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Abstract: Combined endurance and resistance training, also known as “concurrent training”, is a
common practice in exercise routines. While concurrent training offers the benefit of targeting both
cardiovascular and muscular fitness, it imposes greater physiological demands on the body compared
to performing each modality in isolation. Increased protein consumption has been suggested to
support adaptations to concurrent training. However, the impact of protein supplementation on
responses to low-volume concurrent training is still unclear. Forty-four untrained, healthy individuals
(27 ± 6 years) performed two sessions/week of low-volume high-intensity interval training on cycle
ergometers followed by five machine-based resistance training exercises for 8 weeks. Volunteers
randomly received (double-blinded) 40 g of whey-based protein (PRO group) or an isocaloric placebo
(maltodextrin, PLA group) after each session. Maximal oxygen consumption (VO2max) and over-
all fitness scores (computed from volunteers’ VO2max and one-repetition maximum scores, 1-RM)
significantly increased in both groups. The PRO group showed significantly improved 1-RM in all
major muscle groups, while the PLA group only improved 1-RM in chest and upper back muscles.
Improvements in 1-RM in leg muscles were significantly greater in the PRO group versus the PLA
group. In conclusion, our results indicate that adaptations to low-volume concurrent training, partic-
ularly leg muscle strength, can be improved with targeted post-exercise protein supplementation in
untrained healthy individuals.

Keywords: low-volume exercise; HIIT; resistance training; interference effect; whey protein

1. Introduction

Adequate levels of cardiorespiratory [1–4] and muscular fitness [1,5,6] are crucial
determinants for the maintenance of general health and for preventing numerous chronic
diseases. It has been documented, for example, that the degree of maximal oxygen consump-
tion (VO2max) as an indicator of cardiorespiratory fitness is a key predictor of cardiovascular
disease and overall mortality, even stronger than traditional risk factors, such as obesity,
hypertension, type 2 diabetes mellitus, or nicotine abuse [7,8]. Additionally, research indi-
cates that muscle strength is an independent and significant factor related to morbidity and
mortality [6,9]. Thus, guidelines [10,11] advocate that individuals should participate in both
regular aerobic and muscle-strengthening activities to maintain/improve cardiorespiratory
as well as muscular fitness. Accordingly, prescriptions for structured exercise programs
typically involve combined endurance and resistance training—also termed “concurrent
training”—to promote holistic fitness and health benefits.
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Despite the well-accepted additive benefits of combined exercise programs with re-
gard to overall fitness and health outcomes, research has highlighted that concurrent
training—particularly when both modalities are carried out consecutively in the same
session (commonly referred to as “intra-session concurrent training”)—can lead to greater
physiological stress by challenging multiple systems (cardiovascular, muscular) simulta-
neously [12,13]. It has been suggested that previous endurance training may compromise
subsequent resistance exercise quality and vice versa, due to residual fatigue and/or re-
duced substrate availability (e.g., depleted glycogen levels resulting in increased skeletal
muscle protein breakdown) [14–16]. Moreover, there is a body of evidence suggesting
that adaptations to endurance and resistance training may interfere with each other under
certain circumstances [14,15,17–19]. This so-called interference effect was first observed in a
pioneering study by Hickson [20], who found that simultaneous endurance and resistance
training resulted in a reduced capacity to develop muscle strength when compared to
resistance training alone in recreationally active subjects. Although this finding was not
always confirmed in follow-up studies, multiple investigations showed similar results, in-
dicating that particularly muscle strength development and hypertrophy can potentially be
diminished by concurrent training [14,15,17–19], most likely due to antagonistic molecular
mechanisms underlying adaptations to both types of exercise [14,15,17]. Additionally, it has
been demonstrated that untrained individuals can experience lower VO2max improvements
with concurrent versus endurance training only [21].

Practical recommendations to balance the increased physiological demands or mitigate
potential interference effects of intra-session concurrent training are related to training
variables (e.g., type of exercise, volume, and intensity) [19] and nutritional strategies [22].
Regarding nutrition, protein supplementation has been particularly highlighted in recent
systematic reviews as a potential approach to optimize synthesis of muscle protein, aid mus-
cle repair and growth, and support strength adaptations during concurrent training [22–25].
There is evidence, for example, that ingesting 20–40 g of protein immediately after an exer-
cise session can provide a beneficial impact on muscle protein synthesis and performance
responses to concurrent training [24]. Furthermore, it has been reported that post-exercise
protein intake may contribute to improvements in cardiovascular fitness by supporting,
for example, the forming of new capillaries, oxygen-transporting proteins, and mitochon-
drial proteins [26]. However, in this context, it must be pointed out that the majority of
previous trials investigating the effects of protein supplementation or increased dietary
protein intake on concurrent training adaptations involved athletes or trained/physically
active individuals [27–47] and used higher-volume exercise programs, such as prolonged
continuous endurance training or longer-duration interval training protocols combined
with multiple-set resistance training regimens [27–33,35,37–40,42–52].

Currently, only a small number of investigations [28,48–53] have been conducted with
sedentary/untrained samples, of which only one trial examined the influence of protein sup-
plements on changes in cardiorespiratory fitness compared to concurrent training without
supplementation [51]. In that study, Lockwood et al. [51] found that absolute VO2max only
improved in conjunction with whey protein supplementation over a period of 10 weeks of
concurrent endurance and resistance exercise in a group of sedentary, overweight females
and males. Given that VO2max improvements following concurrent training, in compar-
ison to isolated endurance exercise, were found to be particularly blunted in untrained
individuals [21], there is clearly a need for more research to investigate whether protein
supplementation can improve adaptations to concurrent endurance and resistance training
in novice exercisers. Moreover, to our knowledge, it has not yet been investigated whether
individuals engaged in more time-efficient, “low-volume” training programs may also
benefit from targeted protein intake after completion of the exercise session. Low-volume
training types, including low-volume high-intensity interval training (LOW-HIIT) [54,55], a
specific form of interval endurance exercise (involving, by definition, ≤10 min of intensive
exercise during a training session of ≤30 min duration, including periods of warm-up
and cool-down [55]) and low-volume resistance training (LOW-RT, previously defined as
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<12 weekly exercise sets per muscle group [56]), have gained increasing popularity among
exercisers who have tight time schedules and thus have become a fruitful topic of research
in recent years [57,58].

The aim of this study was therefore to address these research gaps by examining the
effects of protein supplementation (40 g of whey-based protein) post-exercise on adap-
tations of VO2max, muscle strength and body composition after an 8-week low-volume
concurrent training program comprising LOW-HIIT and LOW-RT (two sessions per week),
in previously sedentary, healthy men and women. We hypothesized that both groups
would show improve physical fitness indices, but that post-session protein supplementa-
tion would increase the concurrent training-induced responses of cardiorespiratory and
muscular fitness compared to an isocaloric placebo.

2. Materials and Methods
2.1. Design of the Study

This investigation was a randomized, placebo-controlled, double-blind trial involving
a concurrent training intervention (LOW-HIIT followed by LOW-RT) of 8 weeks duration
with two arms (experimental group and placebo control group). The experimental condition
consisted of 2 weekly sessions of concurrent LOW-HIIT and LOW-RT plus post-exercise
whey-based protein supplementation (PRO group). The control condition consisted of
the same concurrent training program plus post-exercise supplementation of an isocaloric
placebo (PLA group). Primary outcomes of the study were VO2max, maximum strength
values, defined as one-repetition maximum (1-RM) for the five main muscle groups (chest,
upper back, abdominals, lower back, and legs), and overall fitness (Fit score, computed as
the mean of VO2max and the average 1-RM value of the five muscle groups). Secondary
outcomes were body composition parameters, described in more detail in Section 2.3.3.

The outcome measurements were conducted 1 week preceding the onset of the exercise
program (i.e., week 0, T-1) and in the first week after completion of the exercise program (i.e.,
week 9, T-2). The timeline of the trial is illustrated in Figure 1. After T-1, volunteers were
allocated to the two groups by stratified-randomization based on their baseline VO2max
(<35 mL/kg/min, or ≥35 mL/kg/min), age (<30 years, or ≥30 years), and sex (male
or female) using the software MinimPy (GNU General Public License version 3.0 [59]).
Randomization was conducted by a researcher not engaged in the collection of data. All
volunteers in the trial were fully briefed on the study’s scope, which complied with the
Declaration of Helsinki, and signed an informed consent prior to study inclusion. The
study was authorized by the Medical Faculty Ethics Committee of Friedrich–Alexander
University Erlangen—Nürnberg (approval 147_19B) and registered at ClinicalTrials.gov
(ID NCT04359342).
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2.2. Study Volunteers

Participant recruitment involved advertising in local newspapers and social media
platforms. Interested persons contacted study staff via email or by telephone to determine
if they were eligible to participate. Eligibility criteria for the study included that volunteers
were at least 18 years of age, led a mostly sedentary lifestyle as defined elsewhere [60], and
were not participating in any other exercise or nutrition intervention. Exclusion criteria
included pregnancy, clinical diagnosis of coronary disease, oncological disease, major
orthopedic disorders, or other serious health problems that would rule out safe involvement
in physical exercise. All volunteers consented to maintaining their current lifestyle habits
during the study to minimize possible bias. We based our sample size calculation on results
of a recent meta-analysis [24], which demonstrated a large pooled effect size (d = 0.89)
of the impact of protein supplementation on improvements in performance outcomes
in response to concurrent training. Accordingly, an a priori estimation of sample size,
expecting a large effect size for repeated-measure ANOVA (f = 0.45), indicated that a total
of 20 participants (N = 10 for each group) would be adequate to yield a power of 95% with
a significance level of 5% (G*Power, version 3.1.9.2). In order to take possible dropouts into
account, the aim was to recruit 20 participants per group.

2.3. Outcome Measurements

The baseline testing procedures (T-1) were conducted 1 week prior to the onset of the
exercise program. The post-testing (T-2) took place within the first week after the comple-
tion of the 8-week exercise program, with at least 3 days between the last exercise session
in order to ensure sufficient recovery. T-1 and T-2 were scheduled at a similar time of day
to reduce potential circadian influences. Additionally, care was taken that both testing days
were performed within the same menstrual cycle in all female volunteers. Volunteers were
advised to report to the laboratory in an overnight-fasted state, to abstain from alcohol,
and avoid vigorous physical activity for a minimum period of 24 h prior to their visit. Mea-
surements were strictly standardized as specified below and performed in stable ambient
conditions (22–24 ◦C, and 30–50% air humidity). At T-1, study outcome measurements were
preceded by a medical clearance examination, including medical history recording, blood
pressure measurements, 12-lead resting electrocardiography, and evaluation of standard
blood and urine laboratory values to assure the safety of participation in the training pro-
gram. All measurements and examinations were executed investigator-blinded, meaning
that personnel collecting the data had no knowledge of volunteers’ group assignment.

2.3.1. Body Composition Measurements

Upon arrival at the laboratory, volunteers were requested to void their bladder, and af-
terwards, to remain in a seated position for 5 min. Subsequently, multifrequency segmental
bioelectrical impedance analysis was performed using a validated analyzer (seca mBCA
515, Seca, Hamburg, Germany) [61] to assess the body weight, body fat mass, skeletal
muscle mass, and total body water of the volunteers. Furthermore, volunteers’ waist cir-
cumference was obtained in the standing position to the closest millimeter. Measurements
were performed approximately midway between the lower edge of the last palpable rib
and the upper iliac crest along the mid-axillary line using a flexible tape.

2.3.2. Cardiopulmonary Exercise Test (CPET)

CPETs were carried out using a stationary electronically braked cycle ergometer (Cori-
val cpet, Lode, Groningen, The Netherlands) to assess VO2max, maximal power output
(Wmax), and maximal heart rate (HRmax). Additionally, volunteers’ power output at the
ventilatory threshold (WVT) was assessed by means of the V-slope method (i.e., plot of
carbon dioxide release versus oxygen consumption) to determine submaximal endurance
capacity. Following a 1 min adaptation, CPET commenced at 50 W, with the power output
progressively increasing by 12.5 W/min (females) and 15 W/min (males) until reaching
voluntary exhaustion. Exhaustion was reached within 8–12 min in most volunteers, as
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per suggested guidelines for exercise testing [60]. Heart rate was recorded constantly
with a 12-lead ECG device (custo cardio 110, custo med, Ottobrunn, Germany). Oxygen
consumption and carbon dioxide release were obtained constantly with a breath-by-breath,
open-circuit metabolic cart (Metalyzer 3B-R3, Cortex Biophysik, Leipzig, Germany). Oxy-
gen consumption and carbon dioxide release data were averaged every 10 s. To verify
that maximal exertion had been achieved, volunteers had to meet a minimum two of the
specified criteria: plateauing of oxygen consumption, a respiratory exchange ratio of ≥1.1,
an age-related HRmax of ≥90% (computed according to the formula 220—age), and a rate
of perceived exertion of ≥19 on the Borg scale [62], as recommended elsewhere [63]. CPET
data were used to set the volunteers’ personalized LOW-HIIT heart rate zones.

2.3.3. Determination of One-Repetition Maximum Strength and Overall Fitness Z Score

After a brief familiarization with test procedures and local warm-up of the target
muscles, volunteers conducted a modified 1-RM test of the following muscles: chest, upper
back, abdominals, lower back, and legs. While a “classical” 1-RM test typically aims to
determine the maximal weight load that can be lifted for one complete repetition, the
modified 1-RM test utilized in the present trial involved performing multiple repetitions
to predict 1-RM. This method is considered to have a lower a lower risk of injury and is
therefore advocated for untrained collectives [64]. The tests were supervised by certified
physiotherapists or sports therapists on five machines in the following standardized order:
chest press, lat pulldown machine, lower back machine, abdominal crunch, and leg press
(TechnoGym, Neu-Isenburg, Germany). On each machine, volunteers were required to
raise the applied weight until reaching muscular failure. As recommended elsewhere [65],
the number of repetitions was not to exceed six to ensure accurate 1-RM predictions. If more
than six repetitions were completed, the weight was increased and a following attempt
was executed after a 3 min recovery. The load that could be lifted for six repetitions was
usually determined within three tries. Afterwards, 1-RM values were estimated based on
the following formula [66]:

1-RM = 100 × load rep/(102.78 × 2.78 × rep)

The test results were utilized to determine volunteers’ weight load for the resistance
training exercises as specified below (2.5). At the beginning of training week 4, 1-RM tests
were repeated to account for progression and to reestablish the respective weight loads.
Furthermore, an overall fitness (Fit score) was computed at T-1 and T-2 as the mean value
of each fitness sub-component (cardiorespiratory and muscular fitness) as follows:

Fit score = (VO2max + average 1-RM from the five muscle groups)/2

2.4. Daily Nutrition and Physical Activity Monitoring

Volunteers were instructed to record their dietary intake on three days in a row during
the week prior to the onset of the exercise program and during the last training week with
the help of a standardized 24 h food protocol (Freiburger Ernährungsprotokoll; Nutri-
Science, Freiburg, Germany). A registered dietitian analyzed all dietary records using
software (PRODI 6 expert, Nutri-Science, Freiburg, Germany). Furthermore, volunteers
recorded their habitual physical activities on a daily basis in an activity diary. All recorded
physical activities were categorized based on metabolic equivalents (METs), according to
Ainsworth et al. [67]: light (<3 METs), moderate (3–6 METs), or vigorous (>6 METs). The
average MET score over 24 h was used to assess the daily physical activity level (PAL).

Based on the individual PAL and anthropometric values, volunteers received person-
alized dietary advice to keep a consistent nutritional intake throughout the intervention
period. The dietary advice adhered to guidelines from the German Nutrition Society [68,69].
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Volunteers’ resting metabolic expenditure (REE) was calculated by the following established
equations [70]:

Men: REE (kcal/day) = 66.5 + 13.8 × weight (kg) + 5.0 × size (cm) − 6.8 × age (years)

Women: REE (kcal/day) = 655 + 9.6 × weight (kg) + 1.8 × size (cm) − 4.7 × age (years)

Caloric requirements per day were computed by multiplication of REE with PAL
values. Volunteers were instructed to ingest 10–15% of daily energy from protein, 30–35%
from fat, and ≥50% from carbohydrates [68]. Handouts containing meal planning ad-
vice and detailed instructions were provided to help volunteers implement the dietary
recommendations at home.

2.5. Concurrent Training Program

During the 8-week intervention period, volunteers conducted two weekly concurrent
training sessions for a total of sixteen sessions. To maximize compliance, volunteers could
schedule all exercise sessions on an individual basis throughout the opening hours of the
Training Center, with at least 1 day’s rest in between to ensure proper recovery. The exercise
sessions consisted of sequential LOW-HIIT and LOW-RT, which were all supervised by
certified sports therapists or physiotherapists.

All sessions commenced with a LOW-HIIT cycle ergometer protocol, which was
adapted from Reljic et al. [71]. Briefly, volunteers warmed up with low-intensity cycling
for 2 min. Subsequently, volunteers performed 5 intervals of 1 min duration at 80–90% of
HRmax in week 1 and week 2. From week 3 on, training intensity was increased to a target
heart rate range of 85–95% of HRmax, to be achieved during the intervals. Throughout each
session, volunteers wore a heart rate chest strap (acentas, Hörgertshausen, Germany) to
measure their individual heart rate during exercise. Heart rate data were saved for later
analysis using a software program (HR monitoring team system, acentas, Hörgertshausen,
Germany). During each interval bout, volunteers were directed to adjust the cadence
and/or the load resistance of the ergometer to achieve their pre-defined heart rate zones.
Intervals were separated by a 1 min recovery period with low-intensity cycling. The last
interval bout was followed by a 3 min cool-down period at a self-selected low-intensity
pace. According to previous definitions of “low-volume HIIT” [55], the total duration of
LOW-HIIT (warm-up and cool-down included) was 14 min/session.

After completing LOW-HIIT, volunteers performed five resistance exercises target-
ing the major muscle groups, including chest muscles, upper back muscles, abdominal
muscles, lower back muscles, and leg muscles, on the following training devices: chest
press, lat pulldown machine, lower back machine, abdominal crunch, and leg press (Techn-
oGym, Neu-Isenburg, Germany). Each exercise was performed with 3 sets according to
the following pattern: 2 s of concentric, 2 s of eccentric muscle work until the volunteer
reached muscle failure, and 2 min rest between each set. As recommended for novice
exercisers [72], the initial weight load during weeks 1–2 was set at 50–60% of 1-RM to
achieve ~15–20 repetitions per set to accustom volunteers to resistance training and there-
after progressed to 70–80% of 1-RM, targeting 8–12 repetitions per set. Previously defined
as “low-volume resistance training” [56], the resistance training part of the exercise session
involved only 6 sets per muscle group per week. Thus, total time per session, including
both LOW-HIIT and LOW-RT, was ~57 min per session (~114 min exercise per week).

2.6. Supplementation

Following the conclusion of every exercise session, volunteers received (double-
blinded) 40 g of a whey-based protein supplement (Fresubin Protein, Fresenius Kabi,
PRO group) or an isocaloric placebo (maltodextrin) with the same taste (MaltoCal 19,
MetaX, PLA group). According to previous research, consumption of 40 g of protein after
termination of exercise appears to be a very effective approach to increase synthesis rates
of muscle protein in healthy subjects [73]. Table 1 presents the calorie and macronutrient
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composition of each supplement. Both supplements were prepared with 150 mL of low-fat
milk (46 kcal/100 mL, 3.4 g protein, 4.8 g carbohydrates, 1.5 g fat) and administered in the
form of a shake in identical non-transparent drinking cups. Based on the medical history
survey obtained at study entry, none of the volunteers reported being lactose-intolerant
or experiencing any associated clinical symptoms after milk consumption. Supplement
preparation and delivery were carried out by staff members who were not engaged in the
collection and analysis of study outcomes. Once data collection was complete, the group
allocation of each volunteer was revealed. Volunteers were requested to document their
personal responses with the supplements, including any relevant observations pertaining
to their taste and any adverse effects they may have experienced as a result of taking
them (e.g., nausea, bloating, or stomach pain). Furthermore, to assess blinding success,
volunteers were asked to estimate which supplement they thought they had received after
completion of the intervention using the following answer options: “protein”, “placebo”.
or “I do not know”.

Table 1. Caloric and macronutrient contents of supplements (per serving size).

Variable Protein Shake 1,3 Placebo Shake 2,3

Caloric value (kcal) 213 222
Protein (g) 40 5

Carbohydrates (g) 7.5 46
Fat (g) 2.6 2

1 Whey protein, 2 maltodextrin, 3 both shakes prepared with 150 mL low-fat milk.

2.7. Statistical Analysis

SPSS version 24.0 software (SPSS Inc., Chicago, IL, USA) was used for analyses. The
data were first checked for whether they exhibited a normal distribution using the Shapiro–
Wilk test. A 2 × 2 repeated-measure ANOVA was subsequently conducted to examine the
data, with the objective of analyzing the main effects of group (PRO vs. PLA), time (T1
vs. T2), and their interaction. To assess whether sex influenced changes in the primary
outcomes (VO2max, 1-RM-values, and Fit score), male and female sub-analyses were con-
ducted. Levene’s test was utilized to confirm the homogeneity of variance. In instances
where ANOVA revealed the existence of a significant main effect or interaction, Holm–
Sidak post hoc tests were used for multiple and between-group comparisons and post
hoc paired t-tests were applied to identify changes within groups [74,75]. In cases where
the data exhibited a skewed distribution, logarithmic or square root transformations were
applied, and the identical analyses described above were conducted on the transformed
data. If normalization was not achieved through transformation (WVT, 1-RM chest press,
1-RM lat pulldown machine, Fit score and PAL values), Friedman two-way analysis of
variance was employed. In cases of significant results, Dunn’s Bonferroni post hoc tests
were used for comparisons between groups, and Wilcoxon and Mann–Whitney post hoc
tests were carried out for comparisons within groups, respectively. Moreover, effect sizes
were determined using partial eta-squared (ήp2) for ANOVAs and Kendall’s coefficient
of concordance (W) for the Friedman tests. Based on the established literature [76], effect
sizes were deemed small (≤0.01), medium (≥0.06) and large (≥0.14) for ήp2, and small
(≤0,10), medium (≥0.30), and large (≥0.50) for W. In all statistical tests, the threshold of
significance was defined at p < 0.05. Data are reported as means ± standard deviation (SD).
Changes between T-1 and T-2 are presented with 95% confidence intervals (95% CI).

3. Results
3.1. Study Flow

In total, 46 individuals were screened for eligibility, of whom 44 were included and
randomly allocated to the PRO group (N = 23) or PLA group (N = 21). Two dropouts of
eligible candidates occurred due to the onset of the COVID-19 pandemic. All participating
volunteers were free of medications, except for two women (N = 1; each group), who
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were taking contraceptives. During the study, eight volunteers dropped out (PRO group,
N = 4; 25% females, PLA group, N = 4; 100% females). The specific reasons for dropout are
illustrated in Figure 2. Thus, the study concluded with a total of 36 volunteers having been
analyzed (PRO group, N = 19, 63% females, 26 ± 4 years; PLA group, N = 17, 53% females,
27 ± 6 years).
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3.2. Training Data, Adverse Events, and Volunteers’ Evaluations

There were no significant between-group differences in primary outcomes at T-1.
Moreover, no notable sex-based differences were identified in the observed alterations in
VO2max and 1-RM values. Thus, the results for both sexes were combined in all analyti-
cal procedures. Training compliance (indicated by the percentage of scheduled sessions
attended) was notably high (PRO group: 93% ± 10%, PLA group: 93% ± 8%). The mean
peak heart rate reached during the intervals of the LOW-HIIT protocol corresponded to
95% ± 2% of volunteers’ HRmax, indicating successful attainment of the targeted intensity
of exercise. The mean heart rate throughout the whole LOW-HIIT protocol (warm-up, in-
tervals, recovery between intervals, and cool-down calculated together) equaled 78% ± 3%
of volunteers’ HRmax. All volunteers managed to lift the prescribed weight loads, and
completed 17 ± 2 repetitions per set during weeks 1–2 and 10 ± 1 repetitions per set during
weeks 3–8.

Throughout the whole intervention period, no adverse events associated with the
exercise program were documented. A mean score of 6.0 ± 0.7 was recorded on a 7-point
rating scale, ranging from 1 (indicating that the exercise program was “not enjoyable at
all”) to 7 (representing “extremely enjoyable”). This indicates that the training program
was rated as highly enjoyable by the volunteers. Moreover, 90% of volunteers expressed
an intention to continue with low-volume concurrent training after the study. In the PRO
group, no complaints or intolerance were reported after consuming the protein supplement.
In the PLA group, only a small number of minor adverse events were documented following
consumption of the maltodextrin supplement, including mild gastric discomfort (N = 1),
flatulence (N = 2), and mild nausea (N = 1). A 7-point Likert scale was employed to assess
the palatability of the supplements, with an average rating of 5.0 ± 1.6 for the protein
supplement and 5.5 ± 1.0 for the placebo. The majority of volunteers (N = 26, 76%) declared
that they were unsure which supplement they received during the intervention. Five (15%)
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volunteers correctly identified which supplement they received (PRO group: N = 3, PLA
group: N = 2). Three (9%, all PLA group) volunteers incorrectly identified the supplement
they received.

3.3. Nutritional Intake and Daily Physical Activity

There were no significant differences in regular diet or physical activity habits within
the groups or between them. Table 2 presents the dietary intake and physical activity data
for each group, recorded both before the intervention period and during the final week
of training.

Table 2. Dietary intake and physical activity during week 0 and week 8.

Outcome PRO Group
(N = 19)

PLA Group
(N = 17)

Main Effect
of Time

(p-Value)

Group × Time
Interaction
(p-Value)

Week 0 Week 8 Week 0 Week 8

Nutrition 1

Energy (kcal/day) 1987 ± 482 1965 ± 406 2052 ± 473 2000 ± 528 0.548 0.798
Protein (g/day) 81 ± 17 76 ± 11 79 ± 22 81 ± 28 0.656 0.237
Protein (g/kg/day) 1.2 ± 0.2 1.2 ± 0.3 1.1 ± 0.3 1.1 ± 0.3 0.786 0.511
Fat (g/day) 81 ± 28 78 ± 22 81 ± 23 80 ± 33 0.632 0.723
Fat (g/kg/day) 1.2 ± 0.4 1.2 ± 0.4 1.1 ± 0.4 1.1 ± 0.4 0.644 0.930
Carbohydrates (g/day) 207 ± 52 210 ± 78 216 ± 70 219 ± 63 0.745 0.995
Carbohydrates (g/kg/day) 3.2 ± 0.9 3.2 ± 1.0 3.0 ± 1.2 3.0 ± 1.0 0.929 0.990
Fiber (g/day) 21 ± 8 20 ± 8 22 ± 9 21 ± 9 0.527 0.830

Physical activity 2

Light PA (h/week) 2.3 ± 1.4 2.4 ± 0.7 2.9 ± 0.7 2.9 ± 0.7 0.310 0.640
Moderate PA (h/week) 1.1 ± 0.2 1.1 ± 0.2 1.2 ± 0.5 1.4 ± 0.9 0.063 0.781
PAL 1.40 ± 0.02 1.41 ± 0.02 1.47 ± 0.01 1.47 ± 0.01 0.234 3

Data shown as means ± SD. Week 0 = 1 week before T-1, Week 8 = final week of intervention, PA = physical
activity, PAL = estimated physical activity level. 1 Nutrition excluding the supplements, 2 PA excluding the study
exercise program, 3 non-parametric testing.

3.4. Anthropometric Data

There were no significant main or interaction effects for any anthropometric parameter,
except for a significant main effect of time in waist circumference (p = 0.033, ή2 = 0.13). Post
hoc tests revealed a reduction in waist circumference by 2.0 cm (95% CI: –3.3 to –0.1 cm,
p = 0.038) in the PRO group. Table 3 displays the data specific to each group at both T-1
and T-2.

Table 3. Anthropometric data at T-1 and T-2.

Outcome PRO Group
(N = 19)

PLA Group
(N = 17)

Main Effect
of Time

(p-Value)

Group × Time
Interaction
(p-Value)

T-1 T-2 T-1 T-2

Body weight (kg) 65.9 ± 11.16 65.7 ± 11.6 75.9 ± 13.7 76.0 ± 12.9 0.936 0.530
Body mass index (kg/m2) 21.8 ± 2.2 21.8 ± 2.3 25.0 ± 4.3 25.0 ± 4.3 0.426 0.982
Fat mass (kg) 15.7 ± 4.3 15.4 ± 4.6 21.9 ± 10.2 22.0 ± 10.3 0.726 0.340
Fat mass (%) 24.0 ± 6.6 23.6 ± 6.6 28.3 ± 10.2 28.4 ± 10.4 0.535 0.238
Skeletal muscle mass (kg) 23.9 ± 6.1 24.0 ± 6.2 25.7 ± 5.5 25.9 ± 5.4 0.304 0.344
Total body water (L) 36.9 ± 7.6 36.0 ± 10.6 39.7 ± 7.2 39.8 ± 7.1 0.381 0.321
Waist circumference (cm) 74 ± 8 72 ± 8 a 81 ± 7 80 ± 7 0.033 0.291

Data shown as means ± SD. T-1 = pre-intervention, T-2 = post-intervention. a p < 0.05: significant difference
vs. T-1.
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3.5. Cardiorespiratory Fitness Data

Significant main effects of time were found for relative VO2max (p < 0.001, ή2 = 0.30)
and absolute VO2max (p < 0.001, ή2 = 0.28), as well as for relative Wmax (p < 0.001, ή2 = 0.61)
and absolute Wmax (p < 0.001, ή2 = 0.66). Post hoc tests identified increases in absolute
VO2max (PRO group: 0.3 L/min, 95% CI: 0.1 to 0.4 L/min, p = 0.005; PLA group: 0.1 L/min,
95% CI: 0 to 0.2 L/min, p = 0.011), relative VO2max (PRO group: 2.7 mL/kg/min, 95%
CI: 0.9 to 4.5 mL/min, p = 0.003; PLA group: 1.4 mL/min, 95% CI: 0.1 to 2.6 mL/min,
p = 0.032) (Figure 3), absolute Wmax (PRO group: 22 W, 95% CI: 15 to 29, p < 0.001; PLA
group: 17 W, 95% CI: 10 to 24, p < 0.001) and relative Wmax (PRO group: 0.4 W/kg, 95%
CI: 0.2 to 0.5 W/kg, p < 0.001; PLA group: 0.2 W/kg, 95% CI: 0.1 to 0.3 W/kg, p < 0.001) in
both groups. Group-specific values of all cardiorespiratory fitness outcomes at T-1 and T-2
are presented in Table 4.
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Table 4. Cardiorespiratory fitness data at T-1 and T-2.

Outcome PRO Group
(N = 19)

PLA Group
(N = 17)

Main Effect
of Time

(p-Value)

Group × Time
Interaction
(p-Value)

T-1 T-2 T-1 T-2

VO2max (mL/kg/min) 40.1 ± 6.3 42.8 ± 7.2 b 36.8 ± 8.2 38.2 ± 8.1 a <0.001 0.210
VO2max (L/min) 2.6 ± 0.8 2.9 ± 0.8 b 2.8 ± 0.7 2.9 ± 0.7 a <0.001 0.166
Wmax (W/kg) 3.2 ± 0.5 3.6 ± 0.5 c 2.8 ± 0.6 3.0 ± 0.6 c <0.001 0.062
Wmax (W) 213 ± 60 235 ± 64 c 211 ± 43 228 ± 52 c <0.001 0.306
WVT (W) 82 ± 36 90 ± 49 76 ± 12 78 ± 19 0.275 0.532

Data shown as means ± SD. VO2max = maximal oxygen consumption, Wmax = maximal power output,
WVT = power output achieved at ventilatory threshold. a p < 0.05, b p < 0.01, c p < 0.001: significant differ-
ence vs. T-1.

3.6. One-Repetition Maximum Strength Data

Main effects of time were significant for 1-RM of chest (p < 0.001, W = 0.86), upper back
(p < 0.001, W = 0.69), abdominals (p < 0.001, ή2 = 0.46), lower back (p = 0.001, ή2 = 0.26) and
legs (p < 0.005, ή2 = 0.52). There was a significant group-by-time interaction for 1-RM in leg
muscles (p = 0.007, ή2 = 0.20). Additionally, a strong trend for a group-by-time interaction
was noted for 1-RM of abdominal muscles (p = 0.05, ή2 = 0.11). Post hoc tests revealed that
the PRO group showed significantly (p < 0.001) improved 1-RM in all tested muscle groups
(Figure 3), while the PLA group only improved 1-RM significantly in chest (p = 0.001) and
upper back muscles (p = 0.002). Improvements in 1-RM of leg muscles (15 kg, 95% CI: 4 to
25 kg p = 0.003) were larger in the PRO group in comparison to the PLA group (Figure 3).
Group-specific 1-RM values are shown in Table 5.

Table 5. One-repetition maximum strength data and Fit scores at T-1 and T-2.

Outcome PRO Group
(N = 19)

PLA Group
(N = 17)

Main Effect
of Time

(p-Value)

Group × Time
Interaction
(p-Value)

pre post pre post

Abdominals (kg) 28 ± 12 35 ± 14 c 30 ± 11 34 ± 10 <0.001 0.050
Lower back(kg) 39 ± 13 47 ± 15 c 49 ± 15 53 ± 14 0.001 0.276

Chest (kg) 34 ± 16 43 ± 16 c 39 ± 19 47 ± 20 b <0.001 1

Upper back (kg) 47 ± 18 58 ± 22 c 50 ± 20 57 ± 2 b <0.001 1

Legs (kg) 125 ± 42 152 ± 43 c 132 ± 32 139 ± 35 <0.001 0.007
Fit score 47 ± 11 54 ± 13 c 48 ± 9 52 ± 11 b <0.001 1

Data shown as means ± SD. b p < 0.01, c p < 0.001: significant difference vs. T-1. 1 Non-parametric testing.

3.7. Overall Fitness Z Score

A significant main time effect was detected for the Fit score (p < 0.001, W = 0.69). The
Fit score significantly increased in both groups (PRO group, p < 0.001; PLA group, p = 0.002)
(Figure 4). Group-specific Fit scores are presented in Table 5.
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4. Discussion

To our knowledge, this trial is the first to evaluate the impact of a post-exercise pro-
tein supplementation following a low-volume concurrent training program consisting
of combined LOW-HIIT and LOW-RT on physical fitness outcomes in untrained healthy
individuals. Our findings provide important insights into the effectiveness of nutritional
strategies in optimizing training adaptations in individuals performing low-volume con-
current cardiovascular and muscular training programs. The main results were as follows:
(i) in accordance with our assumption, 8 weeks of low-volume concurrent training im-
proved VO2max and muscular strength in our examined cohort—irrespective of protein
or placebo supplementation, (ii) improvements in leg muscle strength were significantly
larger in the PRO group in comparison to the PLA group, pointing to a beneficial effect of
post-exercise protein supplementation on lower body strength adaptations to combined
intra-session LOW-HIIT and LOW-RT in previously untrained individuals.

The increase in VO2max following the 8-week low-volume concurrent training program
(~2.1 mL/kg/min, average of both groups) was in the range of the values observed in other
investigations examining the impact of LOW-HIIT in healthy untrained or recreationally
active individuals (1.2 to 7.2 mL/kg/min), including previous trials from our laboratory
applying the identical LOW-HIIT protocol as in the current study [61,77–83]. Thus, in
conjunction with previous findings, our data provide further evidence for the effectiveness
of LOW-HIIT in improving cardiovascular health with relatively little time invested. Given
the paramount importance of VO2max for health and longevity [7,8], this finding has clinical
significance and supports the role of LOW-HIIT in cardiometabolic disease prevention.

The observed improvements in 1-RM values (11–33%) in our study cohort are consis-
tent with other research findings, suggesting that untrained individuals can experience
notable increases in muscle strength following LOW-RT programs within a few weeks. A
systematic review by Grgic et al. [84] found that LOW-RT can result in an average increase
in 1-RM ranging from 20% to 35% over 6–12 weeks. A study by Schoenfeld et al. [85]
reported that participants engaging in LOW-RT exhibited approximately a 25% increase in
their 1-RM for both lower and upper body exercises after 8 weeks. Similarly, another study
by Jenkins et al. [86] observed a 30% improvement in 1-RM values following a 12-week
LOW-RT regimen in untrained young adults. These findings are important because increas-
ing 1-RM is not only a measure of improved physical fitness but also a significant indicator
of overall health. For instance, a study by Volaklis et al. [87] found that higher 1-RM is
negatively correlated with the incidence of cardiovascular disease. Specifically, the study
demonstrated that each standard deviation (SD) increase in muscle strength (equivalent to
an approximate 15% increase in 1-RM) was associated with a 20–30% reduction in overall
mortality risk and cardiovascular disease events. A meta-analysis [88] indicated that each
10% increase in muscle strength reduced the risk of type 2 diabetes by 12%. Evidence
also suggests that higher muscle strength is associated with lower cancer mortality. Leong
et al. [89] found that each 5 kg increase in handgrip strength was linked to a 17% decrease
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in cancer mortality. Moreover, the Health ABC study [90] reported that greater leg strength
was associated with lower mortality rates in older adults. For every 10% increase in leg
strength, there was an 11% reduction in the risk of death from all causes.

Taken together, our findings indicate that two weekly sessions of low-volume con-
current training, requiring less than 2 h of total time effort per week, can yield significant
improvements in both cardiorespiratory and muscular fitness within only 8 weeks, which
most likely translates into improved health status. However, when comparing the PRO
group and the PLA group, it is a major finding of this study that the two groups noticeably
differed regarding their improvements in leg muscle strength. This finding is of importance,
since robust lower-extremity strength is not only essential for performing daily activities
but also linked to several health outcomes, including the prevention and management
of chronic diseases and a reduction in mortality risk [9,90–92]. For instance, it has been
demonstrated that lower limb muscle strength is significantly associated with a lower
risk of cardiometabolic disorders [91], cardiovascular disease [92] and all-cause mortality.
Interestingly, it has been suggested that loss of strength in the lower limb muscles, in
particular, significantly affects overall body functionality and may have a greater impact
on mortality compared to upper limb muscle strength [9], which further underscores the
relevance of our findings.

Regarding cardiorespiratory fitness, the improvement in VO2max was ~1.3 mL/kg/min
larger in the PRO group compared to the PLA group. Although this difference was not
statistically significant, it can be deemed clinically meaningful [93], because it has been
suggested that a 1 mL/kg/min improvement in VO2max is related to a reduced risk of
cardiovascular disease-related premature death by approximately 9% [94]. Moreover, it is
of note that the PRO group showed substantial increases in 1-RM across all major muscle
groups, while the PLA group showed improved 1-RM values only in the chest and upper
back muscles. Although the changes in muscle strength (aside from leg muscle changes)
were not statistically different between the two groups, these differences may be of clinical
relevance [93]. Research suggests that small differences in 1-RM can be associated with
important health benefits. For instance, in patients with chronic obstructive pulmonary
disease (COPD), 1-RM improvements of approximately 5 kg in leg extension and 6 kg in
chest press were identified as clinically significant. These improvements were correlated
with better performance in functional tests such as the six-minute walk test [95]. In healthy
populations, even small 1-RM differences, such as 1 kg, can translate to better performance
in daily activities and reduce the risk of injury. It has been reported that minor gains in
maximum strength can lead to improved balance, reduced fall risk, and better overall
mobility, which are crucial for maintaining independence, especially in older adults [58,96].
Moreover, modest differences in muscle strength can have positive psychological effects,
including enhanced self-esteem, reduced symptoms of depression and anxiety, and overall
better mental health [96]. These findings collectively suggest that even small-to-modest
differences in 1-RM values can be clinically relevant, contributing to better physical function,
injury prevention, and mental health. Therefore, the observed differences in muscle strength
changes between the PRO group and PLA group may be of clinical interest, even when the
differences in most muscle groups did not reach statistical significance.

Consequently, our findings highlight the beneficial effects of post-exercise protein
supplementation on leg strength adaptations, a critical variable linked to physical fitness
and general health [9,90–92]. The observed increase in leg strength underscores the po-
tential of protein supplementation to support lower-extremity muscle improvements and
performance in response to low-volume concurrent training and aligns with previous
research [24]. The absence of statistically significant differences in other measured physical
fitness outcomes suggests that while protein supplementation may specifically benefit leg
muscle strength, its effects on the adaptation of other muscle groups and cardiorespiratory
fitness in response to low-volume concurrent training may need further investigation,
potentially requiring larger samples and/or longer interventions. In this context, several
hypothesized physiological mechanisms have been postulated to account for the beneficial
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influence of post-exercise protein supplementation to improve adaptations to concurrent
training that primarily relate to muscle mass and strength adaptations [22–25]. First, pro-
tein intake after exercise stimulates synthesis of muscle protein by providing essential
amino acids, which activate the mechanistic target of rapamycin (mTOR) pathway [97].
The mTOR activation is crucial for initiating the translation process necessary for muscle
repair and growth. During concurrent training, the increased muscle protein synthesis
response from protein supplementation can help offset the catabolic effects of previous
endurance training, thereby promoting muscle hypertrophy and strength gains through
subsequent resistance training [29]. Second, both endurance training (especially high-
intensity training such as HIIT) and resistance training can cause exercise-induced muscle
micro-trauma. Post-exercise protein supplementation provides the necessary substrates
for muscle repair and promotes faster recovery [98]. This accelerated recovery allows
for more effective subsequent training sessions, enhancing overall training adaptations.
Additionally, post-exercise protein supplementation can positively influence the hormonal
environment conducive to muscle anabolism. Protein ingestion has been shown to elevate
the release of anabolic hormones such as insulin and growth hormone, which facilitate
muscle protein synthesis and hypertrophy [99]. These impact on hormones can counteract
the potential catabolic effects of endurance training, promoting a net anabolic state that
supports resistance training adaptations. It is of note that neither of our two study groups
experienced significant increases in skeletal muscle mass following the exercise program,
suggesting that 8 weeks of LOW-RT may not be enough to induce substantial hypertrophic
muscle changes, particularly when combined with additional LOW-HIIT within the same
session. However, muscle strength increase results from both changes in muscle structure
(in particular muscle hypertrophy) and neuronal adaptations, such as improved recruit-
ment of motor units [100]. Although protein supplementation is primarily associated with
beneficial effects on muscle hypertrophy, it has been reported that it may also play a role
in neuronal adaptations by facilitating the repair and growth of neural tissues, ensuring
optimal nerve function, and promoting the release of neurotransmitters involved in muscle
contraction [101]. Moreover, it has been reported that protein supplementation can enhance
muscle quality by promoting myofibrillar protein synthesis, thus increasing the density of
contractile proteins within the muscle fibers and leading to more efficient force production
per unit of muscle mass [102].

While the role of carbohydrates and fats in supporting endurance training adaptations
is well established, emerging evidence suggests that protein availability and supplementa-
tion may also play a critical role. Changes in VO2max are largely dependent on adaptations
in cardiac output, stroke volume, capillary density, blood volume and mitochondrial capac-
ity, which adapt at different rates in response to regular endurance training [103]. Protein
intake supports repair and remodeling processes that are essential for cardiovascular and
mitochondrial adaptations. Adequate protein availability, for example, is necessary to
sustain the synthesis of new contractile proteins and enzymes that facilitate increased
cardiac output and stroke volume [104]. In this regard, previous research has demonstrated
that protein ingestion after endurance training can support formation of new capillaries
and may enhance mitochondrial adaptations by promoting mitochondrial biogenesis and
function [104–106].

There are some potential limitations of this study. First, we acknowledge that we did
not rigorously monitor volunteers’ dietary intake or habitual activity patterns outside of
the prescribed training sessions, except during the 3-day assessments at the beginning
and end of the study. Also, volunteers were given general nutritional guidelines and
recipes at the study’s onset, but their diets were not strictly standardized throughout the
8-week period. Thus, despite the absence of notable discrepancies in dietary intake and
daily physical activities between the two observation periods or between the groups, it is
not possible to entirely discount the potential influence of variations in habitual nutrition
or physical activity on non-monitored days on the adaptations to the training program.
Nonetheless, we note that our study aimed to determine if targeted protein supplemen-
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tation post-exercise could enhance the adaptations to a low-volume concurrent exercise
program without significantly altering volunteers’ habitual diets. Second, some conclu-
sions are drawn from self-reported dietary intake and activity records. In this respect, it
has been reported that people typically tend to underestimate their dietary intake and
overestimate their engagement in physical activities, and that the act of recording itself
may unconsciously alter behaviors [107]. However, we believe that the comprehensive
guidance provided on the accurate recording of record dietary intake and daily activities
likely minimized the potential for errors. Third, volunteers received a standardized dose
of 40 g of protein following each training session. While it could be argued that matching
the supplement dose to each volunteer’s body weight would have been more precise,
it is not uncommon for post-exercise nutrient recommendations to be given as absolute
values [108]. Further, previous studies using fixed protein supplementation have reported
significant effects on myofibrillar muscle protein synthesis [73,109] and VO2max [110,111],
supporting the effectiveness of this approach. Fourth, volunteers’ body composition was
determined with BIA. Although the utilized device has shown high accuracy in assessing
skeletal muscle mass when compared to magnetic resonance imaging (MRI) and dual
X-ray absorptiometry (DXA) (63), this method can have some limitations, including, for
example, its sensitivity to hydration changes [112]. It is therefore possible that some perti-
nent distinctions in skeletal muscle adaptations between the PRO and PLA groups have
been overlooked in this study. Fifth, one notable limitation of our study is the absence
of biochemical markers, such as mTOR, which play a crucial role in muscle protein syn-
thesis and hypertrophy. The inclusion of such markers would have allowed for a more
comprehensive understanding of the molecular mechanisms driving the observed physio-
logical changes. Future research should integrate biochemical analyses to provide deeper
insight into the anabolic signaling pathways and their contribution to muscle strength
and adaptation in response to exercise interventions. Finally, the 8-week duration of this
study leaves questions about longer-term effects of protein supplementation following
exercise on responses to low-volume concurrent training unanswered. Future research
with extended intervention as well as with different training protocols (e.g., variations
in the order of concurrent low-volume endurance and resistance training) is necessary to
evaluate these questions. Despite these limitations, this study is the first double-blind,
randomized, placebo-controlled investigation to evaluate the impact of targeted protein
supplementation following a concurrent low-volume exercise program on key variables of
physical fitness in previously untrained individuals.

5. Conclusions

Our study suggests that supplementation with 40 g of whey-based protein after a ses-
sion of low-volume concurrent training can improve adaptations to low-volume concurrent
training in previously untrained healthy individuals. Individuals combining low-volume
endurance and resistance training in the same session may benefit from targeted protein
supplementation, particularly to maximize leg muscle strength improvements.
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