Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Aug 1;309(Pt 3):959–962. doi: 10.1042/bj3090959

The chloride effect in the human embryonic haemoglobins.

O Hofmann 1, G Carrucan 1, N Robson 1, T Brittain 1
PMCID: PMC1135724  PMID: 7543751

Abstract

The interactions of the three human embryonic haemoglobins with chloride ions have been investigated. Each of the three embryonic haemoglobins exhibits a unique pattern of oxygen-affinity-dependence on chloride ion concentration. Human embryonic haemoglobin Portland (zeta 2 gamma 2) is found to be completely insensitive to chloride ion concentration. Haemoglobin Gower I (zeta 2 gamma 2) shows a small concentration dependence, whilst haemoglobin Gower II (alpha 2 epsilon 2) exhibits a dependence approaching that of the adult protein. The degree of co-operativity for each protein is essentially chloride concentration independent. The chloride-dependent and -independent components of the alkaline Bohr effects have been measured for each of the embryonic haemoglobins and compared with that of the adult protein. Both the chloride-binding data and the Bohr effect have been analysed in terms of the recently developed allosteric model proposed by Perutz [Perutz, Fermi, Poyart, Pagnier and Kister (1993) J. Mol. Biol. 233, 536-545].

Full text

PDF
960

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTONINI E., WYMAN J., BRUNORI M., BUCCI E., FRONTICELLI C., ROSSI-FANELLI A. STUDIES ON THE RELATIONS BETWEEN MOLECULAR AND FUNCTIONAL PROPERTIES OF HEMOGLOBIN. IV. THE BOHR EFFECT IN HUMAN HEMOGLOBIN MEASURED BY PROTON BINDING. J Biol Chem. 1963 Sep;238:2950–2957. [PubMed] [Google Scholar]
  2. Bonaventura C., Arumugam M., Cashon R., Bonaventura J., Moo-Penn W. F. Chloride masks effects of opposing positive charges in Hb A and Hb Hinsdale (beta 139 Asn-->Lys) that can modulate cooperativity as well as oxygen affinity. J Mol Biol. 1994 Jun 17;239(4):561–568. doi: 10.1006/jmbi.1994.1395. [DOI] [PubMed] [Google Scholar]
  3. Bonaventura C., Bonaventura J., Amiconi G., Tentori L., Brunori M., Antonini E. Hemoglobin Abruzzo (beta143 (H21) His replaced by Arg). Consequences of altering the 2,3-diphosphoglycerate binding site. J Biol Chem. 1975 Aug 25;250(16):6273–6277. [PubMed] [Google Scholar]
  4. Bonaventura J., Bonaventura C., Sullivan B., Ferruzzi G., McCurdy P. R., Fox J., Moo-Penn W. F. Hemoglobin providence. Functional consequences of two alterations of the 2,3-diphosphoglycerate binding site at position beta 82. J Biol Chem. 1976 Dec 10;251(23):7563–7571. [PubMed] [Google Scholar]
  5. Bonaventura J., Bonaventura C., Sullivan B., Godette G. Hemoglobin Deer Lodge (beta 2 His replaced by Arg). Consequences of altering the 2,3-diphosphoglycerate binding site. J Biol Chem. 1975 Dec 25;250(24):9250–9255. [PubMed] [Google Scholar]
  6. Hofmann O., Mould R., Brittain T. Allosteric modulation of oxygen binding to the three human embryonic haemoglobins. Biochem J. 1995 Mar 1;306(Pt 2):367–370. doi: 10.1042/bj3060367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huehns E. R., Faroqui A. M. Oxygen dissociation properties of human embryonic red cells. Nature. 1975 Mar 27;254(5498):335–337. doi: 10.1038/254335a0. [DOI] [PubMed] [Google Scholar]
  8. Kavanaugh J. S., Rogers P. H., Case D. A., Arnone A. High-resolution X-ray study of deoxyhemoglobin Rothschild 37 beta Trp----Arg: a mutation that creates an intersubunit chloride-binding site. Biochemistry. 1992 Apr 28;31(16):4111–4121. doi: 10.1021/bi00131a030. [DOI] [PubMed] [Google Scholar]
  9. Mould R. M., Hofmann O. M., Brittain T. Production of human embryonic haemoglobin (Gower II) in a yeast expression system. Biochem J. 1994 Mar 15;298(Pt 3):619–622. doi: 10.1042/bj2980619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. O'Donnell S., Mandaro R., Schuster T. M., Arnone A. X-ray diffraction and solution studies of specifically carbamylated human hemoglobin A. Evidence for the location of a proton- and oxygen-linked chloride binding site at valine 1 alpha. J Biol Chem. 1979 Dec 10;254(23):12204–12208. [PubMed] [Google Scholar]
  11. Perutz M. F., Fermi G., Poyart C., Pagnier J., Kister J. A novel allosteric mechanism in haemoglobin. Structure of bovine deoxyhaemoglobin, absence of specific chloride-binding sites and origin of the chloride-linked Bohr effect in bovine and human haemoglobin. J Mol Biol. 1993 Oct 5;233(3):536–545. doi: 10.1006/jmbi.1993.1530. [DOI] [PubMed] [Google Scholar]
  12. Perutz M. F., Shih D. T., Williamson D. The chloride effect in human haemoglobin. A new kind of allosteric mechanism. J Mol Biol. 1994 Jun 17;239(4):555–560. doi: 10.1006/jmbi.1994.1394. [DOI] [PubMed] [Google Scholar]
  13. Rollema H. S., de Bruin S. H., Janssen L. H., van Os G. A. The effect of potassium chloride on the Bohr effect of human hemoglobin. J Biol Chem. 1975 Feb 25;250(4):1333–1339. [PubMed] [Google Scholar]
  14. Shaanan B. Structure of human oxyhaemoglobin at 2.1 A resolution. J Mol Biol. 1983 Nov 25;171(1):31–59. doi: 10.1016/s0022-2836(83)80313-1. [DOI] [PubMed] [Google Scholar]
  15. Shih D. T., Luisi B. F., Miyazaki G., Perutz M. F., Nagai K. A mutagenic study of the allosteric linkage of His(HC3)146 beta in haemoglobin. J Mol Biol. 1993 Apr 20;230(4):1291–1296. doi: 10.1006/jmbi.1993.1242. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES