine. Additionally, SCFAs were shown to regulate intestinal adaptive
immune responses and promote health in a murine model of colitis by raising immunosup-
pressive Treg cell levels [37]. It contrasts with the pro-inflammatory effects of long-chain
fatty acids that enhance the differentiation and proliferation of T helper 1 (Th1) or Th17
cells in the small intestine [38].

The Proteobacteria phylum is numerically reduced in a healthy intestine, whereas the
increase in the gamma-Proteobacteria class and the Enterobacteriaceae family are associated
with human inflammatory diseases [39]. Gut dysbiosis in a dextran-sodium sulfate rodent
model of colitis is knowingly associated with loss of intestinal barrier function, allowing for
the translocation of microbial products across the intestinal epithelium where they induce
an inflammatory response [40]. Notably, a fiber-rich diet regulates tight junction barrier
integrity and intestinal homeostasis, attenuating intestinal inflammation by elevating
SCFA production [41]. The mechanism might involve the overgrowth of enteropathogenic
bacteria [39].

Therefore, the emergence of pathogenic microbes from an unbalanced low-fiber diet
facilitates the inflammatory response triggered by other insults.

2.2. Xenobiotics

Xenobiotics, such as heavy metals, antibiotics, cancer chemotherapy drugs, pesticides,
artificial sweeteners, and others, can impact the composition of the intestine microbiota
and, consequently, local homeostasis, ultimately affecting the individual’s health.

Antibiotics adversely influence the intestinal microbiota, ranging from reduced species
diversity and alteration in metabolic activity to the selection of resistant microorganisms.
Orally administered vancomycin reduces intestinal microbiota diversity, which affects bile
acid metabolism and reduces peripheral insulin sensitivity [42]. The administration of a
cocktail of antibiotics, gentamicin, meropenem, and vancomycin, causes pathobionts to
predominance and reduce the number of Bifidobacteria species [43]. Antibiotic treatment
may also favor intestine colonization by toxigenic strains of Clostridioides difficile and the
development of diarrhea in susceptible patients [44]. Eliminating bacterial populations in
the gastrointestinal tract by antibiotic exposure reduces the secretion of antimicrobial pep-
tides, an essential mechanism for controlling pathogenic bacteria growth [45]. Additionally,
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antibiotics diminish ZO-1, occludin, and claudin expression, enhancing intestinal perme-
ability and microvilli disruption [46,47]. Antibiotic therapy to treat or prevent infections
can also contribute to dysbiosis [48].

Among the xenobiotic environmental pollutants, heavy metals such as arsenic and cad-
mium are related to the development of dysbiosis. They can reduce the relative abundance
of Firmicutes and the production of SCFAs [49,50]. Mercury is another heavy metal whose
oral exposure also causes intestinal dysbiosis in mice [51,52]. Pesticide contamination is an
additional public health problem related to intestine microbiota changes. It is particularly
worrisome due to the wide use of pesticides and possibly excessive amounts in food and
groundwater reservoirs. Contaminated food or drinking water first passes the gastrointesti-
nal tract, the primary barrier affected by pesticide effects in the body. Additionally, in vitro
studies indicate that exposure of intestinal bacteria to the pesticide Glyphosate dramati-
cally decreases their proliferation [53]. Organophosphate pesticides significantly reduce
commensal bacteria, such as Lactobacillus and Bifidobacterium, and promote Enterococcus and
Bacteroides overgrowth [54]. Notably, permethrin, one of the most representative pyrethroid
pesticides for residential use, shows higher antibacterial activity against beneficial bacteria,
including Bifidobacterium and Lactobacillus paracasei [55].

Several studies evaluated the impact of anticancer chemotherapy on the intestinal mi-
crobiota [19]. Patients with non-Hodgkin’s lymphoma treated with high doses of etoposide
(a topoisomerase II inhibitor) and alkylating agents carmustine (bis-chloroethyl nitrosourea)
and melphalan present with microbiota changes one week after the start of chemother-
apy. There was a drastic reduction in fecal bacterial DNA expression of Faecalibacterium
and an increase in Escherichia [56]. Remarkably, Motoori and colleagues found a reduced
population of Lactobacillus in patients with esophageal cancer undergoing 5-fluorouracil
(an antimetabolic drug), cisplatin (an alkylating agent), and docetaxel (a taxane with anti-
mitotic action)-combined chemotherapy treatment, while the population of Clostridoides
difficile and Enterococcus increased significantly [57]. Changes in the intestine microbiota
are also described in children with acute lymphoblastic leukemia after receiving high doses
of the antimetabolite methotrexate chemotherapy, with a 29.6% reduction in bacterial load,
especially in Bifidobacteria, Lactobacillus, and E. coli species [58]. Notably, the decrease in
beneficial bacteria can last up to a year after chemotherapy [59].

In rats, intravenous chemotherapy with irinotecan increases the shedding of Clostrid-
ium cluster XI and Enterobacteriaceae in feces [60]. Irinotecan is a topoisomerase I inhibitor
used for treating colorectal and gastric cancers. In models in which irinotecan was admin-
istered by intraperitoneal route, it increased the number of β-glucuronidase-producing
bacteria, augmenting the production of the active metabolite SN-38 and intestinal mucositis-
related bacteria [61]. Chemotherapy-born inflammation resulting from cellular injury can
influence intestinal microbiota composition, facilitating the overgrowth of highly metabolic
bacteria capable of capturing host nutrients, such as those of the Enterobacteriaceae fam-
ily [62]. D-methionine can prevent intraperitoneal cisplatin-induced toxicity by rising
pro-homeostatic bacteria (Lachnospiraceae and Lactobacillus), facilitating its known antioxi-
dant and anti-inflammatory effects, which improves cisplatin-induced microbiome imbal-
ance [63]. Remarkably, anticancer chemotherapeutic drugs are seldom administered orally;
they are primarily delivered intravenously. Notably, the above-referenced studies em-
ployed intravenous and intraperitoneal routes for drug administration. Drug enterohepatic
circulation may be the primary cause of microbiome alterations [64].

The impact of anticancer drugs as xenobiotics on the intestinal microbiota may extend
beyond inducing side effects in the gastrointestinal tract. Microbiome alterations can also
have clinical implications for various cancers, including breast, colorectal, lung, prostate,
and stomach cancer [65].

Colorectal cancer is the most studied cancer type demonstrating a clear association
with gut microbiota dysbiosis, as lifestyle and dietary factors uniquely alter the local
microbiota [65]. The mechanisms involve inflammation and the production of carcinogenic
products, amplifying DNA damage in intestinal cells [66]. This impact is not restricted
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to local effects. Understanding the involvement of dysbiosis in the development and
progression of other cancers is evolving. A recent meta-analysis investigated breast cancer
patients’ fecal, tumor, or oral microbiome profile, suggesting that differences in microbiota
abundance by menopausal status, menarche, and cancer stages and changes in the microbial
pattern might occur after chemotherapy, impacting patients’ quality of life.

These modifications in the microbiota composition caused by environmental contam-
inants/stressors can affect intestinal permeability, digestion, metabolism, and immune
responses. Eventually, such disturbances can lead to intestine distress, amplifying local
damage and diarrhea triggered by anticancer chemotherapy exposure.

3. Intestinal Mucositis: Definition and Pathophysiology

Intestinal mucositis is inflammatory-driven damage to the intestinal mucosa that
manifests as a side effect of anticancer chemotherapy and is marked by structural, func-
tional, and immunological changes in the mucous membrane lining [67,68]. Intestinal
mucositis often contributes to chemotherapy regimen failure and is manifested in a dose-
dependent manner [69]. Additionally, such a condition reduces patients’ quality of life
and increases healthcare costs, hospitalization, and death [67,69]. Signs and symptoms
include nausea, vomiting, pain, ulceration, bleeding, constipation, and diarrhea [70]. These
symptoms increase the risk of local and systemic infections and sepsis, delaying subsequent
chemotherapy cycles, dose reductions, and treatment discontinuation [67]. The anticancer
drugs most involved with this side effect development are irinotecan, 5-FU, taxanes, and
capecitabine. In clinical trials, one out of five patients exposed to irinotecan develop severe
mucositis. Notably, diarrhea is the most common symptom [71].

Mucositis mechanisms are described based on a five-phase pathophysiology model [68].
It includes 1—initiation; 2—upregulation and message; 3—signaling and amplification;
4—ulceration and inflammation; 5—tissue healing. Briefly, phase 1 consists of tissue dam-
age initiation with the marked release of reactive oxygen species (ROS). Phases 2 and 3
involve the activation of nuclear transcription factor kappa B (NF-kB), leading to massive
pro-inflammatory cytokine gene and protein expression, further amplifying NF-kB inflam-
matory signaling. In phase 4, mucosa ulceration (intestinal epithelial barrier impairment),
dysbiosis, intestine-to-blood bacterial translocation, and overproduction of inflammatory
cytokines amplify tissue damage-related signaling cascades. Finally, the healing phase
occurs due to rapid epithelial renewal under the intestinal stem cell niche modulation with
the restoration of the homeostatic microbiota. In each mucositis phase, the microbiota,
abundant in the intestine, seems to play a pivotal role by affecting the mechanisms of
inflammation, oxidative stress, intestinal permeability, mucus layer composition, epithelial
repair, and the immune response [68,72–74].

In irinotecan-induced intestinal mucositis, the primary initiation insult depends on the
release of the irinotecan-active metabolite SN-38. It causes apoptosis of crypt epithelial cells,
hypoplasia of the crypt with epithelial tight junction impairment, and increased bacterial
translocation to the intestinal lamina propria [67]. Cell injury releases damage-associated
molecular patterns (DAMPS) and pathogen-associated molecular patterns (PAMPS). They
are recognized by pattern recognition receptors, such as Toll-like receptors (TLRs), on
innate immune and epithelial cells [67,72,75]. Recognition of DAMPS and PAMPS activates
immune resident cells and pro-inflammatory cytokine release, accompanied by the mucosal
influx of neutrophils [67,72,76–78]. Interestingly, irinotecan hampers TLR4 signaling. It
affects the recognition of translocating bacteria from the intestine during the chemotherapy-
derived acute insult [79]. Such a mechanism amplifies a harmful TLR9-dependent late
inflammatory response [73]. Remarkably, Tlr4-gene-depleted mice display an altered func-
tional capacity of the intestinal microbiome following irinotecan treatment [80]. How the
altered intestinal microbiota drives mucositis development is still controversial. Some
clues were found in animal models of inflammatory bowel diseases. Wild-type and Tlr4
knockout mice show different susceptibilities to intestinal inflammation. Possibly, local
microbiota strongly influences disease development. The bacterial profile affects the adap-
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tive immune response, such as RORγt+ Treg cells, modulating the injury [80,81]. In line
with those findings, the increased frequency of intestinal Th17 cells and regulatory T cells
(Tregs) and an increased Treg/Th17 ratio have been documented in a murine irinotecan
intestinal mucositis model as part of the late-onset inflammatory mechanisms. Accordingly,
the experimental depletion of Tregs worsens the development of mucositis [82]. These
findings reinforce the pivotal immunomodulating role of the microbiota on chemotherapy-
associated inflammatory response in the intestine.

4. The Interplay between Microbiome and Chemotherapy Toxicity in the Intestine
4.1. Immunomodulation

The microbiota is essential for the generation and maintenance of intestinal immune
homeostasis. Germ-free mice present with reduced frequency of intestinal Treg cells [83],
intraepithelial lymphocytes [84], and compromised innate lymphoid cell function [85]. Self-
limited immune and inflammatory responses against pathogens are needed to maintain
intestinal health. It can be facilitated by the right balance of commensal bacteria and
their metabolites [86] under a healthy human gastrointestinal state of low-grade and time-
limited inflammation. The anti-inflammatory properties of members of the microbiota are
demonstrated in several studies. Bacteroides fragilis, an ordinary member of the microbiota,
may stimulate the generation of IL-10-producing Treg cells [87]. Acute/chronic and more
severe exposure to intestinal pathogens and their products may disrupt the balanced
intestinal environment and burst inflammation and dysbiosis, a typical process during
cancer chemotherapy exposure.

Dietary fiber-derived SCFAs generated via bacterial metabolism exert an intestinal
anti-inflammatory effect [88], acting through the interaction with G protein-coupled re-
ceptors [89] and the histone acetylase pathway [90]. SCFAs regulate TLRs and NLRP3
inflammasome-mediated signaling by inhibiting TLR4 expression and suppressing the
histone acetylation pathway [91]. In addition to this, SCFAs reduce intestinal permeabil-
ity [92]. The activation of NF-kB, a TLR4 downstream signaling transcription factor, is
reduced in the presence of Bacteroides thetaiotaomicron and Bifidobacterium infantis anaero-
bic commensals [93]. Commensal microbiota can positively influence the composition of
the mucus layer lining the epithelium, thus protecting the host against invasive bacteria.
Strengthening the epithelial barrier reduces bacterial translocation and inflammation [74].
The reduction in NF-κB activation by a healthy microbiota can also attenuate inflamma-
tion through the balance of pro- and anti-inflammatory responses [94,95]. Conversely,
chemotherapy-induced dysbiosis can alter TLR signaling pathways, favoring inflammation
development [95].

The commensal bacteria stimulate the production of antimicrobial peptides, generating
and activating type 3 innate lymphoid cells (ILC3) [96]. ILC3, when activated by TLR2
agonists by commensal bacteria, produces IL-22 [97]. Il-22 stimulates intestinal epithelium
renewal, the production of antimicrobial peptides, such as Reg3g, by intestinal epithelial
cells, and maintenance of the barrier function by modulating tight junction proteins [98].
Notably, the percentage of ICL3 is reduced in experimental irinotecan-induced intestinal
mucositis (unpublished data by our group).

As aforementioned, intestinal dysbiosis is at the front stage of intestinal mucositis
development. The onset of chemotherapy-induced severe mucositis coincides with reduced
microbial diversity [74]. Conversely, current guidelines support the administration of pro-
biotics for alleviating chemotherapy-related intestinal mucositis symptoms [21,25,26]. The
Lactobacillus casei variety rhamnosus (Lcr35) or Lactobacillus acidophilus and Bifidobacterium bi-
fidum (LaBi) can improve 5-fluorouracil-induced intestinal mucositis in a mouse model [99].
In another murine model, daily administration of probiotics during 5-fluorouracil treat-
ment improved diarrhea and body weight, restored jejunal crypt depth, and inhibited
the production of TNF-α, IL-1β, IFNγ, IL-6, IL-4, and IL-17 [100]. Oral pretreatment with
Bifidobacterium longum reduced the daily disease activity index, protected the intestinal
architecture, preserved the length of the intestine, and reduced intestinal permeability, in-
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flammation, and oxidative damage induced by irinotecan in mice [101]. Accordingly, fecal
microbiota transplantation prevents 5-fluorouracil/oxaliplatin-induced toxicity in mice and
increases the expression of TLRs, MyD88, and serum IL-6 levels [102]. Antibiotics exacer-
bate diarrhea induced by chemotherapy with methotrexate, whereas they can be inhibited
by autologous fecal microbiota transplantation [103]. Live bacteria and their products can
modulate the intestinal immune response with clear benefits on chemotherapy-associated
mucositis. Paraprobiotic Enterococcus faecalis EC-12 prevents the development of intestinal
mucositis by downregulating TLR4 expression and macrophage accumulation [104,105].

A randomized, double-blind, placebo-controlled pilot study corroborates the exper-
imental findings. It showed that colorectal cancer patients undergoing irinotecan-based
therapy and treated with probiotics presented reduced incidences of grade 3 or 4 diarrhea
and the overall incidence of enterocolitis [106].

4.2. Microbiota Effects on the Metabolism of Cancer Chemotherapy Drugs

Intestinal microbiota participates in drug metabolism through enzyme production or
microbiota–host co-metabolism. Changes in microbiota are associated with interindividual
variation in response to drug therapy [107], and these might influence the response of
cancer patients to treatment.

Accordingly, irinotecan is transformed by carboxylesterases into the toxic active form
SN-38. SN-38 is then conjugated to glucuronide on SN-38G in the liver before being secreted
into the intestine. Eventually, SN-38G can be converted to SN-38 by the β-glucuronidase
enzyme of intestinal bacteria, increasing the drug’s toxicity [108].

Dysbiosis with an increased Escherichia coli population (and other Enterobacteriaceae) in
mice with irinotecan-induced mucositis has been associated with the increased production
of β-glucuronidase. Such a condition accumulates SN-38 in the intestine and induces
drug toxicity [61,109]. However, evidence indicates a partial role of β-glucuronidase in
intestinal mucositis induction since pretreatment with antibiotics reduces the content of
β-glucuronidase in stools without affecting SN-38 concentrations [67,110]. Interestingly,
germ-free mice develop milder intestinal mucositis than specific pathogen-free counter-
parts, a pattern reversed by germ-free mice conventionalization with normal intestinal
microbiota [111]. Furthermore, gnotobiotic mice mono-associated with a β-glucuronidase-
producing-E. coli strain showed increased intestinal permeability compared to those gnoto-
biotic mice mono-associated with an E. coli strain under β-glucuronidase encoding gene
deletion. The role of microbiota bacteria in converting 5-flucytosine (5-FC) to 5-fluorouracil,
a cytotoxic chemotherapeutic agent, and increased antifungal 5-FC toxicity has also been
described [112].

Intestinal microbiota also modulates the pharmacological effects and toxicities of
several other chemotherapeutics, including 5-fluorouracil, cyclophosphamide, oxaliplatin,
gemcitabine, and methotrexate, through various mechanisms [113]. The microbiota changes
the immune and inflammatory responses triggered by anticancer drugs, such as cyclophos-
phamide. For instance, Lactobacillus mediate the accumulation of type 17 T helper (TH17)
cell and type 1 T helper (TH1) cell responses [114]. Additionally, the microbiota fosters
indirect metabolic processes, including reduction, hydrolysis, and dealkylation, which
alter methotrexate and gemcitabine metabolism. Chemotherapy also reduces mucosal
and fecal microbiota, leading to pathobiont predominance, intestinal inflammation, and
diarrhea [113]. Therefore, understanding the factors that alter the microbiome allows for a
foreseeable impact of pharmacomicrobiomics in cancer patients’ responses to therapeutics.

Figure 3 highlights the effects of the healthy human intestinal microbiome on im-
munomodulation and drug metabolism. It also emphasizes the significant influence of the
gut microbiome on cancer chemotherapy’s toxicity, particularly gastrointestinal toxicity.
This summary analysis reveals a complex, bidirectional relationship between microbiome
composition and chemotherapy outcomes. The mechanisms involve the pathophysiological
hallmarks of immunomodulation, inflammation, and drug metabolism.
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Figure 3. The interplay between microbiome and chemotherapy toxicity on the intestine. Changes
in the human intestinal microbiome can influence the development of intestinal mucositis and the
overall efficacy and side effects of chemotherapy. The two main mechanisms involved include (1) the
modulation of the immune response and (2) alteration in the metabolism of the chemotherapy drug.
The intestinal microbiome influences immune responses by interacting with gut-associated lymphoid
tissue (GALT), critical for maintaining intestinal homeostasis. A healthy microbiota affects the
immune system, favoring homeostasis. It maintains an anti-inflammatory microenvironment, rich in
regulatory T cells (Tregs), to tolerate commensals. A healthy microbiota also generates antimicrobials
to control pathogenic microorganisms by modulating the functions of intraepithelial lymphocytes
(IEL), innate type 3 lymphoid cells (ILC3), and other immune cells within the mucosal layer. Tregs
can prevent the development of intestinal mucositis by controlling inflammation. IL-22, produced by
ILC3, assists in epithelial renewal and plays a crucial role in maintaining the integrity of the intestinal
barrier, which helps control bacterial translocation and support IEL functions. Dysbiosis can affect
intestinal immune homeostasis, increasing susceptibility to infections and inflammation, which can
be restored with probiotics, paraprobiotics, or fecal transplantation. Fecal transplantation has shown
potential to restore a balanced microbiome and mitigate chemotherapy-induced toxicity. Irinotecan
is an anticancer drug metabolized in the liver to an active metabolite, SN-38. The conversion of
irinotecan to SN-38 by carboxylesterase (CES) is crucial for its therapeutic efficacy. However, the
subsequent metabolism of SN-38 by UDP glucuronosyltransferase family 1 member A1 (UGT1A1)
can significantly impact its toxicity due to enterohepatic drug circulation. Changes in the intestinal
microbiota, including the presence of specific bacterial species such as Escherichia coli, can favor the
production of intestinal beta-glucuronidases and deconjugation of the irinotecan metabolite, SN-38G,
resulting in increased levels of the active metabolite, SN-38, in the intestine and thereby enhancing
toxicity. Chemical descriptors’ canonical SMILES were obtained from https://pubchem.ncbi.nlm.
nih.gov/ (accessed on 28 May 2024) under the following PubChem identifiers: Irinotecan (60838);
SN-38 (104842), and SN-38G (443154). Subsequently, 2D compound structures were generated with
the Chemical Sketch Tool, available at https://www.rcsb.org/chemical-sketch (accessed on 28 May
2024) [115].

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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5. Perspectives

The findings suggest that adapting the microbiome using diet, probiotics, or fecal
microbiota transplantation (FMT) could effectively decrease gastrointestinal manifestations
caused by chemotherapy. The variations in microbiome composition among individuals em-
phasize the importance of personalized cancer treatment. While incorporating microbiome
profiling into clinical practice presents challenges, it can potentially tailor chemotherapy
regimens, reduce toxicity, and enhance effectiveness. This approach could also help identify
patients at a greater risk of severe side effects and adjust interventions accordingly.

Diet and lifestyle markedly affect the microbiome composition. Modulating these
effects as non-pharmacological interventions would support cancer patients’ treatment. In-
creasing high-fiber diets and lowering processed food intake may help maintain a healthier
microbiome, potentially reducing chemotherapy-related complications.

This study also emphasizes the importance of the microbiome in drug metabolism, es-
pecially in the activation and detoxification processes, underscoring the necessity of taking
microbiome interactions into account in pharmacokinetic modeling and drug development.

The preclinical findings must be validated through more extensive clinical trials. Stan-
dardized guidelines for microbiome-based interventions should be established. Further-
more, investigating the microbiome’s impact on the effectiveness of other cancer treatments,
like immunotherapy, could lead to new approaches for improving patient outcomes.

6. Conclusions

Interindividual variations in drug responsiveness, especially to anticancer drugs, have
been troublesome in clinical settings. Considering the growing evidence regarding the in-
testinal microbiota’s roles in anticancer chemotherapy efficacy and intestinal side effects, an
in-depth look at this topic should raise more attention to pursuing more effective and cus-
tomized medicine. Identifying novel biomarkers of dysbiosis and microbiota-transferring
interventions are needed, especially in many worldwide settings of poor sanitation and
hygiene, where environmental-born contaminants may change the microbiota composition
towards pathogenic dysbiosis and impaired microbiota maturity [31,116]. Such a condition
may alter cancer treatment response and favor unwanted side effects, including intestinal
mucositis. Notably, mucositis, per se, may aggravate the dysbiosis state, establishing a
deleterious vicious cycle. Future research, including broader clinical trials and cohorts,
is warranted to understand the mechanisms, shedding light on signaling pathways of
treatment inadequacy under intestinal microbiota dysbiosis and translating these insights
into clinical practice.
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