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Abstract: Insomnia is a common sleep disorder with significant societal and economic impacts.
Current pharmacotherapies for insomnia are often accompanied by side effects, necessitating the
development of new therapeutic drugs. In this study, the hypnotic effects and mechanisms of
Sedum kamtschaticum 30% ethanol extract (ESK) and one of its active compounds, myricitrin, were
investigated using pentobarbital-induced sleep experiments, immunohistochemistry (IHC), receptor
binding assays, and enzyme-linked immunosorbent assay (ELISA). The pentobarbital-induced sleep
experiments revealed that ESK and myricitrin reduced sleep latency and prolonged total sleep time
in a dose-dependent manner. Based on c-Fos immunostaining, ESK, and myricitrin enhanced the
GABAergic neural activity in sleep-promoting ventrolateral preoptic nucleus (VLPO) GABAergic. By
measuring the level of GABA released from VLPO GABAergic neurons, ESK and myricitrin were
found to increase GABA release in the hypothalamus. These effects were significantly inhibited by
SCH. Moreover, ESK exhibited a concentration-dependent binding affinity for the adenosine A2A

receptors (A2AR). In conclusion, ESK and myricitrin have hypnotic effects, and their underlying
mechanisms may be related to the activation of A2AR.

Keywords: Sedum kamtschaticum; myricitrin; hypnotic effect; adenosine A2A receptor; GABAergic neuron

1. Introduction

Sleep is a physiological process necessary for sustaining optimal brain function and
overall health [1,2]. Sleep disorders, which arise owing to insufficient or excessive sleep
and abnormal nocturnal movements, include insomnia, restless leg syndrome, and nar-
colepsy [3,4]. The most prevalent sleep disorder, insomnia, is defined by challenges in
sleep onset or maintenance, along with recurrent awakenings coupled with the inability
to return to sleep [1,4]. This condition is associated with cardiovascular diseases, dia-
betes, depression, and cognitive impairment [5–9]. Benzodiazepines are frequently used
to treat insomnia; however, prolonged use is associated with notable adverse effects, such
as dependence, daytime sedation, lethargy, fatigue, heightened fall risk, and cognitive
dysfunction [10,11]. Consequently, novel therapeutic targets and drugs for insomnia must
be urgently explored.

Sleep and wakefulness are governed by the neurotransmitters and neuromodulators
released in different brain areas [12]. Acetylcholine from the basal forebrain (BF), orexin
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from the lateral hypothalamus (LH), histamine from the tuberomammillary nucleus, and
serotonin from the dorsal raphe nucleus promote wakefulness. Conversely, sleep is pro-
moted by GABA from the ventrolateral preoptic nucleus (VLPO), melatonin from the
pineal gland, and adenosine from the BF [13,14]. Sleep can be induced via the activation
of sleep-promoting neurons or inhibition of wake-promoting neurons [15]. Adenosine, a
key neurotransmitter, is crucial for the regulation of the sleep-wake cycle by binding to
its receptors, particularly the adenosine A1 receptor (A1R) and adenosine A2A receptor
(A2AR), which are implicated in sleep modulation [16]. However, current sleep medications
do not target A2AR.

Recently, medicinal plants have garnered growing interest owing to their affordability
and lower incidence of side effects relative to conventional medications [17,18]. Several
dietary and plant supplements, such as ashwagandha (Withania somnifera) and rice bran al-
cohol extract, are already used in clinical settings [19,20]. Sedum kamtschaticum, a perennial
plant native to Korea, China, and Japan, has been found to possess beneficial properties,
including promoting blood circulation and exhibiting anti-inflammatory and antioxidant ef-
fects [21–23]. This plant also has anxiolytic and cognitive enhancement properties; however,
its hypnotic effects have not been reported [22–24]. In the present study, pentobarbital-
induced sleep behavior experiments were performed to determine whether the ethanol
extracts of Sedum kamtschaticum (ESK) and its active compounds, desmanthin, myricitrin,
and quercitrin (https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO202
300028127&dbt=TRKO, accessed on 20 June 2024) exhibit hypnotic effects. In addition, the
mechanism underlying this hypnotic effect was explored.

2. Materials and Methods
2.1. Materials

Diazepam, which was used as the positive control, was purchased from Hanlim
Pharmaceuticals Co., Ltd. (Seoul, Republic of Korea). Pentobarbital was purchased from
Myungjin Pharmaceuticals Co., Ltd. (Seoul, Republic of Korea). Myricitrin and Luzindole
(LUZ) were obtained from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). ESK was pro-
vided by the Rural Development Administration (Jeonju, Republic of Korea). 8-cyclopentyl-
1,3-dipropylxanthine (DPCPX), Flumazenil (FLU), 2-Pyridineethanamine dihydrochlo-
ride (PEA), TCB-2, and 2-(Furan-2-yl)-7-phenethyl-7H-pyrazolo[4,3-e] [1,2,4]triazolo[1,5-
c]pyrimidin-5-amine (SCH58261) were purchased from Tocris Biosciences (Avonmouth,
UK). Mouse anti-GAD67 antibody was purchased from Millipore (Burlington, MA, USA).
Rabbit anti-c-Fos antibody was purchased from Cell Signaling Technology (Danvers, MA,
USA). Quercitrin was purchased from Sigma-Aldrich (Seoul, Republic of Korea). Desman-
thin was purchased from ChemFace (Wuhan, China).

2.2. Sedum kamtschaticum Extract Preparation

Sedum kamtschaticum was harvested from Eumseong, Chungbuk Province, Republic of
Korea. A voucher specimen (voucher no. MPS002559) was deposited in the herbarium of
the Department of Herbal Crop Research, National Institute of Horticultural and Herbal
Science, Rural Development Administration, Eumseong, Republic of Korea. The dried
sample was extracted via reflux extraction with fermented ethanol and water at 70 ◦C for
5 h and concentrated using a vacuum evaporator (Eyela, Tokyo, Japan). The product was
dried in a spray dryer to produce ESK, which was used for the in vivo studies.

2.3. Animals

All animal experiments were conducted according to the guidelines of the Institutional
Animal Care and Use Committee (IACUC) of Ajou University (approval number 2023-
0006), and all animal handling and care procedures adhered to the Animal Care and Use
Guidelines published by Ajou University. Animals were obtained from Orient Bio, Inc.,
(Seongnam, Republic of Korea). A total of about 700 eight-week-old male ICR mice were
used for the pentobarbital-induced sleep experiment. For the immunohistochemistry (IHC)
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and enzyme-linked immunosorbent assay (ELISA) experiments, about 30 eight-week-old
male C57BL/6 mice were used. Experimental animals were housed in cages, with 5 per
cage, under a 12 h light cycle (8:00–20:00), with constant temperature (23 ± 1 ◦C) and
humidity (60 ± 10%). Water and food were provided ad libitum.

2.4. Pentobarbital-Induced Sleep Experiments

A pentobarbital-induced sleep test was conducted to evaluate the sleep efficacy of
ESK, desmanthin, myricitrin, and quercitrin. Pentobarbital, ESK, myricitrin, and quercitrin
were dissolved in saline, whereas the agonists, antagonists of various receptors, and
desmanthin were dissolved in 1% DMSO. Saline solution or 1% DMSO was administered
to the control and vehicle groups, respectively. The control, vehicle, diazepam, and samples
were orally administered 30 min before pentobarbital administration, while the agonists
and antagonists of various receptors were orally or intraperitoneally administered 45 min
before pentobarbital administration. Mice were housed in individual cages for testing.
Sleep latency was measured as the time to the loss of the righting reflex, whereas total sleep
time was defined as the time to restoration of the righting reflex.

2.5. Immunohistochemistry (IHC)

We performed IHC experiments to assess c-Fos immunoexpression in the VLPO
after the administration of ESK and myricitrin. For this experiment, we primarily used
antibodies that have already been validated in many studies through positive control
and pre-adsorption tests [25–28]. Additionally, we performed a negative control test by
omitting the primary antibody while retaining the secondary antibody. Through the results
exhibiting no apparent fluorescent or DAB staining in these negative control sections, we
confirmed the specificity of the primary antibody. After the treatment with SCH, ESK,
myricitrin, and saline were administered at a 15 min interval. At 1 h after administration,
mice were anesthetized with pentobarbital sodium (50 mg/kg, i.p.). The diaphragm of
mice was then incised, and mice were perfused transcardially with saline. The brains
were then extracted and preserved in 4% paraformaldehyde (PFA) at 4 ◦C for 24 h. After
fixation, the brains were immersed in 30% sucrose solution for 48 h, embedded in optimal
cutting temperature (OCT) compound, encased in OHP film, and stored at −80 ◦C for
24 h. Coronal sections of the frozen brains were sliced at 20 µm thickness using a Leica
SM2400 microtome (Leica Microsystem Inc., Durham, IL, USA) and preserved at −20 ◦C
until further processing.

For antigen retrieval, the brain sections were incubated at ambient temperature (25 ◦C)
for 30 min and then immersed in 10 mM sodium citrate buffer. Following PBS washes, the
sections were treated with 3% H2O2 for 5 min to inhibit endogenous activity. The sections
were then blocked with 5% BSA in PBS containing 0.1% Triton X-100 for 1 h at 25 ◦C and
with an anti-c-Fos primary antibody (1:500) (Cell Signaling Technology, #2250, Danvers, MA,
USA) in blocking solution for 48 h. After washing with PBS, the sections were incubated
with a biotinylated anti-rabbit secondary antibody (1:500) (Vector Laboratories Inc., BA-
1000, Newark, CA, USA) in PBS for 1 h. Following more PBS washes, the sections were
stained using the VECTASTAIN® avidin–biotin complex (ABC) kit (Vector Laboratories,
Burlingame, CA, USA) for 30 min, washed, and developed using the Dako Liquid 3,3′-
diaminobenzidine (DAB) + Substrate Chromogen System kit (Agilent, Carpinteria, CA,
USA) for 5 min. Brown c-Fos-positive neurons were examined under a light microscope.

After antigen retrieval, brain sections were blocked with 5% BSA in PBS containing
0.1% Triton X-100 for 1 h at ambient temperature (25 ◦C). The sections were incubated
with anti-c-Fos rabbit antibody (1:400) (Cell Signaling Technology, #2250, Danvers, MA,
USA) and anti-GAD67 mouse antibody (1:500) (Millipore, MAB5406, Burlington, MA, USA)
at 4 ◦C for 48 h, washed with PBS, and incubated with goat anti-rabbit Alexa Fluor 568
(1:500) (Invitrogen Corporation, A11011, Carlsbad, CA, USA) and goat anti-mouse Alexa
Fluor 488 (1:500) (Invitrogen Corporation, A11029, Carlsbad, CA, USA) for 1 h at ambient
temperature (25 ◦C). Finally, the sections were stained with 4′,6-diamidino-2-phenylindole
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(DAPI; Molecular Probes, Eugene, OR, USA), washed with PBS, and examined using a
confocal microscope.

2.6. Radioligand Receptor Binding Assay

The radioligand receptor binding assay of ESK to A2AR was performed using A2AR-
overexpressing HEK-293 cells by Eurofins Pharmacology Services (St. Charles, MO, USA),
as previously described. The following concentrations of ESK were tested: 0.1, 0.3, and
0.9 mg/mL. Inhibition or stimulation greater than 50% was deemed to indicate a substan-
tial effect, whereas suppression or stimulation between 25 and 50% indicated a mild-to-
moderate effect. Less than 25% suppression or stimulation was not considered significant.

2.7. ELISA Analysis

SCH 58261 was administered 15 min before ESK and myricitrin. One hour after all
treatments, mice were anesthetized using sodium pentobarbital and transcardially perfused
with saline. The brains of mice were subsequently extracted, and the hypothalamus was
separated from the brain tissue and homogenized in PBS. The GABA levels in the tissue
supernatants were determined using ELISA, according to the kit instructions.

2.8. Statistical Analysis

Experimental data are expressed as Mean ± SEM. Statistical analyses were performed
using GraphPad Prism 8.0.2 software. To confirm that the data met the conditions for
normal distribution, the Shapiro–Wilk test and Kolmogorov–Smirnov test were used. For
data that did not meet the normality assumption, the non-parametric Kruskal–Wallis test
was performed, followed by a one-way analysis of variance (ANOVA) using Tukey’s post
hoc test. A p-value of less than 0.05 was considered to indicate statistical significance.

3. Results
3.1. ESK Exerts Hypnotic Effects in a Pentobarbital-Induced Sleep Model

We explored the hypnotic effects of ESK using a pentobarbital-induced sleep be-
havior experiment. ESK (3, 10, 30 mg/kg) was found to decrease sleep onset latency
(178.6 ± 3.4, 166.2 ± 3.2, 159.2 ± 6.0 s, respectively) and increase total sleep time (94.9 ± 5.0,
102.7 ± 3.7, 126.9 ± 6.7 min, respectively) in a concentration-dependent manner (Figure 1).
DZP (1 mg/kg), a GABAAR-BDZ receptor agonist used as a positive control, markedly
decreased sleep onset latency and increased total sleep time. In all subsequent experiments,
an ESK concentration of 30 mg/kg was used, as this concentration had a similar effect to
diazepam. Overall, these results suggest that ESK exerts hypnotic effects.
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Figure 1. Hypnotic effect of ESK in a pentobarbital-induced sleep model. (A) Sleep onset latency and
(B) total sleep time. ESK (3, 10, 30 mg/kg, p.o.) and diazepam (1 mg/kg, p.o.) were administered
30 min before pentobarbital (45 mg/kg, i.p.) administration. Data are presented as Mean ± SEM
(n ≥ 5). * p < 0.05 vs. CTL. CTL, control; DZP, diazepam.
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3.2. Hypnotic Effect of ESK Is Related to A2AR

To explore the mechanisms underlying the hypnotic effect of ESK, we used several
drugs, including flumazenil (a GABAA receptor antagonist), DPCPX (an adenosine A1
receptor antagonist), SCH (an adenosine A2A receptor antagonist), luzindole (melatonin
receptor1 antagonist), PEA (histamine H1 agonist), TCB-2 (a 5-HT2A receptor agonist), and
YNT-185 (Orexin2 receptor agonist). Among the many agonists and antagonists, only SCH
significantly reversed the hypnotic effects of ESK. These findings suggest that the hypnotic
effects of ESK involve A2AR (Figure 2).
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Figure 2. Effects of different agonists and antagonists on the hypnotic effect of ESK. (A) Sleep onset
latency and (B) total sleep time. ESK (30 mg/kg, p.o.) was administered 30 min before pentobarbital
(45 mg/kg, i.p.), while flumazenil (5 mg/kg, p.o.), DPCPX (5 mg/kg, p.o.), SCH (5 mg/kg, p.o.),
luzindole (30 mg/kg, i.p.), PEA (150 mg/kg, i.p.), TCB-2 (10 mg/kg, i.p.), and YNT-185 (40 mg/kg,
i.p.) was administered 45 min before pentobarbital. Data are presented as Mean ± SEM (n ≥ 4).
* p < 0.05 vs. CTL; # p < 0.05 vs. VEH (ESK). CTL, control; DZP, diazepam; Flu, flumazenil;
LUZ, luzindole.

3.3. ESK Influences Sleep-Wake Regulatory Regions in Mouse Brain

To explore whether the hypnotic effect of ESK is linked to sleep-regulating neurons
in the mouse brain, IHC was performed. We examined the number of c-Fos neurons, an
indicator of neural activity in the VLPO, which is a region that promotes sleep. Compared
with the control, ESK increased neural activity in sleep-promoting VLPO GABAergic
neurons. However, SCH reversed these effects (Figure 3). These findings suggest that ESK
promotes sleep by activating VLPO GABAergic neurons via A2AR.
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Figure 3. Effect of ESK on neuronal activity in VLPO. ESK (30 mg/kg, p.o.) was administered 1 h
before brain extraction. SCH (5 mg/kg, p.o.) was administered 15 min before ESK administration.
(A–C) Low-power and high-power microscopy images of VLPO. (D–F) Immunofluorescence images
showing GAD67 (GAD, green), c-Fos (red), and DAPI (blue). White arrows indicate c-Fos positive
cells. (G) The number of c-Fos positive cells. Data are presented as Mean ± SEM (n ≥ 3). * p < 0.05 vs.
CTL; # p < 0.05 vs. VEH (ESK). CTL, control.
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3.4. ESK Has Binding Affinity for A2AR

To elucidate the hypnotic mechanism of ESK, we investigated its binding affinity to
A2AR. ESK (0.1, 0.3, and 0.9 mg/mL) exhibited binding affinity for A2AR in a concentration-
dependent manner (Figure 4): 0.1 mg/mL, 33.6%; 0.3 mg/mL, 64.7%; and 0.9 mg/mL,
94.0%. The IC50 was 0.21 mg/mL. These findings indicate that the hypnotic mechanism of
ESK may involve A2AR.
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and binding was analyzed in A2AR overexpressing HEK293 cells. The coefficients of variation for
the binding affinity of ESK at 0.1, 0.3, and 1 mg/kg were 16%, 5%, and 1%, respectively. Data are
presented as mean ± SEM (n = 2).

3.5. ESK Compound Exerts Hypnotic Effect in a Pentobarbital-Induced Sleep Model

To evaluate the hypnotic effects of the three ESK compounds, we used a pentobarbital-
induced sleep model. Among the active compounds in ESK, only myricitrin exhibited a
hypnotic effect; thus, desmanthin (1, 3, and 10 mg/kg) and quercitrin (3, 10, and 30 mg/kg)
were not found to induce a hypnotic effect. Myricitrin (0.3, 1, 3, 10 mg/kg) was found to
decrease sleep onset latency (178.8 ± 7.6, 160.3 ± 3.0, 151.6 ± 3.3, 149.8 ± 5.0 s, respectively)
and increase total sleep time (67.4 ± 1.7, 74.2 ± 6.7, 84.4 ± 7.1, 109.1 ± 7.7 min, respectively)
in a concentration-dependent manner (Figure 5). DZP (1 mg/kg), a GABAAR-BDZ receptor
agonist used as a positive control, significantly decreased sleep onset latency and increased
total sleep duration. In all subsequent experiments, a myricitrin concentration of 10 mg/kg
was used, as this concentration had a similar effect to diazepam. These findings indicate
that myricitrin may be responsible for the hypnotic effects of ESK.
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Figure 5. Effects of ESK compound in a pentobarbital-induced sleep model. (A) Sleep onset latency
and (B) total sleep time. Myricitrin (0.3, 1, 3, 10 mg/kg, p.o.), desmanthin (1, 3, 10 mg/kg, p.o.),
quercitrin (3, 10, 30 mg/kg, p.o.), and diazepam (DZP; 1 mg/kg, p.o.) were administered 30 min
before pentobarbital (45 mg/kg, i.p.). Data are presented as Mean ± SEM (n ≥ 5). * p < 0.05 vs. CTL.
CTL, control; DZP, diazepam.
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3.6. Hypnotic Effect of Myricitrin Is Related to A2AR

To explore the mechanisms underlying the hypnotic effect of myricitrin, we used
several compounds, including DPCPX (an adenosine A1 receptor antagonist), SCH (an
adenosine A2A receptor antagonist), TCB-2 (a 5-HT2A receptor agonist), caffeine (an adeno-
sine A2A receptor antagonist), and flumazenil (a GABAA receptor antagonist). Among
the many agonists and antagonists, only SCH significantly reversed the hypnotic effects
of myricitrin. These findings suggest that the hypnotic effects of myricitrin involve A2AR
(Figure 6).
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Figure 6. Effects of different antagonists and agonists on the hypnotic effect of myricitrin. (A) Sleep
onset latency and (B) total sleep time. Myricitrin (10 mg/kg, p.o.) was administered 30 min before
pentobarbital (45 mg/kg, i.p.), while DPCPX (5 mg/kg, p.o.), SCH (5 mg/kg, p.o.), TCB-2 (10 mg/kg,
i.p.), Caffeine (10 mg/kg, i.p.), and Flumazenil (5 mg/kg, p.o.) were administered 45 min before
pentobarbital. Data are presented as Mean ± SEM (n ≥ 4). * p < 0.05 vs. CTL; # p < 0.05 vs. VEH
(Myricitrin). CTL, control; Flu, flumazenil.

3.7. Myricitrin Influences Sleep-Wake Regulatory Regions in Mouse Brain

To determine whether the hypnotic effect of myricitrin is linked to sleep-regulating
neurons in mouse brains, we performed IHC. The number of c-Fos neurons, which is an
indicator of neural activity, was examined in the VLPO, a sleep-promoting area. Myricitrin
increased neural activity in the VLPO GABAergic neurons, thereby promoting sleep. How-
ever, SCH reversed this increase in neural activity (Figure 7). These findings indicate that
myricitrin facilitates sleep by activating VLPO GABAergic neurons via A2AR.

3.8. ESK and Myricitrin Increase GABA Release

To determine whether GABA is released upon stimulation of GABA neurons in the
VLPO area after ESK and myricitrin administration, the GABA content was assessed using
ELISA. The administration of ESK and myricitrin significantly increased the level of GABA;
however, this increase was reversed by the A2AR antagonist, SCH (Figure 8). These results
suggest that ESK and myricitrin activate GABA neurons in the VLPO and increase GABA
release by activating A2AR.
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(A–C) Low-power and high-power microscopy images of VLPO. (D–F) Immunofluorescence images
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cells. (G) Number of c-Fos positive cells. Data are presented as Mean ± SEM (n = 5). * p < 0.05 vs.
CTL; # p < 0.05 vs. VEH (Myricitrin). CTL, control.
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Figure 8. Effect of ESK and myricitrin on the level of GABA in the hypothalamus of mice. ESK
(30 mg/kg, p.o.) and Myricitrin (10 mg/kg, p.o.) were administered 1 h before brain extraction.
SCH (5 mg/kg, p.o.) was administered 15 min before ESK and myricitrin. Data are presented as
Mean ± SEM (n = 3). * p < 0.05 vs. CTL; # p < 0.05 vs. ESK; $ p < 0.05 vs. Myricitrin. CTL, control.
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4. Discussion

To our knowledge, this study is the first to elucidate the hypnotic effects of ESK and
one of its active compounds, myricitrin, using pentobarbital-induced sleep experiments.
Based on IHC, ESK and myricitrin augmented neuronal activity in the sleep-promoting
regions. These effects were notably blocked by an A2AR antagonist. These findings indicate
that the hypnotic effects of ESK and myricitrin may involve A2AR activation.

Adenosine influences neuronal activity regulating sleep and wakefulness, with levels
increasing during wakefulness and decreasing during sleep [29–31]. The administration of
adenosine has been shown to exert sedative and sleep-promoting effects [32,33]. Extracel-
lular adenosine enhances adenylyl cyclase activity, stimulating sleep-active neurons via
A2AR to induce sleep [34]. A2AR is expressed in GABAergic neurons within the VLPO, a
critical area for sleep maintenance [35]. A2AR binds to Gs and activates adenylyl cyclase,
increasing the cAMP concentration. Accordingly, PKA is activated, and CREB is phospho-
rylated [36]. Administration of the A2AR agonist, CGS21680, has been shown to promote
sleep by increasing both non-rapid eye movement (NREM) and REM sleep, enhancing
delta power during NREM sleep, and increasing c-Fos immunoexpression in GABAergic
neurons in the VLPO [30,37]. According to our findings, ESK directly binds to A2AR and
its hypnotic effect is significantly attenuated by SCH, an A2AR antagonist. Therefore, the
hypnotic action of ESK might be mediated by A2AR activation.

The equilibrium between sleep-promoting neurons, including the VLPO, and wake-
promoting neurons, such as the BF and LH, is essential for regulating the sleep-wake
cycle [13]. To ascertain the specific brain areas involved in regulating sleep and contributing
to the hypnotic effect of ESK, we assessed neuronal activity in the VLPO of mice using IHC.
The administration of ESK increased c-Fos immunoexpression in the VLPO. These effects
were inhibited by the A2AR antagonist, SCH. The VLPO, situated in the hypothalamus, is
known to promote sleep, and the activation of GABAergic neurons directly induces sleep.
Several studies have demonstrated that A2AR activation directly activates GABAergic
neurons in the VLPO. Administration of the A2AR agonist, CGS21680, in the subarachnoid
space adjacent to the VLPO, was found to inhibit the arousal system, induce sleep, and
increase NREM sleep [38]. Furthermore, the intracerebroventricular administration of
CGS21680 activated VLPO GABAergic neurons and promoted sleep. Previously, the
intracerebroventricular administration of an A2AR antagonist was found to suppress c-
Fos activity in VLPO GABAergic neurons [30]. The signaling pathway of A2AR involves
Gs-coupled excitatory signaling [36]. Thus, the sleep-promoting function of adenosine
via A2AR is believed to occur through excitatory signaling in sleep-promoting GABAergic
neurons in the VLPO. GABA secretion in the VLPO is enhanced during slow-wave sleep
and is reduced during arousal [39]. Using ELISA, we confirmed that the administration of
ESK in the hypothalamus of mice increased GABA secretion.

Myricitrin, one of the active compounds of ESK, is a polyphenolic hydroxyflavonoid
with various biological activities, including antibacterial, anti-inflammatory, anti-invasive,
antioxidant, anxiolytic, antimanic, and antidepressant effects [40–44]. Recent studies have
indicated that flavonoids, such as luteolin and quercetin, exhibit sedative and hypnotic
effects [45,46]. Although myricitrin is structurally similar to luteolin and quercetin, data on
its hypnotic effects have not been published [47]. In this study, we observed for the first
time the hypnotic effects of myricitrin using a pentobarbital-induced sleep test. Myricitrin
increased c-Fos neuronal activity in the VLPO and GABA release. In conclusion, we
propose that the hypnotic effects of ESK and myricitrin are linked to the stimulation
of sleep-promoting neurons. In addition, these hypnotic effects may be related to the
activation of A2AR.

Based on our findings, ESK has novel activity as an A2AR agonist, exerting hypnotic
effects in mice. Although A2AR primarily regulates GABAergic neurons in the VLPO, it can
also modulate neural activity in wake-promoting regions such as the tuberomammillary
nucleus and lateral hypothalamus. Therefore, further investigation is needed to determine
whether ESK affects the activity of these wake-promoting neurons. Moreover, as the
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permeability of ESK extracts through the blood–brain barrier (BBB) is unknown, further
investigations are needed to determine whether ESK extracts can cross the BBB.

5. Conclusions

Overall, our findings indicate that ESK and one of its active compounds, myricitrin,
exhibit hypnotic effects. Activation of A2AR, which results in the stimulation of GABA
neurons in the VLPO region, is proposed as the mechanism of sleep promotion. Altogether,
ESK and myricitrin may serve as novel sleep aids for improving sleep.
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