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Abstract: Aging-related disorders pose significant challenges due to their complex interplay of
physiological and metabolic factors, including inflammation, oxidative stress, and mitochondrial dys-
function. Curcumin, a natural compound with potent antioxidant and anti-inflammatory properties,
has emerged as a promising candidate for mitigating these age-related processes. However, gaps in
understanding the precise mechanisms of curcumin’s effects and the optimal dosages for different
conditions necessitate further investigation. This systematic review synthesizes current evidence
on curcumin’s potential in addressing age-related disorders, emphasizing its impact on cognitive
function, neurodegeneration, and muscle health in older adults. By evaluating the safety, efficacy,
and mechanisms of action of curcumin supplementation, this review aims to provide insights into
its therapeutic potential for promoting healthy aging. A systematic search across three databases
using specific keywords yielded 2256 documents, leading to the selection of 15 clinical trials for
synthesis. Here, we highlight the promising potential of curcumin as a multifaceted therapeutic
agent in combating age-related disorders. The findings of this review suggest that curcumin could
offer a natural and effective approach to enhancing the quality of life of aging individuals. Further
research and well-designed clinical trials are essential to validate these findings and optimize the use
of curcumin in personalized medicine approaches for age-related conditions.

Keywords: Curcuma longa; curcumin; aging; inflammation; oxidative stress; frailty; neurodegeneration;
sarcopenia; cardiovascular diseases; clinical trials
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1. Introduction

Population aging is a global trend that brings medical, social, and economic challenges [1–4].
Aging is the result of a diversity of molecular and cellular damages accumulated in the
body over the years. It is a natural, gradual, complex, and irreversible process, accom-
panied by systemic changes that cause a reduction in functionality and increase the risk
of age-associated diseases that eventually result in death. Some characteristics of aging
have been associated with loss of proteostasis, dysregulated nutrient sensing, increase in
the oxidative processes, inflammation, telomere attrition, genomic instability, stem cell
exhaustion, cellular senescence, impaired intercellular communication, and mitochondrial
dysfunction [5–9].

As life expectancy increases, an increase in the incidence of chronic diseases is ob-
served, including neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD)
and Parkinson’s disease (PD) [10], memory impairment [11], cognitive dysfunction [12,13],
type 2 diabetes (DM2) [14], cardiovascular disease [15], cancer [16], and musculoskeletal
disorders such as sarcopenia [4,17]. These conditions pose a substantial challenge to health-
care systems around the world due to their significant impact on the quality of life of the
elderly, healthcare costs, and the global burden of disease [18,19].

Natural bioactive compounds have been used for thousands of years as adjuvants in
therapeutic practice due to their efficiency, low cost, few side effects, and easy use [20–22].
Curcuma longa, known as turmeric or saffron, has received prominence among countless
plants. It is an herbaceous and rhizomatous plant (Figure 1) from the ginger family,
Zingiberaceae, and is native to Southeast Asia and India. For centuries, it has been used in
cooking and as medicine [23–27].
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Its main phenolic bioactive compounds are curcumin (~77%), demethoxycurcumin (~17–19%),
and bisdemethoxycurcumin (~4%), which are extracted from the rhizomes [20,28,29], and can
promote countless therapeutic actions by virtue of their anti-inflammatory and antioxidant
potential, as shown in numerous clinical and preclinical studies [30–33]. It is a potential
anticancer agent with the ability to modulate the main pathways involved in inflammation
processes, oxidative stress (OS), carcinogenesis, autophagy, apoptosis, and cardiovascular
and neurodegenerative conditions [23,34–36]. Furthermore, it has antidiabetic and an-
tiobesogenic effects, provides cardiovascular protection, and can also reduce sarcopenic
processes. Studies in hypertensive rats also show that it can prevent hypertension develop-
ment by improving vascular remodeling and endothelial dysfunction [37–40].

Curcumin has shown positive effects in delaying the aging process and delaying age-
related changes. Its potential anti-aging properties are due to its power to alter the levels
of proteins associated with senescence, such as adenosine 5′-monophosphate-activated
protein kinase (AMPK) and sirtuins, and preventing pro-aging proteins, such as nuclear
factor-kappa-B (NF-κB) and mammalian target of rapamycin (mTOR) [41]. Numerous
studies have demonstrated mechanisms by which curcumin can act on the aging process;
one of them investigated the molecular mechanism of curcumin in extending the lifespan of
C. elegans, and the results of the study indicated that this action potentially occurred through
increased resistance to OS and negative regulation of the AMPK signaling pathway [42].

Another study demonstrated how long-time curcumin therapy can progressively
reverse cognitive dysfunction in D-gal-induced senescent mice, delaying the aging process,
improving locomotor activity and cognitive functions, and restoring mitochondrial enzyme
complex function [43]. It was further reported that curcumin supplementation rejuvenates
senescence-related changes in the thymus among senescent mice caused by D-gal through
promoting proliferating cells, protecting cells from apoptosis, and elevating transcription
of the autoimmune regulator [44,45]

Despite the growing body of research indicating the potential benefits of curcumin in
addressing age-related disorders, there remains a gap in the understanding of its precise
mechanisms of action and optimal dosages for different age-related conditions. While
some studies have shown promising results in terms of curcumin’s antioxidant, anti-
inflammatory, and neuroprotective properties, there is still a need for more robust clinical
trials and mechanistic studies to elucidate the specific pathways through which curcumin
exerts its effects on aging-related processes. Additionally, variations in bioavailability
and metabolism of curcumin among individuals pose a challenge in determining the
most effective dosage and formulation for therapeutic purposes. Furthermore, the lack of
standardized protocols and inconsistent reporting of outcomes in existing studies hinder the
ability to draw definitive conclusions regarding the efficacy of curcumin in preventing or
treating age-related disorders. Addressing these gaps through well-designed clinical trials,
mechanistic investigations, and standardized protocols could provide valuable insights
into the full potential of curcumin as a therapeutic agent for promoting healthy aging and
combating age-related conditions.

The objectives of this systematic review are to evaluate the current scientific evidence
on the effects of curcumin in preventing and managing age-related disorders, to assess
the safety and tolerability of curcumin supplementation in older adults, to explore the
mechanisms through which curcumin may exert its beneficial effects on aging-related
processes, and to identify potential gaps in the literature that warrant further research. By
synthesizing data from clinical trials and studies focusing on OS, inflammation, cognition,
NDs, sarcopenia, and other age-related conditions, this review aims to provide a compre-
hensive overview of the therapeutic potential of Curcuma longa and curcumin in promoting
healthy aging and improving quality of life in the elderly population.
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2. Materials and Methods
2.1. Focal Question

This systematic review was carried out with the aim of answering the following ques-
tion: “Can curcumin produce beneficial effects on conditions related to the aging process?”.

2.2. Language

Only clinical studies published in English were used.

2.3. Literature Search

This systematic review included clinical trials published in MEDLINE–PubMed,
COCHRANE and EMBASE. The keywords used were Curcuma longa or saffron or turmeric
or curcumin or curcuminoids and OS or inflammation or mitochondrial dysfunction or
sarcopenia or cognition or memory or dementia or PD or AD or aging or NDs. These
descriptors guided the identification of studies related to Curcuma longa and its effects
on OS and inflammatory processes related to aging. S.M.B. and Y.C.N. carried out the
identification and inclusion of studies. In the case of conflicting research results, a third
judge ruled (M.J.S.M.).

2.4. Inclusion and Exclusion Criteria

The inclusion criteria for the studies were intervention studies in humans. Exclusion
criteria were studies not published in English, editorials, conferences, letters to editors,
reviews, poster presentations, and case reports.

2.5. Data Extraction

There was no time limit for the search for clinical trials in this review. For data extrac-
tion, we used the PICO format (Population, Intervention, Comparison, and Outcomes).

2.6. Study Selection

The search/selection of studies was performed according to the guidelines of PRISMA
(The Preferred Reporting Items for a Systematic Review and Meta-Analysis) [46,47] (Figure 2).
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2.7. Quality Assessment

The Cochrane Handbook was used to assess the risk of bias related to the studies
selected for systematic reviews of interventions [48].

2.8. Registration

This study was registered by PROSPERO under the ID CR42024559316.

3. Results

Initially, 2256 documents were identified according to the search terms. After applying
the inclusion/exclusion criteria, we identified 15 clinical trials that met these criteria for
synthesis. Figure 2 shows the selection of the studies in accordance with PRISMA guidelines.

4. Discussion

This review explores the beneficial effects of curcumin in addressing aging-related dis-
orders, highlighting the intricate interplay between physiological and metabolic cascades
that contribute to age-related impairments. Highlighting the critical roles that inflam-
mation, OS, and mitochondrial dysfunction play in the pathophysiology of ailments like
memory loss and cognitive impairment, NDs, frailty, and sarcopenia, the review highlights
curcumin’s potential as a versatile therapeutic agent. By elucidating how curcumin’s an-
tioxidant and anti-inflammatory properties may counteract these detrimental processes,
the discussion sheds light on the mechanisms through which curcumin could mitigate age-
related conditions. Furthermore, the review explores the impact of curcumin on neuronal
growth factors, neuroplasticity, muscle protein synthesis, and degradation, offering insights
into its potential to enhance brain functions and muscle health in the aging population.

4.1. Beneficial Effects of Curcumin and Aging-Related Disorders

Aging-related disorders are related to impairment in several physiological and metabolic
cascades (Figure 3). These processes are profoundly linked to inflammation, OS and
mitochondrial dysfunction, leading to several disorders such as impaired memory and
cognition, NDs (such as AD and PD), frailty, and sarcopenia.

4.2. Inflammation

Inflammatory processes are crucial in the development of disease conditions related to
the aging process. Curcumin’s anti-inflammatory activity involves regulating inflammatory
signaling pathways and inhibiting the production of inflammatory mediators. Curcumin
can bind to Toll-like receptors (TLRs) and downregulate mitogen-activated protein kinases
(MAPKs), activator protein 1 (AP-1), and NF-κB signaling pathways that play an important
role in inflammatory mediator generation. Moreover, curcumin, by inhibiting the NF-κB
pathway, can directly restrain the assembly or even inhibit the activation of the NOD-
like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a cytosolic multiprotein
complex involved in the development of several inflammatory diseases [36,49–55]. In
addition, curcumin reduces inflammation through its antioxidant properties by inhibiting
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and elevating the activity
of antioxidant enzymes and consequently lowering reactive oxygen species (ROS) [49,56].

Another anti-inflammatory mechanism of curcumin is the nuclear factor erythroid
2–related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, which
is strongly related to OS and inflammation by its association with NF-κB, MAPK, phos-
phoinositide 3-kinase (PI3K) and protein kinase C (PKC) pathways and by its role in
regulating gene expression of antioxidant and detoxifying enzymes [57–60]. Furthermore,
curcumin can block both the production of tumor necrosis factor (TNF)-alpha (TNF-α)
and the cell signaling pathways mediated by TNF in various types of cells, decrease the
release of several ILs through the downstream regulation of NF-κB by acting on peroxisome
proliferator-activated receptor gamma (PPAR-γ), act as a natural free radical scavenger due
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to its chemical structure, and suppress pro-inflammatory pathways related to most chronic
diseases [49,58].
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Figure 3. Overview of the aging process. Cellular senescence triggers inflammatory processes and
the release of pro-inflammatory biomarkers such as IL-1β, IL-6, TNF-α, IFn-γ, CXCL-1, and CXCL-
12. Free radicals and reactive oxygen species induce the installation of oxidative stress (OS) that
aggravates inflammation. On the other hand, inflammation aggravates OS, leading to a vicious cycle.
Apaf-1: apoptotic protease-activating factor-1; Bax: Bcl-2-like protein X; BCL-2: B-cell lymphoma 2;
CXCL: chemokine (C-X-C motif) ligand; IL: interleukin; INF-γ: interferon-γ; MDA: malonaldehyde;
TNF-α: tumor necrosis factor-α. ↓: decrease; ↑: increase.

Curcumin can also regulate immune cells such as dendritic cells, T regulatory cells, and
T helper 17 (Th17) cells, which produce interleukin (IL)-17, IL-22, and IL-23, inducing an
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inflammatory response. Curcumin mainly inhibits Th17 differentiation and regulates Treg,
which are anti-inflammatory cells, and induces Th17 balance by inhibiting the IL-23/Th17
pathway, maintaining immune homeostasis [35,36,49,61,62]. Also, it can induce the po-
larization of macrophages into an anti-inflammatory M2 phenotype. Furthermore, levels
of pro-inflammatory mediators such as IL-1, IL-1β, IL-6, IL-8, IL-17, IL-27, nitric oxide
(NO), inducible nitric oxide synthase (iNOS), C-X-C motif chemokine ligand 8 (CXCL8),
C-C motif chemokine ligand 2 (CCL2), cyclooxygenase 2 (COX-2), granulocyte colony-
stimulating factor (G-CSF), and monocyte chemotactic protein-1 (MCP-1) can be decreased
by curcumin [20,32,49,63].

Curcumin can also work as an anti-inflammatory mediator by modulating the Janus ki-
nase/signal transducer and activator of transcription (JAK/STAT) signaling pathways [64,65]
and reducing macrophage infiltration and mRNA levels of macrophage M1 [66]. Moreover,
the protective role of curcumin on gastric mucosal inflammation in mice induced by cis-
platin occurred by decreasing IL-1β, IL-17, IL-23, TNF-α, and myeloperoxidase, enhancing
levels of IL-10, and downregulating activation of NF-κB [67].

Another point to bring to light is that inflammation is closely related to OS. The signif-
icant accumulation of free radicals such as ROS or reactive nitrogen species (RNS) leads to
OS, which aggravates inflammation by stimulating the transcription of factors related to
inflammation. Curcumin can decrease ROS production through NADPH oxidase and aug-
ment antioxidant molecules (such as catalase, superoxide dismutase, and glutathione per-
oxidase enzymes) activities, and is associated with Nrf2-Keap1 pathways [68,69]. Figure 4
summarizes the anti-inflammatory pathways modulated by curcumin.

Among the “pillars” of aging, inflammaging should be mentioned. This term is applied
to define the close relationship observed between low-grade chronic inflammation and the
aging process with no infectious conditions. This scenario is related to several impairments,
including brain conditions. As already pointed out, the immune system has a critical role
in the aging process or the “biological age”, which can be evaluated by metabolomics
and genomics. Biological age is different from chronological age. Biological age may be
influenced by genetics, lifestyle, and the environment. However, the immune system can be
impaired substantially in the normal aging process, leading to great consequences for the
body [70]. Curcumin can inhibit the formation of free radicals and other pro-inflammatory
biomarkers related to age-related diseases [71,72].

4.3. Oxidative Stress

Aging is a gradual combination of important tissue and cellular changes, integrat-
ing structural, functional, and physiological changes, leading to functional disorders and
increasing susceptibility to death. Named “hallmarks of aging”, this process is linked to
molecular events such as dysregulated nutrient sensing, telomere wear, genomic instability,
epigenetic changes, cellular senescence, loss of proteostasis, altered intercellular communi-
cation, and stem cell exhaustion [73–80]. OS and inflammatory processes are associated
with the aging process. Various circumstances, such as stress, infections, exposure to inflam-
mation, smoke, and radiation, produce ROS due to metabolism [81]. These molecules can
lead to irreversible cellular damage when the endogenous antioxidant system or the intake
of exogenous antioxidants is insufficient [82–84]. OS is linked to the genesis of numerous
health conditions, both in the aging phase and even in the younger stages of life. These
include obesity, hypertension, diabetes, cardiovascular diseases (CVDs), NDs, cataracts,
and cancer [85–88].

Numerous antioxidants can contribute to preventing the effects of the aging process.
Produced by exogenous and endogenous pathways, ROS can be attenuated by enzymatic
and non-enzymatic antioxidants. There are several defense systems, including peroxidase,
glutathione, catalase, superoxide dismutase, thioredoxin, cytochrome c oxidase (complex
IV), representing endogenous antioxidants and vitamin E, coenzyme Q, carotenoids and
ascorbic acid, representing some possibilities of exogenous antioxidants [89–91].
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Figure 4. The effects of curcumin against inflammatory pathways. Curcumin inhibits the MAPK,
ERK, p38, p65, p50, and NFkB pathways and the consequent release of pro-inflammatory cytokines
such as interleukin (IL)-1; IL-12, and tumor necrosis factor-α (TNF-α). Besides that, curcumin also
inhibits the Janus kinase/signal transducer and active factor of transcription (JAK-STAT) cascade.
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related factor 2 (Nrf2) that also interfere with pro-inflammatory pathways. ARE: antioxidant respon-
sive elements;CXCL: chemokine (C-X-C motif) ligand; ERK: protein kinase RNA-like endoplasmic
reticulum kinase; HO-1: Heme-oxygenase-1; IKB: IkappaB kinase; MAPK: mitogen-activated protein
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NLR family pyrin domain containing; PPAR: peroxisome proliferator-activated receptor; RANTES:
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Cells constantly strive to maintain the level of ROS essential for their normal function-
ing. However, excessive production of ROS reduces the activity of the antioxidant enzy-
matic defense system and the content of non-enzymatic proteins (GSH), which compromises
the general defense system and prevents it from eliminating excess free radicals [92,93].
ROS, produced in hyperoxia and inflammatory conditions, combined with a low and
damaged antioxidant defense system, change the homeostasis of the biological system as a
whole. In excess, they cause oxidative damage to deoxyribonucleic acid (DNA). They can
react with them and attack nitrogenous bases and the sugar–phosphate skeleton, instigat-
ing single- and double-stranded DNA breaks, which are also linked to premature aging.
Considering all these consequences, OS can stimulate various pathologies (chronic and
acute), cause acute diseases (trauma and stroke), and accelerate aging processes [94,95].
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As a dietary phenolic compound, curcumin is useful for longevity through declining
OS, modulating signal transduction, and gene expression. Curcumin can extend shelf life by
inhibiting lipid peroxidation and also increasing antioxidant activities [96]. It has enormous
potential to minimize age-related cellular damage caused by the generation of ROS. It can
stabilize Nrf2 and enhance the expression of heme oxygenase-1 (HO-1), in addition to
stimulating the Nrf2 pathway, which is essential in the activation of antioxidant enzymes,
such as thioredoxin reductase, heme oxygenase, sirtuins, and Hsp70 [97–99]. Curcumin can
promote significant neuroprotective actions by modulating neuroinflammatory signaling
pathways, scavenging ROS, and inhibiting or reducing the production of pro-inflammatory
mediators [100].

An interesting study showed that, on sepsis-induced cardiac dysfunction, curcumin
can activate sirtuin 1 (SIRT1), elevate the expression of mitochondrial biogenesis-related
genes Nrf2, Pgc1α, and Tfam, reduce dynamin-related protein 1 transport to mitochondria,
and restore mitochondrial morphology and function in heart cells [101].

Tetrahydro-curcumin, one of the most important metabolites of curcumin, was used
in a study to remove ROS from hyperglycemia and increase the concentration of reduced
glutathione (γ-glutamylcysteinyl glycine) in cultured rat lenses [102]. In another study,
microsomal lipid peroxidation inhibition was reported in male rats’ liver supplemented
with 1% turmeric [103]. Regarding the effects of curcumin on several target molecules
that are directly or indirectly related to different metabolic functions [104], a study re-
ported an increase in cellular antioxidant defenses in rats subjected to treatment with
cyclophosphamide to stimulate lung injury, fed with curcumin for seven days before re-
ceiving the treatment [105]. Curcumin functions as a biochemical antioxidant; it can extend
lifespan by inhibiting lipid peroxidation and increasing antioxidant activities, and as a
dietary phenolic compound, it can promote longevity by reducing OS and modulating
gene expression [106,107].

4.4. Mitochondrial Dysfunction and Apoptosis

Mitochondrial dysfunction is related to several aging conditions and disorders. Dereg-
ulated levels of ROS can potentially cause oxidative damage in the mitochondrial DNA
(mtDNA), affecting the organelle’s function and inducing redox signaling to the other cell
organelle [59,108]. Then, mitochondrial dysfunction is characterized by higher NO syn-
thesis, OS, and lower ATP production and oxygen consumption. However, mitochondria
have ROS scavenging systems where superoxide dismutase turns superoxide radical into
hydrogen peroxide. It suffers the action of catalysts such as glutathione peroxidase, which
breaks hydrogen peroxide into water.

Curcumin can improve antioxidant activity and reduce oxidative damage in mitochon-
dria by increasing the effect of superoxide dismutase, glutathione, and catalase and also
inhibiting ROS-generated enzymes such as cyclooxygenase, lipoxygenase, and xanthine
hydrogenase/oxidase [109,110].

In mice with chronic kidney disease-induced mitochondrial dysfunction, curcumin
could improve mitochondrial biogenesis and mitochondrial function and suppress OS,
probably by inhibiting glycogen synthase kinase-3β (GSK-3β) activity. Curcumin modu-
lated levels of mitochondrial ATP and the basal mitochondrial oxygen consumption rate;
it also attenuated mitochondrial superoxide production. Furthermore, curcumin could
inhibit the deleterious alterations in mitochondria morphology and enhance the expression
levels of mitochondrial transcription factor A (TFAM), nuclear respiratory factor 1 (NRF-1),
and PPAR-γ coactivator 1-α (PGC-1α), which were decreased in mouse muscle [111,112].

Furthermore, by improving mitochondrial function, curcumin pretreatment protected
rat bone marrow mesenchymal stem cells against hypoxia and reoxygenation injury. The
pretreatment improved ATP production and reduced ROS formation and changes in mito-
chondrial membrane potential, which are caused by the excessive levels of ROS that alter
mitochondrial membrane permeability and can lead to apoptosis. In addition, curcumin
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also prevented hypoxia and reoxygenation-induced cell viability reduction and improved
nuclei morphology [113].

Curcumin has been shown effective in inducing apoptosis in different cancer cells,
mainly due to its potential to inhibit the phosphatidylinositol 3-kinase/protein kinase B
(PI3K/AKT) pathway, whose activation hinders apoptosis by upregulating anti-apoptotic
genes such as B-cell lymphoma 2 (Bcl-2) and downregulating pro-apoptotic genes like Bcl-2
associated protein X (Bax) [114,115]. The PI3K/AKT pathway inhibition by curcumin can be
explained by the upregulation of phosphatase and tensin homolog (PTEN). This tumor sup-
pressor downregulates PI3K/AKT signaling and gene expression in AKT activation [115].
Also, curcumin inhibits the tyrosine kinase epidermal growth factor receptor (EGFR), which
activates the PI3K/AKT pathway and induces apoptosis in neoplastic cells [116].

The JAK/STAT pathway is also a signaling pathway that regulates apoptosis and is
affected by curcumin in a myeloproliferative neoplasm model. In this experiment, curcumin
inhibited JAK2/STAT and mammalian target of rapamycin complex 1 (mTORC1) pathways
in JAK2 V617F-mutated cells, inducing apoptosis [117]. Furthermore, curcumin presented
the ability to sensitize neoplastic cells to suffer apoptosis mediated by death receptor
pathways, which are unlocked with death ligands, like TNF and Fas ligand, culminating in
caspase-8 activation and consequent apoptosis. Notwithstanding, curcumin can induce
endoplasmic reticulum stress-induced apoptosis pathway in tumor cells [115].

Curcumin also showed inhibitory effects on apoptosis in non-cancerous diseases,
which enhances its therapeutic applications. In diabetic cardiomyopathy, it reduced ROS
and activated PI3K-AKT signaling pathways, resulting in the downregulation of Bax and
caspase-3 expression and consequent apoptosis inhibition [118]. In a septic acute kidney
injury mouse model, curcumin showed anti-inflammatory capacity and attenuation of
apoptosis by JAK2/STAT3 and NF-κB signaling pathway inhibition, resulting in increased
levels of Bcl-2 and decreased levels of Bax and caspase-3 [119]. Figure 5 summarizes some
curcumin effects related to mitochondrial function and reduction of OS.

4.5. Neurodegenerative Diseases

NDs include a heterogeneous group of neurologic conditions that covers dementia
predominantly, multiple sclerosis, amyotrophy lateral sclerosis, AD, and PD, and can lead
to neural cell death [120–124].

Usually, NDs are irreversible, progressive, and related to loss of function; as the
structures degenerate, a gradual and progressive loss of motor skills and/or cognitive skills
can lead to loss of function, debilitation, and mental impairment. Neuroinflammation and
OS are pathophysiologies common to all forms of ND. Among the most common NDs are
AD (the most frequent), PD, and amyotrophic lateral sclerosis; in AD, the symptoms include
progressive and irreversible cognitive deficits that may present with changes in behavior
and mood, and memory loss is also common as the disease progresses; it corresponds
to 60% to 80% of dementia cases, and more than 30 million people have this condition.
These diseases affect most elderly individuals but can also occur at other ages and are
characterized by having a constant progressive course due to the increasing decrease in
specific neurons in the brain [125–132].

Therapeutic resources that only treat the symptoms and prevent the progression of
the disease are used at the moment, such as drugs including cholinesterase inhibitors used
for AD that do not change the course of the disease and only provide improvement in
symptoms of behavioral deficits. Still, several patients exhibit little effectiveness in the
therapeutic response due to the difficulty of adherence to treatment that has a high cost,
physiological variability, and adverse effects, which include nausea, vomiting, dizziness,
and diarrhea [133–136].
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Figure 5. Effects of curcumin on mitochondrial dysfunction and oxidative stress in different signaling
pathways. Curcumin can upregulate sirtuin (SIRT), Ketch-like ECH-associated protein 1, nuclear fac-
tor erythroid-2 related factor 2 (Keap1-Nrf2), and Wnt/β catenin pathways, and inhibit nuclear factor
kappa beta (NF-κβ). The results of the stimulation and inhibition of these pathways is the modulation
of lipid peroxidation, oxygen consumption, aconitase and antioxidant enzyme modulation, and ATP
production in mitochondria. Moreover, curcumin is related to the upregulation of the synthesis of
glutathione peroxidase (GPX), superoxide dismutase (SOD), reduction of malonaldehyde (MDA),
reactive oxygen species (ROS), and reactive nitrogen species (RNS). The results of curcumin effects
are improvements in cardiovascular, renal, and hepatic diseases. Furthermore, there is a reduction in
frailty, sarcopenia, and brain disorders. ↓: decrease; ↑: increase.

These reasons led to the need for other therapeutic approaches, and Curcuma longa,
due to its antioxidant, immunomodulatory, and anti-inflammatory properties, may be an
option. Mechanisms such as glucose metabolism and endothelial function are closely linked
to processes of neurogenesis, neuroinflammation, and synaptic plasticity, and improvement
of the function and structure of synapses, regulation of proteins, and delay of the neural
dysfunction process has been associated with the consumption of curcumin [137–139].
Figure 6 shows some effects of curcumin on the prevention of ND.
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Figure 6. Curcumin and its effects on nervous system disorders. Activation of NOD-like receptor
pyrin domain-containing 3 (NLRP3), Toll-like receptor 4 (TLR4), nuclear factor-kappa beta (NF-κβ),
and triggering receptor expressed on myeloid cell 2 (TREM2) is associated with neuroinflammation
and the risk of developing conditions such as AD and PD, brain injury, depression, and multiple
sclerosis. However, curcumin can block PPAR-γ, which is an important mediator for the expression
of these inflammatory factors. In addition, curcumin can stimulate nuclear factor erythroid-2 related
factor 2 (Nrf2) and leads to improvement of inflammation, OS, cognitive functions, neuroplasticity,
and memory. This activity can result in a decrease in ROS and RNS, improving mitochondrial
function, and a decrease in insulin resistance, which reduces the activity of the inflammatory factors
mentioned. Furthermore, it can reduce β amyloid plaque accumulation to avoid future inflammation
of the nervous system. ↓: decrease; ↑: increase.

4.5.1. Cognition

Although crystallized intelligence remains unchanged, neural aging leads to impor-
tant changes in fluid intelligence as age advances, resulting in impairments in attention,
memory, processing speed, and visuospatial and psychomotor abilities [140,141]. The
pharmacological class most used in these cases is acetylcholinesterase (AChE) enzyme
inhibitors, as therapeutic options are limited. However, numerous studies have shown that
curcumin has relevant effects on cognitive function [142,143].

Zhi et al. [44] investigated male C57BL/6 mice with trigeminal neuralgia administered
100 mg/kg/day curcumin twice a day for 14 days to observe its effects on orofacial allodynia
and cognitive impairment and showed an increase in the density of dendritic spines, and in
the regulation and proportion of dendritic spines, relieving the synaptic damage neurons
in the hippocampus, in addition to increased mechanical and cold pain thresholds and
improved spatial learning and memory deficits. As also presented in male Otsuka Long-
Evans Tokushima Fatty rats as a model of spontaneous DM2, they were subjected to
physical exercise or physical exercise in combination with 5 g/kg of curcumin to investigate
their cognitive responses; then, it was evidenced that both groups showed a significantly
lower escape latency and a longer swimming time spent in the target quadrant; however,
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the best results were seen in the group in combination with curcumin, indicating a decrease
in learning and memory deficits [144].

The improvement in cognitive function may be partially linked to an increase in
neurogenesis, as analyzed in male Sprague Dawley rats in a model of Gulf War illness
treated with 30 mg/kg curcumin for 30 days and exposed to the object localization test to
evaluate cognitive function, as well as the new object test to analyze recognition memory
and measurement of hippocampal neurogenesis. The results observed were a greater
exploration time of both an object moved to a different location and a new object over
a familiar object, as well as an increase in hippocampal neurogenesis; in addition, the
improvement in cognitive function may be partially linked to greater neurogenesis [145].

Behind all cognitive impairment, there is an exacerbated OS mechanism due to mito-
chondrial changes caused by aging, which trigger a theory known as “free radical aging”.
It is explained by the reduction in ATP production, culminating in lower consumption of
oxygen, followed by a higher concentration of free molecules (O2) to bind with NO, gen-
erating peroxynitrite (ONOO−) or hydroxyl radicals (•OH). This exacerbated production
of ROS unbalances antioxidant activities mediated by the enzymatic action of superoxide
dismutase and glutathione peroxidase, increasing lipid peroxidation and the oxidation of
DNA and proteins, thereby, in addition to stimulating the release of pro-inflammatory and
pro-apoptotic factors, causing apoptosis and autophagy of neural cells [146,147].

Using 100 mg/kg of curcumin one hour before treatment with cisplatin (an important
chemoattractant that can lead to cognitive impairment) in C57BL/6 mice showed that the
autophagy caused by cisplatin was induced through the transcription factor 4/protein
kinase B/the mammalian target of the rapamycin (ATF4-Akt-mTOR) signaling pathway
by endoplasmic reticulum stress. The analysis also showed that curcumin increased the
activation of the AMPK/c-Jun N-terminal kinase (JNK), culminating in the inhibition of Akt
and mTOR and upregulation of the Bcl-2 protein (anti-apoptotic), suppressing apoptosis,
being associated with increased neurogenesis and synaptogenesis in the hippocampus, and
clarifying the improvement and recovery of cognitive function, as seen in the MWM test
(improved spatial learning and memory) and NORT (increased recognition function). In ad-
dition, it increased the amount of cells positive for the marker of neurogenesis doublecortin
in the hippocampus and the density of the dendritic spine, and inhibited the levels of Bax-
and Bcl-2-interacting mediator of cell death (Bim) proteins (pro-apoptotic members); the
opposite is seen when cisplatin is administered alone, which despite presenting a consid-
erable level of autophagy also induces an exaggerated increase in apoptosis, attenuating
neurogenesis and synaptogenesis, explaining cognitive impairment [148].

Rueda et al. investigated the actions of 300 mg/kg of curcumin in prenatal or early
postnatal stages on geomorphology and cognition in pregnant female mice with Ts65Dn
Down syndrome [149]. The use of curcumin acted to increase brain weight, the density
of positive bromodeoxyuridine and 4’6-diamidino-2-phenylindole in the hippocampus
of those on short-term prenatal and short-term postnatal treatment, and the levels of
postsynaptic density protein 95 and synaptophysin. There was a decrease in escape latency,
and in the probe test, there was an increase in the number of crossings in the platform
position, indicating an improvement in cognitive status and neuromorphology.

4.5.2. Memory

As noted above, using curcumin as a drug therapy adjuvant shows several neurological
benefits, including preserving and improving memory and learning, as seen in research
using rodents with neurological deficits [150–155].

The study by Changleck et al. investigated the effects of curcumin on lead-induced
inflammation and cholinergic dysfunction in male ICR mice [156]. It was possible to
demonstrate that the groups receiving treatment associated with curcumin showed a
significant increase in AChE levels in the brain, decreased TNF-α, COX-2, phosphorylation
of inhibitory kappa B kinase beta (IKKβ), extracellular signal-regulated kinase (ERK), and
JNK. Moreover, an improvement in spatial memory was observed, especially in those
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undergoing treatment with curcumin 200 mg/kg. Another study analyzed the effects of
50 mg/kg/day curcumin supplementation for 4 weeks on memory deficits, lactate content,
and monocarboxylate transporter 2 (MCT2) in a model of sixteen amyloid precursor protein
(APP)/presenilin 1 (PS1) transgenic male and female mice [157]. The analyses demonstrated
that the group treated with curcumin showed an increase in escape length and platform
passage time, indicating an improvement in memory deficit, as well as lactate levels and
protein MCT2, which were significantly increased in the cerebral cortex and hippocampus.

The effects of consuming 5, 15, and 45 mg/kg of curcumin associated with cholinergic
drugs on the cholinergic system of male Wistar mice, compared to the isolated admin-
istration of agonists (nicotine, pilocarpine) and cholinergic antagonists (succinylcholine
and scopolamine), demonstrated a significant improvement in memory retention in those
undergoing treatment with agonists [158].

Ikram et al. investigated the neuroprotective mechanisms of dietary supplementation
of 50 mg/kg of curcumin for 6 weeks on male C57BL/6N mice and HT22 cells from the
hippocampus of mice with neurodegeneration [159]. The authors observed that ethanol
increased ROS, lipoperoxidation, Toll-like receptor-4 (TLR4) expression, and receptors for
advanced glycation end products (RAGEs); concomitantly, there was also an increase in
phosphorylated (p)-JNK, p-NF-κB, apoptotic markers (Bax, cleaved caspase-3, and PARP-1),
and decreased anti-apoptotic markers; these were responsible for neuroinflammation,
neurodegeneration, and synaptic dysfunction. When the curcumin was administered,
there was both in vitro and in vivo a decrease in ROS and an increase in the expression
of Nrf2/HO-1, an important cytoprotective and detoxifying agent. Furthermore, chronic
use of curcumin was associated with an inhibition of apoptotic markers and an increase in
Bcl-2, indicating a rescue against neurodegeneration and memory impairment that was
confirmed through Nissl staining and FJB of neuronal cells.

Zhang et al. demonstrated that the acute use (single dose) of 50, 100, and 200 mg
of curcumin showed no benefit on the spatial memory of male Sprague Dawley rats
with memory deficit induced by a ventricular injection of β-amyloid peptide (1–42); the
opposite was seen in those on chronic treatment with the same dosages of curcumin, with
a significant decrease being observed in escape latency, and an increase in the frequency of
crossing the platform location and in spatial preference for the target quadrant, especially
when using doses of 100 mg or 200 mg of curcumin [160].

4.5.3. Alzheimer’s Disease

AD is marked mainly by accumulations of extracellular amyloid plaques, composed of
β-amyloid peptides (Aβ) responsible for directly inducing tau hyperphosphorylation and
neurite degeneration and intracellular neurofibrillary tangles, composed by hyperphospho-
rylated microtubule-associated protein (MAPT) tau protein, which disrupts microtubules
and impairs axonal transport in the brain [161–163]

Besides that, both aging and the accumulation of Aβ deposits pathologically stimulate
microglia and astrocytes, inducing inflammatory processes with the intense release of
pro-inflammatory biomarkers, such as IL-8, TNF-α, IL-1β, and IL-γ, with an increase in
the enzymatic activity of beta-secretase and gamma-secretase due to decreased action of
the AMPK pathway, which is dependent on JNK, cleaving the beta-APP and leading to
the formation of more Aβ aggregates that bind to the RAGE, increasing the concentrations
of ROS and RNS, stimulating the activation of NF-κB, which will trigger the produc-
tion of NO. OS leads to a decrease in the activity of antioxidants, including glutathione,
catalase, and glutathione-S-transferase, with a consequent increase in lipid peroxidation
and nitrite levels. This inflammatory cascade is responsible for neuroinflammation and
neurodegeneration [164–169].

Fortunately, in addition to AChE inhibitor medications, studies have shown that cur-
cumin therapy acts protectively in the pathogenesis of AD, reducing OS and inflammation,
in addition to inhibiting the formation of Aβ fibrils from Aβ40 (1–40) and Aβ42(1–42) and
amyloid plaques [170–175].
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The blood–brain barrier, which prevents most drugs from reaching their targets, makes
the central nervous system the final frontier in drug delivery [176,177]. Yang et al. showed
that in oral ingestion or peripheral injection of curcumin in Swedish Mutant (APPsw)
Tg2576 transgenic mice, there was a blood–brain barrier crossing of curcumin that binds
to amyloid plaques in vivo and in vitro [178]. With increasing doses of curcumin, it was
possible to see a significant inhibition of Aβ aggregation and an induction of disaggregation
of pre-aggregated Aβ40 in vivo. Furthermore, curcumin’s aggregation-inhibiting effects
were superior to those demonstrated by non-steroidal anti-inflammatory drugs such as
naproxen and ibuprofen. A second analysis carried out in APPsw AD Tg2576 transgenic
mice treated with a low dose of curcumin (160 ppm) or a high dose (5000 ppm) showed
declines in the levels of IL-1β and oxidized proteins, a 16.5% decrease in an astrocyte
marker—glial fibrillary acidic protein (generally elevated in inflammatory conditions)—and
39.2% × 43% of insoluble and soluble Aβ levels in the entorhinal cortex and hippocampus.
To conclude, a reduction in amyloid load by 43.6% and 32.6% in the average number of
plaques was observed [171].

In a mouse model of AD, supplementation with 200 mg/kg of curcumin promoted
a decrease in neurofibrillary degeneration and loss of hippocampal neurons, as well as a
decline in Bax levels and an increase in Bcl-2 rates (decrease in apoptosis with a blockade
of cytochrome c release from mitochondria) [179].

Under curcumin treatment, Kunming mice with irreversible brain lesions presented
an increase in superoxide dismutase levels and a decline in brain malonaldehyde (MDA),
as well as upregulation of Nrf2, NAD(P)H quinine oxidoreductase 1 (NQO1), HO-1, and
γ-glutamyl cysteine synthetase (γ-GCS) in brain cells. These actions led to a significant
improvement in OS, and a positive evolution in memory and spatial learning [180]. Similar
results were shown in a study on synaptosomes obtained from the cerebral cortex of rats
with neurodegenerative damage induced by Aβ1-42 in combined treatment with boric acid
and curcumin. There were significant reductions in MDA and AChE and an increase in
synaptophysin [181].

Aβ aggregation and tau hyperphosphorylation can also be induced by the interaction
between p25 with glycogen synthase kinase 3 (GSK3β), and cyclin-dependent kinase 5
(Cdk5) [182,183]. A mouse model of AD induced by scopolamine or Aβ1-42 treated with
curcumin showed a significant decline in lipid peroxidation and increased superoxide dis-
mutase levels, in addition to a reduction in Aβ aggregation and tau hyperphosphorylation
through the regulation of GSK3β, Cdk5, p35, and p25 [184,185].

Curcumin also has an inhibitory role on the thioredoxin-interacting protein (TXNIP)/
NLRP3 inflammasome pathway and the JNK-NF-κB signaling cascade through the con-
trolled regulation of AMPK, causing a decrease in neuronal apoptosis due to lower levels
of pro-caspase 1 and consequently lower levels of IL-1β and IL-18 [186,187], since the
activation of AMPK provides the suppression of inflammation and OS [188]. As analyzed
in a group of male C57BL/6 J mice in an AD model, the use of 150 mg/kg of curcumin
improved spatial learning and spatial working memory and led to a decrease in lesions
and apoptosis of neural cells; in addition, the deposition of Aβ1–42 and neuroinflamma-
tion were significantly reduced, reducing the levels of TNF-α, IL-6, IL-1β, and MDA, and
augmenting the levels of superoxide dismutase and activation of the AMPK pathway [189].

The use of curcumin nanomaterials has also been widely used in therapeutic envi-
ronments by increasing the aqueous solubility and bioavailability of curcumin in target
tissues [190,191]. Therefore, nanomaterial composed of curcumin led to improvement in
spatial learning and memory retention. Besides that, it promoted neurogenesis through
increasing brain-derived neurotrophic factor (BDNF) levels and improved neuroinflamma-
tion by inhibiting the NLRP3 inflammasome activation pathway induced by Aβ deposition,
through decreasing IL-18, CD68, and NLRP3 both in the hippocampus and the cortical
area. A second nanomaterial with curcumin also reduced/inhibited neuronal death, as
NLRP3 promotes the synthesis of a speck-like protein associated with apoptosis containing
a CARD (ASC), a protein that recruits and activates pro-caspase-1 and IL-18 contributing to
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the activation of neuronal death [192]. Another nano curcumin administered once a week
for three months in AD Tg2576 transgenic mice also provided a lower density of amyloid
plaques in the hippocampal region through thioflavin T (ThT) staining and an improvement
in working memory and signaling, observed through contextual fear conditioning tests
and RAM [193].

4.5.4. Parkinson’s Disease

The second most common ND, PD, is also progressive and irreversible, and around 1%
of individuals over 50 years old are affected [194–197]. The loss of dopaminergic fibers of
the brain and the progressive worsening of motor symptoms characterizes the disease that,
as it progresses, leads to the loss of 50 to 70% of all dopaminergic neurons of the patient in
the substantia nigra [131,196,198,199].

There is an increased amount of evidence that implicates OS and immunological alter-
ations in the pathogenesis of PD. The accumulation of excessive ROS and other free radicals
overloads the decaying dopaminergic neurons and creates an environment conducive to
this disease [200]. Possible contributors to OS have been associated with the process of PD
such as mitochondria, endoplasmic reticulum, dopamine, and α-Sinuclein, and it seems that
their interactions and not their actions collaborate for progressive neurodegeneration [201].
Neuroinflammation can be very important for the pathogenesis of PD since it has destruc-
tive repercussions on the nigrostriatal dopaminergic pathways, which activate brain glial
cells (especially microglia and astrocytes) to release several soluble factors that may be
neurotoxic and/or pro-inflammatory [199,202–204].

For its anti-inflammatory and antioxidant properties, curcumin has been widely used
as a food additive and as an adjuvant therapy to prevent or treat ND [205,206]. One
study showed that it is possible to reduce deficits related to PD by raising the level of
antioxidant enzymes only with curcumin [207]. It can also protect black matter from cells,
inhibit apoptotic signaling pathways with NF-κB, decrease lipid peroxidation and protein
aggregates, and also OS damage to the mitochondrial membrane [125,208].

Curcumin can promote neuroprotection and inhibit the α-Synuclein aggregation in a
PD model. Its use inhibited NFκB activity protein stimulated by lipopolysaccharide. It can
reduce the production and aggregation of α-synuclein. The authors of this study suggested
that curcumin can be an option as adjuvant therapy for the management of PD and other
synucleopathies [209].

Other authors investigated the effects of iron oxide nanoparticles capped with cur-
cumin (FeONPs-Cur) in motor imbalance and neurochemical modifications in a PD model
(reserpine induction). These animals showed a significant reduction in motor activity
associated with a decrease in 5-hydroxytryptamine, norepinephrine, and dopamine and
increased levels of malonaldehyde, nitric oxide, and monoamine oxidase. Glutathione,
Na+/K+/ATPase, and AchE significantly decreased in both brain areas. Using iron oxide
nanoparticles capped with curcumin (FeONPs-Cur) restored homeostasis and prevented
motor deficits, suggesting that FeONPs-Cur could be an antiparkinsonian candidate [210].

4.6. Fragility

Fragility is characterized by excessive vulnerability of the individual to endoge-
nous and exogenous stressors, which in general leads to a high risk of developing neg-
ative situations related to health and disability, accentuating the prevalence of chronic
diseases [74,211–214]. Besides the existence of several fragility evaluation instruments,
there is still no agreement on a standard instrument identifying fragility [215]. In one of
them, the methodology conceptualizes frailty as an energy imbalance syndrome that cul-
minates in slowness, fatigue, decreased muscle mass, physical activity, and strength [216].
It detected older adults with a higher risk of falls, mortality, and adverse events after
surgery [217–220]. Studies with geographic coverage and methods of selection of diverse
samples have shown estimates of frailty prevalence among older people [221–223].
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A study in the United States showed that 15% of the non-basilar elderly population is
fragile and 45% pre-fragile. There is a prevalence of frailty among women, older people, and
racial and ethnic minorities. Despite these characteristics, there was substantial variability
in the prevalence of frailty among demographic regions. There is a marked increase in the
prevalence of chronic diseases and disabilities with frailty [211,214,224].

Curcumin, at a dose of 2.5 g 2 times daily and 150 mg of lipid curcumin nanoparticles
(Theracurmin) 2 times daily, may have beneficial effects on muscle recovery, reducing the
expression of muscle damage moved by exercise, reducing the loss of maximum voluntary
contraction and minimizing the increase in blood levels of creatine kinase [225,226] which
shows that the use of curcumin can be an important adjuvant in the control of pain caused
by loss of muscle mass [227].

A pilot study (phase IIb clinical trial) showed that the use of curcumin C3 Complex®

can improve muscle strength and physical function in older people (sedentary and >65 years
with c-reactive protein > 1 mg/dL) at risk for mobility disability [228].

4.7. Sarcopenia

Sarcopenia is characterized by loss of muscle mass, functionality, and strength and is
an important factor in loss of mobility and frailty in the elderly [229–234]. It is estimated
that by 2050, there will be 426 million people aged 80 years or more and 2.1 billion people
aged 60 years or more. Sarcopenia is linked to several comorbidities besides disability, such
as osteoporosis, DM2, and obesity [235–237]. It is a multifactorial pathogenesis that encom-
passes various mechanisms such as insulin resistance, anabolic resistance, malnutrition
with decreased availability of amino acids, and chronic inflammation [238–240]. In 2019,
an estimate suggested that the economic expenses related to sarcopenia in the United States
were USD 40.4 billion, an average of USD 260 per person [241].

One study demonstrated that low-grade persistent inflammation impacts muscle
protein degradation and synthesis by several signaling pathways impacting sarcopenia;
low-grade inflammation is a symptom of cells that begin the senescence phase and exit
the cell cycle. During aging, pro-inflammatory TNF-α, C-reactive protein, and IL-6 are
somewhat elevated in circulation [242]. It has also been reported that older people with
sarcopenia show significantly higher levels of circulating IL-6 and TNF-α [243] and that
high levels of IL-6 and CRP increase the risk of loss of muscle strength [244]. A longitudinal
study of 10 years also demonstrated that plasma levels of TNF-α, IL-6, and IL-1 were
reliable biomarkers of morbidity and mortality in elderly participants [245].

Due to the relevance of inflammation and OS in the origin of sarcopenia, compounds
with antioxidant and anti-inflammatory effects have the potential to act as complemen-
tary to current treatments for this disease. Curcumin is one of the potential compounds
with these characteristics. Curcumin has also been reported to target a class of signaling
molecules that alter cellular functions and exert their therapeutic effects; it has been linked
to numerous health benefits in several studies, including muscle health [246–249].

The preservation of muscle mass in the course of aging is paramount for the pre-
vention of sarcopenia. Studies reported that curcumin increased muscle mass without
altering body mass in F344XBN rats at 32 months of age, supplemented with a 0.2% diet for
4 months. These results were similar to those reported in previous studies [250–253]. An-
other study with 12-month-old male Sprague Dawley rats that had LPS-induced sarcopenia
and received treatment with 150 mg/kg of curcumin for two months showed improvement
in muscle endurance, pressure strength, and fat/lean ratio [254]. The supplementation
of curcumin (40 and 80 mg/kg) 30 min before forced exercise in 10-month-old ICR rats
for 28 days could complement exercise-based therapy to prevent muscle problems such
as sarcopenia systematizing the expression of genes associated with protein synthesis,
inflammation, and apoptosis in chronic forced exercise [255].

The protective effects of curcumin in muscle atrophy induced by dexamethasone
using differentiated C2C12 cells were evaluated and showed that treatment with curcumin
reduced the expression of Murf-1 and Atrogin-1, preventing protein degradation. It also
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increased the level of Akt phosphorylation, an essential protein in the mTOR signaling
pathway that stimulates protein synthesis and prevents protein degradation [256]. The
significant increase, impairment, and recruitment of satellite cells to delay the onset of
pre-sarcopenia and sarcopenia were demonstrated in a study in 18-month-old C57BL6J and
C57BL10ScSN mice, which received 120 µg/kg of curcumin for six months. The increase
in the proportion of positive satellite cells for MyoD isolated from muscles of the aged
posterior limbs and the development of sustained myofibers in the aged soleus muscle
showed this [234,247].

Evidence shows that curcumin is an alternative treatment with the potential for
sarcopenia control; it can maintain the number and function of satellite cells, protect the
mitochondrial function of muscle cells, and suppress OS and inflammation, thus achieving
muscle protection [247]. Figure 7 is a summary of the effects promoted by curcumin in
some aging-related conditions discussed above.
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Figure 7. Summary of curcumin effects on some aging-related conditions. Curcumin possesses
antioxidant and anti-inflammatory effects that are related to the prevention or treatment of memory
loss, neurodegenerative diseases, sarcopenia, and frailty. These effects can play a role in mitochon-
drial functions that, on the other hand, are also associated with diminishing oxidative stress and
inflammation. The results are associated with an increase in the synthesis of neuronal growth factors
such as BDNF, NGF, and GDNF, an increase in neuroplasticity, reduction in brain neuroinflammation,
and restoration of brain functions. In muscles, there is an increase in protein synthesis and a reduction
in its degradation. AChE: acetylcholine esterase; AP-1: activator protein-1; BACE1: β-secretase 1;
BDNF: brain-derived neurotrophic factor; COX: cyclooxygenase; ERK: extracellular signal-regulated
kinase; GDNF: glial cell-derived neurotrophic factor; JNK: c-Jun N-terminal kinase; NGF: nerve
growth factor; NF-κB nuclear factor kappa beta; p38MAPK: p38 mitogen-activated protein kinase;
PPAR-γ: peroxisome proliferator-activated receptor gamma.
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4.8. Depression

Depression is a chronic, recurrent, and frequent psychiatric disorder that profoundly
influences quality of life and reduces the risk of death [257]. According to forecasts from
the World Health Organization, it is estimated that it will become the main global burden
of disease in the world by 2030 [258,259]. Significant personal suffering and economic
loss result from the increased risk of suicide and worldwide morbidity resulting from
depression [260–264]. In the elderly, it mainly affects those affected by chronic medical
illnesses and cognitive impairment, causing suffering, disability, and family disruption, in
addition to aggravating various diseases and increasing mortality. The processes associated
with aging and diseases, such as arteriosclerosis and inflammatory, immunological, and
endocrine changes, impair the integrity of the frontostriatal pathways, the hippocampus,
and the amygdala, increasing susceptibility to depression [265,266].

Currently, there are several types of traditional antidepressant medications com-
monly used in clinical practice, such as norepinephrine–serotonin reuptake inhibitors,
monoamine oxidase inhibitors, norepinephrine–dopamine reuptake inhibitors, tricyclic
antidepressants, and selective serotonin reuptake inhibitors. Increasing evidence sug-
gests that curcumin could enhance antidepressant efficacy through several mechanisms
of action. With its wide range of pharmacological properties, it is considered a potent
antidepressant, as it reduces the inflammatory response [267–273]; modulates neurotrans-
mitter levels, and inhibits the expression of monoamine oxidase enzymes [17–21]; regulates
hypothalamic–pituitary–adrenal (HPA) disorders [274–276]; reduces NO [277–282]; repairs
neurodegeneration and increases neurogenesis and neuronal plasticity, which normally
increases BDNF levels [283–287]; regulates mitochondria [288–291]; and increases antioxi-
dant enzymes [292].

4.9. Clinical Trials Performed with Curcumin and Age-Related Disorders

Some clinical trials have devoted attention to investigating the effects of curcumin on
ND. These trials are discussed below and are shown in Table 1. The bias risk for each study
can be found in Table 2.

A group of healthy elderly people was administered new bioavailable curcumin
to analyze its effects on the management of sarcopenia, and it was found that the use
of curcumin increased the strength of hand grip and weight lifting strength, increased
distance covered before fatigue, and, at the end of the study, improved walking time for a
given distance compared to the initial analysis of the study. The small study sample may
be a limiting factor, but the randomized controlled pattern, the double-blind possibility,
follow-up for a considerable period, and an age range with little variation are superior
factors [293].

A study developed by Ghodsi et al. investigated the possible neuroprotective role of
curcumin in patients with PD. The scores Unified Parkinson’s disease Rating Scale (MDS-
UPDRS) and Parkinson’s Disease Questionnaire (PDQ-39) were evaluated every 3 months
until the end of the intervention. Curcumin was shown to be a well-tolerated natural
compound but did not significantly enhance the scores applied, presenting no efficiency in
ameliorating PD symptoms. Some negative points in this study are the limited number of
participants and the sample heterogeneity, which might have masked curcumin’s effects
because of the diverse degrees of severity of the disease included. Consequently, the authors
suggested that the results could potentially be more significant if the sample consisted of
patients with lower disease severity [294].

The effects of curcumin on physical function in moderately functioning older adults
with low-grade inflammation were evaluated. Subjects were divided into curcumin C3
Complex®, receiving twelve 12 weeks of treatment. The results showed large effect sizes
in the short physical performance battery measures of knee extension and flexion peak
torque in the curcumin C3 Complex® group but small effect sizes of reductions in galectin-3
and IL-6 inflammatory biomarkers. As a positive factor, curcumin was shown to be safe
and well tolerated, and the sample presented high adherence levels (>90%) and retention
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(94%) during the treatment period. However, the sample size was small, consisting only
of Caucasian subjects, the intervention lasted a short period of time, and only one dose of
curcumin was administered [228].

Cox et al. investigated the effects of curcumin in a solid lipid form on cognition
and mood in a healthy older population. The assessment started with a Mini-Mental
State Examination, the Beck Depression Inventory-II, and trait scale of the State-Trait
Anxiety Inventory; also, a National Adult Reading Test was applied to measure pre-
morbid intellect. Subjects then undertook three rounds of assessment batteries consisting
of computerized cognitive tasks that were preceded and followed by an evaluation of state
mood. Immediately after the first assessment, a single treatment dose was administered,
and then the cognitive tasks were repeated at 1 h and 3 h after the administration. The
conclusions were significant enhancement in memory and mood, which included fatigue
induced by psychological stress and general fatigue and change in state calmness after
chronic treatment, a significant effect on alertness and contentedness after acute and chronic
treatment, and reduced total cholesterol and LDL levels. Curcumin was shown to be a safe
and well-tolerated compound for the elderly population and even the low applied dose
(80 mg) promoted significant and positive results. However, it is important to point out
that the sample used was small, and the duration of the intervention was short [295].

Thota et al. [296] examined the effects of administering 180 mg/day of curcumin on
the insulin resistance of a group of people at high risk of developing DM2, and it was
demonstrated that curcumin showed an improvement in insulin resistance index in the
lipid profile, fasting insulin, GSK-3β, and islet amyloid polypeptide, the last two being
important markers of AD. The randomized controlled design, control of adherence to
interventional treatment, and the possibility of double-blinding are strengths of the study;
however, the small sample and short follow-up period are limiting factors.

The study by Rainey-Smith et al. [6] analyzed the use of BCM-95 ® CG (Biocurcumax
TM) in men and women with good health and no significant cerebral vascular disease or sig-
nificant cognitive impairments. No significant difference between the group of intervention
and placebo was observed in cognitive function, verbal fluency, mood, perceptual–motor
speed, the controlled oral word association test, depression anxiety stress scales, and the
Wechsler Digit Symbol Scale of the Wechsler Intelligence Scale for Adults Revised. However,
the placebo group demonstrated a decline in function at 6 months, which was not observed
in the curcumin group. The study has strengths, such as the randomized controlled design
and the long interventional period of 12 months, although visits only occur every 3 months.

The analysis by DiSilvestro et al. investigated the use of 80 mg/day of curcumin
for 4 weeks in a population of 19 people, involving healthy men and postmenopausal
women, and showed that its use was beneficial in antioxidant activity, due to the increase
in catalase, plasma myeloperoxidase, and nitric oxide; in addition to inducing a greater
capacity to eliminate free radicals, there was also an improvement in the inflammatory
and lipid profile, through reductions in triglycerides and soluble intercellular adhesion
molecule (sICAM) [297]. The levels of beta-amyloid protein and alanine aminotransferase
were significantly reduced. However, the study has limitations due to the small population
sample, short intervention period, and unclear methodology.

Baum et al. studied the effects of using 1 g or 4 g of curcumin for 6 months on the
lipid profile of a population with cognitive decline or diagnosed with AD for at least
6 weeks [298]. The study did not show any significant results on the lipid profile. The
randomized controlled design and the long follow-up period are important points of the
study; however, the small sample is a limiting factor.

A study determined the functional effects of CGM (curcumin–galactomannan) on
healthy individuals’ brain waves. Subjects were divided into three groups, and assigned
to consume 500 mg of CGM, unformulated curcumin (UC), or placebo capsules twice
daily for 30 days, and electroencephalogram (EEG) measurement audiovisual reaction
time tests were performed, and a working memory test was performed at baseline and
after 30 days. The results indicated that the CGM can influence the brain waves of healthy
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individuals in a manner consistent with the penetration of the blood–brain barrier, and the
electroencephalogram results showed a correlation with the improved audiovisual and
working memory tests, contributing to demonstrating the contribution of the CGM in the
reduction fatigue and improved memory. The study, however, as it is a pilot study, used a
small sample of individuals with a wide age range (35–65 years) [299].

A partial replication study was carried out, with the aim of evaluating similar effects
at 4 and 12 weeks of supplementation with Longvida©. Outcome measures included
cognitive performance, mood, and biomarkers that were assessed at baseline and after
4 and 12 weeks of treatment, which consisted of Longvida© intake for 12 weeks. The
results of the study indicated an improvement in aspects of working memory and lower
fatigue scores, and in four weeks, lower scores for anger, tension, confusion, and total mood
disturbance. A significant increase in glucose in the group that consumed Longvida© was
also observed. The large age range among participants was wide (50 to 85 years old) [300].

Another study evaluated the effects of fish oil and curcumin supplementation on
cerebrovascular function in older adults. The results did not show modifications regarding
Transcranial Doppler ultrasound, blood pressure, heart rate, arterial compliance, fasting
glucose, blood lipids, and C-reactive protein. The authors proposed that since the study
of the combined effects of fish oil and curcumin in humans is currently limited, the non-
significant effects might be related to the dosages applied and unknown interactions
between fish oil and curcumin [301].

Curcumin was used in the form of Theracurmin to analyze its effect on brain amyloid
and tau accumulation in adults without dementia. During the intervention, several tests
were applied, such as vital signs, electrocardiograms, serum electrolytes, thyroid function,
and blood counts, as well as Montreal Cognitive Assessment, Beck Depression Inventory,
neuropsychological test battery, and memory functioning questionnaires. The main results
included improvement in memory and attention, probably associated with decreases in
amyloid and tau accumulation in the brain. One limitation of the article was the small
sample size. However, regarding the positive points, the study promoted a relatively long
treatment duration and applied sensitive cognitive measures to track memory effects [302].

In Pennsylvania, a study evaluated the effects of a highly absorbent curcumin extract
dispersed with colloidal nanoparticles (Theracurmin) in treating adults without dementia
on memory performance and its potential impact on neurodegeneration by measuring brain
deposition of amyloid plaques and tau tangles. Results showed a significant improvement
in attention and memory in adult patients without dementia compared to placebo. PET
scan examinations suggested that cognitive and behavioral improvement correlates with
reduced accumulation of tau plaques and tangles in regions of the brain that regulate mood
and behavior [303].

The effectiveness of curcuminoids as a complement to standard antidepressants in
patients with major depressive disorder was investigated. Changes in psychological state
based on the Hospital Anxiety and Depression Scale (HADS) and the Beck Depression
Inventory II (BDI-II) were used to measure the efficacy of combined curcuminoid–piperine
supplementation plus standard therapy. Significant reductions in the HADS total score
and depression subscales were greater in the curcuminoid group compared to the control
group. Reductions in the BDI-II total score and somatic and cognitive subscale scores
were also greater in the curcuminoid group compared to the control group. Although the
results are promising, the study was not blinded, suggesting a possible interference with
the results [304].
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Table 1. Clinical trials performed with curcumin on neurodegenerative conditions.

Reference Model/Country Population Intervention/Comparison Outcomes Side Effects

Sarcopenia

[293]

Randomized,
placebo-controlled,

double-blind clinical trial.
India

30 healthy elderly
individuals, 13♂, 17♀,

69.8 ± 5.

Participants received 500 mg/day of Cureit
or placebo for 3 months.

↑ 1.43% in handgrip strength, a considerable
increase of 6.08% in weightlifting strength,

and a positive impact on the distance covered
before feeling tired (↑ 1.15%, along with speed

walking (5.51 m)).

No adverse events
were observed.

Parkinson’s disease

[294]

Pilot, randomized,
triple-blind,

placebo-controlled, add-on
trial. Iran

60 subjects, 45♂, 15♀, 58.2
± 11.2 y, with
idiopathic PD

Subjects received curcumin nanomicelles in
capsules 80 mg/day or placebo/9 months.
Then, the scores MDS-UPDRS and PDQ-39

were calculated at 3, 6, and 9 months.

Curcumin group did not have a significant
improvement in MDS-UPDRS and PDQ-39

scores compared to placebo group.

Nausea, vomiting,
and dyspepsia.

Frailty

[228]
Pilot, 12-week, randomized

trial/United States of
America

17 subjects, 8♀, 9♂, 66–94
y, moderately functioning

and sedentary, with
low-grade systemic

inflammation.

9 subjects were assigned to Curcumin C3
Complex®, receiving 1000 mg/day or

placebo. At 0 and at 12 weeks, patients
underwent functional testing and

lower-limb strength testing. Also, at the
beginning of treatment, 4, 8, and 12 weeks,

venous blood was collected for safety blood
chemistry analyses and biomarkers

of inflammation.

Curcumin C3 Complex® group demonstrated
large effect sizes in short physical

performance battery (d = 0.75), measures of
knee extension (d = 0.69), and flexion peak
torque (d = 0.82). Furthermore, effects on
galectin-3 and IL-6 levels were smaller in

curcumin group compared to placebo.

No adverse events
were reported.

Dementia

[295]

Randomized, double-blind,
placebo-controlled
parallel-group trial.

Australia

60 healthy subjects, 22♂,
38♀, 60–85 y.

Subjects were divided into curcumin group
(80 m solid lipid formulation (Longvida®

Curcumin-400 mg) or placebo/1
timeday/4 weeks. Participants performed 3

sets of computerized cognitive tasks
preceded and followed by an evaluation of

state mood. After the first set, a single
treatment dose was used, and then the

assessment was repeated at 1 h and 3 h after
dose administration.

The results showed that 1 h after
administration, the curcumin group presented

significantly enhanced performance on
sustained attention and working memory

tasks, compared with placebo. Also, working
memory and mood were significantly better

during chronic treatment (4 weeks).
Furthermore, curcumin significantly reduced
total cholesterol and LDL cholesterol levels.

No adverse events
were reported.
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Table 1. Cont.

Reference Model/Country Population Intervention/Comparison Outcomes Side Effects

Alzheimer’s disease

[296]

12-week, 2 × 2 factorial,
double-blinded,

randomized controlled trial.
Australia

29 participants, 12♂,
17♀(52.3 ± 1.9 y) at high

risk of developing
diabetes or with impaired

fasting glucose

Participants were divided into 4 groups: the
placebo; curcumin (2 × 500 mg of curcumin
(Meriva®), providing 180 mg of curcumin

plus 2 × 1000 mg of corn oil/day); ω3,
2 × 1000 mg of fish oil + placebo; or double

active (1000 mg of curcumin (Meriva®) +
21,000 mg of fish oil.

Curcumin reduced triglyceride levels, fasting
insulin, atherogenic index and the HOMA2-IR.
There were no significant effects on CRP, TC,

HDL-c, LDL-c, fasting glycemia, glycated
hemoglobin, and body composition (body

weight, muscle mass, body mass index, body
fat percentage, circumference waist).

No adverse events
were observed.

[305]

Randomized, double-blind,
placebo-controlled for

12 months.
Australia.

160 healthy individuals;
40–90 y, and no significant
cerebral vascular disease;
no significant cognitive

impairments.

They were randomly assigned to treatment
groups with BCM-95 ® CG (Biocurcumax

TM) capsule 3 x/day (1500 mg/d)
or placebo.

No differences were observed between the
placebo and treatment groups in changes in

cognitive performance.

Gastrointestinal
complaints.

[297]
Prospective randomized,

4 weeks.
United States of America

19 healthy participants
17♀, 2 ♂age 40–60 y

The selected population was assigned to
placebo interventions of starch × 80 mg/day

of curcumin for 4 weeks

There were no significant effects on TC, LDL-c,
HDL-c, superoxide dismutase, and

glutathione peroxidase; significant reduction
in the levels of TG, intercellular adhesion
molecule, and plasma amyloid β protein
content. Increased NO, myeloperoxidase,

catalase activity, and elimination of
free radicals.

No adverse events
were observed.

[306]

Randomized, double-blind,
placebo-controlled for

6 months.
China.

34 individuals 29%♂,
71%♀), aged 73.4 ± 8.8
(progressive decline in
memory and cognitive

function for at least
6 weeks or diagnosed

with AD

They presented 3 groups, one consisting of
10 people (control), the second of 8 people

(1 g of curcumin), and the third (4 g of
curcumin).

There were no significant effects on the lipid
profile (LDL-c, HDL-c, TG, and TC) in both

groups receiving curcumin.

Constipation, more,
diarrhea, and

dizziness.
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Table 1. Cont.

Reference Model/Country Population Intervention/Comparison Outcomes Side Effects

Alzheimer’s disease

Cognition

[299]

Randomized, 30-day,
double-blind,

placebo-controlled, 3-arm
pilot study. India.

18 healthy participants,
12♂and 6♀, 35–65 y.

Patients were randomized into 3 groups,
CGM (500 mg 2×/day for 30 days of

curcuma-galactomannoside complex; UC
(500 mg 2×/day for 30 days of curcumin

with 95% purity) or placebo

CGM: significant ↑↓ in α and β waves, and in
the α/β ratio compared to the unformulated
curcumin and placebo groups. Furthermore,

CGM showed a significant ↓ in audio reaction
time (29.8) compared with placebo and 24.6%
with UC. Choice-based visual reaction time

was also significantly ↓ (36%) in CGM
compared to UC and placebo, which yielded

15.36% and 5.2%, respectively.

No adverse events
were reported.

[300]
Double-blind,

placebo-controlled, 12-week
trial/Australia.

79 participants ♀and
♂healthy, 50–85 y.

Participants were divided into curcumin
group (400 mg Longvida© curcumin capsule
with 80 mg of curcumin 1×/day/12 weeks)

or placebo.

Curcumin group showed better working
memory performance at 12 weeks (Serial

Threes, Serial Sevens, and performance on a
virtual Morris Water Maze) and lower fatigue

scores on the POMS at 4 and 12 weeks, and
tension, anger, confusion, and total mood

disturbance in just 4 weeks.

No adverse events
were reported.

[301]

16-week double-blind,
randomized

placebo-controlled
trial/Australia.

152 older sedentary
overweight/obese adults,

50–80 y.

Subjects were divided into 4 groups: fish oil
+ curcumin placebo, curcumin + fish oil
placebo, fish oil + curcumin or placebo.
Then, patients ingested 6 capsules/day

consisting of 2 fish oil capsules and 400 mg
Longvida® Optimised Curcumin containing
80 mg of curcumin, or placebo, 2×/d. Then,

an evaluation of Transcranial Doppler
ultrasound, blood, glycemia, heart rate,

arterial compliance, blood lipids, and C-RP
was performed.

Curcumin did not significantly affect the
performed parameters alone or in

combination with fish oil.

Digestive problems
and reflux.

[307]
Randomized, double-blind,

placebo-controlled pilot
clinical trial/USA.

12 participants
9♂and 3♀with chronic
schizophrenia, 5–51 y.

Patients were randomized into 2 groups:
curcumin (180 mg/d) or placebo. A

commercially available surface-controlled
water-soluble form of 300 mg curcumin (30%

formulation: 90 mg pure curcumin) or
matching placebo capsules were provided.

Complementary curcumin treatment showed
significant improvement in working memory
(Z = 2200, p = 0.028) and reduced IL-6 levels

(Z = 2402, p = 0.016) compared to placebo. No
significant effect of curcumin on PANSS and

Calgary Depression scores was found.

No adverse events
were reported.
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Table 1. Cont.

Reference Model/Country Population Intervention/Comparison Outcomes Side Effects

[302]
18-month, randomized,

double-blind, two-group
parallel design

40 adults without
dementia, 22♀, 18♂and

50–90 y.

Subjects were divided into placebo group or
Theracurmin group (90 mg of curcumin),
2 ×/d/18 months. Depression Inventory
and neuropsychological test battery were

applied.

Buschke–Fuld Selective Reminding Test
presented a consistent long-term retrieval
improvement with curcumin (ES = 0.63,

p = 0.002). Curcumin also improved visual
memory and attention.

Transient abdominal
pain, gastritis, nausea,

and heat.

[303]

Randomized, 18-month,
double-blind,

placebo-controlled,
parallel-group study. EUA

40 participants, 51–84 y,
without dementia.

They were randomized into 2 groups:
Theracurmin group: 90 mg of curcumin,
2 times d 18 months or placebo group.

Curcumin significantly improved long-term
recovery of SRT, visual memory, and attention

compared with placebo. Assessment of
neurodegeneration using PET scans
significantly reduce in the amygdala

with curcumin.

No adverse events
were reported.

[304] 6-week open study/Tehran,
Iran.

111 participants, ♀and
♂diagnosed with major

depressive disorder

They were divided into standard
antidepressant therapy + curcuminoids

(1000 mg/d—C3 Complex®) or standard
antidepressant therapy alone/6 weeks.

Both groups had a reduction in BDI-II total
and subscale scores at the end of the study.

Significantly greater ↓ in HADS, anxiety, and
depression subscales in the curcuminoids

versus control group (p < 0.001).

Gastrointestinal
symptoms

AD: Alzheimer’s disease; BDI-II, Beck Depression Inventory II; CRP: C-reactive protein; HADS: Hospital Anxiety and Depression Scale; HDL-c: high-density lipoprotein; HOMA:
homeostatic model for insulin resistance; IL: interleukin; LDL-c: low-density lipoprotein; PANSS: Positive and Negative Symptom Scale; PD: Parkinson’s disease; PMS: Profile of Mood
States; TC: total cholesterol. ↓: decrease; ↑: increase.



Nutrients 2024, 16, 2721 26 of 44

Table 2. Descriptive table of the biases of the included randomized clinical trials.

Study Question
Focus

Allocation
Blinding

Double-
Blind

Losses
(>20%)

Prognostic or
Demographic
Characteristics

Outcomes
Intention
to Treat

Analysis

Sample
Calculation

Adequate
Follow-

Up

[293] Yes Yes Yes No Yes Yes No Yes Yes

[294] Yes Yes Yes Yes Yes Yes Yes Yes Yes

[228] Yes Yes Yes No Yes Yes No No Yes

[295] Yes Yes Yes No Yes Yes No No Yes

[296] Yes Yes Yes No Yes Yes No Yes Yes

[305] Yes No Yes Yes Yes Yes No Yes Yes

[297] No No Yes No No Yes No No Yes

[306] Yes Yes Yes No Yes Yes No Yes Yes

[299] Yes Yes Yes No Yes Yes Yes Yes Yes

[300] Yes Yes Yes Yes Yes Yes Yes Yes Yes

[301] Yes Yes Yes No Yes Yes No Yes Yes

[307] Yes No Yes Yes Yes Yes Yes Yes Yes

[302] Yes Yes Yes No Yes Yes No No Yes

[303] Yes No Yes No Yes Yes Yes No Yes

[304] Yes No No No Yes Yes Yes Yes Yes

5. Bioavailability and Safety

Curcumin’s bioavailability can be affected by many aspects, such as grinding, drying,
and heating processes, and also by the intake of macronutrients, such as dietary lipids,
which can interfere with curcumin’s solubility and absorption [308]. Its bioavailability is
considered limited due to curcumin’s poor intestinal absorption, high metabolic rate, and
fast systemic elimination, contributing to the compound’s low serum levels [309]. However,
the development of curcumin and other compound combinations in different formulations
enhanced its bioavailability. These formulations include curcumin nanoemulsion, liposomal
curcumin, phospholipid curcumin complexes, and even curcumin encapsulation into milk
exosomes, which showed higher permeability and bioavailability [20,61,309–312].

In a study involving male fasting subjects, curcumin was administered in three forms,
a completely natural turmeric matrix formulation (CNTMF) and two other commercially
available formulations consisting of curcumin with volatile oil and curcumin with phos-
pholipids and cellulose. The analyses showed that the CNTMF form presented the most
bioavailability of them [313]. Regarding dosage, in a randomized, double-blind, crossover
study, subjects with moderate hyperlipidemia consumed 294 mg of curcuminoids per day
in the form of micelles, and this dose was found to be enough to promote accumulation in
the blood [314].

Curcumin presents a well-established human safety in the literature [315]. In a ran-
domized and controlled clinical trial involving patients with arthritis, curcumin was admin-
istered in doses ranging from 120 to 1500 mg for 4–36 weeks, reduced inflammation and
pain levels, and was shown to be a safe treatment method [316]. Also, in a clinical study
comparing the administration of curcumin 500 mg (BCM-95®) 3 times/day and diclofenac
50 mg, 2 times/day for 28 days in patients with knee osteoarthritis, patients that received
curcumin presented similar improvement in the severity of pain, reduction in flatulence
episodes, no requirement of H2 blockers, weight reduction, and anti-ulcer effects, proving
to be a very safe treatment method presenting a 13% adverse effect rate versus 38% in the
diclofenac group (p < 0.01) [317].
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Furthermore, in chronic kidney disease subjects, supplementation with 500 mg of cur-
cumin tablets, two times/day for six months, reduced plasma pro-inflammatory mediators
and lipid peroxidation. During the long-term administration treatment, no serious adverse
events were observed, confirming the safety profile of this compound [318]. In addition, in
patients with non-alcoholic fatty liver disease, phytosomal curcumin supplementation of
1000 mg/day in two doses for eight weeks was considered safe and well tolerated with no
report of severe adverse events during the treatment [319].

6. Synthesis and Future Research Endeavors

In the ever-evolving landscape of aging-related disorder research, the exploration
of natural compounds as potential therapeutic agents has garnered significant attention.
Among these compounds, curcumin has emerged as a promising candidate due to its
diverse pharmacological properties and well-documented safety profile. In this section,
we delve into the future research directions and endeavors at the intersection of curcumin
and aging-related disorders, encompassing a spectrum of scientific inquiries ranging from
novel formulations and mechanistic studies to clinical trials and personalized medicine ap-
proaches. By elucidating the potential mechanisms of action, optimizing delivery systems,
and translating preclinical findings into clinical practice, these endeavors aim to unlock the
full therapeutic potential of curcumin in minimizing negative outcomes and improving
patient quality of life [13,320–322].

6.1. Advancing Curcumin Therapy: Exploring Formulations and Unraveling Mechanisms for
Aging-Related Disorders

Firstly, researchers must explore novel formulations aimed at enhancing the bioavail-
ability and efficacy of curcumin. This necessitates investigating various delivery systems
such as lipid-based nanoparticles, liposomes, or micelles. By delving into the intricacies
of these formulations, researchers can unlock new avenues for optimizing the therapeu-
tic potential of curcumin, potentially leading to breakthroughs in its clinical application.
Understanding the dynamics of these delivery systems and their interactions with cur-
cumin is crucial for overcoming the challenges associated with its poor solubility and low
bioavailability. Through meticulous experimentation and analysis, researchers can pave
the way for developing innovative curcumin formulations with enhanced efficacy and
therapeutic outcomes.

Scientists also need to dive deeper into conducting thorough mechanistic investiga-
tions to gain a deeper understanding of the complex molecular pathways responsible for
curcumin’s properties. This involves exploring how curcumin interacts with crucial pro-
teins, signaling pathways, and cellular processes involved in neurodegeneration, cognition,
memory, sarcopenia, fragility, and CVD. For instance, they might study more profoundly
its effects on proteins like amyloid beta, tau, or BDNF, signaling pathways such as MAPK or
NF-κB, and cellular processes like OS or inflammation within the realm of brain metabolism.
By unraveling the precise mechanisms through which curcumin operates, researchers can
gain profound insights into its therapeutic potential for such disorders. Employing ad-
vanced techniques such as proteomics, transcriptomics, and molecular imaging will be
instrumental in dissecting the complex interplay between curcumin and various molec-
ular targets within neuronal and other cells. These mechanistic studies are essential for
advancing our understanding of curcumin’s neuroprotective properties and guiding the
development of targeted therapeutic interventions aimed at combating diseases [323,324].

6.2. Unveiling Curcumin’s Therapeutic Potential: Insights from Meticulous Clinical Trials and
Advanced Neuroimaging Studies in Neurodegenerative Disorders

In this scenario, the design and implementation of meticulously controlled clinical
trials to assess the therapeutic efficacy of curcumin in preventing or treating diverse NDs,
such as AD and PD, become of particular interest. By systematically evaluating the effects
of curcumin on disease progression, cognitive function, motor symptoms, and quality
of life outcomes, researchers can ascertain its true clinical potential in NDs. Moreover,
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incorporating biomarker assessments and neuroimaging techniques can supply crucial
insights into the underlying mechanisms of curcumin’s therapeutic action in the human
brain. Through collaborative efforts among clinicians, researchers, and pharmaceutical
partners, well-designed clinical trials promise to establish curcumin as an effective and safe
therapeutic agent for combating NDs.

In the realm of neuroimaging, researchers must delve more deeply into harnessing
advanced neuroimaging techniques, such as functional magnetic resonance imaging (fMRI)
and positron emission tomography (PET), to explore the impact of curcumin on both the
structural and functional aspects of the brain in individuals afflicted with NDs [325,326]. By
employing these sophisticated imaging modalities, researchers can visualize and quantify
changes in brain activity, connectivity, and metabolism following curcumin administration.
fMRI enables the assessment of dynamic alterations in neuronal activity patterns, while
PET offers insights into molecular processes by tracking specific biomarkers associated
with neurodegeneration. Through neuroimaging studies, researchers can elucidate how
curcumin influences neural networks, neurotransmitter systems, and neuroinflammatory
responses implicated in the pathogenesis of NDs. Furthermore, integrating neuroimaging
data with clinical outcomes can facilitate the identification of biomarkers for predicting
treatment response and monitoring disease progression [327–329].

6.3. Unlocking Synergistic Therapeutic Strategies: Exploring Curcumin Combinations and
Molecular Interactions in Disease Management

Researchers should also explore the potential synergistic effects of curcumin asso-
ciated with other natural compounds, pharmaceutical agents, or lifestyle interventions
for managing aging-related diseases. Investigating these combination therapies offers a
multifaceted approach to treatment, leveraging the complementary mechanisms of ac-
tion of different compounds or interventions. Researchers can uncover novel strategies
to enhance therapeutic outcomes while minimizing adverse effects by examining how
curcumin interacts with other substances or interventions. Furthermore, exploring combi-
nation therapies underscores the importance of integrative approaches to healthcare, where
traditional medicine intersects with modern pharmacology and lifestyle modifications.
Through rigorous experimentation and clinical trials, researchers can elucidate the optimal
combinations, dosages, and treatment regimens that maximize the therapeutic potential of
curcumin in synergy with other interventions, ultimately offering hope for more effective
management of NDs.

Additionally, future investigations could delve into elucidating the dynamic interplay
between curcumin treatment and the intricate molecular networks underlying aging-related
diseases employing cutting-edge bioinformatics tools. Using advanced network analysis
and pathway modeling, researchers can explore the temporal and spatial effects of cur-
cumin on multi-omics data. Additionally, integrating emerging technologies like single-cell
sequencing could provide unprecedented insights into cell-specific responses to curcumin
therapy. This comprehensive approach promises to uncover novel biomarkers and thera-
peutic targets essential for developing personalized interventions against NDs [330].

6.4. Fostering Collaboration for Curcumin Translation: Bridging Academia, Industry, Regulation,
and Healthcare for Age-Related Disease Management

Efforts to apply promising preclinical findings into daily clinical practice necessitate
collaborative endeavors among academia, industry, regulatory agencies, and healthcare
providers [331,332]. By fostering robust partnerships, stakeholders can navigate regulatory
frameworks, streamline clinical trials, and ensure curcumin-based interventions’ safe
and effective implementation. Additionally, considering the cost-effectiveness of these
interventions is crucial for widespread adoption. Balancing efficacy with affordability,
this multidisciplinary approach aims to optimize therapeutic outcomes while minimizing
economic burdens on patients and healthcare systems. By emphasizing patient-centered
care, this strategy aims to enhance the quality of life for individuals afflicted by these
debilitating conditions, ensuring equitable and sustainable access to innovative treatments.



Nutrients 2024, 16, 2721 29 of 44

6.5. Unraveling the Genetic Basis of Curcumin Response: Genome-Wide Association Studies in
Aging-Related Disease Management

Genome-Wide Association Studies (GWASs) present a promising avenue for unravel-
ing the genetic underpinnings of response to curcumin treatment in aging-related diseases
such as NDs. By analyzing large cohorts of patients with diverse genetic backgrounds,
GWAS can identify genetic variants associated with differential treatment outcomes, includ-
ing variations in treatment efficacy and susceptibility to adverse effects [333]. Additionally,
GWAS can elucidate gene–drug interactions that modulate curcumin metabolism, target
engagement, and downstream biological responses.

A comprehensive GWAS in this realm could involve genotyping thousands of indi-
viduals with NDs who have undergone curcumin treatment alongside appropriate control
groups. Integrating multi-omics data, such as genomic, transcriptomic, and epigenomic
profiles, with clinical parameters and treatment responses can provide a holistic under-
standing of curcumin therapy’s genetic architecture. Furthermore, leveraging advanced
bioinformatics and systems biology approaches, such as pathway enrichment analysis and
network modeling, can uncover key biological pathways and candidate genes implicated
in curcumin-mediated neuroprotection. These findings could inform the development
of personalized treatment strategies and facilitate the identification of novel therapeutic
targets for intervention.

However, conducting GWASs in this context poses several challenges, including
the need for large, well-characterized patient cohorts, rigorous quality control measures
to minimize confounding factors, and robust statistical methodologies to account for
genetic heterogeneity and population stratification. Additionally, ethical considerations
surrounding data privacy, consent, and equitable access to benefits necessitate careful
deliberation and adherence to ethical guidelines throughout the study. Despite these
challenges, GWASs hold immense potential to speed up the translation of preclinical
findings into clinical practice, paving the way for precision medicine approaches tailored
to individual genetic profiles and optimizing therapeutic outcomes for patients with NDs
undergoing curcumin treatment [334].

7. Conclusions

This systematic review underscores the promising potential of curcumin as a natural
compound with diverse therapeutic effects in combating age-related disorders. By targeting
key pathways involved in inflammation, OS, and mitochondrial dysfunction, curcumin
demonstrates significant benefits in improving cognitive function, reducing neurodegener-
ation, and enhancing muscle health in the elderly population. The review highlights the
importance of further research to elucidate the specific mechanisms of action of curcumin
and optimize its dosage and formulation for maximum efficacy. Standardized protocols and
well-designed clinical trials are essential to validate the findings and establish curcumin as
a safe and effective intervention for promoting healthy aging and preventing age-related
conditions. Collaborative efforts among researchers, clinicians, and pharmaceutical part-
ners are crucial in advancing our understanding of curcumin’s therapeutic potential and
translating this knowledge into clinical practice. Overall, the evidence presented in this
review supports the notion that curcumin holds promise as a valuable adjunct in the man-
agement of age-related disorders, offering a natural and potentially effective approach to
enhancing the quality of life in aging individuals.
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Abbreviations

AChE acetylcholinesterase
AD Alzheimer’s disease
AMPK adenosine 5′-monophosphate-activated protein kinase
APP amyloid precursor protein
APPsw APP Swedish Mutant
Bax Bcl-2-associated protein X
Bcl-2 B-cell lymphoma 2
Cdk5 cyclin-dependent kinase 5
CNTMF completely natural turmeric matrix formulation
COX-2 cyclooxygenase 2
DM2 diabetes mellitus type 2
DNA deoxyribonucleic acid
FeONPs-Cur iron oxide nanoparticles capped with curcumin
GSK-3β glycogen synthase kinase-3β
HO-1 heme oxygenase-1
IL interleukin
JAK/STAT Janus kinase/signal transducer and activator of transcription
JNK c-Jun N-terminal kinase
Keap1 Kelch-like ECH-associated protein 1
MCT2 monocarboxylate transporter 2
mTOR mammalian target of rapamycin
NADPH nicotinamide adenine dinucleotide phosphate
NDs neurodegenerative diseases
NF-κβ nuclear factor-kappabeta
NO nitric oxide
Nrf2 nuclear factor erythroid 2-related factor 2
OS oxidative stress
PD Parkinson’s disease
PI3K phosphoinositide 3-kinases
PI3K/AKT phosphatidylinositol 3-kinase/protein kinase B
PPARγ peroxisome proliferator-activated receptor gamma
RAGE glycation end products
RNS reactive nitrogen species
ROS oxygen species
p- phosphorylated
PPAR-γ peroxisome proliferator-activated receptor gamma
Th17 T helper 17
TNF tumor necrosis factor
TNF-α tumor necrosis factor-alpha
TLR Toll-like receptor
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