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Abstract: The vast array of omics data in microbiology presents significant opportunities for study-
ing bacterial pathogenesis and creating computational tools for predicting pathogenic potential.
However, the field lacks a comprehensive, curated resource that catalogs bacterial strains and their
ability to cause human infections. Current methods for identifying pathogenicity determinants
often introduce biases and miss critical aspects of bacterial pathogenesis. In response to this gap,
we introduce BacSPaD (Bacterial Strains’ Pathogenicity Database), a thoroughly curated database
focusing on pathogenicity annotations for a wide range of high-quality, complete bacterial genomes.
Our rule-based annotation workflow combines metadata from trusted sources with automated key-
word matching, extensive manual curation, and detailed literature review. Our analysis classified
5502 genomes as pathogenic to humans (HP) and 490 as non-pathogenic to humans (NHP), encom-
passing 532 species, 193 genera, and 96 families. Statistical analysis demonstrated a significant but
moderate correlation between virulence factors and HP classification, highlighting the complexity of
bacterial pathogenicity and the need for ongoing research. This resource is poised to enhance our
understanding of bacterial pathogenicity mechanisms and aid in the development of predictive mod-
els. To improve accessibility and provide key visualization statistics, we developed a user-friendly
web interface.

Keywords: bacterial pathogenicity; genomic metadata analysis; bioinformatics; microbiology research;
public health surveillance

1. Introduction
1.1. Leveraging Bacterial Omics Data for Pathogenicity Insights and Public Health

In microbiology research, the vast availability of bacterial omics data is a crucial
asset for exploring the diverse aspects of bacterial human pathogens. This wealth of
information is instrumental in developing large-scale, in-depth research aimed at expanding
our knowledge on omics pathogenicity determinants, critically enhancing public health
surveillance and facilitating the development of novel therapeutic strategies. The utilization
of bioinformatics to analyze these data has been key in uncovering mechanisms of infection
and resistance in established pathogens [1–3]. Complete genome data is particularly
advantageous for these studies due to the need for high accuracy and completeness in
genome assembly [4–6]. By integrating this molecular data with epidemiological and
clinical information, we can develop a more complete picture of bacterial pathogenesis.
Data-driven insights may also contribute to the development of important predictive
models to uncover the pathogenic potential of newly identified bacterial strains [7–10].
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1.2. Current Challenges

Despite the advances in omics technologies, significant challenges remain in the
annotation of bacterial pathogenicity. A primary challenge is managing the vast volumes
of data generated, requiring robust analytical methods for accurate classification and
interpretation. Indeed, there is currently no publicly accessible and curated database that
categorizes bacterial strains based on their human pathogen potential. To construct their
training sets, past studies that developed pathogenicity prediction tools classified their
selected genomes as pathogenic to humans (HP) and non-pathogenic to humans (NHP)
using predominantly two methods.

The first method involved retrieving the information from databases, such as the
National Center for Biotechnology Information (NCBI) [11], Genomes Online Database [12],
and the Integrated Microbial Genomes database [13]. However, most of these annotations
are no longer available. While the exact reasons for this are not explicitly stated in the
available literature, concerns about the accuracy of pathogenicity labels and the difficulty
in keeping up with the influx of new genomic data are plausible explanations. Other
related databases that integrate comprehensive genomic data include BacDive [14], gc-
Pathogen [15], BacWGSTdb [16], and MGTdb [17]. Although these databases provide an
extensive and high-quality genomic resource, they lack annotations on bacterial pathogenic-
ity at the strain level and for complete genomes. BacDive provides a limited number
of genomes with pathogenicity annotations with unclear criteria. Similarly, gcPathogen,
BacWGSTdb, and MGTdb primarily rely on species-level classifications derived from gov-
ernment health organizations. As emphasized in [18], pathogenicity is more accurately
assessed at the subspecies level and can vary significantly even within serovars. Incorporat-
ing these pathogenicity assessments could then improve the utility of pathogen inventories
for research and public health efforts.

The second and most recently used method is the application of an annotation-based
pathogenicity labeling, by applying a set of rule-based criteria to genome metadata [7,9,10].
This method is inherently adaptable, and the transparency afforded by the explicit criteria
ensures that the process is verifiable. Moreover, its capacity to leverage available metadata
broadens its analytical scope, enabling a more comprehensive exploration of bacterial
genomes and thereby enriching pathogenicity research. By considering various types
of information—such as isolation source, associated disease, sample type, and known
interactions with hosts—the method can provide a more nuanced understanding of which
bacterial strains are HP or NHP. However, the guiding principle that was generally used
in these works to establish the rule-based criteria was that any bacterium isolated from
a diseased individual should be considered as HP, while those from healthy individuals
or probiotic supplements should be considered NHP. Yet, isolating a bacterium from a
diseased individual does not confirm it as the causative agent of the illness [19]. For
instance, a bacterium isolated from someone with a non-infectious condition, such as
Crohn’s disease, would be wrongly labeled as HP, despite not causing an infectious disease.
Similarly, isolating a bacterium from a healthy individual does not automatically indicate
that it is NHP. Erroneous assumptions in pathogenicity classification risk introducing bias,
potentially leading to the oversight of genes or proteins that are critical for understanding
bacterial pathogenicity or for developing prediction tools. Indeed, an automatic method
based on keywords was used in the context of these works, which, while useful, may lead to
incorrect classifications due to a lack of context interpretation. A commonly used database
to retrieve genomic and related data in the field of infectious diseases from previously
described studies was PAThosystems Resource Integration Center (PATRIC), currently
BV-BRC [20]. While this database includes clinical samples from diseased individuals,
many samples are collected outside of clinical settings. Therefore, it is crucial to thoroughly
inspect this data when drawing inferences from it.
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1.3. Objectives of BacSPaD

BacSPaD (Bacterial Strains’ Pathogenicity Database) was developed to address these
challenges by providing a rigorously curated database focused on the pathogenicity of
bacterial strains. The integration of high-quality genomic data with detailed metadata from
two reputable sources is supplemented by manual curation and scientific literature review
to ensure the accuracy of pathogenicity annotations. By classifying bacterial genomes as HP
or NHP based on consistent criteria, BacSPaD provides a valuable resource for researchers
studying bacterial pathogenesis.

2. Materials and Methods
2.1. Data Acquisition

The data utilized in this work was primarily extracted from the BV-BRC database
(Frederick, MD, USA) and supplemented with BioSample metadata from NCBI (Bethesda,
MD, USA) [21], which provides comprehensive insights into specimen origins and phe-
notypic traits. We selectively sourced genomes from BV-BRC that were associated with a
human host, marked as ‘good’ quality, fully sequenced (‘complete’), included both chromo-
somes and plasmids, and added to the database (‘insertion date’) after 1 January 2017, in
order to balance data quality and volume. Then, the corresponding metadata from NCBI’s
BioSample was retrieved via the Entrez system.

2.2. Data Pre-Processing and Integration

During pre-processing and integration, we meticulously identified and curated rele-
vant fields from both databases. The final set of combined fields and their corresponding
descriptions are shown in Supplementary Information: Table S1. This step involved con-
ducting a detailed examination of metadata content, aligning common fields, and address-
ing discrepancies. For example, we resolved 8 instances where multiple NCBI BioSample
entries corresponded to a single BV-BRC genome entry, possibly due to the submission
of biological replicates or updated sample details. We assessed the metadata content to
ensure that each genomic record was unique and removed the redundant entries. A total
of 11,368 genomes to be annotated according to pathogenicity were retrieved after these
pre-processing steps. The resulting enriched dataset laid the groundwork for our ensuing
analysis and systematic annotation. A summary of the steps applied for the pre-processing
and labeling phase, including the number of filtered and resulting genomes after each
step, is detailed in Supplementary Information: Figure S1. We also assigned the taxonomy
information for each genome from species to phylum based on NCBI taxonomy [22].

2.3. Quality Control

Following the annotation phase, a final high-quality selection step was performed.
Labeled genomes were only kept if they showed over 90% completeness and less than
5% contamination, as confirmed using CheckM version v1.1.6 (Brisbane, Australia) [23].
Furthermore, we focused on primary pathogens, excluding entries associated with im-
munocompromised individuals. Exceptions were made if the species was listed in the
FDA-ARGOS Database Wanted Organism List [24]. A list of the identified keywords as-
sociated with immunocompromised individuals used to guide this selection is shown in
Supplementary Information: List S1. To further ensure sequence quality, 4 entries were
removed as their genomes contained more than 20 contigs. Genomes associated with
genetic manipulation in a research context were also excluded.

3. Results
3.1. Pathogenicity Annotation

Using a rule-based workflow, we systematically categorized bacterial strains as either
HP or NHP, based on their association with infectious processes, or lack thereof. This pro-
cess involved an iterative review of metadata, focusing on terms that effectively categorized
genomes as HP or NHP based on their clinical context. These keywords could then not
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correspond to the most common ones found in the literature, whether specific to bacterial
infections or broader medical terms. Instead, after an initial assessment using a broad set
of keywords, we included only those that enhanced classification accuracy for both HP
and NHP genomes within the context of our iterative procedure. Our goal was to create
keyword lists tailored to this dataset, supporting manual review and reducing redundancy.
We began the categorization process using keywords suggested by Naor-Hoffman et al. [10],
based on metadata, to facilitate initial sorting. However, a significant number of genomes
were misclassified, necessitating an iterative process of keyword inclusion and exclusion
to enhance accuracy. This refinement led to the development of extensive keyword lists
tailored for the metadata of the selected genomes, which guided the subsequent manual
reviews. The final lists are detailed in Supplementary Information: List S2, S3, S4 and S5.

3.1.1. HP Labeling Workflow

An initial selection was performed based on keywords related to virulence, disease
manifestations, and distinctive HP features (Figure 1a). The final list of selected keywords
was designated as ‘HP keywords’ (detailed in Supplementary Information: List S2). Con-
versely, keywords that usually correctly classified genomes as inconclusive were designated
as ‘HP exclusion keywords’ (detailed in Supplementary Information: List S3). Genomes
containing both an HP keyword and an HP exclusion keyword underwent a thorough
review. If ambiguities remained, they were excluded from the HP category and reassessed
under the NHP criteria. Ultimately, this process led to 4343 genomes being labeled as HP
(HP set 1)

Additional NCBI 
Biosample metadata

BV-BRC filtered bacterial 
genomes metadata

HP final 
set

(a) (b)

(a)

(b)

(c)

Combine and remove duplicates

Genetic modification checking and 
manual revision

Keywords 
procedure

Pathogenicity-related 
fields procedure

(c)Host disease 
procedure

HP set 1

HP set 2

HP set 3

HP set 3

HP set 2HP set 1

Figure 1. Outline of the rule-based criteria that guided the classification of genomes as pathogenic to
humans (HP). The main processes applied to the expanded data are shown. These were based on the
following: (a) HP keywords or their exclusion counterparts (HP set 1); (b) Inspection of metadata
fields specifically indicative of their pathogenicity (HP set 2); (c) Association with an infectious
disease in a specific metadata field (‘host disease’, HP set 3).

Additional genomes were labeled as HP based on metadata fields directly suggesting
pathogenicity, such as ‘pathovar’, ‘pathotype’, or ‘pathogenicity’, unless these fields were
empty or marked with ‘not applicable’, ‘missing’, or ‘not available’ (Figure 1b). In case they
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were, they would also be re-assessed under the NHP criteria. This process resulted in a
total of 201 genomes being labeled as HP (HP set 2).

In order to further assess and incorporate genomes of HP strains that were not labeled
with the previous processes, we took advantage of the ‘host disease’ metadata field, which
specifies the disease affecting the host from which the sample was obtained. Manual
inspection was facilitated by the smaller number of unlabeled genomes (Figure 1c). A total
of 428 keywords related to documented infectious diseases were manually identified in this
category (Supplementary Information: Table S2). Genomes associated with any of these
keywords were added to the HP set after the removal of the modified strains. This process
resulted in a total of 1046 genomes being categorized as HP (HP set 3).

After combining the result of each of these steps, along with manual revision and the
filtering of mutant strains, a final set of 5502 HP genomes was retrieved.

3.1.2. NHP Labeling Workflow

The NHP labeling process was initiated by excluding genomes already identified
as HP (Figure 2). Keywords associated with an NHP phenotype, designated as ‘NHP
keywords’, were also derived from extensive metadata review to ensure no association
with disease (Supplementary Information: List S4). Then, a verification of keywords that
were found to help detect inconclusive genomes was also followed and these keywords
were designated as ‘NHP exclusion keywords’ (Supplementary Information: List S5). Lastly,
a similar scrutiny for strains associated with genetic modification was applied to these
NHP genomes, but in this case no such strain was found in this condition. This process led
to a final set of 490 genomes being definitively categorized as NHP.

Figure 2. Outline of the rule-based criteria that guided the classification of genomes as non-pathogenic
to humans (NHP).

3.1.3. Manual Curation

The manual review involved a detailed examination of each genome’s classification,
considering both the metadata and the latest scientific literature when necessary. Genomes
with conflicting information—where metadata suggested a potentially NHP phenotype but
was inconclusive, and literature indicated HP outcomes, or vice versa—were marked as
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inconclusive and were excluded from the dataset. This rigorous manual curation process
ensured the reliability of our automated methods and the integrity of the final database.

3.2. Case Studies of HP and Inconclusive Genomes

Table 1 provides detailed examples of genomes categorized either as HP or incon-
clusive. For each genome, the table lists the most relevant metadata influencing their
classification. The first two examples highlight scenarios where metadata contained both
HP and exclusion keywords, necessitating a nuanced manual review to confirm their
classification. For Streptococcus pyogenes strain M75, although healthy volunteers are
mentioned, researchers successfully infected them using this strain [25]. Similarly, for
Neisseria meningitidis strain S4, despite its species being described primarily as an obligate
commensal, the metadata also states its “ability to cause septicemic disease and meningitis”,
and that this strain in particular is an invasive strain.

Table 1. Examples of genomes labeled as HP and as inconclusive. Relevant metadata fields that
influenced their classification are highlighted, with HP keywords marked by an asterisk (*) and
HP exclusion keywords indicated by double asterisks (**). Some of the indicated HP keywords are
not necessarily included in the final list of keywords but were important for the manual revision
(e.g., ‘invasive’).

Species Name Genome Name Relevant Metadata Field(s) and Content Label

Streptococcus pyogenes Streptococcus pyogenes
strain M75

Comments: “. . .modern controlled
human infection * model, with the aim of

safely and successfully causing
pharyngitis * in healthy **

adult volunteers”

HP

Neisseria meningitidis Neisseria meningitidis
strain S4

Comments: “. . .ability to cause
septicaemic disease * and meningitis *

(. . .) meningococcus is primarily an
obligate commensal ** of the human

nasopharynx, and it is unclear why the
bacterium has evolved exquisite

mechanisms to avoid host immunity (. . .)
genome of S4, an invasive * strain of

Neisseria meningitidis”.

HP

Citrobacter koseri Citrobacter koseri
strain MPUCK001

Isolation source: “The skin surface of
human (disease *: atopic

dermatitis *) neck”

Inconclusive
(after manual revision)

Pseudomonas putida Pseudomonas putida
strain 15420352

Isolation source: “urine”; host health:
“pulmonary infection *”

Inconclusive
(after manual revision)

In the last two rows of this table, we show examples from the set of genomes which
contained an HP keyword and no HP exclusion keyword but were considered inconclusive
after manual revision. For Citrobacter koseri strain MPUCK001, there was an association
with atopic dermatitis, which, despite containing two HP terms (the ‘disease’ and the
suffix ‘-itis’) is not an infectious disease. For Pseudomonas putida strain 15420352, which was
isolated from a host with a pulmonary infection, the sample was taken from urine, and no
information was given to substantiate an infection of the urinary tract.

3.3. Database Overview and Analysis
3.3.1. General Statistics and Distribution

We could annotate 5992 complete and high-quality genomes according to their pathogenicity—
5502 as HP (92%), and 490 as NHP (8%). This database encompasses a broad spectrum of
bacterial taxa, including 532 species across 193 genera, 96 families, 53 orders, 26 classes, and
12 phyla. The main taxa and their proportions are illustrated in Figure 3a. An interactive
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visualization of this figure may also be found in the web interface, enabling the visual-
ization of all taxa. Figure 3b illustrates the distribution of the 10 most prevalent families,
highlighting Enterobacteriaceae as the most frequent family, with 1799 HP and 118 NHP
genomes. Accordingly, this family predominantly consists of clinically significant organ-
isms such as Escherichia coli, Klebsiella, and Enterobacter. The second most frequent family
is Alcaligenaceae (559 HP, 0 NHP), primarily due to the high prevalence of pathogenic
strains of Bordetella pertussis, the agent responsible for whooping cough.

Figure 3. Key statistics from the database. (a) Distribution of various taxa, with each phylum assigned
a different color; (b) Distribution of HP and NHP strains across the top 10 most frequent bacterial
families; (c) Prevalence of HP and NHP strains across all species present in FDA-ARGOS Wanted
Organism List; (d) Preview of the mapping figure showing the global distribution of bacterial strains
by isolation country. The color legend ranges from 1 to 10 k, though the current maximum value is
around 4 k, to accommodate future data.

Other notable families include Mycobacteriaceae, Staphylococcaceae, and Strepto-
coccaceae, underscoring their clinical significance with a significant representation of
HP genomes.

We also validated the comprehensive nature of our database against the FDA-ARGOS
Database Wanted Organism List, and verified that there were at least two genomes per
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species for the priority pathogens. Figure 3c displays the distribution of labeled genomes
across all species featured in the list, with a minimum of 118 genomes for the top 10 species
classified as HP. Specifically, the database includes 116 NHP genomes for this priority
pathogens list: 83 Escherichia coli, 10 Klebsiella pneumoniae, 22 Staphylococcus aureus, and
1 Neisseria meningitidis.

Figure 3d presents a preview of the global map depicting the distribution of bacterial
strains in the database based on their country of isolation. The color gradients represent
the number of isolated strains, with darker shades indicating a higher number. Countries
with extensive public health surveillance and research infrastructure show higher numbers
of isolated strains.

3.3.2. Virulence Factor Analysis

The analysis of virulence factors plays a pivotal role in identifying potential targets for
drug development and assessing the risk of disease outbreaks. Although NHP strains can
also harbor virulence genes, HP genomes are expected to contain a higher number of these
factors. For a focused analysis, we selected a representative subset of 1484 genomes from
clinically relevant species, maintaining an HP to NHP ratio of approximately 11:1, consis-
tent with the overall database distribution. The selected genomes were aligned against
experimentally verified virulence factors from the Virulence Factor Database [26] using
Abricate v1.0.1 [27], which uses BLAST and a subject coverage threshold of 80%. A total of
2257 virulence factors were retrieved. Then, a chi-squared test with Yates’ correction was
conducted to evaluate the association between the presence of virulence factors and HP clas-
sification. The analysis confirmed a statistically significant association (X-squared = 5.523,
df = 1, p-value = 0.019), with an odds ratio of 1.26, suggesting a moderate positive corre-
lation between the presence of virulence factors and HP classification. These identified
virulence factors are also accessible through the web interface for further analysis.

3.3.3. Database Structure

To support ongoing and future research endeavors, we have developed a web interface,
which can be accessed freely at https://bacspad.altrabio.com/ (accessed on 6 August 2024).

• Data: Integrated dataset with pathogenicity annotation for each strain. Users can
perform queries by any keyword across any field, as well as field-specific searches.
Detailed descriptions of each metadata field are available in Supplementary Infor-
mation: Table S1. Users may download selected genomes or retrieve them in batch
along with various other data files, such as proteomes and protein families, from
the BV-BRC FTP site at https://www.bv-brc.org/docs/quick_references/ftp.html
(accessed on 6 August 2024). To facilitate the search for strains associated with a
specific disease or isolation source category/subcategory, a categorization of diseases
and isolation sources was also performed and the obtained fields added to this data.
These were designated, respectively, as ‘disease category’, ‘disease subcategory’, and
‘isolation source’.

• Dashboard: This section features a range of statistical visualizations, including the
top 10 and 50 species, the top 12 families, a location distribution map according to the
country of isolation, and interactive visualizations of taxonomy, isolation sources, and
disease categories with respective subcategories.

• Molecular Biology: This section includes visualizations on the distributions for plas-
mids and contigs counts, genome lengths in base pairs (‘bp’), GC content percentage,
and protein-coding sequences (‘PATRIC CDS’).

• Virulence Factors: Virulence factor information for the most prevalent clinical species,
including the gene name; the frequency at which it is found in HP strains; the frequency
at which it is found in NHP strains; a list of the BV-BRC genome IDs in which it is
found; the species names; and the corresponding number of strains, species, genera,
and families.

• About: Summary of the utility of BacSPaD for microbiology research.

https://bacspad.altrabio.com/
https://www.bv-brc.org/docs/quick_references/ftp.html
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4. Discussion

Infectious diseases are a leading cause of illness and mortality globally. A key chal-
lenge in studying bacterial infection mechanisms and developing predictive models has
been the absence of a comprehensive database that categorizes bacterial strains by their
pathogenic potential in humans. The quality of data used is crucial for the reliability of
these models. Without such a resource, previous studies have often relied on automated
keyword matching or broad assumptions about bacterial isolation sources [7,9,10]. How-
ever, and as illustrated with the Case Studies in Section 3.2, this method often overlooks
the subtleties in complex biological data. To address these limitations and provide a cu-
rated foundation resource, BacSPaD employs a rigorous manual curation process informed
by the scientific literature. The NHP labeling of genomes from species usually regarded
as HP, such as Escherichia coli and Klebsiella pneumoniae, highlights the necessity for nu-
anced, strain-level pathogenicity classification. Existing resources, such as BacDive [14]
and gcPathogen [15], are not primarily designed for pathogenicity classifications. BacDive
provides some bacterial pathogenicity information but lacks clear strain-level classifica-
tions and criteria, focusing only on HP classifications and excluding NHP ones. Similarly,
gcPathogen provides only species-level pathogenicity classifications and also lacks NHP
annotations. BacSPaD offers comprehensive strain-specific pathogenicity labeling for com-
plete bacterial genomes, containing both HP and NHP annotations. This granular approach
allows for more accurate representation of the variability in pathogenic potential within a
species, a nuance that is missed in databases such as BV-BRC [20] or the Integrated Micro-
bial Genomes database [13]. Moreover, by assessing important disease keywords from the
‘host disease’ metadata field, we were able to significantly increase the number of effectively
labeled genomes. The further manual categorization of this field may also be of utility,
mainly for researchers examining the disease associations of microbes and their specific
pathogenic potential under varying health conditions. Finally, the exclusion of genomes
associated with genetic modifications is a crucial step that has generally not been addressed
in previous studies and current resources. This step ensures that our database reflects the
natural dynamics of bacterial infections, allowing for more accurate computational studies
and prediction tools of bacterial pathogenicity. The results are not confounded by artificial
genetic changes that may alter virulence properties. Thus, BacSPaD provides a unique
and valuable resource for enhancing predictive models of bacterial pathogenicity. For
vaccine development, BacSPaD can aid in identifying conserved antigens prevalent in HP
strains but less common in NHP strains. These antigens are key targets for broad-spectrum
vaccines, capable of triggering an immune response against various bacterial species, even
at the strain level. By eliciting an immune response, these vaccines help reduce the risk of
infection and the development of resistance. Therefore, this database aligns with recent
genomics-based vaccine advancements, highlighting the role of comprehensive resources
in identifying effective vaccine targets. Integrating BacSPaD with omics technologies
can significantly improve public health interventions and our ability to manage evolving
bacterial infections.

Importantly, the virulence factor analysis revealed a statistically significant correlation
between the number of virulence factors and pathogenic classification. Yet, the moderate
odds ratio of 1.26 indicates that the predictive power of known virulence factors is limited.
This finding underscores the need for a more integrative and comprehensive approach
to understanding bacterial pathogenicity, which BacSPaD aims to facilitate. While the
Virulence Factor Database [26] used for this analysis focuses on cataloging known virulence
factors, BacSPaD provides a curated set of pathogenicity-labeled genomes that can be used
to discover novel determinants of pathogenicity beyond currently known virulence factors.
In addition, by including plasmids, BacSPaD also has the potential to enhance our under-
standing of these genetic elements. Plasmids play a critical role in bacterial pathogenicity
by often carrying genes responsible for virulence factors and antibiotic resistance. This is
particularly relevant in Escherichia coli and Klebsiella pneumoniae, where plasmid-encoded
genes can result in severe, hard-to-treat infections, especially in clinical settings with preva-
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lent multidrug-resistant strains [28,29]. Furthermore, the availability of identified virulence
factors and associated genomes in the web interface is highly beneficial for researchers.
This accessibility allows for further analysis and cross-referencing, providing a valuable
resource for studying bacterial pathogenicity and developing targeted interventions.

However, our database is not without limitations. The genetic basis of pathogenicity
was not assessed during the annotation process, and the inclusion of antimicrobial resis-
tance data could enrich the database’s utility. The binary classification system—labeling
genomes simply as HP or NHP—may not fully reflect the nuanced spectrum of bacterial
pathogenicity. Future developments should consider a more sophisticated categoriza-
tion system and ensure regular updates to the database to incorporate new genomes and
re-evaluate classifications based on new research findings.

BacSPaD constitutes a comprehensive resource that covers a wide range of bacterial
strains, offering flexibility and opportunities for cross-referencing. To minimize genomic
redundancy, sequence comparison analyses, such as Average Nucleotide Identity (ANI) [30]
or Mash [31], should be conducted as a preliminary step when selecting datasets from
BacSPaD. These approaches help eliminate redundant entries, enabling a focus on unique
HP and NHP features, thereby enhancing the precision and relevance of research findings.

In conclusion, our database presents a robust and comprehensive integrated resource
of bacterial pathogenicity at the strain level. Future research will benefit from using it
to assess global and specific determinants of bacterial pathogenicity, in order to further
enrich our understanding of this complex field. Researchers may uncover patterns and
develop prediction tools more effectively. This advancement may, in turn, significantly
impact public health efforts in mitigating the problem of infectious diseases.
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mdpi.com/article/10.3390/pathogens13080672/s1: Table S1: BacSPaD genome metadata fields and
their corresponding descriptions; Figure S1: Summary of the steps applied for the pre-processing
phase, including filtration and refinement of bacterial genomes data and the respective labeling
phase; List S1: Final list of keywords associated with immunocompromised hosts; List S2: Final
list of HP keywords; List S3: Final list of HP exclusion keywords; Table S2: Final list of infectious
disease keywords and their frequency; List S4: Final set of NHP keywords; List S5: Final set of NHP
exclusion keywords.
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