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Abstract: Heterogeneous CO2 hydrogenation catalytic reactions, as the strategies for CO2 emission
reduction and green carbon resource recycling, play important roles in alleviating global warming
and energy shortages. Among these strategies, photothermal CO2 hydrogenation technology has
become one of the hot catalytic technologies by virtue of the synergistic advantages of thermal
catalysis and photocatalysis. And it has attracted more and more researchers’ attentions. Various
kinds of effective photothermal catalysts have been gradually discovered, and nickel-based catalysts
have been widely studied for their advantages of low cost, high catalytic activity, abundant reserves
and thermal stability. In this review, the applications of nickel-based catalysts in photothermal CO2

hydrogenation are summarized. Finally, through a good understanding of the above applications,
future modification strategies and design directions of nickel-based catalysts for improving their
photothermal CO2 hydrogenation activities are proposed.
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1. Introduction

With the continuous progress of social productivity and science and technology, eco-
nomic pillar industries such as chemical production, power systems, automobile manufac-
turing, etc., have experienced rapid development. This has been accompanied by massive
consumption of fossil fuels and excessive emissions of the greenhouse gas CO2 [1–8]. The
scientific problem of how to reduce CO2 emissions to the maximum extent has aroused
great attention from all countries and governments, and they have put forward many
coping strategies. Many countries have signed provisions such as the Kyoto Treaty and the
Paris Agreement to control CO2 emissions and slow the pace of global warming [9].

In view of the serious impact of the greenhouse gas CO2 on the global climate and in
order to alleviate human dependence on limited fossil energy, scientists have proposed to
catalyze CO2 into high-value-added valuable organics to replace limited fossil resources
and reduce the concentration of CO2 in the atmosphere [10–15]. Due to the high sym-
metry and chemical inertness of CO2 molecules, it is necessary to input a large amount
of energy to dissociate the C=O double bond in the converting process of CO2; so, the
introduction of catalysis is imperative. In recent years, many CO2 utilization technologies
have been explored and discovered, mainly including photocatalysis, thermal catalysis,
electrocatalysis, biological conversion, photothermal catalysis and other methods [16–22].
Photocatalytic CO2 technology converts CO2 into methane, carbon monoxide, methanol
and other substances under the action of light and semiconductor catalysts. Thermal
catalytic conversion of CO2 converts CO2 into useful chemicals or fuels by using catalysts
under high-temperature conditions. Electrocatalysis refers to the conversion and reduction
of CO2 into renewable energy under the action of electric energy and electrodes. Biological
conversion is the conversion of CO2 into organics and fuels through metabolic methods and
other means such as biological methods. Photothermal catalysis of CO2 is a new direction of
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catalytic conversion driven by solar energy and heat utilized in recent years. Photothermal
catalysis includes four types of actions: thermal-assisted photocatalysis (thermal energy
improves the separation of photo-generated charge carriers), photo-assisted thermocatal-
ysis (solar energy enhances the local temperature of the catalyst surface), photo-driven
thermocatalysis (the catalyst has high light absorption capacity, thereby achieving photo-
to-thermal conversion under light irradiation) and photothermal co-catalysis (the catalyst
could exhibit contributions to both the thermochemical and photochemical reactions) [23].
Different from thermal catalysis and photocatalysis, it collaboratively drives the catalytic re-
action of CO2 by combining thermocatalysis and photocatalysis, which can usually enhance
catalytic activity and selectivity compared to thermally driven reactions [24,25]. Among the
above-mentioned CO2 conversion technologies, photothermal catalytic CO2 hydrogenation
technology is regarded by the majority of scientific researchers as a technology with great
application potential, and has received more and more attention [26–30].

Therefore, a large number of CO2 hydrogenation photothermal catalysts have been
explored one after another, showing a very good industrial application prospect in terms
of activity. Among them, supported catalysts (metal/oxide) are the hot-topic materials in
this field, which are mainly composed of active metals (such as Rh [31], Ru [32,33], Pd [34],
Pt [35,36], Cu [37–39], Ni [40], Co [41,42], Fe [43,44], etc. [45]) and metal oxide supports (for
instance TiO2 [46–48], SiO2 [49], In2O3 [50],CeO2 [51,52], Al2O3 [53], etc. [54–56]). Taking
into account the high price of precious metals, insufficient reserves and other problems,
their large-scale promotion and industrialization is severely limited. From the perspective
of large-scale industrial applications, non-precious metals with abundant reserves, cheap
costs and good activity (for example, Cu, Ni, Co, etc.) have received ever-increasing
attention [57–66]. And their explorations in the field of photothermal CO2 hydrogenation
have gradually deepened in recent years [67–75].

Ni (nickel), despite being one of the hot-topic materials of non-precious metals, to date,
there are few review papers reporting on applications of Ni-based catalysts in photothermal
CO2 hydrogenation. To facilitate a deeper and more convenient comprehension for a
broader audience of researchers in this field, it is imperative to conduct a comprehensive
application review based on recent advances. This review will sum up the photothermal
CO2 hydrogenation applications of Ni-based catalysts in three aspects: photothermal CO2
methanation, photothermal reverse water–gas reaction (RWGS), and photothermal CO2
hydrogenation to produce methanol. Based on the above applications, this review presents
the research progress, some current problems and challenges, and some strategies to further
enhance the activities Ni-based catalysts, and proposes future research directions.

2. Possible Photothermal CO2 Hydrogenation Reaction Path

The photothermal CO2 hydrogenation reaction of Ni-based catalysts is a complex
multi-step reaction, so its reaction path is complex and uncertain, resulting in the formation
of many types of products, such as CO, CH4 and CH3OH. The following is a possible and
brief statement about the reaction path according to the different products [76–79].

Photothermal reverse water–gas shift reaction (CO2 + H2 ⇌ CO + H2O). The level
of hydrogen consumption in the photothermal reverse water–gas shift reaction (RWGS)
is the least out of all of the CO2 hydrogenation reactions. The CO product is the basic
raw material for many important industrial products, so it is considered a highly popular
reaction. The RWGS reaction includes two main reaction pathways: (1) the CO path.
Carbon dioxide is first adsorbed on the surface of the catalyst to form *CO2 active species.
Then, through the direct break of the C-O chemical bond, *CO2 can be directly converted
into *CO and *O. Finally, *CO adsorbed on the catalyst surface produces CO via desorption.
(2) The carboxyl (*HOCO) intermediate path. In this process, the CO2 adsorbed on the
catalyst surface (*CO2) is hydrogenated to form the intermediate species carboxyl group
(*HOCO), and then, the *HOCO intermediates are cleaved to form *CO and *OH species at
the corresponding active sites. Finally, the *CO intermediates are desorbed from the catalyst
surface to form gaseous CO. Regardless of the path, the adsorption capacity of *CO on
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the catalyst surface has an important effect on the selectivity of CO. A suitable adsorption
capacity is conducive to the formation of CO. A strong adsorption capacity is not favorable
for the desorption of *CO, which will cause *CO to continue under hydrogenation, thereby
changing the selectivity of CO.

Photothermal CO2 methanation (CO2 + 4H2 ⇌ CH4 + 2H2O). CO2 methanation is one
of the important reactions to produce methane, which has important practical significance
in industrial production. It has been reported that there are two main reaction paths for
photothermal CO2 methanation. The direct cleavage path of the C-O bond. CO2 is adsorbed
on the surface of the catalyst to form *CO2 active species, which are directly converted into
*CO and *O. The formed *CO continues to dissociate to *C and *O, and subsequently, *C
can undergo hydrogenation to produce *CH, *CH2, *CH3 and *CH4. *CH4 is desorbed from
the surface of the catalyst to form CH4. Alternatively, there is the formate pathway. *CO2 is
hydrogenated to produce HxCO active species, and then, the C-O chemical bonds in HxCO
are broken to form *CHx. *CHx can continue to undergo a series of hydrogenation processes
to form *CH4, which is subsequently desorbed from the catalyst surface to form CH4.

Photothermal methanol production (CO2 + 3H2 ⇌ CH3OH + H2O). As we all know,
methanol is an important chemical raw material and hydrogen storage material, which
makes the research on photothermal catalytic CO2 hydrogenation for methanol production
the object of much attention. According to research reports, there are two main reaction
paths for photothermal CO2 hydrogenation for methanol production at present. (1) The *CO
intermediate path. *CO2 first undergoes the RWGS reaction to produce *CO, which can be
continuously hydrogenated to produce CH3OH. (2) The formate pathway (*HCOO). *CO2
is hydrogenated to produce *H2COOH, which can be converted to CH3OH by breaking
the C-O chemical bond and undergoing hydrogenation. It seems that the description is
very simple, but in fact, the whole reaction process is complex and may also involve the
conversion of many other intermediates.

3. Photothermal CO2 Hydrogenation Applications of Ni-Based Catalysts
3.1. Photothermal Reverse Water–Gas Reaction

The photothermal reverse water–gas reaction is a promising candidate for efficient
utilization of CO2 and hydrogen energy. However, the conversion rate of carbon dioxide
is limited by the thermodynamic equilibrium. It is a hot topic to explore photothermal
catalysts with high activity, high CO selectivity and high CO2 conversion. In the early
stage, Pt, Pd and some precious metals were found to have good catalytic activities in the
RWGS reaction [36]. In recent years, considering the price and reserves of precious metals,
the exploration of non-precious metal catalysts has become more and more extensive [80].
Among them, Ni-based catalysts have attracted great interest because of their abundant
reserves, low price and good catalytic activity [81].

However, after more than ten years of exploration, it has been found that the CO
selectivity of Ni-based catalysts is not high when performing RWGS, and there is always
a large number of CH4 by-products which interfere. A lot of effort has been put into
exploring the high selectivity of CO. For example, Song et al. discovered that single atoms
of Ni can cause Pauli incompatibility through theoretical calculations, thereby preventing
the formation of CO by-products in the process of RWGS [82]. Based on their calculations,
in this study, nickel was loaded onto the surface of CeO2 nanosheets to explore the catalytic
activity and selectivity of photothermal CO2 hydrogenation. By XRD characterization
(Figure 1a), no diffraction peaks of Ni were found, indicating that Ni particles are very
small. It was determined by TEM (Figure 1b) that Ni particles belong to the atomic level.
Atomically, Ni/CeO2 underwent the photothermal RWGS reaction, and the results are
shown in Figure 1c,d. It is evident that atomically, Ni/CeO2 exhibits 100% CO selectivity
and has a good catalytic rate (23.1 mmol·g−1·h−1). By analyzing the XPS spectra of the
samples before and after the RWGS reaction, it is found that the valence state of Ni is stable
at the oxidation state +2 valence. It can be seen that the Ni active species on the catalyst
surface have an important effect on the CO selectivity of the RWGS reaction.



Molecules 2024, 29, 3882 4 of 14

Molecules 2024, 29, x FOR PEER REVIEW 4 of 14 
 

 

(Figure 1a), no diffraction peaks of Ni were found, indicating that Ni particles are very 
small. It was determined by TEM (Figure 1b) that Ni particles belong to the atomic level. 
Atomically, Ni/CeO2 underwent the photothermal RWGS reaction, and the results are 
shown in Figure 1c,d. It is evident that atomically, Ni/CeO2 exhibits 100% CO selectivity 
and has a good catalytic rate (23.1 mmol·g−1·h−1). By analyzing the XPS spectra of the sam-
ples before and after the RWGS reaction, it is found that the valence state of Ni is stable at 
the oxidation state +2 valence. It can be seen that the Ni active species on the catalyst sur-
face have an important effect on the CO selectivity of the RWGS reaction. 

 
Figure 1. (a) The XRD image and (b) TEM image of atomic Ni/CeO2. (c) The CO production rate and 
(d) CO selectivity of atomic Ni/CeO2 under varying sunlight irradiation. Reprinted with permission 
from Ref. [82]. Copyright 2023, Elsevier B.V. 

In addition, the support of Ni-based catalysts also has an important effect on the 
RWGS reaction. For example, researchers have explored significant differences between 
CeO2 and N-doped CeO2 [83]. Based on the XRD image (Figure 2a), it can be found that 
the diffraction peak of Ni/CeO2 is shifted to a lower angle after nitrogen doping, which 
confirms the successful doping of N. The photothermal catalytic CO2 hydrogenation ac-
tivity diagrams (Figure 2b) show that the CO selectivity of Ni/CeO2 is only 30%, while the 
CO selectivity of Ni/Nx-CeO2 is almost 100%. And the CO yields of the Ni/Nx-CeO2 sam-
ples are improved compared to those of Ni/CeO2. In addition, the cyclic reaction exhibited 
that the catalytic activity has no decrease (Figure 2c), suggesting that the Ni/Nx-CeO2 com-
posite possesses excellent stability. Through XPS (Figure 2d) and in situ FT-IR characteri-
zation, the researchers found that N-H chemical bonds appear on the surface of Ni/Nx-
CeO2 after the photothermal RWGS reaction, which reduces the number of active *H spe-
cies. It was found by theoretical calculation that the ability of Ni/Nx-CeO2 to break down 
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In addition, the support of Ni-based catalysts also has an important effect on the
RWGS reaction. For example, researchers have explored significant differences between
CeO2 and N-doped CeO2 [83]. Based on the XRD image (Figure 2a), it can be found
that the diffraction peak of Ni/CeO2 is shifted to a lower angle after nitrogen doping,
which confirms the successful doping of N. The photothermal catalytic CO2 hydrogenation
activity diagrams (Figure 2b) show that the CO selectivity of Ni/CeO2 is only 30%, while
the CO selectivity of Ni/Nx-CeO2 is almost 100%. And the CO yields of the Ni/Nx-CeO2
samples are improved compared to those of Ni/CeO2. In addition, the cyclic reaction
exhibited that the catalytic activity has no decrease (Figure 2c), suggesting that the Ni/Nx-
CeO2 composite possesses excellent stability. Through XPS (Figure 2d) and in situ FT-IR
characterization, the researchers found that N-H chemical bonds appear on the surface of
Ni/Nx-CeO2 after the photothermal RWGS reaction, which reduces the number of active
*H species. It was found by theoretical calculation that the ability of Ni/Nx-CeO2 to break
down hydrogen is weaker than that of Ni/CeO2. These results indicate that changes in
selectivity are significantly associated with the formation of N-H chemical bonds. The
Gibbs free energy calculation results show that *CO is more easily desorbed from the
surface of Ni/Nx-CeO2 than Ni/CeO2, thereby being more conducive to CO generation.
Moreover, the alloying strategy is also an effective method to increase CO selectivity in the
photothermal CO2 hydrogenation reaction of Ni-based catalysts. The researchers found that
a Ni-Mo alloy can regulate the selectivity of CO in photothermal CO2 hydrogenation, and
even Ni1Mo1 can obtain 98% CO selectivity [77]. The studies show that Mo can regulate the
electronic structure of Ni, weaken the ability of Ni to decompose hydrogen and increase the
desorption of *CO from the surface of the catalyst, which is the main cause of the formation
of CO.
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3.2. Photothermal CO2 Methanation

In 1897, Paul Sabatier experimentally confirmed the CO2 methanation reaction. After
more than 120 years of exploration and research, CO2 methanation (that is, the Sabatier
reaction) technology has been better expanded and developed. CH4 (methane) is a key
component of natural gas, which is a high-quality energy source and has great potential to
replace coal as a clean fuel. In addition, it can also be used as a chemical raw material for
the production of acetylene, carbon black, methane chloride and other chemical products.
Therefore, it has gradually become a strategic resource and aroused widespread interest
globally among researchers. Currently, thermal catalytic CO2 methanation has been used
commercially on a large scale [84]. However, due to the high stability of CO2 molecules,
high temperature and high pressure are needed to achieve efficient conversion, which leads
to high energy consumption, environmental problems and harsh reaction conditions. It is
of great significance to use renewable and clean energy to promote CO2 methanation under
milder and more environmentally friendly conditions. Solar energy is a non-polluting,
sustainable renewable energy source, and has been regarded as a viable auxiliary thermal
catalytic CO2 methane energy source. Therefore, photothermal catalytic CO2 methanation
technology has become one of the hot technologies because of its advantages such as mild
reaction conditions, low energy consumption, green environmental protection capacity and
good performance [84]. A large number of CO2 methanation photothermal catalysts have
been explored, showing a very good prospect of industrial application in terms of activity.
In particular, Ni-based catalysts have been considered promising materials and have been
extensively explored [85,86].

For instance, Li et al. obtained TiO2 with a large specific surface area by converting
MIL-125 (Ti-MOFs) and then loaded Ni particles with a smaller size and better dispersion
on its surface, compared to using P25 (Figure 3a,b) [87]. Through the photothermal CO2
methanation reaction (Figure 3c,d), it can be seen that the catalytic activity of pure TiO2 is
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very low, and the introduction of nickel can greatly improve its catalytic activity. In addition,
Ni/TiO2 exhibits a higher CO2 conversion rate than Ni/P25, and its methane selectivity
is close to 99%. A series of characterization tests confirmed that a large specific surface
area is conducive to the adsorption and activation of carbon dioxide, and highly dispersed
nickel particles can provide more surface-active sites for CO2 methanation. Ni/TiO2 has
stronger interfacial interactions than Ni/P25, thereby increasing the density of Ni electronic
states on the surface of Ni/TiO2, which is conducive to improving the ability of Ni to
decompose H2 and CO2. It can be seen from this work that the size, dispersion and surface
electron state density of nickel particles play important roles in the photothermal CO2
methanation reaction.
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In addition, metal support interactions (MSIs) play an important role in regulating the
photothermal CO2 methanation of Ni-based catalysts. For example, Li et al. used titanium
dioxide supports of different sizes to effectively regulate the SMI between Ni and TiO2 [78].
It is found that the smaller size of TiO2 exhibits a stronger SMI. The main reason is that
the smaller size of TiO2 has more sufficient oxygen vacancies on the surface, so the Ni
atoms can be further effectively anchored, increasing the compatibility between the two.
With the enhancement of SMI, photo-generated electrons by TiO2 excitation can easily
migrate to the surface of Ni particles. The high electron density of Ni can promote the
dissociation capacity of H2 molecules and the adsorption capacity of *CO intermediates,
so that CO can undergo a deep hydrogenation reaction, resulting in the high selectivity
of CH4. On the contrary, the SMI of large-sized TiO2 particles is weak, the adsorption
capacity of the catalysts for *CO intermediates is insufficient, and it is easy for them to
desorb and directly generate CO, resulting in the reduction in CH4 selectivity. As shown in
Figure 4a,b, it can be clearly found that Ni/TiO2-25 (support size is about 25 nm) shows a
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higher CH4 selectivity than Ni/TiO2-100 (support size is about 100 nm). The reaction path
is that TiO2 photoelectrons migrate to Ni particles to form Ni− under ultraviolet–visible
light irradiation; the left holes in TiO2 can assist H2 molecules to transform into H+ ions.
Then, H+ combines with Ni− to form Ni-H active species, which react with *CO2 to form
many intermediates such as HCO*, H2CO*, H3CO* and so on. Finally, the C-O bonds of
the above intermediates are broken to form CH4.
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Moreover, the CO2 adsorption and activation of Ni-based catalysts are also important
factors limiting the rate and selectivity of CO2 methanation. When the CO2 adsorption
capacity of the catalyst is poor, CO2 will not be fully adsorbed on the active site, and
the activation capacity of CO2 will be low, which will lead to an insufficient reaction
concentration and a high CO2 conversion energy barrier, and may even cause changes in
the type of intermediates and reaction path, thus limiting the reaction rate and selectivity.
The developed “Frustrated Lewis Pairs” (FLPs) chemistry in recent years provides a useful
approach and method for enhancing the design of CO2 chemisorption and activation
capacities of catalysts. FLPs are generally composed of a pair of Lewis acid sites and Lewis
base sites within or between molecules, but due to the obstruction of spatial coordination,
these two active sites cannot form traditional Lewis acid–base admixtures, so they show
some special chemical properties and catalytic activities. This theory gives us a new
revelation: using this FLP chemical method constructs an active interface on the surface of
the support, so as to significantly improve the CO2 adsorption and activation ability of the
catalyst, which is a new strategy different from previous design ideas (the many existing
methods are physical actions such as concepts of regulating the specific surface area and
pore size, bonding activated carbon with a high CO2 adsorption capacity, adjusting the
crystal plane, etc.). This method is promising to further improve the catalytic activity of CO2
methanation of nickel-based catalysts. Based on the above ideas, Jiang et al. constructed
HOB···B FLPs on the surface of BN [79], and found that Ni/BN showed 87.68% CO2
methanation conversion, the reaction rate reached 2.03 mol gNi

−1 h−1, and the selectivity
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of CH4 was almost 100% (Figure 4c,d). The results show that FLPs can cooperate with Ni
to capture and activate CO2 and H2, so as to perfectly convert CO2 into CH4.

3.3. Photothermal CO2 Hydrogenation for Methanol Production

Methanol is one of the most important basic raw materials in the chemical industry,
which is mainly used for the production of formaldehyde, dimethyl ether, acetic acid olefin
(ethylene, propylene), aromatic (benzene, toluene, xylene), gasoline and other organic
chemical products or fuels. It could partially alleviate the dependence on petroleum
resources. Photothermal CO2 hydrogenation for methanol production can recycle carbon
resources, thereby gradually eliminating the dependence on the decreasing fossil energy
sources, which is of great significance to the sustainable development of human society.
Ni-based catalysts are also a series of key materials for photothermal CO2 hydrogenation
for methanol production. For example, Zhang et al. explored the application of Ni-In2O3
in photothermal CO2 hydrogenation for methanol production [88]. Firstly, Ni was doped
into the crystal lattice of In2O3 using the co-precipitation method, and then, a highly
dispersed distribution of Ni0 on the surface of In2O3 via reduction pretreatment was
achieved. The introduction of Ni increased the oxygen vacancy concentration of In2O3
and expanded its light absorption capacity (Figure 5a). The increase in oxygen vacancy
is conducive to the adsorption capacity of CO2 (Figure 5b), and the enhancement of its
light absorption capacity can provide more energy and charge carriers for the reaction.
Ni is in favor of H2 dissociation and can provide more H* active species for the reaction.
Therefore, in the photothermal CO2 hydrogenation reaction, 10%Ni-In2O3 shows a higher
CO2 conversion rate (Figure 5c) and a significantly increased methanol generation rate
(Figure 5d) compared to pure In2O3. It can be seen from the above results that Ni can
boost the methanol production rate of the catalyst with the reaction of photothermal CO2
hydrogenation for methanol production.
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4. In Situ FT-IR Spectra Characterization

In the photothermal CO2 hydrogenation reaction, a large number of Ni-based catalysts
have been explored, but it is a great challenge to design them with the desired activity
and selectivity due to the lack of understanding of the internal reaction process and the
detailed mechanism of CO2 hydrogenation. In order to further explore the mystery of
photothermal CO2 hydrogenation of Ni-based catalysts, in situ Fourier Transform infrared
(FT-IR) spectra were used to detect the transient kinetic process of this reaction. Recently,
Zhang et al. monitored the reaction process of NiMo alloys by using in situ FT-IR spectra
while performing their photothermal CO2 hydrogenation test [77]. As shown in Figure 6,
CO2 molecules adsorbed on the surface of NiMo alloys can be found to exist in the form of
bicarbonate (HCO3

−) species and monodentate carbonate (m-CO3
2−). Their corresponding

peaks are located at 1540 and 1650, and 1519, 1470 and 1704 cm−1. In addition, the peaks
at 2110 cm−1 could be attributed to the *CO species, and the signals of *CHx have not
been detected throughout the supervision process. The in situ FT-IR spectra indicate that
the photothermal CO2 hydrogenation process of NiMo alloys takes the *CO path, and the
experimental results confirm the high CO selectivity mechanism. It can be seen from this
study that in situ FT-IR spectra technology plays an important role in the in-depth study of
the photothermal CO2 hydrogenation process of Ni-based catalysts, and it has become a
necessary characterization method in this research field.
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5. Future Perspectives and Summary

With the continuous progress of social productivity and science and technology, the
energy crisis and environmental pollution has aroused great attention from all countries
and governments, and they have put forward many coping strategies. Photothermal
CO2 hydrogenation technology is considered a very good and promising solution to
solve the above-mentioned environmental challenges. The key of the above application
is suitable catalysts. Among all kinds of catalysts, Ni-based catalysts have become a
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series of hot-topic materials due to their advantages of low price, high catalytic activity,
good stability and sufficient reserves. Their explorations in the field of photothermal
CO2 hydrogenation have gradually deepened in recent years. Much research work has
been conducted to further improve their photothermal catalytic efficiency and product
selectivity for meeting practical application requirements. In this review, we summarized
the relatively comprehensive photothermal CO2 hydrogenation applications of Ni-based
catalysts, including photothermal CO2 methanation, the photothermal reverse water–gas
reaction (RWGS), and photothermal CO2 hydrogenation for methanol production. Based on
the above applications, this review presents the current research progress and the common
reaction path. Many strategies have further enhanced the activities and product selectivity
of Ni-based catalysts, but some current problems and challenges need be further studied or
optimized, thereby directing future research.

(1) Currently, the main products of photothermal CO2 hydrogenation of Ni-based cata-
lysts are CO, CH4 and CH3OH. With the deepening of research, it could be found that
C2+ hydrocarbons are more valuable, but the current research progress and technical
capabilities are not able to achieve this goal. In the explorations of some other classes
of catalysts, related studies are gradually emerging. It can be observed that the main
reaction process of C2+ hydrocarbon product production is the *CO-*CH2 pathway.
*CO2 adsorbed on the catalyst surface forms *CO, which produces *CH2 by dissocia-
tion and hydrogenation of the C-O chemical bond. Then, *CH2 achieves C-C coupling
under the action of a metal catalyst to obtain the generation of C2+ hydrocarbon prod-
ucts. Based on the above reaction path principle, Ni-based catalysts can be designed
and explored to achieve the production of C2+ high-value-added hydrocarbons.

(2) Recently reported in the journal Science, when the catalyst in the CO2 hydrogenation
reaction has 100% selectivity for CO and does not waste hydrogen to produce by-
product methane, the RWGS reaction can better achieve the overall carbon negative
benefit and simplify the downstream separation process. Therefore, the CO selectivity
of Ni-based catalysts in the photothermal RWGS reaction needs to be improved. It is
necessary to further modify the Ni-based catalyst or regulate the reaction system. In
addition, some design ideas of organic catalysts can also be used for reference, which
could do with some experimentation [89,90].

(3) The hydrogen spillover effect plays an important role in the photothermal CO2 hydro-
genation reaction, but the current research mainly focuses on improving the catalytic
activity by regulating the adsorption and activation capacities of CO2 and H2, and has
neglected the hydrogen spillover effect. Therefore, in future studies, the mechanism
of the hydrogen spillover effect should be explored in detail and applied for the
improvement in the activity or selectivity of products.

(4) Due to the strong exothermic reaction and the eight-electron reduction process re-
quired for CO2 methanation, achieving its thermodynamic and kinetic reaction is a
great challenge. The temperature is too low, the CO2 methanation reaction speed
is slow, the high temperature will change the reaction balance and the CO2 conver-
sion rate is low, which do not meet the needs of actual production. At present, few
Ni-based catalysts can simultaneously meet the four high production needs of high
rate, high conversion, high selectivity and high stability. Therefore, exploring and
researching suitable low-temperature catalysts to reduce the energy barrier of CO2
conversion, accelerate the methane generation rate at a lower or more appropriate
temperature, and ensure high CO2 conversion, high selectivity, high stability and low
cost has become a key issue in this field.
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