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Abstract: The extracellular matrix of most bacterial biofilms contains polysaccharides, proteins,
and nucleic acids. These biopolymers have been shown to mediate fundamental biofilm-related
phenotypes including surface attachment, intercellular adhesion, and biocide resistance. Enzymes
that degrade polymeric biofilm matrix components, including glycoside hydrolases, proteases, and
nucleases, are useful tools for studying the structure and function of biofilm matrix components and
are also being investigated as potential antibiofilm agents for clinical use. Dispersin B is a well-studied,
broad-spectrum antibiofilm glycoside hydrolase produced by Aggregatibacter actinomycetemcomitans.
Dispersin B degrades poly-N-acetylglucosamine, a biofilm matrix polysaccharide that mediates
biofilm formation, stress tolerance, and biocide resistance in numerous Gram-negative and Gram-
positive pathogens. Dispersin B has been shown to inhibit biofilm and pellicle formation; detach
preformed biofilms; disaggregate bacterial flocs; sensitize preformed biofilms to detachment by
enzymes, detergents, and metal chelators; and sensitize preformed biofilms to killing by antiseptics,
antibiotics, bacteriophages, macrophages, and predatory bacteria. This review summarizes the results
of nearly 100 in vitro and in vivo studies that have been carried out on dispersin B since its discovery
20 years ago. These include investigations into the biological function of the enzyme, its structure and
mechanism of action, and its in vitro and in vivo antibiofilm activities against numerous bacterial
species. Also discussed are potential clinical applications of dispersin B.

Keywords: biofilm matrix; biomaterial coating; DspB; EPS; exopolysaccharide; extracellular DNA;
eDNA; matrix-degrading enzyme; PIA; PNAG; Staphylococcus aureus; Staphylococcus epidermidis

1. Introduction

Biofilms are densely packed communities of microorganisms, enclosed in a self-
synthesized extracellular polymeric matrix, growing attached to a tissue or surface [1].
Biofilm is the primary mode of growth for microbes in most natural, industrial, and
clinical environments. Biofilms exhibit a high tolerance to exogenous stress, and treat-
ment of biofilms with biocides is usually ineffective at eradicating them [2]. Biofilms
create many problems, ranging from industrial corrosion and biofouling to chronic and
nosocomial infections.

Various antibiofilm strategies are currently being investigated. These include bio-
material surface modifications, quorum-sensing inhibitors, quorum-quenching enzymes,
bacteriophages and phage-derived enzymes, and biofilm-matrix-degrading enzymes [3].
The biofilm matrix is a good target for antibiofilm agents because, unlike cells buried deep
within the biofilm colony, the biofilm matrix is highly accessible to the outside environment
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and is inherently porous [4]. Agents that degrade or destabilize the biofilm matrix can
inhibit biofilm formation or promote the detachment of established biofilm colonies [3].
Once the biofilm colony is dispersed, the cells exhibit increased sensitivity to killing by
biocides and host defenses [2].

Numerous biofilm-matrix-degrading enzymes have been described [5–7]. These in-
clude various glycoside hydrolases, proteases, and nucleases, which degrade the polysac-
charide, protein, and nucleic acid components of the biofilm matrix, respectively. These
biopolymers have been shown to mediate fundamental biofilm-related phenotypes includ-
ing surface attachment, intercellular adhesion, and biocide resistance [4]. The advantages of
biofilm-matrix-degrading enzymes are that they exhibit broad-spectrum activity and they
exert little or no selection pressure because they generally do not kill bacteria or inhibit their
growth. The disadvantage of these enzymes is that they release microbial cells from the
biofilm that can spread and cause infections at distant sites or elicit a hyper-inflammatory
or hyper-immunogenic response [6]. Therefore, biofilm-matrix-degrading enzymes may be
more useful for biofilm prevention rather than for the treatment of established biofilms, or
they may need to be used in combination with antimicrobial agents to minimize these risks.

The glycoside hydrolase dispersin B is one of the best-studied biofilm-matrix-degrading
enzymes. Dispersin B hydrolyzes poly-β(1,6)-N-acetylglucosamine (PNAG), a biofilm ma-
trix polysaccharide that plays a role in surface attachment, biofilm formation, and biocide
resistance in a wide range of Gram-negative and Gram-positive pathogens [8]. This review
describes the initial discovery and characterization of dispersin B from Aggregatibacter
actinomycetemcomitans, as well as subsequent studies on its structure and mechanism of
action. Also highlighted are numerous studies demonstrating that dispersin B exhibits
broad-spectrum antibiofilm activity against more than 25 phylogenetically diverse bac-
terial species in vitro and in vivo. Some potential clinical applications of dispersin B,
such as medical device coatings, topical wound gels, and combination products, will also
be discussed.

Discovery of dispersin B: The Gram-negative, non-motile periodontopathogen
A. actinomycetemcomitans forms extremely tenacious biofilms on abiotic surfaces such as
plastic and glass in vitro [9]. Its adherence is so strong that the broth shows no turbidity, re-
moval of cells from the culture vessel surface by vortex agitation is negligible, and aliquots
of medium taken from the culture are often sterile upon subculture. This remarkable
phenotype makes A. actinomycetemcomitans a useful model for studying the process of
biofilm dispersal, because cells that detach from mature biofilm colonies adhere tightly to
the surface of the culture vessel and form independent daughter biofilm colonies that can
be visualized and enumerated (Figure 1, left panel). Screening a transposon mutant library
of A. actinomycetemcomitans strain CU1000 identified five mutant strains that were defective
in biofilm dispersal (Figure 1, right panel). The transposons in three mutant strains inserted
into genes required for lipopolysaccharide O-side-chain biosynthesis [10]; the transposon
in one mutant strain inserted into ptsI, which encodes a regulator of sugar uptake and
catabolite repression (J.B. Kaplan, unpublished results); and the transposon in one mutant
strain (designated JK1023) inserted into a novel gene encoding a putative β-hexosaminidase
enzyme [11]. The gene disrupted in the mutant strain JK1023 was named dspB, and the
protein that it encodes was named dispersin B. A plasmid carrying a wild-type dspB gene
restored the ability of JK1023 biofilm colonies to disperse [11].
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Figure 1. Dispersal of isolated Aggregatibacter actinomycetemcomitans biofilm colonies growing on the
surface of polystyrene Petri dishes: (left panel) wild-type strain CU1000; (right panel) ∆dspB mutant
strain JK1023. Satellite colonies surrounding the dispersed CU1000 biofilm colony were absent in the
JK1023 culture. Photos were taken 3 d after inoculation. Scale bar = 1 mm. Image from [12].

Biological functions of dispersin B: Although the A. actinomycetemcomitans dspB
mutant strain JK1023 exhibited a severe biofilm dispersal defect in broth, it exhibited
wild-type surface attachment and biofilm formation phenotypes (Figure 1). Strain JK1023
also produced colonies on agar that had a hard texture and were extremely difficult to
remove from the agar surface. In test tubes, JK1023 cells aggregated and settled to the
bottom of the tube much more rapidly than cells of the wild-type strain CU1000 [11].
These phenotypes demonstrate that dispersin B decreases the intercellular adhesion of
A. actinomycetemcomitans in vitro. Stacy et al. [13] constructed a ∆dspB mutation in a
different A. actinomycetemcomitans parental strain (strain 624). They confirmed that dis-
persin B promotes biofilm dispersal in vitro and further demonstrated that dispersin-B-
mediated biofilm dispersal is triggered by oxygen and H2O2. In a murine abscess model, the
A. actinomycetemcomitans 624 ∆dspB mutant strain established similar single-species infec-
tions compared to the wild-type strain, but upon co-infection with Streptococcus gordonii the
624 ∆dspB mutant strain formed larger cell aggregates than those formed by the wild-type
strain, and these aggregates were located closer to S. gordonii aggregates than those of
the wild-type strain. These findings suggest that dispersin B can modulate the spatial
organization of cells within multi-species biofilms in vivo.

Zhang et al. [14] constructed a ∆dspB mutation in Actinobacillus pleuropneumoniae strain
4074, a swine pathogen that produces an orthologue of A. actinomycetemcomitans dispersin
B [15]. The A. pleuropneumoniae ∆dspB mutant strain exhibited increased autoaggregation
and biofilm formation in vitro, phenotypes that were not evident when a wild-type dspB
gene was supplied on a plasmid. These findings confirm that dispersin B modulates
bacterial intercellular adhesion and biofilm formation in different species in vitro.

The dspB gene: The A. actinomycetemcomitans dspB gene encodes a protein of 381 amino
acids that includes a 20-amino-acid N-terminal signal sequence that is cleaved upon secre-
tion outside the cell. The genomes of at least 32 different bacterial species contain genes
that exhibit >50% identity to A. actinomycetemcomitans dspB at the amino acid level (Table 1
and Figure 2) These include 16 species of Pasteurellaceae, 15 species of Neisseriaceae, and Car-
diobacterium hominis (family Cardiobacteriaceae). Pasteurellaceae and Neisseriaceae have been
found on the mucosal surfaces of the upper respiratory tracts of vertebrates and are often
opportunistic pathogens [16]. C. hominis is a normal human oral and upper respiratory
commensal that is rarely a cause of endocarditis [17]. The phylogeny of dspB homologues
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was congruent with the phylogenetic tree at the species level (Figure 2), suggesting that
dspB emerged in an ancestor of these three bacterial families. All of the amino acid residues
that play a critical role in A. actinomycetemcomitans dispersin B substrate hydrolysis (Arg27,
Asp183, Glu184, Glu332; see below), as well as the three tryptophan residues at positions
216, 237, and 330 that line part of the substrate-binding pocket, were conserved in 31 of
the 32 dspB homologues analyzed. Only the Kingella oralis homologue has substitutions
at these critical positions (Arg27His, Glu184Ala, Trp237His, Trp330Glu, Glu332Asp). This
suggests that most dspB homologues have the potential to encode functional dispersin B
enzymes. Differences in the lengths of the predicted proteins result from N- or C-terminal
extensions in the sequences of some species. Only small insertions/deletions of 1-4 amino
acids are present within the core region of the protein.

Table 1. Orthologues of A. actinomycetemcomitans dspB in bacteria. Sequences were identified with
a protein BLAST search using A. actinomycetemcomitans dispersin B (GenBank accession number
WP_005566076) as a query sequence.

Species Family GenBank Accession No. Amino Acids

Actinobacillus capsulatus Pasteurellaceae WP_018652103.1 378

Actinobacillus equuli Pasteurellaceae WP_039197353.1 378

Actinobacillus lignieresii Pasteurellaceae WP_126375001.1 377

Actinobacillus pleuropneumoniae Pasteurellaceae WP_005617581.1 377

Actinobacillus succinogenes Pasteurellaceae WP_012072607 508

Actinobacillus suis Pasteurellaceae WP_014991875.1 378

Actinobacillus ureae Pasteurellaceae WP_115607612.1 378

Actinobacillus vicugnae Pasteurellaceae WP_150540037.1 378

Aggregatibacter actinomycetemcomitans Pasteurellaceae WP_005566076 361

Aggregatibacter aphrophilus Pasteurellaceae OBY54997.1 403

Aggregatibacter kilianii Pasteurellaceae WP_275425143.1 339

Basfia succiniciproducens Pasteurellaceae WP_305367133 480

Cardiobacterium hominis Cardiobacteriaceae WP_281839854.1 528

Exercitatus varius Pasteurellaceae WP_317543108.1 508

Haemophilus pittmaniae Pasteurellaceae WP_269457014 381

Kingella oralis Neisseriaceae WP_315367803.1 405

Lonepinella koalarum Pasteurellaceae WP_228777406.1 363

Mannheimia succiniciproducens Pasteurellaceae AAU37718.1 501

Neisseria animaloris Neisseriaceae WP_199901419.1 517

Neisseria brasiliensis Neisseriaceae MRN37458.1 340

Neisseria canis Neisseriaceae WP_085415444.1 508

Neisseria chenwenguii Neisseriaceae WP_199720929.1 421

Neisseria dentiae Neisseriaceae WP_211276428.1 400

Neisseria dumasiana Neisseriaceae WP_085417823.1 395

Neisseria montereyensis Neisseriaceae WP_289623084.1 398

Neisseria musculi Neisseriaceae WP_187000616.1 388

Neisseria oralis Neisseriaceae WP_308022698.1 410
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Table 1. Cont.

Species Family GenBank Accession No. Amino Acids

Neisseria shayeganii Neisseriaceae WP_220457298.1 770

Neisseria wadsworthii Neisseriaceae WP_009115775.1 468

Neisseria weixii Neisseriaceae WP_096294699.1 392

Neisseria zalophi Neisseriaceae WP_318527728.1 398

Neisseria zoodegmatis Neisseriaceae WP_085364538.1 395

1 
 

 

Figure 2 
Figure 2. Phylogenetic relatedness of dispersin B homologues based on pairwise alignments of
the amino acid sequences listed in Table 1. The alignment was generated using ClustalW, and the
phylogenetic tree was generated using FastTree software. Lacto-N-biosidase from Lactococcus lactis
(GenBank accession number AGY45663.1) was used as an outgroup to locate the root of the tree.
Horizontal branch lengths are proportional to the number of amino acid differences in the pairwise
alignments. Bacterial families are indicated on the right.
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Several studies have investigated the transcriptional regulation of A. actinomycetem-
comitans dspB, which is flanked by an upstream promoter sequence and a downstream
rho-independent transcription terminator sequence and does not appear to be part of an
operon. Stacy et al. [18] analyzed the transcriptome of A. actinomycetemcomitans strain
VT1169 during oxic and anoxic growth using DNA microarrays. They found that dspB
transcription was induced by oxygen. They also cloned the dspB promoter upstream of a
lacZ reporter gene and then introduced the dspB-lacZ reporter gene into A. actinomycetem-
comitans strains 624 and VT1169. When grown as colony biofilms, both reporter strains
exhibited significant β-galactosidase activity under oxic conditions but little activity under
anoxic conditions. Interestingly, dspB induction in both strains could be mitigated by ex-
ogenously added catalase or a mutation in oxyR which encodes a transcriptional regulator.
These findings indicate that dspB transcription is activated during growth with oxygen
in an OxyR-dependent manner, and that the activating factor is likely H2O2. Using these
same two dspB-lacZ reporter strains, Stacy et al. [18] showed that transcription of dspB was
increased >5-fold upon iron restriction. This induction was abolished when FeSO4 was
added to the medium. Furthermore, dspB transcription was increased >30-fold in a ∆fur
mutant under the same conditions, confirming that the dspB promoter is regulated by iron
and Fur. Other studies [19,20] showed that postbiotic compounds produced by lactic acid
bacteria can modulate dspB expression and biofilm formation in A. actinomycetemcomitans,
although more studies are needed to determine the mechanism of action and clinical utility
of such compounds.

2. Production of Recombinant Dispersin B

Production of recombinant dispersin B in Escherichia coli: Kaplan et al. [11] con-
structed a plasmid (pRC1) that carries a gene encoding amino acids 21-381 of A. actino-
mycetemcomitans CU1000 dispersin B, fused to a 32-amino-acid C-terminal tail containing a
hexahistidine metal-binding site and a thrombin protease cleavage site that can be used
to cleave the C-terminal tail from the hybrid protein. This gene was located downstream
from an IPTG-inducible tac promoter. E. coli strain BL21(DE3) was transformed with pRC1,
induced with IPTG, and the protein was purified using Ni2+-affinity chromatography. After
cleavage with thrombin, the purified protein migrated with the expected molecular mass of
41.5 kDa. The yield of purified dispersin B was 10 mg/L of culture. Ramasubbu et al. [21]
constructed a similar plasmid (pRC3) that encodes amino acids 21-381 of CU1000 dspB,
fused directly to a hexahistidine metal-binding C-terminal tail to facilitate crystallization.
When expressed from an IPTG-inducible tac promoter on a plasmid and purified by Ni2+-
affinity chromatography, this construct yielded up to 60 mg/L of dispersin B. Yakamdawala
et al. [22] engineered a dspB gene devoid of the trinucleotide ACA. This was accomplished
by silently and consecutively mutating each of the 14 occurrences of ACA in the wild-type
dspB gene using PCR. Previous studies showed that mRNA transcripts lacking ACA se-
quences are protected from degradation by MazF, a sequence-specific endoribonuclease
produced by E. coli. Expression of ACA-less dspB in E. coli strain Tuner(DE3)pLacI gener-
ated 236 mg/L of dispersin B versus 133 mg/L for wild-type dspB when expressed from
a T7 promoter. Gökçen et al. [23] reported a dispersin B yield of about 60 mg/L when a
codon-optimized dspB gene was cloned downstream from a tetracycline promoter/operator,
transformed into E. coli, induced with anhydrotetracycline, and purified by Ni2+-affinity
chromatography. In addition, Zeng et al. [24] reported that hexahistidine-tagged dispersin
B purified on Ni2+ ion-chelated magnetic nanoparticles exhibited higher purity and activity
than protein purified on conventional Ni2+-affinity columns.
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Production of recombinant dispersin B in tobacco: Tobacco expression systems
offer several advantages over E. coli, including lower costs, higher yields, and simplified
downstream processing. Opdensteinen [25] expressed a codon-optimized, hexahistidine-
tagged A. actinomycetemcomitans dspB gene in Nicotiana tabacum BY2 cells and N. benthamiana
plants. N. benthamiana is a close relative of N. tabacum that is commonly used for “pharming”
of recombinant proteins for clinical use. The recovery of dispersin B in planta was 75%,
its purity was 96%, and a yield of up to 164 mg/kg of plant tissue was reported. These
values were equivalent to those achieved in E. coli, suggesting that scalable purification of
dispersin B in tobacco is feasible.

3. Dispersin B’s Structure and Mechanism of Action

A. actinomycetemcomitans dispersin B was crystalized using the hanging-drop vapor
diffusion technique, and its 3D structure in complex with a glycerol molecule and an acetate
ion at the active site was solved and refined to a resolution of 2.0 Å using the automated
structure solution pipeline autoSHARP [21]. Dispersin B is a monomeric enzyme whose
primary amino acid structure corresponds to that of the glycoside hydrolase family 20 group
of enzymes (CAZY GH_20). This family comprises diverse β-hexosaminidases produced
by both prokaryotes and eukaryotes, as well as lacto-N-biosidase (EC 3.2.1.14), an enzyme
involved in the degradation of human milk oligosaccharides in the gut microbiota of
breast-fed infants.

Like all glycoside hydrolase family 20 enzymes, dispersin B adopts a TIM barrel
protein fold consisting of eight α-helices and eight parallel β-strands that alternate along
the polypeptide backbone (Figure 3). The active site of the enzyme is a large central
cavity at the center of the TIM barrel that exhibits a negative electrostatic potential due
to the presence of a number of polar acidic residues that are also conserved in other β-
hexosaminidases (Figure 4A). Trp216 and Trp330 form the floor of the 12 Å deep substrate-
binding pocket where the hexose ring binds. Asp183 and Glu184 are the catalytic residues
that are conserved in all glycoside hydrolase family 20 enzymes [26–28].
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Figure 4. Dispersin B’s active site and mechanism of action: (A) Electrostatic surface potential at
the active site showing the negatively charged amino acids (Asp56, Asp183, Glu184, Glu332), which
create a shallow anionic region in the catalytic pocket. The size of the pocket is approximately
12 Å. GOL, glycerol; ACY, acetate. Figure generated using ChimeraX [29]. (B) Substrate hydrolysis
mechanism proposed for dispersin B and other glycoside hydrolase family 20 hexosaminidases. In
this substrate-assisted mechanism, Glu184 acts as the acid/base. The nucleophile is the N-acetyl
group of the substrate, which is assisted by Asp183. Both exo- (dPNAG) and endoglycosidic (PNAG)
cleavage are shown, where the leaving group is either deacetylated or acetylated, respectively. A
suitably positioned Asp183 helps stabilize the oxazolium ion in the transition state. Figure generated
using ChemDraw (PerkinElmer).

Evidence suggests that dispersin B utilizes a substrate-assisted mechanism, com-
monly referred to as the double-displacement retaining mechanism, similar to other β-
hexosaminidases (Figure 4B). A unique feature of this mechanism is the participation of
the acetamido group of the substrate, which provides anchimeric assistance and acts as
the nucleophile while a suitably juxtaposed amino acid residue acts the acid/base. This
mechanism was confirmed using biochemical analyses of native dispersin B enzymes with
different substrates, as well as mutational analyses [27,30–34]. In this mechanism, the
active site residue Asp183 binds to the N-acetyl group of PNAG, and Glu184 serves as
the catalytic acid/base (Figure 4B). Asp183 may also help stabilize the positive charge
that develops in the oxazoline transition state (Figure 4B) or help distort the substrate to
direct the 2-acetamido group toward the anomeric carbon [28]. Proteins with Asp183Asn
and Glu184Gln mutations exhibited >10,000-fold and >70-fold decreased activity, respec-
tively, compared to the wild-type enzyme, irrespective of the substrate used for hydrol-



Pathogens 2024, 13, 668 9 of 26

ysis. A mutation in another acidic residue located near the catalytic residues (Glu332)
exhibited 2000-fold lower activity than the native enzyme. Glu332 may provide stabiliza-
tion in the transition state while the terminal glucosamine is undergoing conformational
changes [27]. Mutations in Asp147 and Asp245, which are also located in the anionic pocket
near the active site, also exhibited decreased enzyme activity. These residues may play
a role in recognition of the cationic PNAG substrate. Four aromatic amino acid residues
(Tyr187, Tyr278, Trp237, Trp330) line the hydrophobic substrate-binding pocket, where
they bind to and orient the PNAG substrate. As expected, mutations in these residues
exhibited 5–2400-fold less activity that the wild-type enzyme. In addition to these acidic
and aromatic amino acid residues, all β-hexosaminidases have a conserved arginine that is
involved in substrate binding at the active site, equivalent to Arg27 of A. actinomycetem-
comitans dispersin B. Enzymes with Arg27Lys and Arg27Ala mutations exhibited 2400-fold
and >1700-fold reductions in activity, respectively. Overall, these mutational studies con-
firm that dispersin B utilizes the same substrate-assisted mechanism as that utilized by
other glycoside hydrolase family 20 enzymes.

All PNAG exopolysaccharides have been shown to be post-translationally modified
by partial deacetylation (ca. 15–20%), which is critical for PNAG-dependent biofilm for-
mation [8]. Dispersin B exhibits both exo- and endoglycosidase activity against PNAG,
depending on the nature of the substrate [27,31,32,35]. Dispersin B exhibits greater ac-
tivity against fully deacetylated PNAG (dPNAG) than against fully acetylated PNAG.
Thus, the mechanism of action of dispersin B evidently depends on different patterns of
deacetylation [35,36]. Studies utilizing site-directed mutagenesis and synthetic PNAG
oligosaccharides demonstrated that the increased rate of hydrolysis for dPNAG was medi-
ated by interaction of the glucosamine residues of dPNAG with Asp147 and Asp242, which
are located in a shallow anionic groove adjacent to the catalytic pocket [36,37]. Dispersin
B containing an Asp242Asn mutation was highly deficient in endoglycosidase activity
while maintaining exoglycosidase activity. These findings suggest that dispersin B exhibits
endoglycosidic cleavage against dPNAG due to the absence of an acetamido group on
dPNAG. The exhibition of both exo- and endoglycosidic activity by dispersin B might be
critical during biofilm formation and dispersal, since this would catalyze the hydrolysis of
both PNAG and dPNAG in an efficient manner.

4. Dispersin B as a Tool for Studying Biofilms

Dispersin B as a probe for PNAG production: PNAG has been identified as a highly
conserved surface polysaccharide produced by diverse bacterial, fungal, and protozoal
pathogens [38,39]. However, PNAG is difficult to isolate and purify because it is usually
produced at low levels and is tightly bound to the cell surface. An alternative method for
detecting PNAG is fluorescence confocal microscopy using the antigen-specific human
IgG1 monoclonal antibody F598 [38]. Figure 5 shows that the immunoreactivity of Yersinia
pestis cells with mAb F598 was lost after the cells were treated with dispersin B, but not with
chitinase—a related glycoside hydrolase that degrades chitin, a polymer of β(1,4)-linked N-
acetylglucosamine residues [40]. This same dispersin-B-induced loss of immunoreactivity
with mAb F598 was observed in Bacillus subtilis [41] and several other prokaryotic and
eukaryotic pathogens [38,42,43]. These findings demonstrate that dispersin B can function
as a sensitive and specific probe for PNAG.

Dispersin B is often used along with proteinase K and DNase I to investigate the
composition of the biofilm matrix. For example, dispersin B, but not proteinase K or DNase
I, degraded insoluble extracellular matrix components of S. aureus strain SH1000 [44]
and strain MR10 [45], confirming that the biofilm matrix of these strains primarily con-
tains PNAG. This is consistent with the susceptibility of these strains to detachment by
dispersin B.
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Figure 5. Confocal microscopic analysis of PNAG expression by Y. pestis strain KIM6+ grown at 28 ◦C
overnight on Congo red agar. After treatment of bacterial cells with either chitinase (top panels) or
dispersin B (bottom panels), cells were stained with Syto 83 to visualize DNA (red) and Alexa Fluor
488-conjugated mAb F598 to detect PNAG (green). Bars = 10 µm. Figure from Yoong et al. [40].

Eddenden et al. [46] and Eddenden and Nitz [47] leveraged the specificity of dispersin
B to construct a probe (Dispersin B PNAG probe or DiPP) for monitoring and localizing
PNAG production during biofilm formation. DiPP was created by mutating one amino acid
in the dispersin B active site (E184), which rendered the enzyme catalytically inactive but
still capable of binding to PNAG, and then fusing inactive dispersin B to green fluorescent
protein (GFP-DiPP). Fluorescent imaging studies demonstrated that GFP-DiPP bound to
PNAG-dependent cells and biofilms, but not to PNAG-independent cells and biofilms,
thereby demonstrating the specificity of the probe for PNAG. DiPP binding experiments
with the PNAG-producing E. coli strain MG1655 revealed a high concentration of PNAG
at the bacterial cell surface, which was localized in discrete areas. These distinct areas
appeared to slough from the cells and accumulate in interbacterial regions during the
development of a PNAG-dependent biofilm. A helical distribution of staining was also
observed, suggesting spatial organization of PNAG on the cell surface prior to biofilm
formation These experiments demonstrate the potential value of a highly specific dispersin
B probe for monitoring PNAG production.

Dispersin B as a probe for PNAG function: Several studies have used dispersin B
to demonstrate that PNAG plays a role in bacterial intercellular adhesion, biofilm forma-
tion, biofilm porosity, and host cell binding. Al Laham et al. [48] found that S. epidermidis
small-colony variants, which are sometimes associated with device infections, produced
large cell aggregates when cultured under planktonic conditions. These cell aggregates
were completely disintegrated by dispersin B, demonstrating that PNAG serves as an
intercellular adhesin, a finding that was subsequently confirmed by indirect immunoflu-
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orescence assays with anti-PNAG antiserum. Similarly, Amini et al. [49] demonstrated
that exogenously added PNAG enabled non-PNAG-producing strains of E. coli to form
biofilms, a fact that was confirmed when dispersin B treatment abolished the activity.
Ganeshnarayanan et al. [50] measured the transport of water and the cationic surfactant
cetylpyridinium chloride (CPC) through S. epidermidis and A. pleuropneumoniae biofilms
cultured in centrifugal filter devices. Significantly more water and CPC passed through the
biofilms after treatment with dispersin B compared to the amount that passed through un-
treated biofilms. Similarly, significantly more water and CPC passed through S. epidermidis
and A. pleuropneumoniae PNAG-mutant biofilms compared to wild-type biofilms. These
findings suggest that PNAG impedes fluid convection and the transport of small molecules
through biofilms. Similarly, Lin et al. [51] showed that pre-treating PNAG-expressing S.
carnosus cells with dispersin B significantly decreased their ability to bind to human RPMI
2650 nasal epithelial cells.

Dispersin B as a tool for eDNA extraction: Extracellular DNA (eDNA) is an impor-
tant matrix component of many bacterial biofilms, but it is sometimes difficult to isolate
because it binds to other biofilm matrix components, including PNAG [52]. Wu and Xi [53]
showed that when biofilms of Acinetobacter sp. grown in 6-well microtiter plates were
pre-treated with dispersin B, they yielded more eDNA than untreated biofilms. Similarly,
Wu and Xi [54] showed that dispersin B treatment significantly increased the yield of eDNA
extracted from Stenotrophomonas maltophilia and Acinetobacter baylyi AC811 biofilms grown
in 6-well plates. Thus, dispersin B may be a useful tool for eDNA extraction and analysis.

5. Modifications to Dispersin B

Chemical modification of dispersin B: Abdelkader et al. [55] covalently modified
dispersin B with nine cyclodextrin molecules. Cyclodextrins are cone-shaped molecules
that contain a hydrophobic central cavity that can bind to other hydrophobic molecules. The
cyclodextrin modifications had no effect on the ability of dispersin B to detach preformed
biofilms produced by four strains of S. epidermidis. The researchers then covalently linked
ciprofloxacin to a hydrophobic adamantyl group and formed a complex between dispersin
B/cyclodextrin and ciprofloxacin/adamantane to create an “all-in-one” drug delivery
system that could destroy the biofilm matrix and simultaneously release the antibiotic.
When tested against 24-hour-old biofilms produced by S. epidermidis strain 5 (a PNAG-
overproducing strain) in 96-well microtiter plates, the enzyme/antibiotic complex exhibited
a more than 2-log increase in biofilm eradication compared to dispersin B/cyclodextrin
alone, thereby demonstrating the feasibility of this approach.

Dispersin-B-loaded nanoparticles: Various nanobiotechnology-based approaches for
eradicating bacterial biofilms, including functionalized metallic nanoparticles, are being
investigated. To this end, Liu et al. [56] created a fusion protein between dispersin B and
MagR, a protein involved in responses to magnetism in Drosophila melanogaster that can be
used as a fusion partner to functionally immobilize proteins on magnetic surfaces. MagR
was fused to the C-terminus of dispersin B, expressed in E. coli, and purified by Ni2+-affinity
chromatography. The dispersin B-MagR fusion protein was immobilized on Fe3O4/SiO2
magnetic nanoparticles and tested for its ability to detach preformed biofilms produced
by Bacillus cereus, Staphylococcus aureus, and one additional staphylococcal strain in 24-
well microtiter plates. The authors found that Fe3O4/SiO2 nanoparticles loaded with the
dispersin B-MagR fusion protein detached pre-biofilms more efficiently than Fe3O4/SiO2
nanoparticles or the dispersin B-MagR fusion protein alone. In addition, immobilization
of dispersin B-MagR on magnetic nanoparticles increased the stability of the enzyme and
increased its optimal temperature from 30 ◦C to 37 ◦C. Theoretically, this system could be
used to deliver dispersin B to specific sites under the function of a magnetic force. Similarly,
Chen and Lee [57] fused a 12-amino-acid silver-binding peptide to the N-terminus of
dispersin B in order to prepare Ag nanoparticles conjugated with dispersin B. The goal
was to create an agent that could both disrupt biofilms and simultaneously kill plank-
tonic cells released from the disrupted biofilms. Although Ag nanoparticles could not be
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conjugated with the dispersin B/Ag-binding peptide fusion protein because dispersin B pre-
cipitated in the presence of Ag ions, the fusion protein itself was found to detach preformed
S. epidermidis biofilms grown on silicone sheets or glass coverslips twofold more efficiently
than native dispersin B.

Dispersin B as a medical device coating: Implanted medical devices and wound
dressings coated with dispersin B have the potential to reduce the incidence of device
infections and promote wound healing. Strategies for grafting dispersin B onto solid
surfaces rely on either non-covalent absorption/adsorption of the enzyme to the surface,
or its covalent attachment to the surface. These strategies are designed to achieve a high
local concentration of dispersin B in the vicinity of the biomaterial surface.

One example of non-covalent binding of dispersin B to biomaterials was reported by
Hagan et al. [58], who adsorbed dispersin B and amikacin onto a commercially available,
degradable hydrogel (VetriGel). Although these agents were successfully trapped within
the hydrogel, the chemistry of the hydrogel did not support long-term retention of dispersin
B, and the trapped molecules underwent rapid elution within the first 24 h. A similar
approach was reported by Kaplan et al. [59], who adsorbed dispersin B onto unmodified
polyurethane and Teflon catheters and showed that the coated catheters efficiently resisted
biofilm formation by S. epidermidis. The amount of enzyme retained on the surface was
not measured, although catheters that were pre-coated and dried retained their antibiofilm
activity after one month of storage at 4 ◦C.

Additional studies quantified the adsorption of dispersin B on polyurethane disks,
including those functionalized with acidic and basic groups [60]. These studies showed
that coating polyurethane surfaces with dispersin B resulted in a >1 log unit reduction in
S. aureus and S. epidermidis biofilms compared to the amount of biofilm formed on uncoated
polyurethane. In addition, staphylococcal biofilms that were grown on dispersin-B-loaded
polyurethane disks and rinsed exhibited increased sensitivity to killing by cefamandole
nafate compared to biofilms grown on uncoated polyurethane disks. In a similar study,
Darouiche et al. [61] showed that polyurethane central venous catheters coated with dis-
persin B and triclosan efficiently resisted colonization by S. aureus, S. epidermidis, E. coli, and
C. albicans.

In other studies, dispersin B was trapped within a porous structure of biodegrad-
able asymmetric membranes that were designed for wound dressing applications [62,63].
The efficiency of dispersin-B-loaded poly(3-hydroxybutyrate-co-4-hydroxybutyrate) mem-
branes against S. epidermidis was modest (12% reduction) and occurred only in the case
of preformed biofilms [62]. However, an improved membrane micro/nanostructure con-
trolled by a polymeric porogen, as well as treatment of membrane surfaces with NaOH to
create a surface charge, enhanced the antibiofilm activity of the membrane. Specifically,
S. epidermidis biofilm formation was inhibited by 33%, while 26% of the preformed biofilm
was destroyed [63]. By further improving the nanoporosity and efficiency of a poly(butylene-
succinate-co-adipate)-based asymmetric membrane using a polymeric porogen, Bou Haidar
et al. [64] showed that up to 80% of preformed S. epidermidis biofilms could be eradicated
using this approach.

While a general feature of non-covalently adsorbed proteins is their tendency to
desorb upon extensive dilution with a medium, controlling the nature and density of the
adsorption sites can achieve strong binding of enzymes at surfaces. The latter scenario was
realized by employing the layer-by-layer technique to construct surface hydrogels with a
high density of basic groups, followed by trapping of dispersin B within the coatings [65].
Although dispersin B was retained within the coating only by electrostatic interactions, the
coatings did not elute dispersin B in solution, were highly stable over a wide range of pH
values, and maintained their antibiofilm function after a several-day-long pre-incubation
in buffer solutions. These dispersin-B-loaded coatings inhibited biofilm formation by a
clinical strain of S. epidermidis (Figure 6A). Importantly, this approach enables facile control
of the amount of immobilized dispersin B by modulating the number of polymer layers in
the surface hydrogels.
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Figure 6. Abiotic surfaces coated with dispersin B resist S. epidermidis biofilm formation and surface
attachment: (A) Biofilm formation by S. epidermidis strain NJ9709 on glass slides containing an
ultrathin layered poly(allylamine hydrochloride) (PAH) hydrogel coating (left panel) or a PAH
coating loaded with dispersin B (right panel). Bacteria were cultured inside plastic cloning cylinders
(5 mm internal diameter) that were attached to the slide with high-vacuum grease. After 12 h, the
biofilms were rinsed, the cloning cylinders were removed, and the slides were photographed. The
rings correspond to the footprints of the cloning cylinders. The biofilm appeared as a white film on
the unloaded PAH layer, which was absent on the dispersin-B-loaded PAH layer. (B) Attachment of S.
epidermidis strain ATCC35984 to uncoated stainless steel disks, or to disks coated with polydopamine-
or plasma-based coatings with or without grafted dispersin B. Source: (A) [65]; (B) redrawn from [66].

An alternative strategy for localized protection against biofilm growth is surface
functionalization via covalent attachment of enzymes. For applications in regenerative
medicine, biodegradable polyhydroxyalkanoate (PHA)-based fiber meshes were functional-
ized with dispersin B along with a synthetic antibacterial peptide by covalent conjugation,
which was achieved by using reactive star-shaped macromolecules as an additive to a PHA
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solution [67]. Efficient prevention of bacterial adhesion (88%) and complete inhibition of S.
epidermidis biofilm formation confirmed the successful presentation of the antibiofilm and
antimicrobial agents at the fiber surface.

Covalent modification of solid surfaces, such as stainless steel mimicking the surfaces
of biomedical implants, enables a convenient and rapid method for creating reactive surface
groups using atmospheric plasma technology for the rapid modification of surfaces with
protein-binding interlayers [66,68]. In one example, epoxy-rich films were created by
introducing glycidyl methacrylate in the plasma, followed by covalent immobilization of
dispersin B and a sulfomethoxazole-degrading enzyme (laccase). These coatings resulted
in a 79–84% reduction in adherent S. epidermidis bacteria [68]. The atmospheric plasma
technique was also used to deposit acrylic-based interlayers containing chemically reactive
catechol/quinone groups on metallic surfaces for subsequent immobilization of dispersin
B [66]. This biomimetic approach with both solution-adsorbed polydopamine (PDA) and
plasma-based interlayers showed high antibiofilm activity against S. epidermidis (Figure 6B).

Faure et al. [69] used the redox and adhesive properties of 3,4-dihydroxy-L-phenylalanine
(DOPA) to apply surface modifications on stainless steel surfaces for enzyme immobiliza-
tion. While a cationic polyelectrolyte-bearing catechol unit that mimics the composition
of adhesive proteins present in mussel feet was used to coat the surface, the capability of
poly(methacrylamide)-bearing quinone groups for crosslinking with amine groups was used
to prepare nanogels that could be easily deposited to stainless steel from aqueous solutions.
Dispersin B containing thiol groups was then covalently anchored on the nanogels, resulting
in coatings that provided long-term activity against S. epidermidis [69].

A different, potentially substrate-agnostic approach was recently developed that
involves covalent conjugation of dispersin B to spider silk protein using the transpeptidase
sortase A [70,71]. This approach is based on the ability of the silk protein to self-assemble via
non-covalent interactions within a coating. The ability to use pre-assembly or post-assembly
enzyme conjugation routes provides flexibility in optimizing the surface presentation of
enzymes, because of the ease and efficiency of the conjugation procedure [70].

Despite the specific advantages and disadvantages of the above approaches, they
all have the potential to create bioactive materials that allow local treatment of complex
infections without the need for invasive procedures, and all deserve further development.

Dispersin-B-expressing bacteria as therapeutic agents: Several studies have inves-
tigated the use of genetically engineered bacterial strains expressing dispersin B as live
therapeutics against biofilm-related infections. Garrido et al. [72] constructed an attenu-
ated strain of Mycoplasma pneumoniae that secretes both dispersin B and lysostaphin, an
endopeptidase that cleaves the pentaglycine crossbridge of the staphylococcal cell wall.
This engineered strain significantly reduced S. aureus biofilm formation in polystyrene
microtiter plates and on polyurethane catheters in vitro. In a murine S. aureus catheter
infection model in vivo, mice treated with M. pneumoniae expressing both dispersin B
and lysostaphin exhibited impaired biofilm formation compared to mice treated with M.
pneumoniae expressing dispersin B alone. In addition, the engineered M. pneumoniae cells
were significantly more efficient at inhibiting S. aureus biofilm formation than the purified
dispersin B enzyme alone or supernatants from the engineered strain, suggesting that such
strains have the potential to provide a continuous supply of dispersin B at infection sites.
Since M. pneumoniae is a respiratory pathogen, these engineered strains may be useful for
the treatment of biofilm-associated respiratory infections.

Ghalsasi and Sourjik [73] fused the secretion tag from E. coli OmpA to the N-terminus
of dispersin B and transformed the hybrid gene into E. coli strain W3110, thereby creating
a “disrupter” strain that secretes dispersin B into the surrounding medium. When tested
against preformed biofilms produced by E. coli strain TRMG1655 in 96-well microtiter plates,
the disrupter strain was found to detach 50% of the target biofilm in 12 h when induced
with 100 mM IPTG. Similarly, Ragunath et al. [74] displayed dispersin B on the surface of
E. coli by fusing dispersin B to a 290-amino-acid C-terminal region of A. actinomycetemcomi-
tans Aae, an autotransporter protein involved in host cell binding. The C-terminal region
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of Aae inserts into the outer membrane and anchors the fusion partner in the membrane.
E. coli cells that displayed dispersin B on their surface efficiently detached preformed
S. epidermidis and A. pleuropneumoniae biofilms in a 96-well microtiter plate assay, further
demonstrating the potential utility of this approach for biofilm control.

Enzymatic bacteriophages: Bacteriophages are being investigated as an alternative
to antibiotics for the treatment of bacterial infections, including those caused by biofilms.
Lu and Collins [75] engineered the lytic E. coli-specific phage T7 to express dispersin B
intracellularly during infection so that dispersin B would be released into the extracellular
environment upon cell lysis. When tested against preformed biofilms formed by E. coli
strain TG1 on 96-peg lids, the engineered enzymatic phage reduced bacterial biofilm
cell counts by ≈4.5 log units (≈99.997% removal), which was 2 log units greater than
the reduction achieved with non-enzymatic phages. Schmerer et al. [76] confirmed that
dispersin-B-expressing T7 phages were superior to non-enzymatic phages for eradicating
E. coli biofilms grown for 12–16 h in 24-well microtiter plates, but they were only marginally
better than non-enzymatic phages against E. coli biofilms grown for 7 d in silicone tubing.
These studies demonstrate the feasibility of using engineered enzymatic bacteriophages as
an antibiofilm strategy.

Enzyme cocktails: Wen et al. [77] tested different combinations of dispersin B, pro-
teinase K, and DNase I against biofilms produced by 10 multidrug-resistant Corynebacterium
striatum strains in 96-well microtiter plates. They found that the combination of 20 µg/mL
dispersin B and 20 µg/mL proteinase K was most effective, dispersing at least 50% of the
biofilm in 9/10 strains. Poilvache et al. [78] measured the ability of a tri-enzyme cocktail to
detach biofilms produced by S. aureus, S. epidermidis, and E. coli on titanium surfaces. The
enzymes were a nonspecific endonuclease from Serratia marcescens, an endoglucanase from
Aspergillus niger, and dispersin B from A. pleuropneumoniae. The tri-enzyme combination
exhibited greater biofilm-detaching activity than any of the individual enzymes against
S. epidermidis, but the combination was not more effective than endonuclease alone against
S. aureus or dispersin B alone against E. coli. Exposure of tri-enzyme-treated biofilms to
antibiotics resulted in a 2–3 log unit reduction in the total CFUs compared to biofilms
treated with antibiotics alone in all three species. In a similar study from the same labo-
ratory, Ruiz-Sorribas et al. [79] measured the ability of the tri-enzyme cocktail to detach
three-species biofilms formed by S. aureus, E. coli, and Candida albicans in 96-well microtiter
plates and on glass coverslips. They found that the addition of Bacillus subtilis lyticase or
B. licheniformis subtilisin A was necessary to achieve significant detachment of C. albicans
biofilms. Pre-exposure of three-species biofilms to enzymes potentiated the activity of
antimicrobials against the biofilms, including the activity of caspofungin against C. albicans.
Waryah et al. [80] showed that despite the inferiority of dispersin B to DNase I in dispersing
S. aureus biofilms in a 96-well microtiter plate assay, both enzymes were equally efficient
in enhancing the antibacterial efficiency of tobramycin. However, a combination of these
two enzymes was found to be significantly less effective in enhancing the antimicrobial
efficacy of tobramycin than the individual enzymes alone. Finally, Chiba et al. [81] inves-
tigated the effects of combined RNase A and dispersin B treatment on S. aureus biofilm
formation when grown in 96-well plates. When administered at low concentrations, neither
enzyme alone dispersed the mature biofilms. However, efficient dispersal was achieved by
incubation with both enzymes, even at low concentrations. Taken together, these findings
suggest that combining dispersin B with other biofilm-matrix-degrading enzymes could
increase their efficacy and spectrum of activity.

6. Antibiofilm Activities of Dispersin B against Bacteria

As outlined in Table 2, dispersin B exhibits various antibiofilm activities against more
than 25 different species of Gram-negative and Gram-positive bacteria in vitro. These
activities include (i) inhibition of biotic and abiotic surface attachment; (ii) inhibition
of biofilm formation; (iii) detachment of preformed biofilms; (iv) inhibition of pellicle
formation (biofilms at the air–liquid interface); (v) disaggregation of bacterial flocs (float-
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ing or suspended biofilms); (vi) sensitization of preformed biofilms to detachment by
EDTA, SDS, proteinase K, DNase, and high-velocity water irrigation; (vii) sensitization of
biofilms to killing by antibiotics (ampicillin, cefamandole nafate, ciprofloxacin, clindamycin,
rifampicin, tetracycline, tobramycin, vancomycin), antiseptics (benzoyl peroxide, cetylpyri-
dinium chloride, SDS, triclosan), antimicrobial peptides (KSL-W, LL-37, polymyxin B),
bacteriophages, human macrophages, and predatory Bdellovibrio bacteria; and (viii) inhi-
bition of hyphal aggregation and surface adhesion in Streptomyces spp. Taken together,
these findings confirm that PNAG plays a role in diverse biofilm-related functions, and
that dispersin B exhibits broad-spectrum antibiofilm activity.

Table 2. Antibiofilm activities of dispersin B against bacteria in vitro.

Species Antibiofilm Activity References

Achromobacter xylosoxidans Inhibits biofilm formation; detaches preformed biofilms. [82]

Acinetobacter baumannii
Inhibits “pellicle” formation at the air–liquid interface; inhibits

biofilm formation; detaches preformed biofilms; sensitizes
preformed biofilms to killing by antimicrobial peptide KSL-W.

[83,84]

Actinobacillus pleuropneumoniae Inhibits biofilm formation; detaches preformed biofilms;
sensitizes preformed biofilms to killing by ampicillin. [14,15,50,85–90]

Aggregatibacter actinomycetemcomitans

Sensitizes planktonic cells to killing by human macrophages;
sensitizes preformed biofilms to detachment by EDTA, SDS,
proteinase K, and DNase; sensitizes preformed biofilms to

killing by cetylpyridinium chloride and SDS; sensitizes
preformed biofilms to killing by predatory Bdellovibrio

bacteriovorus bacteria.

[91–94]

Bordetella pertussis,
B. parapertussis

Inhibits biofilm formation; detaches preformed biofilms;
sensitizes preformed biofilms to killing by antimicrobial

peptides polymyxin B and LL-37.
[82,95–97]

Burkholderia cepacia complex Inhibits biofilm formation; detaches preformed biofilms;
sensitizes biofilms to killing by tobramycin. [43,98]

Corynebacterium striatum Detaches preformed biofilms. [77]

Cutibacterium acnes Inhibits surface attachment and biofilm formation; sensitizes
biofilms to killing by benzoyl peroxide and tetracycline. [99]

Escherichia coli Inhibits biofilm formation; detaches preformed biofilms;
sensitizes biofilms to killing by triclosan and bacteriophages. [61,73,75,78,100,101]

Francisella novicida,
F. philomiragia Detaches preformed biofilms. [102]

Klebsiella pneumoniae Inhibits biofilm formation; sensitizes preformed biofilms to
killing by antimicrobial peptide KSL-W. [83,103]

Pectobacterium atrosepticum,
P. carotovorum Inhibits biofilm formation; detaches preformed biofilms. [104,105]

Pseudomonas fluorescens Inhibits biofilm formation; detaches preformed biofilms;
inhibits attachment of planktonic cells to tomato roots.

[101]; J. B. Kaplan,
unpublished data

Ralstonia solanacearum Inhibits biofilm formation. J. B. Kaplan,
unpublished data

Solobacterium moorei Inhibits biofilm formation. [106]

Staphylococcus aureus

Inhibits biofilm formation; detaches preformed biofilms;
sensitizes preformed biofilms to killing by triclosan, tobramycin,
vancomycin, rifampicin, clindamycin, cefamandole nafate, and

antimicrobial peptide KSL-W.

[60,61,83,103,107–111]

Staphylococcus capitis Detaches preformed biofilms. [112]
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Table 2. Cont.

Species Antibiofilm Activity References

Staphylococcus epidermidis

Inhibits biofilm formation; detaches preformed biofilms;
sensitizes preformed biofilms to killing by triclosan,

cetylpyridinium chloride, ciprofloxacin, rifampicin, and
antimicrobial peptide KSL-W.

[50,55,59,61,82,83,100,
103,108,109,112–118]

Staphylococcus pseudintermedius Inhibits biofilm formation; detaches preformed biofilms. [119]

Streptococcus mutans Detaches preformed biofilms; sensitizes preformed biofilms to
detachment by oral irrigation. [120]

Streptomyces coelicolor,
S. lividans Inhibits surface attachment and hyphal aggregation. [121]

Xanthomonas citri Disaggregates bacterial flocs (floating or suspended biofilms). J. B. Kaplan,
unpublished data

Yersinia pestis Inhibits biofilm formation. [101]

Some studies have shown that the ability of dispersin B to inhibit biofilm formation
and detach preformed biofilms depends on the shape, size, and composition of the culture
vessel. For example, biofilm formation by Cutibacterium acnes was inhibited by dispersin B
when biofilms were cultured in glass tubes, but not when cultured in 96-well polystyrene
microtiter plates [99]. Similarly, dispersin B efficiently detached A. actinomycetemcomitans
biofilms cultured in polystyrene tubes, but not in polystyrene microtiter plate wells [91].
These results may reflect differences in biofilm architecture or biofilm matrix composition
resulting from differences in the culture vessel shape, culture volume, surface-to-volume
ratio, or substrate material. In addition, some studies have found that dispersin B treatment
appears to increase biofilm formation when the biofilm’s biomass is measured using a
crystal violet binding assay. For example, Izano et al. [91] found that treatment of preformed
A. actinomycetemcomitans biofilms cultured in 96-well polystyrene microtiter plates with
dispersin B resulted in a significant increase in crystal violet binding compared to mock-
treated biofilms. Similarly, Atwood et al. [122] found that biofilms formed by S. aureus rsbU
and sigB mutant strains in microtiter plates bound significantly more crystal violet dye
when they were cultured in dispersin-B-supplemented broth compared to the amount of
bound dye in unsupplemented broth. One possible explanation for these results is that
dispersin B increases the volume and porosity of the biofilm matrix, thereby allowing more
crystal violet dye molecules to enter the biofilm.

Numerous studies have reported that dispersin B exhibits no bacteriostatic or bacteri-
cidal activity against a wide range of Gram-positive and Gram-negative bacteria. These
results are most often reported as “data not shown”. However, LeBel et al. [106] found that
dispersin B exhibited dose-dependent growth inhibition of Solobacterium moorei in microtiter
plate wells, with approximately 50% growth inhibition at 5–50 µg/mL dispersin B. Other
studies showed that dispersin B was not cytotoxic against human HEp-2 larynx carcinoma
cells, human HaCaT keratinocytes, human THP-1 monocytes, human MG-63 osteoblasts,
murine J774 macrophages, murine L929 fibroblasts, or sheep erythrocytes [60,64,79].

Antibiofilm activities of dispersin B against staphylococci: S. aureus has received
considerable attention because it causes many serious biofilm-related infections and also
forms PNAG-dependent biofilms. Nearly all S. aureus strains carry the icaADBC operon,
which encodes the enzymes required for PNAG biosynthesis [8]. However, only some
strains appear to rely on PNAG expression for biofilm formation in vitro and in vivo. This
fact is reflected in the varied responses of S. aureus biofilms to dispersin B treatment. For
example, Hogan et al. [107] measured the ability of dispersin B to detach 24-hour-old
S. aureus biofilms grown in plasma-coated microtiter plate wells. They found that dispersin
B at 0.125–4 µg/mL effectively detached biofilms formed by S. aureus strain SH1000, a
methicillin-sensitive S. aureus (MSSA) strain, but not those formed by S. aureus strain JE2, a
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methicillin-resistant S. aureus (MRSA) strain. However, dispersin B at 1 µg/mL was able
to sensitize both SH1000 and JE2 biofilms to killing by a combination of rifampicin and
vancomycin, although the sensitization effect was significantly greater for strain SH1000
(6–7 log units) than for strain USA300 JE2 (1–2 log units). Similarly, Izano et al. [108]
found that dispersin B efficiently detached preformed biofilms produced by MSSA strain
SH1000 in 96-well microtiter plates, but not those produced by MRSA strain 252. However,
dispersin B did not inhibit biofilm formation by either strain, and it did not sensitize MSSA
strain SH1000 biofilms to killing by cetylpyridinium chloride. Asai et al. [109] found that
only one of twelve S. aureus strains isolated from patients with catheter-related bloodstream
infections was susceptible to detachment by dispersin B when cultured in 96-well microtiter
plates. Instead, most strains were sensitive to detachment by proteinase K. Similarly,
Sugimoto et al. [110] found that dispersin B exhibited very limited biofilm inhibition
and detachment activities against a panel of 17 S. aureus strains (10 MSSA, 7 MRSA)
isolated from hospital patients when tested in 96-well microtiter plates. In contrast, Rohde
et al. [111] found that 18 out of 18 S. aureus strains isolated from prosthetic joint infections
were efficiently detached from 96-well plates by dispersin B. These differences may reflect
differences in the media, culture conditions, bacterial strains, or methods used.

Several studies have shown that dispersin B sensitizes S. aureus biofilms to killing
by a variety of antimicrobial agents, including triclosan [59], cefamandole nafate [60],
silver [103], the antimicrobial peptide KSL-W [83], and a combination of rifampicin and
clindamycin [123]. In general, dispersin B appears to sensitize both MSSA and MRSA
biofilms to antibiotic killing.

S. epidermidis is of interest because of its ability to cause biofilm-related implant in-
fections and its high susceptibility to biofilm inhibition and detachment by dispersin
B [59,113]. Unlike S. aureus, only some S. epidermidis strains carry the icaADBC operon.
It is still unclear whether the presence of icaADBC in S. epidermidis is correlated with
an increased risk of device infection. Numerous studies have shown that even low con-
centrations of dispersin B efficiently inhibit and detach PNAG-dependent S. epidermidis
biofilms in vitro [61,67,82,100,109,111,112,114–117,124] and sensitize S. epidermidis biofilms
to killing by antimicrobial agents such as cetylpyridinium chloride [50,108], silver [103],
and rifampicin [118].

Antibiofilm activities of dispersin B against plant pathogens: Dispersin B exhibits
antibiofilm activity against several PNAG-producing plant pathogens, including members
of the genera Ralstonia, Xanthomonas, and Pectobacterium, as well as the plant biocontrol bac-
terium Pseudomonas fluorescens (Figure 7). X. citri subsp. citri, the causative agent of citrus
canker, forms aggregates when cultured in broth (Figure 7A). These aggregates are readily
dissolved by dispersin B, suggesting that PNAG mediates intercellular adhesion in this
species. Dispersin B also inhibited biofilm formation by R. solanacearum in polystyrene mi-
crotiter plates (Figure 7B). R. solanacearum is a causative agent of bacterial wilt in wide range
of host plants. Dispersin B also inhibited biofilm formation by Pseudomonas fluorescens [101],
as well as the binding of P. fluorescens planktonic cells to tomato roots (Figure 7C). Dispersin
B also blocked biofilm formation by P. carotovorum in 96-well plates in vitro [104], as well as
P. carotovorum infection of tobacco leaves in planta when dspB was expressed as a transgene
(Figure 7D). Taken together, these findings suggest that plant-associated bacteria produce
PNAG, and that PNAG contributes to intercellular adhesion, biofilm formation, plant
colonization, and phytopathogenicity in vivo.

In vivo studies: Four different studies have demonstrated that dispersin B exhibits
antibiofilm activity against staphylococci in vivo. Kaplan et al. [125] showed that dispersin
B decreased the ability of S. epidermidis to colonize pig skin by 66–78% compared to a no-
enzyme control. Gawande et al. [103] found that dispersin B combined with a silver wound
dressing showed an 80% reduction in S. aureus MRSA bioburden in a chronic wound
mouse model, compared to a 14% reduction when wounds were treated with a silver
wound dressing alone. Darouiche et al. [61] tested dispersin B against S. aureus in a rabbit
catheter infection model. Only 1 out of 30 catheters coated with dispersin B plus triclosan
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was colonized with S. aureus, compared to 29/30 uncoated control catheters. Finally,
Serrera et al. [126] showed that dispersin B, when used in combination with teicoplanin as
a catheter lock solution in a sheep model of port-related bloodstream infection, reduced the
number of S. aureus infections from 100% to 50% (8/8 versus 4/8) and the number of deaths
from 50% to 0% (4/8 versus 0/8), compared to a teicoplanin catheter lock solution alone.

 

2 

 
Figure 7 

Figure 7. Effects of dispersin B on plant-associated bacteria: (A) Xanthomonas citri subsp. citri strain
306 forms aggregates when cultured in broth (left panel). These aggregates were rapidly dissolved
upon dispersin B treatment (right panel). (B) Biofilm formation by Ralstonia solanacearum strain
Molk2 in polystyrene microtiter plates in the absence or presence of 20 µg/mL dispersin B. Biofilms
were stained with crystal violet. (C) Binding of Pseudomonas fluorescens strain WCS365 to tomato roots
in the absence or presence of 20 µg/mL dispersin B. Bacteria were mixed with 6-day-old tomato roots
for 90 min. The roots were then crushed, mixed by vortex agitation, diluted, and plated on agar for
CFU enumeration. Each data point represents one individual root. (D) Tobacco leaves infected with
Pectobacterium carotovorum subsp. carotovorum strain ATCC 15713. Leaves were photographed 24 h
after inoculation: (left) wild-type tobacco leaf; (right) leaf from a transgenic tobacco plant expressing
dispersin B. Source: (A–C) J.B. Kaplan, unpublished data; (D) Ragunath et al. [104], N. Ramasubbu,
unpublished data.

7. Concluding Remarks

Dispersin B was licensed to the Canadian company Kane Biotech Inc. (Winnipeg, MB,
Canada) in 2004, initially for the development of medical device coatings and cosmetics.
Pharmaceutical-grade dispersin B (also known as DispersinB®) has been purified from a
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recombinant strain of E. coli, and the enzyme has undergone extensive biocompatibility
testing. Recombinant dispersin B exhibited no cytotoxicity against L-929 cells in vitro and
no mutagenicity or genotoxicity in the Ames test, in an in vitro human peripheral blood
lymphocytes micronuclei assay, and in an in vivo rat blood reticulocyte assay that monitors
chromosomal damage. Additional in vitro and in vivo biocompatibility testing showed
that dispersin B was non-pyrogenic, non-sensitizing, and non-irritating, exhibited no acute
or sub-chronic systemic toxicity, and was not detectable in blood when applied to full-
thickness dermal wounds in pigs. These results suggest that dispersin B is biocompatible
and safe for use on human skin. Dispersin B is also compatible with many antimicrobials,
salts, preservatives, and excipients such as polyols, enabling it to be formulated into
a plurality of products. For commercialization, dispersin B has been formulated into
a gel containing poloxamer 407, glycerol, preservatives, and buffered phosphate. This
formulation exhibits thermosensitive viscosity properties that enable it to form a gel on the
skin. This dispersin B gel formulation has undergone stability and biocompatibility testing
in accordance with ISO 10993 standards for prolonged exposure to breached/compromised
skin, with positive results. Kane Biotech has also obtained promising results with dispersin
B gel in a pig wound-healing study. The product has been designated as a biologic/device
combination product, with the primary mode of action being the device. Dispersin B gel
is currently undergoing the Investigational Device Exemption (IDE) review process with
the FDA Center for Devices and Radiological Health (CDRH), with a plan to commence
clinical trials for chronic wounds and acne vulgaris in 2025.

Dispersin B is a well-characterized PNAG-degrading enzyme that is both a useful tool
for biofilm research and a potential therapeutic agent for the treatment and prevention of
biofilm-related infections in plants and animals. Anti-PNAG antibodies have been shown
to protect mice against local and/or systemic infections by various microbial pathogens,
including Streptococcus pyogenes, S. pneumoniae, Listeria monocytogenes, Neisseria meningitidis
serogroup B, C. albicans, and Plasmodium berghei ANKA, as well as against colonic pathology
in a model of infectious colitis [38]. In addition, PNAG-based vaccines have been shown
to be protective against a variety of PNAG-producing pathogens in animal models [39].
These findings validate PNAG as an antimicrobial target. Because of the large numbers of
bacteria, fungi, and protozoa that produce PNAG [38,39], dispersin B may have applicability
as a broad-spectrum antibiofilm agent. The most practical applications will be those
where dispersin B can be used as a topical agent in the form of a gel, ointment, or spray
in combination with an antimicrobial. These may include agents for the treatment of
wounds, such as surgical site wounds, traumatic wounds, burns, and chronic wounds,
including diabetic foot ulcers; for the treatment and prevention of dermatoses, such as
atopic dermatitis and acne vulgaris; for the treatment of ocular infections, such as blepharitis
and corneal ulcers; for the treatment of aural infections, such as otitis media; and as a pre-
surgical skin antiseptic. Other potential applications include catheter lock solutions and
irrigation solutions or coatings for implanted medical devices.
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