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Abstract: Deep eutectic solvents (DES) represent a promising class of green solvents, offering par-
ticular utility in the extraction and development of new formulations of natural compounds such
as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of
the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and
six different polyols as hydrogen bond donors. The results demonstrated that solvents based on
choline chloride were more effective than those based on betaine. The optimal ratio of hydrogen
bond acceptors to donors was found to be 1:2 molar. The addition of water to the DES resulted in
a notable enhancement in the solubility of FA. Among the polyols tested, triethylene glycol was
the most effective. Hence, DES composed of choline chloride and triethylene glycol (TEG) (1:2)
with added water in a 0.3 molar ration is suggested as an efficient alternative to traditional organic
solvents like DMSO. In the second part of this report, the affinities of FA in saturated solutions were
computed for solute-solute and all solute-solvent pairs. It was found that self-association of FA leads
to a cyclic structure of the C8

2 type, common among carboxylic acids, which is the strongest type of FA
affinity. On the other hand, among all hetero-molecular bi-complexes, the most stable is the FA-TEG
pair, which is an interesting congruency with the high solubility of FA in TEG containing liquids.
Finally, this work combined COSMO-RS modeling with machine learning for the development of
a model predicting ferulic acid solubility in a wide range of solvents, including not only DES but
also classical neat and binary mixtures. A machine learning protocol developed a highly accurate
model for predicting FA solubility, significantly outperforming the COSMO-RS approach. Based on
the obtained results, it is recommended to use the support vector regressor (SVR) for screening new
dissolution media as it is not only accurate but also has sound generalization to new systems.

Keywords: ferulic acid; solubility; deep eutectic solvents; green solvents; molecular interactions;
COSMO-RS; machine learning; support vector regressor

1. Introduction

Ferulic acid, a phenolic compound abundant in various plant tissues [1], has emerged as a
captivating subject of scientific inquiry [2,3] and industrial interest [4,5], while as a component
of traditional Chinese medicinal herbs, it has been used for centuries [6]. Chemically, it is
a 4-hydroxy-3-methoxycinnamic acid, belonging to the wide group of phenolic acids. Its
molecular structure is characterized by a phenolic ring with a hydroxyl group and a methoxy
group, and can exist in both cis and trans forms [2]. Ferulic acid exhibits a plethora of
biological activities that are the result of this unique structure. First of all, it is well known as
an antioxidant agent [7,8]. Specifically, the hydroxyl and methoxy groups on the benzene ring
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are capable of donating hydrogen atoms to free radicals, thereby neutralizing their harmful
effects and preventing oxidative damage to cells and tissues [9,10]. Additionally, ferulic
acid can chelate metal ions involved in oxidative processes, further inhibiting the generation
of reactive oxygen species (ROS) [11,12]. Secondly, ferulic acid exhibits anti-inflammatory
properties through various mechanisms of action. One significant mechanism involves its
ability to inhibit the activity of pro-inflammatory enzymes, such as cyclooxygenase (COX)
and lipoxygenase (LOX), which are involved in the production of inflammatory mediators
like prostaglandins and leukotrienes [13–15]. Additionally, ferulic acid can suppress the
expression of pro-inflammatory genes and cytokines, such as tumor necrosis factor-alpha (TNF-
α) and interleukins, which play key roles in promoting inflammation [16,17]. The beneficial
actions of this compound do not end here and include the protection of vascular endothelial
cells [18,19], anti-fibrosis effect [20,21], anti-apoptotic effect [22,23], anti-platelet effect [24,25],
and others [26,27]. In general, ferulic acid from dietary sources and oral administration has
low bioavailability due to factors like limited absorption in the gastrointestinal tract and rapid
metabolism in the liver [28,29]. However, certain formulations or delivery systems, such as
lipid-based formulations or nanostructured carriers, can improve its bioavailability [30,31].
Additionally, co-administration with other compounds, such as piperine or quercetin, may
further increase the bioavailability of ferulic acid [32,33]. On the other hand, ferulic acid is
well absorbed by the skin through cutaneous administration [34,35], which makes it widely
used in the cosmetics industry [36–38].

The importance of solubility in pharmaceutical applications cannot be overstated, as it
serves as a critical determinant influencing the efficacy, safety, and overall success of drug
development and delivery [39–41]. Solubility profoundly impacts various stages of the phar-
maceutical lifecycle, from initial drug formulation to therapeutic administration [42–44]. The
ability of a compound to dissolve in a solvent directly influences its bioavailability, governing
the rate and extent of absorption into the bloodstream and, consequently, its therapeutic effec-
tiveness [45,46]. Furthermore, solubility plays a pivotal role in the stability of drug formulations,
affecting factors such as shelf life and storage conditions [47,48]. Challenges arising from poor
solubility necessitate higher doses to achieve therapeutic levels, potentially increasing the risk of
adverse effects [49–51]. Therefore, understanding, predicting, and manipulating the solubility of
drug molecules are essential endeavors for pharmaceutical scientists [52–57]. Various techniques,
including salt formation, co-solvent systems, and nanoparticle delivery systems, are employed
to enhance solubility and optimize drug performance [58–61]. However, experimental efforts
are not the only means aimed at the development of safer and more efficient medications.
Accurate solubility modeling and predictions aid in the selection of promising drug candidates,
formulation optimization, and the design of more effective drug delivery systems [39,62–64].

The “green chemistry” approach [65,66], representing a paradigm shift in chemical
research and industry and aiming to design and implement processes that minimize environ-
mental impact and maximize sustainability, has been extremely useful also in the realm of
pharmaceuticals [67,68]. As stated, solvents play a crucial role in various chemical processes,
yet traditional organic solvents often pose significant environmental and health hazards.
Therefore, green chemistry emphasizes the development and utilization of alternative sol-
vents with minimal environmental impact [69,70]. An important class of these new solvents,
combining environmental safety with high solubilization efficiency, are deep eutectic solvents
(DESs) [71,72]. Defined as mixtures of two or more components that form a eutectic mixture
with a melting point significantly lower than that of either individual component [73,74], DESs
offer several advantages over conventional solvents, including low toxicity, biodegradabil-
ity, and tunable physicochemical characteristics [75–77]. These properties contribute to the
widespread use of eutectic solvent systems, also in the pharmaceutical field [78–85]. It is worth
noting that DESs, due to their unique properties, are utilized in the extraction of phenolic
compounds, including phenolic acids [86], which suggests they may exhibit significant affinity
for ferulic acid. The aim of this work is to expand the knowledge of the solubility of the
compound in question in DESs and to interpret the obtained results based on molecular
modeling supported by machine learning.
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2. Results and Discussion
2.1. Solubility of Ferulic Acid in DESs and DES–Water Mixtures

In the experimental part of the study, deep eutectic solvents were applied to solubilize
ferulic acid. While DESs are known for being very effective solubilizers of many compounds,
the addition of water to these systems can improve solubility even further [82,87], which was
the reason for also including the aqueous mixtures of DESs in the study. The solubility of
various compounds in water is usually intensely lower than in the eutectic systems, and the
addition of excess amounts of water to the DES systems results in a decrease in the solubility
of the considered solute. In this concentration range water can be considered an anti-solvent
for DESs. However, small amounts of added water tend to promote the solubility of such a
solute. The origins of the observed phenomenon are complex and involve the formation of
nanostructures of DES components and water molecules [88,89]. In particular, the stabilization
nano-structure around choline chloride or other hydrogen bond acceptor (HBA) components
of DESs play an important role [88]. These clusters are remarkably stable, even at modest
dilutions. This complex behavior indicates that aqueous–DES mixtures cannot be regarded as
typical antisolvent–cosolvent systems, although the favorable effect of the addition of water
is still practically valuable and worth in-depth exploration. Here, an extensive search for
the optimal water–DES solvent was performed while tuning ferulic acid solubility. In the
first phase of experiments, the FA solubility was determined in pure DES systems. These
DESs comprised either choline chloride (ChCl) or betaine (BI), both acting as hydrogen bond
acceptors (HBA), and one of six polyols, namely ethylene glycol (ETG), diethylene glycol
(DEG), triethylene glycol (TEG), 1,3-butanediol (B3D), 1,2-propanediol (P2D), and glycerol
(GLY), acting as hydrogen bond donors (HBD). Three molar ratios of HBA to HBD were tested,
i.e., 1:1, 1:2, and 1:4. All of the measurements at this screening phase were conducted at 25 ◦C.

The obtained results show that in general, DESs based on choline chloride are more
efficient solubilizers of FA than those comprised of betaine. Nonetheless, the results present
a similar overview, regardless of whether ChCl or BI were used as HBAs. When analyzing
the molar compositions of the tested systems, it turns out that the 1:2 HBA–HBD molar ratio
performs best, followed by the 1:4 ratio, with the 1:1 ratio being the least effective. This general
observation is only altered in a few cases in the systems with betaine, where the 1:4 molar
ratio outperforms some of the 1:2 systems. The comparison of the effectiveness of individual
HBDs reveals differences between systems with choline chloride and betaine. When ChCl is
used, the decreasing order of FA solubility is obtained, regardless of the molar ratio of DES
constituents: TEG > DEG > GLY > ETG > B3D > P2D. Slightly more complex behavior is
observed for systems utilizing betaine. For the optimal 1:2 molar composition, the following
trend is obtained: TEG > GLY > DEG > ETG > B3D > P2D. Rather surprisingly, in the 1:4 molar
composition, the DES prepared using B3D is the second most effective system, with the one
using ETG being the least effective. Overall, it seems that three HBDs stand out as being the
most promising, i.e., triethylene glycol, diethylene glycol, and glycerol. The ChCl-TEG eutectic
system in a 1:2 molar proportion was the most effective DES among the studied formulations.
At 25 ◦C, the solubility of ferulic acid was found to be xFA = 0.0532. Using the ChCl-DEG
system resulted in an FA solubility of xFA = 0.0494, closely followed by the ChCl-GLY eutectic,
characterized by xFA = 0.0485. DES formulations with betaine were less efficient in terms
of FA solubilization, and the top three systems, namely BI-TEG, BI-DEG, and BI-GLY, were
responsible for ferulic acid solubilities of xFA = 0.0432, xFA = 0.0401, and xFA = 0.0392 at 25 ◦C.
Detailed results of FA solubility determination in the studied systems are presented in the
Supplementary Materials (please refer to Table S1).

The obtained solubility values of FA in pure DESs served as a starting point for select-
ing the most promising eutectic systems, which would be used to form aqueous mixtures.
Two systems utilizing choline chloride were selected along with two containing betaine,
namely ChCl-TEG, ChCl-DEG, BI-TEG, and BI-GLY. The created ternary mixtures were
characterized by different amounts of the DES, expressed as its mole fraction in a solute-free
solution. The solubility of FA in such systems was measured at four temperatures in the
range of 25 ◦C to 40 ◦C.
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As it was expected based on previous experiences, small amounts of water added to
the eutectic solvent increase the solubility of ferulic acid. As stated, the nature of DES–water
systems is complex. However, it is useful to describe their behavior at least as an apparent
cosolvency/antisolvency effect. The solubility curves, describing the mole fraction solubility
of FA as a function of the composition of ternary aqueous DES mixtures, are presented in
Figure 1. The increasing amount of DES in its aqueous mixture leads to the increase of the
solubility of ferulic acid, however, after a certain point, which represents the most effective
composition, solubility starts to decrease. The composition characterizing the mixture yielding
the highest FA solubility corresponds with the molar composition of x*

DES = 0.7 in the aqueous
mixture. This observation holds for systems using both choline chloride and betaine at all
studied temperatures. In the case of the mixture based on the ChCl-TEG eutectic, the solubility
of ferulic acid at the optimal composition equaled xFA = 0.0588 at 25 ◦C, which is 112% of the FA
solubility in the pure eutectic solvent. For the second-most effective DES, namely ChCl-DEG,
the FA solubility was found to be xFA = 0.0532 at 25 ◦C, which corresponds to 108% of the FA
solubility in the DES itself. For the aqueous mixtures of eutectics comprising betaine, the BI-TEG
and BI-GLY systems were characterized with the solubility of ferulic acid equal xFA = 0.0494
and xFA = 0.0459, respectively, at 25 ◦C and at the optimal composition, which stands for about
114% of the water-free DES solubility. Additionally, to no surprise, the elevated temperature
of the measurements resulted in increased solubility of ferulic acid. This increase was rather
stable, and the difference between the solubility at 25 ◦C and at 40 ◦C amounted to around 20%
regardless of the eutectic type and aqueous mixture composition. Detailed solubility values are
again provided in Supplementary Materials (please refer to Tables S2 and S3).
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Figure 1. The solubility curves of ferulic acid (FA) in aqueous DES mixtures involving choline chloride
(left panel) and betaine (right panel) and selected polyols at various temperatures, expressed as solvent-
composition-related mole fractions. X*DES stands for mole fractions of solute-free DES in aqueous
mixtures. For comparison, the room-temperature solubility of ferulic acid in DMSO is provided.

The obtained results are worth comparing to solubility data available in the literature.
The solubility of ferulic acid was studied in several systems, including water [90,91]; ethyl
lactate and its mixtures with water [92]; isopropanol and its aqueous mixtures [93]; and a
number of organic solvents, such as DMSO, trascutol, methanol, and ethyl acetate [91,94].
When considering these data, the following decreasing order of FA solubility (measured
at 25 ◦C) in various neat solvents can be obtained: DMSO (xFA = 0.0526) > transcutol
(xFA = 0.0430) > methanol (xFA = 0.0295) > propylene glycol (xFA = 0.026)3 > ethanol
(xFA = 0.0254) > ethylene glycol (xFA = 0.0207) > isopropanol (xFA = 0.0194) > 2-propanol
(xFA = 0.0188) > 2-butanol (xFA = 0.0168) > 1-butanol (xFA = 0.0161) > ethyl acetate
(xFA = 0.0130) > water (xFA = 0.000049). In the above context, it turns out that among the neat
DESs, only the ChCl-TEG 1:2 system offers a slightly better FA solubility than the most efficient
classical solvent, namely DMSO, with the ChCl-DEG 1:2, ChCl-GLY 1:2, ChCl-ETG 1:2, and
ChCl-TEG 1:4 systems being slightly less effective although outperforming the second classical
solvent, which is transcutol. Among the systems with betaine, only the BI-TEG 1:2 system
performed better than transcutol. The addition of water to the selected eutectics increased the
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FA solubility. Thus, the ChCl-TEG 1:2 (x*DES = 0.7) and ChCl-DEG 1:2 (x*DES = 0.7) systems
gave higher solubility than DMSO, with the BI-TEG 1:2 (x*DES = 0.7) being close to that.

2.2. Ferulic Acid Intermolecular Interactions in DES

The determination of the structure of ferulic acid in its monomeric form was the
starting point of the computational procedure. Within a 5 kcal/mol energy window, three
of the most stable and distinct conformers were identified, as schematically presented in
Figure 2, where the relative energy values corresponding to the RI-BP97/def2-SVPD//RI-
BP/def2-TZVPD-FINE level of theory were included. It is noteworthy that the most stable
conformers differ in the orientation of the hydroxyl group connected to the aromatic
ring or the hydroxyl group that is part of the carboxylic substituent. The most stable
conformer forms an intramolecular hydrogen bond between the hydroxyl and methoxy
groups. Through comparison with the second conformer, it can be inferred that this type
of interaction contributes approximately 1.9 kcal/mol to intramolecular stabilization. The
third conformer is similar to the first one but has an anti-rotated hydroxyl group in the
carboxylic moiety, resulting in an energy increase of about 2.0 kcal/mol. The order of
conformers remains consistent in both the bulk phase and vacuum.
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Figure 2. Schematic representation of ferulic acid conformers with electron density distributions
and their relative energies in the bulk state, represented by an infinite conductor. Additionally, in
parentheses are the relative values of total energies obtained for the gas phase.

The study of intermolecular interactions with DES constituents involved pairing each
conformer of ferulic acid and minimizing the supermolecule energy. The most representa-
tive results are presented in Figures 3 and 4. The affinities of ferulic acid in the studied DES
were expressed using the concentration-independent standard Gibbs free energy values
(∆Go

a = RTln(ao)) for the corresponding pair formation reactions at ambient conditions
(T = 298.15 K). The subscript “a” indicates the use of mole fraction values corrected with
activity coefficients, ao

i = xo
i · f o

i . This expression method is convenient, as it characterizes
the thermodynamic propensity of interacting components regardless of the solvent envi-
ronment. It is expected that the self-association behavior of ferulic acid is consistent across
all systems, independent of the content and mole fractions of the components. Indeed,
ferulic acid shows a strong propensity for self-aggregation, which can be inferred from
the dimer structure and standard Gibbs free energy values, indicating the highest affinity
among all studied pairs, as shown in Figures 3 and 4. The FA dimer is stabilized by strong
bidirectional hydrogen bonds forming a cyclic structure of the C8

2 type, common for all
carboxylic acids. Additionally, the carboxylic group in FA acts as a strong proton donor,
directly contributing to the stabilization of both FA-ChCl and FA-BI pairs. Interestingly,
two types of structural motifs were identified. The first type involves the third stable
conformer of monomeric FA, where the energy disfavor of this conformer is compensated
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by non-polar interactions of ChCl or BI with the delocalized electrons of the aromatic
ring, making these pairs the most stable. In the case of choline chloride, an alternative
structure is stabilized by interactions with the hydrogen carboxylic group. Betaine, having
a non-neutralized acetate group, cannot form stable pairs of this type and instead interacts
with the hydroxyl group in the para position of FA. Notably, the affinity of FA to BI is
significantly stronger compared to ChCl. Interactions between FA and water are much
weaker and primarily involve hydrogen bonding with the carboxylic or hydroxyl groups.
These observations suggest that the variety of potential contacts between FA and DES
constituents might account for the high solvation abilities and consequently high solubility
promoted by strong solute–solvent interactions.
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Ferulic acid can also form stable pairs with all the hydrogen bond donor (HBD)
counterparts of the DESs studied here. It is noteworthy that all polyols form two distinct
motifs involving direct contact with the carboxylic group. In all cases, similarly to FA-ChCl
interactions, the rotation of the hydroxyl group within the carboxylic moiety into the anti-
position allows for additional interactions with the delocalized aromatic electron clouds.
This behavior is observed for all polyols except ethylene glycol (ETG), which—due to its
shortest chain—is unable to adopt a similar position to other proton-donating constituents.
This prevents ETG from positioning above the aromatic ring of FA, making a structure
stabilized by two hydrogen bonds the most probable configuration.

In all other cases, the non-polar interactions involving the aromatic electron cloud
play a crucial role. These interactions not only offset the energy increase caused by the
distortion of the carboxylic group but also contribute significantly to the overall stability of
the structure. Notably, the highest affinity of FA was found for triethylene glycol (TEG),
which correlates well with the highest solubility of FA in DESs containing this polyol
regardless of the type of DBA. However, a linear trend between solubility and affinity
values is not generally observed, suggesting that other factors contribute to the stabilization
of the saturated FA-DES systems.

2.3. Machine Learning Model

Solubility measurements, though simple, are time-consuming experiments with several
tricky steps, particularly when using DES as dissolution media. This complexity hinders the
exhaustive search for new solvents, given the vast number of potential HBA-HBD combina-
tions, along with concentration and temperature dependencies. Consequently, theoretical
exploration of the solvent hyperspace to support experimental screening of the most suitable
deep eutectic solvents including therapeutic variants (THEDES) is of significant practical value.
In this study, a machine learning approach was employed, conducting an exhaustive search
for models with the highest accuracy and predictive potential. A diverse set of non-linear
regressors was tested for this purpose.

The training dataset comprised ferulic acid solubility values, including newly measured
results for this study and previously published data. This dataset, the largest available at present,
offers substantial structural diversity of solvents, which is a promising indicator for the generaliza-
tion of the obtained model. The dataset (N = 344) includes mole fraction solubility values of FA in
neat solvents (11 systems, N = 103), binary mixtures (1 system, N = 45), and DES (all presented in
this paper, N = 196). The models were trained on a training subset (two-thirds of the entire set) by
tuning the adjustable parameters of each regressor.

It is crucial to note that metrics such as mean absolute error (MAE) or the correlation
coefficient (R2) were not the sole criteria for model accuracy. As mentioned in the methodol-
ogy section, potential generalization was incorporated into the scoring function as a penalty
derived from learning curve analysis (LCA) using scikit-learn. This approach evaluates
model performance by increasing the percentage of included data and performing 10-fold
cross-validation. This procedure, conducted separately for training and cross-validation
subsets, provides comprehensive diagnostics by assessing the risk of overfitting and quan-
tifying the models’ sensitivity to the used data. Although computationally expensive, this
method ensures a thorough evaluation of the model.

Models characterized by low MAE, high R2, and failure to meet generalization criteria
as revealed by LCA should be approached with caution. Indeed, this was observed in
the best-performing model found in this study. As anticipated, utilizing artificial neural
networks can lead to models capable of accurately back-computing experimental data.
Multi-layer perceptrons (MLPs) were trained, allowing for flexible adjustment of network
architecture to excel in capturing non-linear relationships. MLPRegressor, particularly
adept at learning complex patterns through interconnected layers of neurons, demonstrated
impressive accuracy. Figure 5 presents the accuracy of this regressor model, alongside
other computations, including the second-best model, SVR, and solubility predictions
based on the COSMO-RS approach. Two important conclusions can be drawn from this
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figure. Firstly, the native COSMO-RS results only qualitatively agree with experimental
data, predicting general trends but not actual mole fraction solubility. The RMSD (root
mean square deviation) and MAPE (mean absolute percentage error) for logarithmic mole
fraction values are as high as 0.6 and 54.6%, respectively, which are significantly worse
values compared to MLP and SVR, which had values of 0.025 (1.6%) and 0.061 (4.97%),
respectively. Secondly, the predictions of both presented models are acceptable, though
MLP outperforms SVR. However, the optimal architecture of the MLP network, optimized
during the learning process, adopts a highly complex structure consisting of 13 hidden
layers. The details of the optimized hyperparameters are provided in Figure 6.
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It is noteworthy that the MLPRegressor and SVR were not the only non-linear models
demonstrating acceptable accuracy in predicting ferulic acid solubility. Other less complex
models, such as NuSVR, HistGradientBoosting, and CatBoost regressors, also achieved ac-
ceptable accuracy with significantly lower computational costs compared to MLP regressor.
The best models can beranked as follows based on their MRSD and MAPE values given in the
parenthesis, respectively: MLP (0.026, 1.57%) > SVR (0.062, 4.97%) ≈ NuSVR (0.063, 5.15%) >
HGB (0.050, 2.16%) > CatBoost (0.051, 2.03%).

The optimized parameters for these models are summarized in Figure 6, which also
includes the results of learning curve analysis for each regressor. It is noteworthy that
considering multiple regressor models for experimental data modeling and prediction of-
fers several advantages. Firstly, it can enhance performance by leveraging the strengths of
different models, such as their ability to capture linear or non-linear relationships. Secondly,
comparing and validating multiple models on the same dataset provides insights into their
relative strengths, weaknesses, and overall reliability. Lastly, regressors can be used to
formulate ensemble methods with optimized weights, further improving overall perfor-
mance and generalization by mitigating bias and variance. This approach also promotes
better generalization to new data and helps identify uncertainties or inconsistencies in
predictions. However, this step was not implemented here, as the accuracy was acceptable
even with a single-regressor approach and the available data pool was rather limited.
For further examination of model properties, the LCA results are presented in Figure 6.
Since NuSVR closely mirrors SVR results in both solubility data back computation and
LCA results, it was excluded from further analysis. As previously noted, the MLP model
has a complex structure that allows for the most accurate solubility back computations.
However, LCA reveals significant limitations when applying this model to new data, as the
learning curve shows considerable sensitivity to the data pool used for MLP application.
Ideally, lines resulting from LCA should exhibit a smooth decrease in MAE with increasing
data sample percentage for both training and cross-validation subsets. In the case of the
MLP model, this requirement is met for the training dataset, suggesting excellent fitting
to known experimental data, but values not seen in the learning phase are predicted with
much less consistency. This suggests that while the complex architecture effectively cap-
tures the diversity of known data, it fails with new data, indicating poor generalizability
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for theoretical screening of FA solubility in new dissolution media. The second model
analyzed in Figure 6 suffers much less from this drawback. Indeed, after the inclusion of at
least 75% of the solubility data, a systematic decrease in MAE values is observed. Similar
conclusions can be drawn for the other two models included in Figure 6. From a practical
point of view, the selection of SVR, NuSVR, or HGB for further application is a fortunate
circumstance since these models are relatively fast to optimize and to apply for screening
purposes. Because of this, they are recommended for further development and wrapping
with a user-friendly application. In general, both support vector regression and its variant,
NuSVR, are very effective when dealing with high-dimensional data and can handle non-
linear relationships through the use of kernel functions. Support vector regression aims to
find a hyperplane that best fits the data while maximizing the margin. It uses a subset of
training samples called support vectors to define the regression function. SVR is known for
its ability to handle non-linear relationships by applying kernel functions, such as radial
basis function (RBF), polynomial, or sigmoid. NuSVR utilizes additional parameters to
control the number of support vectors. The HistGradientBoosting regressor belongs to
the boosting family of algorithms and is characterized by an ensemble of decision trees.
It utilizes a gradient boosting framework, where subsequent trees are built to correct the
errors made by previous trees. It incorporates histogram-based gradient boosting, which
improves training speed and memory efficiency. The CatBoost regressor, on the other hand,
is a gradient boosting algorithm that is particularly effective with categorical features. It
requires minimal data preprocessing and is known for its fast training speed and robust
handling of various data types.

3. Materials and Methods
3.1. Materials

Trans-ferulic acid (FA, CAS: 537-98-4, MW = 194.18 g/mol) was supplied by Sigma Aldrich
(St. Louis, MO, USA) with a purity of ≥99%. Two hydrogen bond acceptors were used in the
formation of deep eutectic solvents, namely choline chloride (ChCl, CAS: 67-48-1) and betaine
(BI, CAS: 107-43-7). Six different hydrogen bond donors were also used, i.e., ethylene glycol
(ETG, CAS: 107-21-1), diethylene glycol (DEG, CAS: 111-46-6), triethylene glycol (TEG, CAS:
112-27-6), glycerol (GLY, CAS: 56-81-5), 1,2-propanediol (P2D, CAS: 57-55-6), and 1,3-butanediol
(B3D, CAS: 107-88-0). The constituents of the eutectic systems were all delivered by Sigma Aldrich
(St. Louis, MO, USA), and their purity was ≥99%. Methanol (CAS: 67-56-1), which was utilized
as a secondary solvent throughout the studies, was obtained from Avantor Performance Materials
(Gliwice, Poland) and had a purity of ≥99%. Choline chloride was dried before use, while all the
other chemicals were used without any initial procedures.

3.2. Preparation of the Calibration Curve

The spectrophotometric determination of the solubility of ferulic acid in deep eutectic
solvents and their aqueous mixtures was preceded by the preparation of a calibration curve.
For this purpose, the stock solution of FA was prepared in a 100 mL volumetric flask using
methanol as a solvent. This solution was then diluted, which was achieved by transferring
fixed amounts of the stock solution into 10 mL volumetric flasks and adding methanol
accordingly. Eleven solutions were obtained in this way, with varying concentrations in
the range of 0.00618 mg/mL to 0.0206 mg/mL. The absorption spectra of these solutions
were then recorded with the help of an A360 spectrophotometer from AOE Instruments
(Shanghai, China) in the wavelength range from 200 nm to 500 nm. The absorbance
maximum was found to correspond to the 321 nm wavelength and did not change over the
course of the measurements. Three separate curves were prepared in this manner, and the
final curve was the result of their averaging. The obtained linear regression was found to
be A = 98.226 × C + 0.002 (A—absorbance, C—concentration in mg/mL). The validation
parameters of the curve included the determination coefficient R2, the limit of detection
(LOD), and the limit of quantification (LOQ). The R2 coefficient was equal to 0.9989, which
ensures satisfactory linearity of the curve. LOD was found to be 0.000494 mg/mL, while
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LOQ was 0.001483 mg/mL, which are values far below the concentrations achieved in
the studied samples. Overall, the calibration curve can be considered adequate for the
determination of the solubility of ferulic acid.

3.3. Preparation of the Samples and Solubility Measurements

The solubility of ferulic acid in the considered eutectic systems was determined using
the well-established and reliable shake-flask method [95–98] combined with spectrophoto-
metric measurements.

Deep eutectic solvents were formed by combining a hydrogen bond acceptor with a
hydrogen bond donor in various molar ratios, including a unimolar proportion, a 2-fold
excess amount of the HBD, and its 4-fold excess amount. One of two substances was used as
a HBA, i.e., choline chloride or betaine, while one of six polyols—i.e., TEG, DED, ETG, GLY,
P2D, or B3D—was used as an HBD. This resulted in a total of 36 eutectic systems. In order to
prepare the eutectic formulation, the two constituents were mixed in glass vessels in a specific
molar ratio, placed on a heating plate, and further mixed until the formation of a homogenous
solution. DESs prepared in this manner were used in their pure form, and the most promising
ones were also selected to form mixtures with water in pre-determined molar compositions.

As the initial step in the solubility determination procedure, saturated solutions
of ferulic acid in considered DESs were prepared. This was done by placing an excess
amount of FA in a test tube and adding the selected DES or aqueous DES mixture. The
Orbital Shaker Incubator ES-20/60 from Biosan (Riga, Latvia) was used to ensure a stable
temperature of 25 ◦C, 30 ◦C, 35 ◦C, or 40 ◦C, depending on the measurement conditions, for
24 h of incubation with simultaneous mixing at 60 rev/min. The samples were then filtered
through a 0.22 µm pore-size PTFE syringe filter. All of the test tubes, syringes, pipette tips,
and filters were initially heated at the same temperature as the measured sample in order
to prevent precipitation. The samples were accordingly diluted with methanol before the
measurements. As was the case for the calibration curve, the A360 spectrophotometer was
used to record the spectra of the samples in the 200 nm–500 nm wavelength range with
a 1 nm resolution and using methanol for calibration. The concentration of ferulic acid
was calculated based on the linear equation of the calibration curve and the absorbance
values recorded at the characteristic wavelength, i.e., 321 nm. Additionally, the density
of the samples was measured, which was necessary for the computation of mole fraction
solubility. For this propose, 1 mL of each solution was weighed in a 10 mL volumetric
flask using a RADWAG (Radom, Poland) AS 110 R2.PLUS analytical balance with 0.1 mg
precision. For each studied system, three samples were prepared and measured, and the
obtained values were averaged.

3.4. Conformational Analysis

The most representative structures of either monomeric forms of every DES con-
stituent or their homo- and hetero-molecular pairs were found by employing an extensive
conformational analysis using the COSMOconf [99] and COMSOtherm [100] packages.
The procedure was already described in our previous papers [101–103], hence only a brief
synopsis is provided here. Each molecule, or molecular complex, was represented by a max-
imum of ten low-energy conformations identified by independent conformational searches
for both the gas and condensed phases. The latter is crucial to account for the influence of
the surrounding environment within the conductor-like screening model. The outcome of
this protocol is a set of “cosmo” and “energy” files compatible with the latest parameter
set, which is BP_TZVPD_FINE_24.ctd. This file comprises all the necessary parameters
utilized for thermodynamic properties’ computation in COMSOtherm [100]. It is worth
mentioning that there are available variants of “ctd” files comprising parameter values
adjusted for different levels of computation. Here, the RI-BP/def2-TZVPD-FINE level was
used as the final step of the conformational analysis and affinity computations. In the
manual, there is a recommended two-step procedure starting with geometry optimization
on a slightly less demanding level, namely RI-BP/def-TZVP, followed by the final single-
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point energy computations and generation of the necessary “cosmo” and “energy” files.
This procedure can be followed for many molecules but suffers from serious drawbacks
if applied to intermolecular complexes or flexible molecules stabilized by non-bonding
type of interactions. It is related to inadequate representation of the dispersive forces by
the RI-BP/def-TZVP method, and adding correction to the final energy cannot correct the
occasionally obtained improper geometries. This is especially important for complexes with
delocalized electrons, the interactions of which are poorly represented using the RI-BP/def-
TZVP approach. For example, many stacking complexes are not predicted to be stable.
This problem was already stated for edaravone [101] or methylxhanthines [97,104]. Hence,
the actual geometry optimization was performed for both monomers and pairs using the
RI-BP97/def2-SVPD approach. Apart from the more realistic pair geometries, there is an
additional benefit of using this level of computations, namely the straightforward account-
ing for basis superposition set error (BSSE). This is regarded as an important component of
the total interaction energy. However, rigorous computations of the BSSE via counterpoise
correction can be time-consuming. Therefore, much less demanding alternatives using the
DFT-C approach were proposed [105]. This geometry-based method of BSSE estimation
relies on BP97/def2-SVPD geometries and accounts for atom–atom many-body corrections
to the total molecular complex energy. Hence, this method was used for the geometry
optimization of all structures used in this study. The molecular geometries obtained in such
a manner were then used for single energy computations at a level compatible with the
parametrization of COSMOtherm mentioned above. Hence, the full acronym describing
this approach is as follows: RI-BP97/def2-SVPD//RI-BP/def2-TZVPD-FINE, where the
first section before the double slash represents the optimization level and the second part
the single energy computations.

The conformational search of the most probable structures or monomers is straightfor-
ward and done automatically using COSMOconf. However, identification of the most
representative pair conformations posed a more significant computational challenge.
Here, the same protocol as previously used for other APIs [101–103] was used. This
involved generating conformations for various combinations of ferulic acid dimers and
ferulic acid-solvent pairs. To achieve this, the COSMOtherm software employed the
“CONTACT = {1 2} ssc_probability ssc_weak ssc_ang = 15.0” command. This command
prioritizes the generation of the most probable pairs based on contact probabilities con-
sidering both hydrogen bonding and weak interactions. Consequently, this step typically
results in a substantial number of initial structures requiring further optimization ac-
cording to the above procedure with the implementation of data reduction to eliminate
redundant and high-energy geometries. Two criteria were used for this selection: root-
mean-square deviation (RMSD) and relative energy compared to the most stable conformer.
Ultimately, only unique contacts within a 5.0 kcal/mol energy window relative to the
most stable structure were retained for each complex, ensuring a representative pool of
conformers with diverse structures and energies. The final “cosmo” and “energy” files
were generated on the same level of theory and used for affinity computations using
COSMOtherm parametrization. The core of all quantum chemistry computations was the
Biovia TURBOMOLE [106] interfaced with TmolX. In the final step, the affinity computa-
tions were performed to characterize the interaction properties of ferulic acid with every
constituent of the studied DESs using the default settings of COSMOtherm.

3.5. Solubility Dataset

The solubility dataset was defined based on both literature studies and augmented
with new measurements presented in this paper. The literature review led to finding the
data on FA solubility in the following neat solvents, methanol [91,94], ethanol [91,94,107],
isopropanol [91,93,94], 1-butanol [91], 2-butanol [91], ethylene glycol [91], propylene glycol [91],
transcutol [91], DMSO [91], ethyl acetate [91,92,94], and water [90,91,93,94,107]. Additionally,
there are also available data for aqueous mixtures of isopropanol [93]. It happened that the
highest solubility was found to be in DMSO.
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3.6. Machine Learning Protocol

The machine learning protocol utilized in this study adheres to the methodology
previously applied in our earlier projects [79,102,108]. As comprehensive details have been
previously reported, only brief remarks are provided here. The solubility prediction model
was developed using in-house Python code (version 3.10, https://www.python.org/)
designed for hyperparameter tuning across 36 regression models. These models encompass
a wide range of algorithms, including linear models, boosting methods, ensembles, nearest
neighbors, neural networks, and other regressor types. Hyperparameter optimization
was conducted using Optuna (version 3.2, https://optuna.org/), an open-source Python
package. The optimization process involved 5000 minimization trials, employing the
tree-structured Parzen estimator (TPE) as the search algorithm sampler. To evaluate the
performance of each regression model, a custom scoring function was defined, integrating
multiple metrics to assess both accuracy and generalizability, as detailed in a previous
work [108]. This scoring function includes penalties derived from learning curve analysis
(LCA), performed using the scikit-learn library (version 1.2.2) during the parameter tuning
process. Due to the computational demands of LCA, initial computations were limited to
two points, encompassing 50% and 100% of the total dataset. Subsequent LCA evaluations
of the final model involved 20-point calculations within the 50–100% data range. The
custom loss function incorporates the mean MAE values obtained from the largest training
set size, thereby integrating both accuracy and generalizability aspects and providing
insights into the model’s performance on unseen data.

3.7. Molecular Descriptors

The set of molecular descriptors was formulated as described in our previous
publication [103], based on the σ-potential values. The temperature-dependent σ-potentials
were calculated for each compound in its pure, single-component state. The molecular descriptors
for complex systems, utilized in machine learning, were represented as the difference between the
σ-potential of a pure solute and that of a solvent at a given temperature. For multicomponent
solvents, the σ-potential was characterized as the pure state value weighted by the mole fraction
of the solute-free mole fraction. Typically, COSMOtherm generates σ-potential profiles consisting
of 61 points for σ values between −0.03 and +0.03 e/Å2 with a 0.001-step increment.

To reduce the number of descriptors, the most promising subset was identified by in-
specting the significance of the relationship between experimental solubility and relative
σ-potential values. This selection criterion was quantified by restriction to R2 > 0.4 for a
given σ value. This is illustrated in Figure 7, which shows two subsets: non-DES solvents
(including neat solvents and binary mixtures) and DES systems. Notably, the overall correla-
tion between experimental solubility and σ-potential is modest when considering the entire
dataset. However, restricting the analysis to non-DES systems reveals a very high correlation
(R2 > 0.8) in the non-polar region, typically attributed to hydrophobicity (HYD). Additionally,
the sub-range of hydrogen bond donicity (HBD) shows a high correlation with FA solubility.
The points marked with bold black dots in Figure 7 were used for machine learning.

Additionally, solubility was computed by fully solving the solid-liquid equilibrium
(SLE) problem using COSMOtherm [100] for two reasons. Firstly, it is interesting how
accurate are the predictions based on the COSMO-RS theory [109]. Secondly, the com-
puted solubility can be used as a molecular descriptor for machine learning purposes. It
is crucial to note that the COSMO-RS approach is designed for predicting the thermody-
namic characteristics of bulk systems, excluding the solid state. Since solubility involves
the transition of the crystalline phase into a liquid saturated solution, the contribution
of fusion data to the overall thermodynamic characteristics must be added to the input
files. The required data include the melting temperature (Tm = 445.83 K), heat of fusion
(∆Hfus = 32.49 kJ/mol), and heat capacity change upon melting (∆Cp,fus ≈ ∆Sfus ≈ ∆HfusTm).
The values in parentheses correspond to the average data provided in the compilation by
Acree et al. [110]. The obtained solubility values were utilized as molecular descriptors in
addition to the relative σ-potential values previously defined.

https://www.python.org/
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4. Conclusions

Ferulic acid is an important representative of phenolic acids with many practical
applications. Since it can be obtained from natural sources, the selection of the most
effective and green media for extraction seems to be of immense importance. This is
emphasized by efforts to measure the solubility of FA in neat solvents and binary mixtures,
as documented by a study of the literature. This paper further extends the knowledge of
the dissolution of ferulic acid through a systematic study of two types of deep eutectic
solvents involving choline chloride or betaine, acting as hydrogen bond acceptors, with
one of six polyols playing the role of hydrogen bond donors. The performed optimization
encompassed both the DES composition and its relative concentration in aqueous mixtures.
It was found that the eutectics utilizing choline chloride were slightly more effective than
those with betaine and that a 1:2 molar ratio of the HBA and HBD counterparts of the
eutectic was the optimal one. Furthermore, the addition of small amounts of water to
the DES further promotes the solubility of FA compared to the neat eutectic. Among the
considered polyols, triethylene glycol proved to be the most effective. The presented results
suggest that designed solvents comprising choline chloride and TEG, with an addition of
water, can be treated as efficient alternatives to traditional organic solvents, including the
first-choice solvent, namely DMSO. In order to gain insight into the saturated systems of
FA in liquid media on a molecular level, the intermolecular interactions in the considered
systems were studied, which led to the identification of the most stable homo- and hetero-
molecular pairs formed between the interacting compounds. For the purpose of solvent
screening, aimed at assisting the time-consuming experimental phase, a machine learning
protocol was employed for the formulation of a non-linear model being able to predict FA
solubility. This phase resulted in obtaining very accurate models that were able to precisely
back-compute solubility as a function of solvent type and temperature. It is recommended
to utilize the SVR regressor with the provided values of optimized parameters for screening
purposes of new dissolution media. It is also worth mentioning that the very popular way
of solubility prediction using the COMSO-RS approach is at most qualitatively accurate,
and the developed models are much more accurate.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29163841/s1, Table S1: Mole fraction solubility of
ferulic acid (IP) in neat DES containing either choline chloride or betaine as a HBA and one of six
studied polyols as a HBD in various molar proportions at 25 ◦C. Standard deviation values are given
in parentheses; Table S2: Mole fraction solubility of ferulic acid (FA) in aqueous-choline-chloride-
based DES mixtures at various temperatures. In the first column, x*DES denotes the mole fraction
of DES in solute-free mixtures with water. Standard deviation values are given in parentheses;
Table S3: Mole fraction solubility of ferulic acid (FA) in aqueous-betaine-based DES mixtures at
various temperatures. In the first column, x*DES denotes the mole fraction of DES in solute-free
mixtures with water. Standard deviation values are given in parentheses.
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