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Abstract: Molds pose a severe challenge to agriculture because they cause very large crop losses. For
this reason, synthetic fungicides have been used for a long time. Without adequate protection against
pests and various pathogens, crop losses could be as high as 30–40%. However, concerns mainly
about the environmental impact of synthetic antifungals and human health risk have prompted a
search for natural alternatives. But do natural remedies only have advantages? This article reviews
the current state of knowledge on the use of antifungal substances in agriculture to protect seeds
against phytopathogens. The advantages and disadvantages of using both synthetic and natural
fungicides to protect cereal grains were discussed, indicating specific examples and mechanisms
of action. The possibilities of an integrated control approach, combining cultural, biological, and
chemical methods are described, constituting a holistic strategy for sustainable mold management in
the grain industry.
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1. Introduction

Molds are one of the most difficult pathogenic microorganisms to combat during crop
production, from the sowing stage through the development of young plants to harvesting
and storage. Grain can become infected with fungi in the field when the plant is ripening.
The infection may come from the mother plant or from external sources, such as insects or
wind. Commonly isolated genera belonging to field molds include Fusarium, Alternaria,
and Cladosporium. These genera cause damage or death to embryos, are potential producers
of mycotoxins, and contribute to disease in new seedlings if infected seed is selected for
sowing. Storage molds are genera that invade seeds during storage in warehouses. They
include, in particular, the genera Aspergillus and Penicillium. These genera reduce the
germination capacity of grain, produce mycotoxins, and at high humidity contribute to
the spontaneous heating of stored grains, which drastically reduces the quality of the seed
material. Fungi can also attack grain immediately after sowing, sticking to the surface or
entering into the seed tissue. They then cause the weakening or death of embryos, which
contributes to large crop losses at the very beginning of the cultivation process. Infection of
crops leads not only to serious crop losses but, in the case of mycotoxin accumulation also
causes health problems in humans and animals.

There are several ways to protect plants from fungal attack. One of the most effective
methods is seed dressing. Seed dressing protects the plant from the earliest stages of
growth, which often translates into fewer mold infections in the adult plant. For this
reason, plant protection products have been used in agriculture for many years. However,
most conventional plant protection products contain high levels of synthetic chemical
compounds, which may be toxic. To protect the environment and human health, the use
of synthetic compounds is increasingly limited. For example, in 2020, European Union
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countries adopted a “farm to fork” strategy aimed at promoting sustainable agriculture and
healthy food. This strategy has contributed to restricting the substances that can be used
on crops. As more and more chemical compounds have been withdrawn from European
markets, new more natural plant protection products that fit into the green deal strategy
are being sought. Microbiological biopreparations offer one possible alternative to chemical
plant protection products.

This article reviews the current state of the art regarding the use of antifungal sub-
stances in agriculture for protecting seeds against phytopathogens. It discusses the benefits
and disadvantages of both synthetic and natural fungicides for cereal grain protection.

2. Bibliometric Data Mapping and Clustering

Bibliographic records on chemical and natural fungicides used for the protection of
cereal grains were retrieved from the Scopus database. The following reference word
combinations were used to search for relevant bibliographic records based on keywords,
titles, and abstracts: ‘fungicides AND cereal AND grains’ and ‘biocontrol AND cereal
AND grains’. The AND hyphen between reference words was used to search only for
publications related to the described scientific area. No time period was indicated, but the
oldest publication in the Scopus database for the combination of the words ‘fungicides
AND cereal AND grains’ was from 1959, while the latest was from 2024 (data was searched
in April 2024). In total, 349 records were found, 59 of which were published up to the year
2000, while 290 were published in the last 24 years. In the years 1963–1972, no records
containing these keywords were found.

VOSviewer version 1.6.20 software (available at www.vosviewer.com, accessed on
30 May 2024) was used to visualize scientific landscape maps. VOSviewer distinguished
three clusters, two of which were strongly related to the terms ‘biocontrol’ and ‘disease
management’ (Figure 1A). It was in these areas that the publications from 2018 were
focused (Figure 1B). The content of the papers included the mechanisms of fungicide action,
based on information provided by the Fungicide Resistance Action Committee (FRAC).
The advantages and disadvantages of synthetic agents and natural solutions were also
discussed, including their impact on the environment, together with the possibility of
simultaneous use of synthetic and natural substances using Integrated Pest and Disease
Management (IDPM) strategies.

For the combination of the words ‘biocontrol AND cereal AND grains’, 156 documents
were found. Interestingly, the first record was not published until 1998, and the number
of publications increased after 2018. Despite the lower number of publications than were
found for the keywords ‘fungicides’ and ‘cereal grains’, four clusters were distinguished,
indicating strong connections between the terms ‘biocontrol’, ‘mycotoxins’, and ‘Fusarium
graminearum’ (Figure 2A,B).

www.vosviewer.com
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Figure 1. Term map based on keywords ‘fungicides’ and ‘cereal grains’. The colors on the map
indicate terms belonging to different clusters (A) or the year of publication (B). The lengths of the lines
correspond to the interrelationships between the terms. Bubble size presents the number of papers in
the database. Bubble proximity presents frequency of co-occurrence of phrases in the same papers.
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Figure 2. Term map based on keywords ‘biocontrol’ and ‘cereal grains’. The colors on the map
indicate terms belonging to different clusters (A) or the year of publication (B). The lengths of the
lines correspond to the interrelationships between the terms. Bubble size presents the number of
papers in the database. Bubble proximity presents frequency of co-occurrence of phrases in the
same papers.

3. Synthetic Fungicides

Fungicides are chemical substances used to combat fungi that infect plants. In agricul-
ture, they are used to protect field crops: cereals, vegetables, fruit, ornamental plants, as
well as greenhouse crops. Their task is to eliminate or inhibit the development of fungi and
their spores. Fungicides can help to combat fungal infections during the sowing stage and
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during plant growth, improving the quality and durability of cultivated crops, as well as
increasing harvest efficiency [1–5].

3.1. Short History

Plant pathogens such as fungi are often associated with significant losses during
crop production, in both pre- and post-harvest scenarios. Over the past 100 years, the
use of fungicides has contributed to reducing infections significantly [6], which has led
to increased agricultural production efficiency [7]. Until the 1940s, the substances most
commonly used to control diseases such as blights, mildews, and blasts were inorganic
compounds of copper, which had been known since the mid-1700s [8]. In the early 1920s,
the idea of using organic mercury compounds as a seed treatment emerged [9]. However,
due to the high toxicity of mercury, this conservation method was abandoned in the 1960s,
as it posed a danger to human and animal health as well as to the environment [10].
Further research led to the development of synthetic organic compounds in the form of
dithiocarbamates in 1934, which were soon introduced on the market. Over the next
30–40 years, other compounds including phthalimides, fentins, and guanidines, were
introduced [11]. These multi-site contact fungicides were characterized by low specificity
and were limited to protection at the surface [12]. In the 1970s, the first systemic fungicide,
carboxin (carboxamides), appeared, later followed by benzimidazoles, thiophanates, and
morpholines [13]. In contrast to multi-site fungicides, systemic fungicides are site-specific,
act internally to hinder infections, and can be used at much lower concentrations [7]. Since
the turn of the 21st century, many new classes of fungicides have been developed. The
most widely used are demethylation inhibitors (DMI), succinate dehydrogenase inhibitors
(SDHI), carboxylic acid amides (CAA), and strobilurins [14]. These substances are most
often paired with multi-site inhibitors to prevent pathogens from developing resistance
due to the high specificity of the new fungicides [7]. Other recent approaches involve the
use of compounds that activate the host’s defense system, such as physcion, probenazole,
acibenzolar-S methyl, or dichlobentiazox [15,16].

Research on new products is driven by many factors, such as the development of
resistance to previous generations of active substances, changes in legislation regarding
the requirements for products, and demand from farmers themselves [17,18]. The type
of substance used, the strain of the pathogen, and the method of applying the protective
agents each have a large impact on the development of resistance [19–21]. Many of the
fungicides currently in use are partially ineffective due to overuse or incorrect use [22].
For example, excessive use of triazoles causes the rapid development of resistance, the
mechanism of action of strobilurins can be easily ignored by fungal cells that develop
additional electron transport pathways, and the misuse of morpholines can lead to the de-
velopment of fungal resistance. Specifically, morpholines inhibit the synthesis of ergosterol,
an essential component of fungal cell membranes, by blocking the reduction reaction in the
sterol biosynthesis pathway [1,19,23]. As well as pairing different substances, many other
procedures are also used to extend the life (protective capacity) of these products as much
as possible. These methods include the use of crop rotation, intercropping, or covering
crops [24]. There is also legislative pressure to find innovative solutions. Directives from the
European Union clearly indicate the parameters that should be characteristic of products
intended for use in the EU, placing particular emphasis on their toxicological aspects in
relation to both the environment and humans [25]. It is also important to remember that
the substances used should have as negligible an impact on the plant as possible, so as not
to cause additional yield losses. Despite this, some permitted substances can cause reduced
transpiration, CO2 assimilation, and decreased production of biomass or sterols [1].

3.2. Cereal Crops around the Globe

Crops cover about 47.5 million square kilometers of the globe’s surface. Without
adequate protection against pests and various pathogens, crop losses could be as high as
30–40% [26,27], which would most likely cause famine in many regions on earth. Various
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pesticides are used to prevent crop losses from occurring, including herbicides, insecticides,
and fungicides. In 2022, it was reported that 117.9 kg/ha of pesticides were used for
protective purposes in agriculture, of which 40% were fungicides. In the four examined
countries/regions (Table 1) of the world, the EU had the highest usage of pesticides at 38.8
kg/ha, of which 19.8 kg/ha were fungicides. In the other countries/regions, pesticide use
was notably lower [28]. According to FAO data from 2022 concerning the production of
selected cereals (wheat, rye, barley, oats, and corn), China is the largest overall producer of
corn (277.4 Mt), wheat (137.7 Mt), rye (0.5 Mt), barley (2 Mt), and oats (0.6 Mt), both in terms
of the amounts produced and the area of cultivation. The USA produces similar amounts
to China of rye, barley, and oats, but three times less wheat (44.9 Mt). Data collected from
27 EU countries show the highest values for cereal production related to wheat (134.3 Mt),
barley (52 Mt), rye (7.5 Mt), and oats (7.5 Mt). Corn production in the EU (27 countries) is
incomparably lower than in the other mentioned countries/regions, at 8.8 Mt. In Brazil, the
quantities of cereals produced range from 10.3–11.2 Mt for wheat and rye and 0.5–1.6 Mt for
barley and oats, while corn reached 109.4 Mt. China produced the largest quantity of wheat,
at 137.7 Mt. The EU (27 countries) produced the largest quantities of rye (7.5 Mt), barley
(52 Mt), and oats (7.5 Mt). The USA produced the most corn (348.8 Mt). Table 1 presents a
summary of data on the annual production of cereals by the largest food producers in the
world, with information about the cultivation area and the use of pesticides [29].

Table 1. Annual cereal production and pesticide use by the largest global food producers [28,30,31].

Region Annual Production of
Cereals * [million tonnes]

Crop Area *
[million ha]

Estimated Pesticide
Usage [kg/ha]

Estimated
Fungicide Usage [kg/ha]

World 2166 482.5 117.9 48.4
EU (27) 254.3 47.5 38.8 (EU) 19.4 (EU)

US 398.6 47.9 4.3 0.3
Brazil 121.2 24.9 12.7 2.8
China 418.2 67.5 1.4 0.4

* Wheat, rye, barley, oats, corn.

3.3. Areas of Fungicide Action in Mold Cells

There are several main areas of action by antifungal preparations, including fungicides,
in fungal cells (Figure 3). The outermost structure is the cell wall, which is the first place
of contact between biocidal substances and the cell. The cell wall is responsible for the
osmotic balance in the cell and controls the secretion and uptake of molecules into the cell.
There are many enzymes and other substances in the cell wall, including color compounds
(melanin). In most species of fungi, over 80% of the dry weight of the cell wall consists of
polysaccharides, including chitin, glucan, and mannan. Another area in the cell affected by
biocidal compounds is the cell membrane. Its main function is to control the permeability of
various types of particles, including phospholipids, sphingolipids, sterols, and proteins. A
characteristic sterol component in fungi is ergosterol, which is also found in mitochondrial
membranes. Ergosterol plays an important role in the cell membrane because it influences
its stiffness and thus its permeability. If the fungicide penetrates the cell wall and membrane,
it reaches the interior of the cell, where it may interfere with DNA and protein synthesis or
affect respiration. Mitosis and cell division may also be the targets of fungicides [1,32–34].
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Information on the mechanisms and areas of action of individual groups of fungicide
compounds can be found on the websites of the Fungicide Resistance Action Committee
(FRAC). This committee confers on fungicides a special FRAC code, which allows them
to be properly grouped. The classification applies to the biochemical mode of action in
cell plant pathogens. Active substances can be targeted at a specific structure or enzyme,
inhibiting a single metabolic process, or have a multidirectional range of action. The
alternating use of different classes of protection agents with different mechanisms of action
can prevent the development of fungal resistance [35]. It should be noted that the division
of fungicides into FRAC groups does not always coincide with the division taking into
account the chemical structure of the compounds. An example is benzimidazoles—a
chemical group, but in the FRAC system they belong to Group 1 (MBC—mitosis inhibitors)
along with other chemical compounds such as thiophanates [35].

3.4. Fungicide Groups According to Their Mode of Action (MOA) in the Biosynthetic Pathways of
Plant Pathogens

An attractive target for antifungal agents is chitin, which is an integral component of
the cell wall. The key enzyme catalyzing chitin biosynthesis is chitin synthase. An example
of a fungicide that inhibits the action of this enzyme is polyoxin, which belongs to the
19 FRAC group [36,37]. The cell wall also contains melanin, a multifunctional pigment
that allows fungi to survive in unfavorable conditions. Melanin not only protects the cell
against environmental stress and UV light but also plays an important role in pathogenesis.
Several enzymes are needed for the synthesis of melanin, such as reductase, dehydratase,
and polyketide synthase. According to the divisions introduced by FRAC, we distinguish
several groups acting on the biosynthesis of this pigment:

• MBI-R (Melanin Biosynthesis Inhibitors—Reductase; 16.1 FRAC group) hydroxynaph-
thalene reductase inhibitors;

• MBI-D (Melanin Biosynthesis Inhibitors—Dehydratase; 16.2 FRAC group) inhibiting
scytalone dehydratase;

• MBI-P (Melanin Biosynthesis Inhibitors—Polyketide synthase; 16.3 FRAC group)
interfering with the activity of polyketide synthase.

All three types of fungicides can inhibit the production of melanin in fungal cells and,
consequently, make them susceptible to unfavorable environmental conditions [38–42].

Another area of action of fungicides is the cell membrane, which consists largely
of sterols and lipids. Lipid molecules are responsible for many biological functions in
the fungal cell. They are an important reservoir of energy and are also part of the basic
skeleton of the cell membrane. Specific proteins or enzymes needed for lipid metabolism
therefore become the target of fungicides. The fungicide AH (Aromatic Hydrocarbons;
14 FRAC group) etridiazole hydrolyzes phospholipids of the cell membrane to produce
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lysophosphatides and free fatty acids, which in turn leads to the breakdown of membranes
(lipid peroxidation). Another fungicide, AH dicloran, is a phototoxic compound that makes
fungal membranes susceptible to sunlight, leading to the destruction of the linoleic acid
structure. Dithiolates and phosphorothiolates (FRAC group 6) interfere with the biosynthe-
sis of phospholipids by inhibiting the action of methyltransferases that catalyze methylation
reactions. Carbamates (FRAC group 28) disrupt the permeability of the cell membrane,
while plant extracts (FRAC group 46), such as tea tree extract (Melaleuca Alternifolia), cause
disruption of the cell membrane. Polyene macrolides (FRAC group 48) bind ergosterol
in the fungal cell membrane, which leads to the formation of hydrophilic channels. They
change the permeability of the membrane, causing the outflow of intracellular contents.
OSBPI (Oxysterol binding protein homolog inhibition; 49 FRAC group) fungicides inhibit
the homolog of oxysterol binding protein (OSBP), which participates in the movement
of lipid molecules between membranes. Inhibition of OSBP may also interfere with the
maintenance of cell membranes and the formation of complex lipids necessary for cell
survival [35,43,44].

A large group of fungicides are sterol biosynthesis inhibitors (SBI), which are capable
of inhibiting various enzymes in the sterol biosynthesis pathway. Four classes of fungicides
affecting the biosynthesis of sterols in the membrane can be distinguished: 1 SBI (DMI
fungicides, demethylation inhibitors; 3 FRAC group), 2 SBI (amines, morpholines; 5 FRAC
group), 3 SBI (KRI fungicides, ketoreductase inhibitors; 17 group FRAC), and 4 (18 FRAC
group) [35]. DMI fungicides inhibit lanosterol 14α-demethylase, which is cytochrome
P450 dependent. Morpholines lead to the inhibition of sterol ∆8, ∆7-isomerase, and sterol
∆14 reductase. Ketoreductase inhibitors inhibit 3-keto reductase and C4 demethylation.
However, the 4th class of SBI fungicides, including e.g., naftifine and pyributicarb, is
capable of inhibiting squalene epoxidase. Inhibition of even one of the enzymes necessary
for sterol synthesis in the cell membrane leads to cell dysfunction and lysis [45,46].

An important structure in eukaryotic cells is the cytoskeleton, thanks to which the
organelles do not float freely in the cytosol, but occupy certain places assigned to them.
The polymers of the cytoskeleton are microtubules, which play an essential role in the
cellular functions of fungi, e.g., cell division. They are therefore an important site for
the action of biocidal compounds. An example is fungicides from FRAC group—MBC
(Methyl Benzimidazole Carbamates) bind to the β-tubulin subunit in microtubules. This
action inhibits the formation and proliferation of microtubules. By inhibiting mitosis,
MBCs prevent the proper course of the fungal cell division process, resulting in its death.
Microtubule polymerization inhibitors also include N-phenylcarbamates (FRAC group 10)
and benzamide and thiazole carboxamide (FRAC group 22).

It is known that mycelium growth takes place in the top (apical) part of the hyphae. The
stability of the membrane during elongation, especially at the hyphal tips, is determined by
spectrin-like proteins located in this area. Their delocalization, caused by e.g., benzamides
(FRAC group 43), results in inhibition of fungal growth. Other fungicides that affect
the proper functioning of the cell are cyanoacrylates (FRAC group 47) and arylphenyl
ketones (FRAC group 50). These probably interfere with the pathway that is responsible for
regulating the actin cytoskeleton. They may also disturb the maintenance of cell polarity
and hyphal morphogenesis, as well as inhibit the growth of polarized hyphae [47–50].

Fungi are aerobic organisms, and an important energy generator necessary for respi-
ration are mitochondria. Mitochondria are the main regulator of the cellular metabolism
of fungi and are the place where many physiological functions of the cell are coordinated.
Hence, a FRAC group 39 of fungicides was created that inhibits the respiration of fungi. It
consists of substances such as quinazoline, pyrimidines, and pyrazole-MET1, which act by
influencing the complex I system of fungal mitochondria, inhibiting NADH oxidoreduc-
tases. SDHI fungicides (succinate dehydrogenase inhibitors; FRAC group 7) are complex II
inhibitors that lead to dysfunction of the succinate dehydrogenase (SDH) enzyme in the
mitochondrial electron transport chain and the Krebs cycle.
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FRAC groups 11, 21, and 45 fungicides block electron transfer in mitochondrial com-
plex III in cytochrome bc1. The first group of Quinone outside inhibitors (QoI) is capable
of binding to cytochrome bc1 in the external quinoloxidizing pocket. Quinone inside
inhibitors (QiI) bind in the internal quinone-reducing pocket. Quinone outside inhibitor
stigmatellin binding type (QoSI) binds on the “outside” of the quinone in the stigmatellin
binding subsite.

Fungicides belonging to the 29 FRAC group have an uncoupling effect on oxidative
phosphorylation, which inhibits ATP production and interrupts the cellular metabolism of
fungi. Organotin compounds (30 FRAC group) are inhibitors of oxidative phosphorylation
and inhibit the action of ATP synthase. Thiophenecarboxamides (38 FRAC group) inhibit
ATP transport [51,52].

The main building blocks of fungi are proteins consisting of amino acids. These
proteins catalyze many biochemical reactions and participate in the formation of the
cytoskeleton. Therefore, like sterols, proteins are an important cell component that can
be targeted by the mechanisms of action of fungicides. According to the division into
individual FRAC groups, we distinguish the following fungicides acting on proteins and
amino acids:

• AP (Anilino-Pyrimidines; FRAC group 9), which is capable of secreting hydrolases
and inhibiting methionine biosynthesis;

• enopyranuronic acid antibiotic (FRAC group 23), the active ingredient of which is
blasticidin-S, which is capable of inhibiting protein biosynthesis by affecting ribosomal
peptidyl transfer;

• kasugamycin, the active ingredient of hexopyranosyl antibiotic (24 FRAC group, which
inhibits translation initiation and thus inhibits protein synthesis;

• glucopyranosyl antibiotics (FRAC group 25), which inhibit the initiation stage;
• tetracycline antibiotics (FRAC group 41), which are elongation inhibitors in protein

synthesis and act on ribosomes [35,53].

Another important process that takes place in fungal cells is signal transduction—i.e.,
a number of biochemical processes (signals) originating from outside the cell or from its
interior, leading to changes in life processes in the cell. Signal transduction in the cell
occurs at the level of the cell membrane and is related to the functions of certain proteins.
Abnormalities in signal transmission may result in cell dysfunction and, consequently,
lead to cell death. An example are phenylpyrroles (FRAC group 12), which interfere with
the osmoregulatory signal transmission pathway, interfering with the os-2 MAP kinase
pathway. In germinating spores, they stimulate the accumulation of glycerol, which leads
to cell swelling and, consequently, its rupture. Dicarboximides (FRAC group 2) also act on
the osmotic signal transduction pathway and interfere with the os-1 MAP kinase pathway.
As a result of cutting off signal transmission, they can inhibit the synthesis of glycerol as
well as the development of mycelial hyphae. Aza-naphthalenes (FRAC group 13) also
influence signal transduction, but their mechanism of action is not yet known [35,44,54].

The last group of fungicides categorized according to their mechanism of action against
plant pathogens are fungicides that affect the synthesis of nucleic acids. PA fungicides
(PhenylAmides; FRAC group 4) interfere with the synthesis of nucleic acids by inhibiting
the activity of the RNA polymerase I system. Hydroxy-(2-amino-)pyrimidines (FRAC
group 8) are responsible for inhibiting the action of the adenosine deamination hydrolyzing
enzyme. This results in disruption of inosine production and, consequently, inhibition
of nucleic acid synthesis. Carboxylic acids (FRAC group 31) interfere with the action
of topoisomerases necessary for the functioning of the cell. They are used as inhibitors
of type II DNA topoisomerase directed at gyrase. In turn, heteroaromatic fungicides
(FRAC group 32) interfere with DNA/RNA synthesis in the fungal cell [55,56].

It can be concluded that fungicides are a very wide group of compounds. They
can influence plant pathogens in various ways, acting on many areas, processes, and
individual chemical compounds in their cells to prevent fungal diseases from damaging
and destroying plants.
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3.5. Fungicides in Crop Protection

Fungal diseases present one of the main threats to crops, so the use of fungicides is
often necessary to secure global food supplies. Due to their ease of use, effectiveness in
combating fungal plant diseases, and relatively low cost compared to possible losses, the
use of fungicides has become very common in agriculture [1,57]. Fungicides can be divided
according to several criteria:

A Stage of application:

• Preventive: These fungicides protect plants by preemptively guarding against
pathogenic attacks;

• Interventional: Applied immediately after the onset of infection, these fungicides
aim to halt further proliferation of the pathogen;

• Destructive: Designed to eradicate spores and mycelium, thereby curbing the
spread of the disease.

B Effect of active substances of plants:

• Contact: These fungicides act on the plant’s surface, inhibiting spore germination
and other vital processes;

• Translaminar: This type of fungicide penetrates and moves within the leaf tissue,
providing protection throughout the leaf structure;

• Systemic: These fungicides penetrate plant tissues and distribute within them,
creating a barrier against infection and fungal growth;

• Local: These fungicides exert their effects by penetrating only a few cell layers at
the site of application

C Methods/places of application:

• Seed dressing: Application of finely ground solid particles dusted onto the seeds
surface;

• Foliar fungicides: Sprayed onto the foliage of plants at different growth stages;
• Root/soil application: Soil drenching or injection into the soil underneath it near

the roots.

D Type of active substance used in fungicides.
E Mechanisms of action of active substances on fungal cells.

Fungicides for agricultural crops can be used for both preventive and destructive
purposes. Examples of the preventive use of fungicides include seed treatment, soil
drenching, and spraying during the early developmental stages of plants. If preventative
measures fail, destructive measures are used to manage the spores and mycelium. Most
often, this involves spraying the plants with fungicide, as this allows for the fastest control
of infectious foci [58].

There are many forms of fungicides currently available on the market, including dusts,
gases, granules, and the most common form, which is liquid. Seed treatment fungicides
can be applied in either wet or dry forms, depending on the type of seed. Powdering is
a dry method used in seed protection, whereas wet methods include the usage of water
dispersible powders, liquid solutions, and flowable solutions [7,24,59,60]. Fungicides can
also be used during soil preparation and plant growth. When used on plants, the most effi-
cient method is spraying, which can be performed as needed. Most often, foliar fungicides
are applied on young plants in the preliminary stages of development to avoid infection.
If infection is already present, the fungicide is used to eradicate fungal corruption and
ensure that the pathogens will not be carried over into later developmental stages. The
purpose of post-harvest use of fungicides is mostly to protect the harvested material against
pathogens during storage [1]. Examples of fungicides used for seed treatment include cap-
tan, difenoconazole, and iprodione. Iprodione, as well as tebuconazole and pyraclostrobin,
can also be used for foliar spraying. A more complete list of the most common fungicides
for plant protection currently in use or recently phased out by large crop producers is
given in Table 2. Of the 43 fungicides presented in the table, 27 are banned in the EU, 6 are
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banned in the USA, 11 are banned in China, and 9 are banned in Brazil. The groups with
the most active substances include DMIs fungicides (demethylation inhibitors, 3 FRAC
group)—11 substances; QoI (quinone outside inhibitors, 11 FRAC group)—5 substances;
MBC (methyl benzimidazole carbamates, 1 FRAC group)—4 substances. The fungicide
groups with the highest overall usage include dithiocarbamates (FRAC group M 03), DMIs
(Demethylation Inhibitors, FRAC group 3), and QoIs (Quinone outside Inhibitors, FRAC
group 11), especially strobilurins [57].

Table 2. Examples of fungicides commonly used in cereal protection and their regulatory status in
selected regions [35,61–66].

Fungicide Group Name
(FRAC Group)

Examples of
Application Area

Permitted Usage in
Agriculture

EU/USA/CHINA/BRAZIL
References

Morpholines

Tridemorph Amines (5) Foliar spraying −/+/+/− [67]

Pyrimidines

Cyprodinil AP-fungicides
(9) Foliar spraying, soil fumigant +/+/+/+ [68,69]

Carboxylic Acid Esters

Ethyl formate Carboxylic Acid Esters (n.a.) Grain fumigant −/?/?/? [70]

Phthalonitriles

Chlorothalonil Chloronitriles
(M 05) Foliar spraying −/+/+/+ [71]

Dicarboximides

Iprodione Dicarboximides (2) Seed treatment, foliar spraying −/+/+/+ [72,73]

Dithiocarbamates

Mancozeb

Dithiocarbamates
(M 03)

Seed treatment −/+/+/+ [74,75]

Metam-sodium Soil fumigation +/+/+/+ [76]

Thiram Foliar spraying −/+/+/+ [77]

Imidazoles, Triazoles

Bitertanol

DMIs
(3)

Foliar spraying, seed treatment −/+/+/− [78]

Cyproconazole Foliar spraying −/+/−/+ [79]

Difenoconazole Seed treatment +/+/+/+ [80,81]

Imazalil Seed treatment +/+/+/+ [82]

Myclobutanil Seed treatment, foliar spraying −/+/+/+ [83]

Prochloraz Seed treatment, foliar spraying −/+/+/− [84]

Propiconazole Seed treatment, foliar spraying −/+/+/+ [85]

Tebuconazole Foliar spraying +/+/+/+ [86,87]

Triadimefon Seed treatment −/+/+/+ [88]

Triadimenol Foliar spraying −/+/+/+ [89]

Triticonazole Seed treatment +/+/+/+ [90,91]

Epoxides

Ethylene oxide Cyclic ethers
(n.a.) Grain fumigant −/−/−/− [92]
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Table 2. Cont.

Fungicide Group Name
(FRAC Group)

Examples of
Application Area

Permitted Usage in
Agriculture

EU/USA/CHINA/BRAZIL
References

1,2,4-thiadiazoles

Etridiazole Heteroaromatics (32) Seed treatment −/+/−/+ [93]

Inorganic compounds

Aluminum phosphide

Aluminum, Copper salts etc.
(NC)

Grain fumigant +/+/−/? [94–96]

Copper oxychloride Foliar spraying, seed treatment +/+/+/+ [97]

Copper sulfate Seed treatment +/+/−/+ [98]

Benzimidazoles

Benomyl

MBCs
(1)

Seed treatment, foliar spraying −/−/+/− [99,100]

Carbendazim Foliar spraying, Seed treatment −/+/+/+ [101]

Thiabendazole Seed treatment +/+/+/+ [102]

Thiophanates

Thiophanate-methyl MBCs (1) Seed treatment −/+/+/+ [103]

Halogenated aliphatics

Ethylene dibromide Organobromine compounds
(n.a.)

Grain fumigant −/−/−/− [104]

Methyl bromide Soil fumigation −/−/−/− [105]

Chloropicrin

Organochlorine compounds
(n.a.)

Soil fumigant, grain fumigant −/+/−/? [106,107]

1,3-dichloropropene Soil fumigant −/+/+/+ [108,109]

Ethylene dichloride Grain fumigant −/−/−/− [110]

Acylalanines

Metalaxyl Phenylamides
(4) Seed treatment +/+/−/+ [111]

Phthalimides

Captafol Phthalimides
(M 04)

Seed treatment −/−/−/− [112,113]

Captan Soil fumigant, seed treatment +/+/+/+ [114,115]

Strobilurins

Azoxystrobin

QoIs
(11)

Foliar spraying +/+/+/+ [99,116,117]

Trifloxystrobin Foliar spraying +/+/+/+ [117]

Kresoxim methyl Foliar spraying +/+/+/+ [118]

Pyraclostrobin Foliar spraying −/+/+/+ [119]

Oxazoles

Famoxadone QoIs (11) Foliar spraying +/+/+/+ [120]

Oxathiins

Carboxin SDHIs
(7)

Seed treatment −/+/+/+ [121]

Oxycarboxin Seed treatment, foliar spraying −/+/+/+ [122]

(+) Permitted, (−) Not permitted; (?) No data, n.a.—information unavailable.

Until recently, there was a large range of plant protection products available. How-
ever, due to more restrictive legal regulations, such as Regulation EC 1107/2009 [63] and
Directive 2009/128/EC [123], many products have already been withdrawn or will be
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withdrawn soon. Substances withdrawn from circulation in the EU in 2020–2022 included
frequently used fungicides such as benalaxyl, epoxiconazole, thiophanate methyl, triflumi-
zole, carboxin, cyproconazole, diethofencarb, fenbuconazole, fluquinconazole, flutriafol,
mancozeb, prochloraz, and triazoxide. In 2023, four fungicides were banned, namely
benthiavalicarb, dimoxystrobin, ipconazole, and metiram. Additionally, 34 important
fungicides for crop protection were planned for reassessment (and eventual withdrawal),
including fluazinam, pyraclostrobin, cyprodinil, fosetyl, metconazole, boscalid, captan,
fluoxastrobin, prothioconazole, tebuconazole, penconazole, and tetraconazole [124–128]
(Reg. 2023/114; Reg. 2023/689; Reg. 2023/918; Reg. 2023/1446; Reg. 2023/2592). However,
all 34 compounds have since received extensions of approval for use [25,63]. By 1 January
2024, of 1477 active substances used in pesticides registered in the EU database, 951 had
been banned. In the literature, there are currently 490 fungicidal substances known. Not
all of these 490 substances were previously registered in the EU. After comparison of the
substances present in the literature and EU database, 175 of these are banned. Within those
175 fungicides, 78 were used in agriculture, with 71 potentially used for seed treatment. No-
tably, common grain protection fungicides including mancozeb, prochloraz, propiconazole,
and thiophanate-methyl were among those withdrawn.

3.6. Synthetic Antifungals and the Environment

Many synthetic fungicides have been or will be withdrawn in the near future, primarily
due to their toxicity to humans and the environment (Figure 4) [24]. An example of the tragic
effects of pesticide (including fungicide) use is the decline in the number of birds in the
United Kingdom during the period 1967–97. Data show that between 23% and 89% of birds
died out in this period, depending on the species. In addition, these compounds accumulate
in the soil and contaminate water as they run off fields, posing a threat to microbial diversity
for long periods of time, depending on the ability of the substance used to break down over
time [129–132]. In aquatic environments and agricultural fields, excessive concentrations
of pesticides may cause a breakdown of the balance of microorganisms present in the
environment, or even affect the crop itself [133]. Beneficial insect species such as pollinators
may also suffer. For these reasons, a new generation of fungicides is sought that will
not have a negative impact on soil structure and biocenosis. These new solutions should
have low toxicity and aggregation capacity to ensure the safety of both humans and
the environment.
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Many factors affect the decomposition of pesticides used in agriculture, including
access to light, temperature, and the microbiome. Depending on the combination of these
factors, the half-life of pesticides can range from a week to a year [134]. The long-term
degradation of synthetic fungicides causes serious environmental pollution. Furthermore,
misuse and overuse of fungicides can be harmful for non-target species occurring in the
environment and disturb its natural biodiversity. The degradation of synthetic fungicides
can also create problems beyond the agricultural industry. An example is the development
of cross-resistance in clinical strains, which through interactions with resistant environmen-
tal strains become resistant to azole drugs used in medicine. Aspergillus fumigatus found
both in fields and in medical cases of aspergillosis is one of the best-known instances of
this problem [135].

However, synthetic fungicides also have clear benefits. Fungicides are able to control
many pathogenic fungi, thanks to which they can be used both for protective and destruc-
tive purposes in the event of infection. They thereby play an important role in preventing
crop losses and increasing food safety, which is crucial in the context of an ever-growing
population [136].

It seems clear that chemical agents will continue to be used, and new synthetic fungi-
cides will be needed as current solutions become less effective over time. However, given
the disadvantages of chemical plant protection products, it seems rational to combine the
use of synthetic fungicides with natural biofungicides [7,137].

4. Biological Methods of Cereal Preservation

Biological control agents (BCAs) are a group of living organisms including microor-
ganisms, insects, mites, nematodes, protozoa, and viruses, as well as botanical (plant
extracts) and semiochemical (pheromones, kairomones) substances used to protect plants
and seeds from pests and phytopathogenic diseases [138]. Synthetic agrochemicals are
excluded from the group of BCAs. However, several substances occurring in nature that are
equivalents of synthetic substances (semiochemicals) are permitted [139,140]. Although the
term biological control has existed for over 100 years (introduced by Smith in 1919), the ter-
minology in this area probably shows divergences depending on whether it is formulated
by entomologists or biologists. In 2001, Eilenberg et al. [141] and later in 2017 Heimpel
and Mills [142], proposed a harmonized definition for all biological control areas, but some
inconsistencies still exist. The entry into force of Regulation (EC) No 1107/2009 on plant
protection products (PPPs) [63] resulted in an increase in the use of BCAs in Europe. This
regulation does not clearly define BCAs, and there is still a lack of a universally accepted
definition of biocontrol. This may result in confusion and misuse among researchers and
potential users regarding the safe use of biopreparations [143].

BCA-based seed treatment technology includes tools to improve seed quality, primarily
reducing damage caused by pathogens and rot diseases. Both factors can drastically
affect the germination process and therefore the final crop yield. However, seeds have
developed their own passive physical (reinforced cell walls) and chemical (antimicrobial
compounds) mechanisms, which are dependent on genetic and environmental factors, in
response to attack by organisms and phytopathogens. These mechanisms are activated
during seed germination, or in some cases during the rehydration cycle in the soil. In
the dormant state (e.g., during storage), seeds are unable to activate defense mechanisms,
suggesting that this is an appropriate period to install exogenous barriers as a preemptive
strategy to protect grains [144,145]. The treatment of the seed surface with exogenous
active substances (liquid or solid, forming a more or less continuous layer) using a binder
or, in some cases, a filler that can act as a carrier has been proposed as a precise and
cost-effective method [146,147]. Various types of seed treatment are used to improve the
functional properties of seeds, including seed dressing, coating, soaking, and granulating,
depending on the type and purpose of the seeds or the type of active ingredients selected
for inoculation (whole microbial cells, natural active compounds, etc.) [147]. Seed coatings
were first used in the 1930s for cereal grains, although their large-scale commercial use



Molecules 2024, 29, 3780 15 of 33

did not occur until 30 years later [148]. Nowadays, seed dressings are widely used in
the crop and horticultural industries around the world to apply dyes, pesticides, soil
adjuvants, germination and growth stimulants, substances that increase resistance to stress
(e.g., salicylic acid, gibberellic acid, and abscisic acid), macronutrients and microelements,
as well as biological control agents. The coatings with BCAs have been successfully
applied to many different sizes, shapes, textures, and germination types of seeds, especially
cereal grains [147]. Therefore, here, we will mainly focus on natural antifungal substances
employed for protecting cereal grains.

4.1. Bacteria, Yeast, and Molds as Biocontrol Agents

The use of microorganisms as BCAs to protect against cereal seed-borne diseases
is based mainly on their ability to synthesize a wide range of secondary metabolites
(e.g., antibiotics, hydrogen cyanide) and lytic enzymes that can inhibit the growth of
phytopathogens, as well as the activation of induced systemic resistance [149,150]. After
the end of 2022, four new regulations (EU Regulation 2022/1438, 2022/1439, 2022/1440,
2022/1441) approved in the EU entered into force to simplify the approval process and
authorization of biological plant protection products containing microorganisms. Currently,
71 strains of microorganisms are approved in the EU; another 26 strains are in the process
of being approved [143].

The main microbial biocontrol agents with strong antifungal activity are Bacillus spp.,
which produce fungicidal and fungistatic metabolites. Endophytic strains of Bacillus subtilis,
Bacillus velezensis, Bacillus inaquosorum, and Bacillus nakamurai inhibit the growth of Fusarium
graminearum (Gibberella zeae) and F. poae on various cereal grains (barley, wheat) both
in vitro, in greenhouse and under field conditions [151–153]. Pan et al. (2015) demonstrated
the ability of B. subtilis and Bacillus megaterium species to inhibit the growth and spore
germination of F. graminearum [154]. Bacillus vallismortis has been reported to have a wide
spectrum of antifungal activity [155]. The filtrate and extract of B. vallismortis were found to
inhibit the growth of several phytopathogens, including Fusarium graminearum, Alternaria
alternata, Rhizoctonia solani, Cryphonectria parasitica, and Phytophthora capsici. The strong
antagonistic activity of these species results from the secretion of antifungal lipopeptides,
namely bacillomycins, iturins, surfactins, fengycins, and mycosubtilins [153]. Bacillus spp.
is also known to synthesize hydrolytic enzymes such as amylase, cellulase, chitinase, lipase,
phytase, and protease, important in biocontrol processes. These spore-forming bacteria are
characterized by a high degree of adaptation to environmental stress conditions, which
allows them to easily inhabit various niches. Due to the rapid colonization and utilization
of nutrients (carbon, hydrogen, oxygen, nitrogen) and microelements (iron, manganese,
copper, zinc, phosphorus) by Bacillus spp., they make the environment less favorable for
the development of pathogens [156].

Other promising biocontrol agents for the protection of grains against Fusarium spp.
include cell-free supernatants of lactic acid bacteria Lactiplantibacillus plantarum and Lactica-
seibacillus rhamnosus [157,158].

The multidirectional antifungal activity of Streptomyces spp. has been demonstrated
in many studies [150]. These bacteria are known to synthesize various secondary metabo-
lites (e.g., 2-(chloromethyl)-2-cyclopropyloxirane, 2,4-ditert-butylphenol and 1-ethylthio-3-
methyl-1,3-butadiene) that can inhibit the development of phytopathogens. They also (e.g.,
Streptomyces lydicus, S. mutabilis) produce enzyme—chitinase that can degrade the cell walls
of various phytopathogenic fungi such as Fusarium spp. and Rhizoctonia solani [150,159]. In
addition to bioactive substances and enzymes, many Streptomyces (e.g., Streptomyces platen-
sis, S. noursei, S. fimicarius, S. albulus) are producers of volatile organic compounds (VOCs,
e.g., anisole, alpha-copaene, caryophyllene, ethyl phenylacetate, methyl anthranilate,
methyl salicylate phenylethyl alcohol, 4-methoxystyrene, 2-pentylfuran, and 4-ethylphenol)
with antimicrobial activity against phytopathogenic species Botrytis cinerea, Rhizoctonia
solani, Fusarium oxysporum, and Sclerotinia sclerotiorum [150,160].
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Biocontrol ability is widespread among yeast species. Matić et al. (2014) found
that seed coating with Pichia guilliermondii, Metschnikowia pulcherrima, and Sporidiobolus
pararoseus inhibited growth of Fusarium fujikuroi [161]. Druvefors and Schnürer (2005)
investigated the antagonistic activity of 57 different yeasts belonging to the Pichia (P.
anomala, P. guillermondii, P. burtonii, P. farinose, P. membranifaciens) and Candida (C. silvicola,
C. fennica, C. pelliculosa, C. silvicultrix) genera against Penicillium roqueforti, one of the most
important spoilage molds in airtight-stored cereal grains [162]. Clonostachys rosea (formerly
named Gliocladium roseum) also shows promising biocontrol activity. To date, its antifungal
activity has been documented against 11 mold genera, including Fusarium, Alternaria,
and Botrytis (Table 3), which are associated with the secretion of the cell wall-degrading
enzymes chitinase, glucanase, and protease [163]. Jensen et al. (2000) used both stored
(dried) and fresh conidia of Clonostachys rosea to treat cereal grains infected with Fusarium
culmorum in field conditions. They achieved more than 80% disease control with both types
of conidia [164].

Table 3. Microorganisms as biocontrol agents.

Microorganisms Pathogens Active
Compounds References

Bacteria

Bacillus subtilis Fusarium graminearum surfactin, iturin, fengycin
lipopeptides [151,152,154]

Bacillus megaterium Fusarium graminearum not studied [154]

Bacillus vallismortis

Fusarium graminearum
Alternaria alternata

Rhizoctonia solani Cryphonectria
parasitica

Phytophthora capsici

bacillomycin D [155]

Bacillus amyloliquefaciens F. graminearum
Fusarium spp. iturin lipopeptide [157,165]

Paenibacillus polymyxa F. graminearum not studied [166]

Lacticaseibacillus rhamnosus F. graminearum not studied [158]

Lactiplantibacillus plantarum F. graminearum
Fusarium spp. not studied [157,158]

Pseudomonas fluorescens F. graminearum not studied [167]

Pseudomonas chlororaphis

Drechslera graminea
D. teres

D. avenae
Ustilago avenae

U. hordei
Tilletia caries

[168]

Streptomyces spp. F. graminearum
Rhizoctonia solani

secondary metabolites
chitinases

volatile organic compounds
[150,167–169]

Azotobacter nigricans

F. sporotrichioides
F. graminearum

F. poae
F. crookwellense

F. equiseti
F. sambucinum

F. culmorum

not studied [170]
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Table 3. Cont.

Microorganisms Pathogens Active
Compounds References

Yeasts

Sporidiobolus pararoseus Fusarium fujikuroi not studied [161]

Pichia guilliermondii Fusarium fujikuroi
Penicillium roqueforti not studied [161,162]

Metschnikowia pulcherrima Fusarium fujikuroi not studied [161]

Cryptococcus flavescens F. graminearum not studied [171]

Pichia anomala

Penicillium roqueforti not studied [162]

Pichia burtonii

Pichia farinosa

Pichia membranifaciens

Candida silvicola

Candida fennica

Candida pelliculosa

Candida silvicultrix

Molds

T. asperellum F. graminearum
Pseudomonas syringae

not studied
induced resistance

[172]
[173]

T. citrinoviride F. graminearum not studied [158]

T. harzianum

F. verticillioides
F. graminearum

F. oxysporum
B. cinerea

secretion of chitinase, competition
for space [171–174]

T. brevicrasum Rizoctonia solani mycoparasitism [173]

Clonostachys rosea

F. culmorum
F. graminearum
F. verticillioides
F. crookwellense
Alternaria dauci

A. radicina
Botrytis cinerea

B. aclada
Bipolaris sorokiniana

Drechslera teres
Helminthosporium solani

Moniliophthora roreri,
Phytophthora palmivora

Rhizoctonia solani
Rhynchosporium communea

Sclerotinia sclerotiorum

secretion cell-wall-degrading
enzymes [163,164]

A particularly promising strain for reducing the population of fungal pathogens,
especially on cereal grains, is Trichoderma spp. [175]. As stated by Benitez et al. (2004),
90% of fungal strains used to control plant diseases belong to the genus Trichoderma. The
most known and described BCA species are T. viride, T. virens, T. harzanium, T. hamatum, T.
longibrachiatum, T. koningii, T. lixii, T. polysporum, and T. asperellum [176–178]. The success
of Trichoderma spp. as a BCA is related to its multidirectional and comprehensive mech-
anisms. On the one hand, Trichoderma inhibits the development of phytopathogens such
as Alternaria brassicicola, Armillaria mellea, Fusarium equiseti, F. guttiforme, F. graminearum,
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F. oxysporum, Phytophthora palmivora, Rhizoctonia solani, Sclerotium rolfsii, and Sclerotinia
sclerotiorum [178,179]; on the other hand, they can stimulate growth and plant defense
mechanisms. The wide spectrum of antagonistic activity of Trichoderma spp. is related to
a combination of mycoparasitism, antibiosis, secretion of enzymes, and competition for
space and nutrients [175–180]. It is considered as a necrotrophic mycoparasite and obtains
nutrients by penetrating the pathogen’s cell wall without causing host cell death. Moreover,
these fungi secrete cellular enzymes including chitinase, protease, glucanase, cellulase,
xylanase, pectinase, lipase, and amylase, leading to the penetration and degradation of
cell walls and causing plasmolysis [173,175]. Over 90 metabolites (low-molecular-weight
volatile or non-volatile compounds) have also been detected in Trichoderma spp. (e.g.,
trichorzianin TA, trichorzianin TB, trichodermin, tricholin, cyclonerodiol, pachybasin,
6-pentyl-2H-pyran-2-one) with antifungal activity [181]. Xue et al. (2017) showed the
strong antifungal activity of six strains of Trichoderma spp. (T. asperellum, T. citrinoviride,
T. harzianum) against F. graminearum in wheat [172]. The same authors also showed that
treating wheat seeds with spores of the tested mold species (107 spores/mL) reduced
wheat root rot by >50%. Ferrigo et al. (2020) observed a 36% reduction in the occurrence
of F. verticillioides and F. graminearum on grains coated with Trichoderma harzanium spores
(105 spores/mL) [174].

In addition to inhibiting/limiting the growth of phytopathogens, microorganisms
applied to cereal grains may perform another important function: detoxifying mycotoxins
produced by fungi contaminating the grains. This is extremely important from the point
of view of the dangers posed by the presence of aflatoxin B1 (AFB1), ochratoxins (OTA),
fumonisins (FUM), deoxynivalenol (DON), zearalenone (ZEN), and T2/HT-2 toxins (T2).
The most frequently detected mycotoxins in grains include OTA (wheat, barley, maize),
ZEN (wheat, maize), DON (wheat, barley, maize), AFB1 (maize), and T2 (wheat, rye, oat,
maize) [182]. According to research conducted by BIOMIN on cereals and cereal products,
the most widespread mycotoxins in the world are DON (66%), FUMs (56%), and ZEN
(53%) [183].

The ability to degrade mycotoxins is mainly demonstrated by molds, followed by
bacteria and, less frequently, yeasts. Decontamination strategies to reduce mycotoxins
are based on biodegradation, bioadsorption, or inhibition of mycotoxin production [184].
Biological control of mycotoxins offers an excellent alternative to chemical and physical
methods to protect food and feed and is currently of great interest to researchers and
industry. However, biodegradation may result in the formation of more toxic compounds.
Therefore, it is necessary to analyze the toxicity of the resulting compounds [185].

According to the literature, nontoxigenic fungi including Aspergillus spp., Clonostachys
spp., Penicillium spp., Rhizpous spp., and Trichoderma spp. are active agents reducing
mycotoxins. Most studies have been conducted in vitro or in a simple system reflecting
field conditions, with few in vivo studies directly on cereal grains. The literature data
indicate that the most effective genus of fungi is Trichoderma. Błaszczyk et al. (2017)
investigated 24 fungal strains of Trichoderma spp. (including T. atroviride, T. cremeum, T.
hamatum, T. harzianum, T. longipile, T. viride, and T. viridescens) for inhibition of growth and
mycotoxin biosynthesis by Fusarium spp. [186]. Trichoderma atroviride was found to have the
ability to reduce not only DON and ZEN (69–100%), but also nivalenol, beauvericin, and
moniliformin. The mycotoxin reduction capacity of Trichoderma atroviride and Trichoderma
harzianum has also been the subject of research by Tian et al. (2018) [187]. These authors
suggest that the mechanism of ZEN reduction by Trichoderma spp. is based on sulphation,
which leads to the formation of zearalenone sulphate zearalenol sulphate. Trichoderma
gamsii has been found to be an effective suppressor (28–68% reduction) of fumonisin
B1 and fumonisin B2 in maize seeds [188]. According to Dini et al. (2022), Trichoderma
afroharzianum can produce various enzymes, including glucanases, chitinases, and cellulases
active against phytopathogens, but also peroxidases able to degrade mycotoxins such as
AFB1 and OTA [189].
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Many bacteria have the ability to detoxify one or more types of mycotoxins. The
degree of mycotoxin detoxification depends not only on the bacterial strain but also on
the substrate, pH, and temperature. Lactic acid bacteria are able to remove mycotoxins
by cell-surface binding [190]. Lactic acid bacteria capable of cell-binding mycotoxins
mentioned in the literature include Lactobacillus acidophilus, Lacticaseibacillus rhamnosus,
Lactiplantibacillus plantarum, Lactobacillus amylovorus, and Limosilactobacillus fermentum. The
mycotoxin binding efficiency of the mentioned LAB ranges from 60% to even 98% [190–192].
Streptomyces spp. and Bacillus spp. can remove mycotoxins via biodegradation. Harkai et al.
(2016) examined 124 strains of Streptomyces spp. and showed that Streptomyces rimnosus
was effective at biodegradation of ZEN mycotoxin (88% degradation), while Streptomyces
cacaoi totally degraded AFB1 mycotoxin [185]. Bacillus spp. also have the potential to
degrade ZEN and AFB1. Tinyiro et al. (2011) and Farzaneh et al. (2012) analyzed strains
of B. subtilis, B. natto, and B. velezensis both in liquid cultures and on the food matrix of
pistachio nuts [193,194]. It has also been shown that cell-free supernatant of B. subtilis and
B. amyloliquefaciens reduced mycotoxin synthesis by A. parasiticus, A. niger, and Penicillium
spp., and remained stable in the temperature range from −20 ◦C to 100 ◦C [195]. Yang et al.
(2017) studied the ability of Pseudomonas fluorescens to degrade AFB1, with peanut kernels
used as a matrix [196]. Over 88% detoxification was achieved after 96 h.

Yeast can degrade mycotoxins via biodegradation and bioadsorption. The ability
to reduce mycotoxins (AFB1, OTA, and ZEN) by cell-binding has been demonstrated
in Saccharomyces cerevisiae, S. uvarum, Kluyveromyces marxianus, and Candida utilis [197].
In the case of S. cerevisiae yeast, this mechanism is probably related to the presence of
(1,3)-D-glucans in the cell wall [190].

Microbial biocontrol agents are considered a sustainable tool for the protection of
crops, including cereals. Biofungicides can limit/inhibit the growth of phytopathogens,
reduce the mycotoxins they produce, stimulate plant germination and growth, as well as
enhance soil ecosystem function. They are biodegradable, friendly to non-target species,
and do not cause phytopathogens to acquire resistance. Compared to synthetic fungicides,
they have less adverse impact on the environment, with a shorter residual effect [198,199].
Nonetheless, questions remain about the safety of some forms of biological control. Goettel
et al. (2001) identify allergenicity, toxicity, and pathogenicity as possible harmful effects
of fungi used as biocontrol agents [200]. It is common knowledge that some species
of fungi can cause allergies. There are no direct reports that fungi used as biocontrol
agents are responsible for the production of common allergens, but such a risk exists
with mass production and application. Both fungi and bacteria secrete a wide spectrum
of compounds, many of which may be crucial in the biocontrol process, but which may
also be toxic or pathogenic to plants, invertebrates, and vertebrates. Although most
strains of biofungicides meet all biosafety requirements, there are potential risks associated
with using the species Burkholderia cepacia, Pseudomonas putida, Pantoea agglomerans and
Aureobasidium pullulans, which are considered opportunistic human pathogens [201]. It
is worth noting that Trichoderma spp. is on the ever-growing list of fungal pathogens,
although it rarely causes infections in humans. The most common pathogen of this genus
causing infection is the species T. longibrachiatum. Therefore, its use in agriculture, should
be limited. All microbial strains intended for use in agriculture should also be tested for
possible pathogenicity, to minimize the risk of spreading diseases [202].

Another issue is the impact of biofungicides on the autochthonous microbiome in the
environment. Most biofungicides are tested only under laboratory conditions. As noted by
Bonaterra et al. (2012), before employing them in agriculture, it is necessary to monitor the
behavior of microbial strains used as biocontrol factors in the ecosystem [201]. This includes
their establishment, adaptation, survival, dispersal, genetic and phenotypic stability, and
the risk of horizontal gene transfer (e.g., antibiotic resistance). It is important to ensure
that, as a result of adaptation, biofungicides will not dominate the environment, disturbing
the natural biodiversity of the microbial community. This seems to be the most difficult
challenge for ensuring the safety of using biofungicides. Regulations in many countries
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already require environmental impact analysis of biopesticides as part of the registration
and commercial development process [201].

Biocontrol agents are biomolecules with a short shelf life that require special formula-
tions to guarantee appropriate effectiveness and stability [145]. One of the most significant
challenges related to the use of BCAs in agriculture (which is less important in the case of
grain protection) is their adaptation to environments highly exposed to pollution (includ-
ing agrochemicals) and to changing environmental conditions (high/low temperatures,
drought, heavy rainfall). The advantage of BCAs is that they are easily degraded but do
not have lasting effects in the environment.

4.2. Antifungal Activities of Plant Extracts and Essential Oils on Grains

Plant extracts and essential oils (EOs) extracted from plants constitute an eco-friendly
alternative to synthetic pesticides used on cereal grains, legumes, fruits, and vegetables.
Prakash et al. (2012) found that EOs contain a mixture of various major and minor elements
that are responsible for their biological activity [203]. This means that the chance of
developing resistant fungal strains is lower than in the case of many synthetic fungicides
used in agriculture. Some EOs have been shown to have not only strong fungicidal
properties against molds, but also a remarkable ability to reduce mycotoxin synthesis.
Taheri et al. (2023) list the mechanisms of antifungal action by EOs as follows: inhibition
of cell wall formation, inhibition of cell division and development of the mitotic spindle,
inhibition of nucleic acids and protein synthesis, inhibition of efflux pumps, disruption
of cell membrane function, and mitochondrial dehydrogenase function [204,205]. The
biological activity of EOs is attributed to the presence of main components such as bioactive
terpenes, alkaloids, and phenolic aromatic molecules [206]. It appears that EOs with high
levels of phenolic compounds have stronger antifungal properties.

Numerous studies have investigated the antifungal activity of various plant extracts
and EOs from basil (Ocimum basilicum L.), rosemary (Rosmarinus officinalis L.), thyme
(Thymus vulgaris L.), marjoram (Origanum majorana), ginger (Zingiber officinale), oregano
(Origanum vulgare), cinnamon (Cinnamomum zeylanicum), palmarosa (Cymbopogon martinii),
lemongrass (Cymbopogon citratus), clove (Eugenia caryophyllata), garlic (Allium sativum),
lavender (Lavandula angustifolia Mill.), mint (Mentha piperita L.), sage (Salvia officinalis L.),
tansy (Tanacetum vulgare L.), yarrow (Achillea millefolium L.), and wormwood (Artemisia
absinthium L.) against, among others Aspergillus spp., Alternaria spp., Penicillium spp.,
and Fusarium spp. ([207–209] and references therein). However, the conclusions are still
debated, especially since most of the research has been conducted in vitro under laboratory
conditions and not directly on cereal grains during storage.

One of the many methods of applying essential oils to cereal grains is fumigation.
Anžlovar et al. (2017) reported the antifungal potential of thyme essential oils against
a group of endophytic fungi from wheat seeds, namely Alternaria alternata, Alternaria
infectoria, Aspergillus flavus, Epicoccum nigrum, and Fusarium poae [210]. In the case of grains,
fumigation has proven to be more beneficial than soaking because the EOs significantly
inhibit fungal growth, while soaking the grains in EOs inhibits their germination. The
use of EO from laurel (Laurus nobilis L.) and laurel components as antifungal agents for
wheat grains has been investigated by Belasli et al. (2020) [211]. The laurel EO showed
high effectiveness (51.5–76.7%) in protecting fumigated wheat grains against A. flavus
contamination during storage for 6 months. Lee et al. (2021) evaluated the antifungal
activity of lemongrass EO in the form of soaked sachets against Aspergillus flavus on wheat
seeds stored for 30 days [212]. After the storage period, the lemongrass EO showed a high
fungicidal effect, reducing fungal growth by nearly 100%.

Fumigation with essential oils has proven to be an effective process against phy-
topathogenic fungi not only on wheat grains but also other seeds. Ben Miri et al. (2023)
studied the effect of fumigation with two EOs and combinations of these EOs on maize,
barley, and rice grains [206]. Menthol, eugenol, and a mixture of both reduced mycelial
growth and spore germination of A. ochraceus and A. niger stored in closed containers by
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over 50%. Roselló et al. (2015) demonstrated 90–100% effectiveness of cinnamon, clove, and
oregano oils (at concentrations of 200 µg/mL) against fungal growth on rice grains stored
at 28 ◦C for 30 days [213]. Essential oil of oregano showed potential to control the common
fungal phytopathogens F. verticillioides and F. culmorum on rice seeds. Bocate et al. (2021)
used fumigation with garlic EO on maize [214]. The growth of fungi Aspergillus parasiticus,
Fusarium verticillioides, and Gibberella zeae was completely inhibited with concentrations
of the EO ranging from 2 µg/L to 10 µg/L. On maize grains contaminated with Fusarium
graminearum and Fusarium culmorum, Perczak et al. (2019) verified the effectiveness of EOs
from oregano herb, cinnamon bark, palmarosa leaves, orange peel, verbena leaves and
flowers, spearmint leaves, rosewood, and fennel seeds [215]. All of the tested oils reduced
fungal growth without negatively affecting seed germination.

Sustainable agriculture practices that reduce reliance on synthetic chemicals are vi-
tal for ensuring food security while safeguarding the environment and human health.
Currently, farmers rely heavily on synthetic fungicides to combat fungal diseases and
prevent food losses. However, the widespread use of synthetic fungicides has led to the
development of fungicide-resistant pathogens [216–218] and raised concerns about their
impact on the environment and human health. BCAs have been proposed as an alternative,
but their disease management capacity is often limited and dependent on unpredictable
environmental factors. To achieve similar effectiveness as chemical fungicides, they must
also be used in high doses, which often limits their application. Furthermore, the volatile
and oxidizing nature of essential oils leads to high cost, which is also a significant limitation
for large-scale use [207]. The integration of BCAs with fungicides is a promising approach
to address these challenges, providing sustainable and effective solutions for managing
plant diseases while mitigating the adverse effects of synthetic fungicides [189].

5. Integrated Control

Both biological control agents and plant extracts can constitute functional elements of
an Integrated Pest Management System (IPM). Integrated Pest and Disease Management
(IPDM) strategies have become increasingly essential in modern agriculture, driven by
the need for sustainable practices that minimize the adverse effects of synthetic chemicals
on both the environment and human health. While these integrated approaches hold
great potential, further research is needed to optimize the timing and frequency of the
application of BCAs and their compatibility with fungicides to maximize their impact on
disease control and crop yield in various agricultural systems [219,220].

Integrating BCAs with fungicides can diversify antifungal treatments, reduce fungi-
cide doses for disease management, and minimize residue on harvested crops. This
approach also reduces the risk of pathogens developing resistance [221]. Numerous stud-
ies have explored the compatibility of various BCAs with fungicides across various crop
systems. However, some experiments were carried out on fungicides that have now been
withdrawn [222–227]. For instance, Sunkad et al. (2023) investigated the tolerance of
Trichoderma species, including Trichoderma asperellum, against a range of fungicides [228].
The results revealed varying degrees of compatibility, with systemic fungicides such as
azoxystrobin showing high compatibility with Trichoderma. The obtained fungicide concen-
trations inhibited all tested pathogenic strains without significantly inhibiting Trichoderma
strains, the growth of which further enhanced the inhibitory effect of the fungicide-BCA
combination. Similar studies have examined the compatibility of biocontrol yeasts Rho-
dosporidium kratochvilovae and Cryptococcus laurentii, and of bacteria Pseudomonas syringae
with fungicides including boscalid, cyprodinil, fenhexamid, and thiabendazole. The results
showed promise for controlling diseases including blue mold on apples [229,230].

Integrated approaches have also been developed and optimized for specific crop-
disease systems. For example, in the case of tulsi wilt caused by Fusarium oxysporum, the
integration of Trichoderma with the fungicides carbendazim and mancozeb has proven
highly effective at reducing disease severity and enhancing plant growth [231]. This
approach not only provides efficient disease management but also highlights the potential
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for eco-compatible agriculture. In the context of wheat diseases such as powdery mildew
and Fusarium head blight (FHB), integrated approaches have been explored with BCAs
including Rhodosporidium kratochvilovae, Cryptococcus laurentii, and Aureobasidium pullulans.
These BCAs were combined with mineral salts, sulfur, and synthetic fungicides including
azoxystrobin, tebuconazole, and tetraconazole. The results showed reduced disease severity,
increased grain yield, and improved grain weight [232,233].

Integrated control does not end, however, with the combination of microorganisms and
synthetic fungicides. Other approaches involve the combination of plant extracts/essential
oils with fungicides, microorganisms, or organic compounds. In 2015, Fielding et al. (2015)
examined the botryticidal effectiveness of South African medicinal plant extracts, both alone
and with kresoxim-methyl fungicide [234]. Synergistic inhibitory effects were observed
in vitro, and in vivo experiments on apples demonstrated synergistic and additive decay
inhibition effects, suggesting the natural compounds in these plants enhance kresoxim-
methyl efficacy [234]. Adandonon et al. (2006) investigated the efficacy of biocontrol agents,
alone or combined with Moringa oleifera leaf extracts [235]. The results showed over 94%
disease control in the greenhouse and 70% disease control in the field, with increases in
yield. El-kazzaz et al. (2015) studied the efficacy of salicylic acid and plant extracts against
rice kernel smut disease, recommending their inclusion in integrated pest management for
combating Tilletia barclayana [236].

When describing integrated control, the topic of organic farming also cannot be
ignored. Organic farming is a sustainable and environmentally friendly approach to
agriculture that emphasizes the use of natural processes and inputs to grow crops. A
core principle of organic farming is soil health [237]. Unlike conventional farming, which
often relies on synthetic chemicals, organic farming focuses on maintaining ecological
balance and enhancing biodiversity. Techniques such as crop rotation, green manure, cover
cropping, and composting are adapted to maintain and improve soil quality and enhance
its water retention capacity. To combat pests and diseases, organic farmers employ an
integrated pest management (IPM) approach. It involves using a combination of biological,
cultural, physical, and mechanical controls. In the case of fungal diseases, means such as
crop rotation, breeding of resistant plant varieties, proper spacing, or natural fungicides
are used. Crop rotation prevents build-up of pathogens in the soil by altering the crops that
are susceptible to different diseases, while proper spacing reduces humidity by enhancing
air circulation [238]. Natural fungicides include copper and sulfur-based products as
well as biofungicides derived from beneficial microorganisms like Trichoderma or Bacillus
species. Such practices allow for a system where chemical pesticides are not needed to
control various dangers. However, while these methods are effective, it is not guaranteed
that they will also work on large-scale farms, in the form they are employed in currently.
Additionally, copper-containing fungicides might not be the perfect choice, as in his work
Burandt et al. (2024) explains the potential risks of copper overuse from many different
angles [239].

These studies collectively highlight the potential of plant extracts and organic com-
pounds in combination with microorganisms or synthetic substances, as effective and
environmentally friendly strategies for pest and disease management in agriculture. How-
ever, more work is needed to study the interactions of plant extracts with both fungicides
and microorganisms exhibiting inhibitory capabilities against mold growth. Better under-
standing of these interactions would improve our ability to realistically assess the utility
and applicative possibilities of integrated solutions in various agricultural areas.

Due to the lack of universal legislation, active substances may be allowed or prohibited
in different parts of the world. This can create problems for comparison of experimental
data. There is a need to keep the data as up to date as possible to ensure that future
experiments will use substances that are permitted by the regional authorities, allowing for
better data comparison between different microorganisms.
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6. Summary

Synthetic (chemical) fungicides are currently the most common means for protect-
ing plants and grains against phytopathogens. Farmers use them to protect their crops
against the constant risk of infection with phytopathogens and, consequently, prevent
economic losses. However, synthetic fungicides can also have a negative impact on the
natural environment, including human and animal health. Moreover, when fungicides are
overused, applied at sub-lethal doses, or used inappropriately, fungi can develop resistance
to these chemicals. Concerns about their impact on human health, the environment, and
the development of resistant pathogens have led to increased scrutiny and regulation. In
response, many regions, including the European Union, have introduced restrictions on
the use of synthetic fungicides.

Biological control agents appear to be a safe alternative to chemical fungicides for plant
and seed protection. Biological control agents can help reduce the reliance on chemical
fungicides. However, the complete or partial elimination of synthetic fungicide usage
would create a gap that is difficult to fill in the short term. Furthermore, natural fungicides
also have some disadvantages (Table 4). The choice between synthetic and natural fungi-
cides for plant and seed treatments depends on many factors, including the type of crop,
environmental conditions, and local regulations governing the use of plant protection prod-
ucts. It is important to strike a balance between producing efficient crops and protecting
the environment and human health.

Table 4. Summary of advantages and disadvantages of natural and synthetic fungicides.

Antifungals Advantages Disadvantages

Natural

• more environment friendly, decompose more easily
in the natural environment and may have less impact
on ecosystems;

• fewer residues in plants and food products;
• lower risk of developing resistance.

• often shorter duration of action than
synthetic substances, more frequent
treatments required;

• if used incorrectly they may be toxic to
humans and animals;

• less stable composition.

Synthetic

• often more effective in plant protection and more
efficient for plant production;

• their composition and properties can be precisely
controlled;

• more stable and durable, their effect lasts longer than
that of natural substances;

• better control of seed dressing processes and more
precisely adjusted dosing;

• cheaper to produce, easier to store and transport.

• often toxic to humans and animals, health
risks;

• negative impact on the environment,
contamination of soil, groundwater, and
surface water.

In summary, the choice of preparations used to protect plants in agriculture is not
always simple or straightforward. A promising approach seems to be the appropriate
integration of natural and synthetic agents. Such integrated strategies can help to provide
an effective solution to plant disease control problems while mitigating the adverse effects
of synthetic fungicides alone. It is important to ensure that synthetic fungicides are used
effectively so that they can play a part in more sustainable agriculture. To fully realize
the potential of integrated approaches in responsible agricultural management, further
investment and development in the following areas are necessary:

• Registration procedures and regulatory guidelines;
• Research tools that monitor and evaluate the risk of long-term use, in terms of main-

taining the biodiversity of natural environments and, above all, the safety of people
and animals.

With further development of technology, solutions applied directly to plants might
soon be complemented by advanced approaches such as precision agriculture (or precision
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farming). This method utilizes remote sensing, yield monitoring, robotics, machine learning,
and data analysis to boost efficiency and productivity in agriculture. Through data analysis
and machine learning, the usage of fertilizers, pesticides, and water can be optimized,
thereby reducing the overall costs of food production [240]. Additionally, collected data
could become a valuable source of information for developing highly effective Integrated
Pest Management (IPM) strategies [241]. Fungicides, which are crucial for controlling
fungal diseases in crops, fit seamlessly into the framework of precision agriculture. The
integration of fungicides into this advanced agricultural approach can lead to solutions
such as the targeted application of fungicides (e.g., using the fungicide in the areas of
the field that are most prone to infections) or applying the fungicide at optimal times
to reduce the need for blanket applications, which could further reduce their use. The
integration of fungicides into precision agriculture will likely enhance their effectiveness
while reducing environmental and economic costs. By overcoming current hurdles such
as high costs, technology integration, and education, precision agriculture, coupled with
innovative fungicide developments, promises a more sustainable and productive future for
farming [242,243].
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