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Abstract: Although many drugs have been discovered to treat malaria infection, many of them face
resistance from the host’s body with long-term use. Therefore, this study aimed to evaluate the
activity of betalains (from Beta vulgaris) and chloroquine (a reference drug) against brain oxidative
stress induced by Plasmodium berghei in male mice. Two protocols were applied in this study: the
therapeutic and prophylactic protocols. The results of the therapeutic protocol revealed a significant
decrease in the level of parasitemia caused by P. berghei. Additionally, the histopathological changes
in various brain regions were markedly improved after treatment with betalains. Regarding the
prophylactic protocol, betalains were able to protect the brain tissues from oxidative stress, inflam-
mation, and disrupted neurotransmitters expected to occur as a result of infection by P. berghei. This
was demonstrated by modulating the activities of brain antioxidants (SOD and GSH), inflammatory
cytokines (IL-6, IL-10, IL-12, TNF-α, and INF-γ), and neurotransmitters (serotonin, epinephrine, and
norepinephrine). This study has proven that using betalains as a treatment or as a preventive has a
vital and effective role in confronting the brain histopathological, oxidative stress, and inflammatory
changes induced by P. berghei infection.
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1. Introduction

Malaria continues to be one of the most serious global vector-borne infections and
a major public health concern [1,2]. Five Plasmodium species—Plasmodium falciparum,
P. vivax, P. ovale, P. malariae, and P. knowlesi—are known to infect humans and constitute
the primary pathogen. Of these, P. vivax and P. falciparum are known to cause the most
fatal infections [2,3]. Likewise, P. knowlesi is known to cause zoonotic malaria in humans
and to infect macaque monkeys [4,5]. The World Health Organization (WHO) reported
that malaria is a serious public health issue in 97 countries, accounting for around 219 mil-
lion new cases annually [2]. In 2020, an estimated 627,000 individuals will be dead from
malaria, an increase of 69,000 over 2019. Of those deaths, 47,000 were attributed to dis-
ruptions caused by the COVID-19 epidemic. Over 90% of all cases and deaths occurred
in Africa, whereas children under the age of five accounted for roughly 70% of all deaths
worldwide [2].

Cerebral malaria (CM), severe anemia, acidosis, hypoglycemia, and unexpected renal
failure are the most serious side effects of severe malaria [6]. Numerous clinical findings are
related to red blood cells’ (RBCs) cytoadherence and sequestration in various organs, such as
the brain, lungs, and placenta. Physical signs include, for instance, splenomegaly, jaundice,
and pallor [7]. Cerebral malaria is a fatally complicated manifestation of severe P. falciparum
malaria with fast-rising fatal neurological syndromes and a high rate of mortality among
children from sub-Saharan Africa [8,9]. About 1% of P. falciparum infections result in CM,
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which has a high death rate of 15–25% [2,9], leaving its surviving subjects with acute or
even persistent physical impairment and neurological dysfunction after the infection has
been treated [10].

The pathophysiology of CM is still not well understood. While a number of theories
have been proposed on the pathophysiology of CM, including those involving mechanical
blockage of microvessels and the release of large quantities of pro-inflammatory cytokines,
they fall short of explaining the course, prognosis, and outcome of the disease [11]. The
sequestration of iRBCs inside the brain capillary endothelia, which causes microvascu-
lar obstruction, blood loss, tissue hypoxia, blood–brain barrier (BBB) impairment, and
ultimately CM, is the basis for the vascular occlusion or sequestration hypothesis [3].

The inflammatory theory is based on P. falciparum releasing toxic chemicals that lead to
an imbalance in systemic inflammatory responses. These responses are further aggravated
by iRBC sequestration and cytoadherence [12]. Reactive oxygen species (ROS) and nitric
oxide (NO) are released into the bloodstream as a result of the subsequent rise in the release
of pro-inflammatory cytokines by macrophages, including tumor necrosis factor-α (TNF-α),
interleukin-B1 (IL-B1), and interleukin-10 (IL-10). These cytokines intensify inflammation
and break down the blood–brain barrier (BBB) [12,13], leading to fever and impaired
erythropoiesis [14].

Although several pathways have been linked to the etiology of malarial infections,
oxidative stress is thought to be a key biological factor since it causes anemia and organ
damage [15]. The oxidative stress-induced activation of macrophages during Plasmodium
infection is indicative of an association between inflammation and ROS [16] and dendritic
cells [16], which results in the secretion of inflammatory cytokines. The role of free radicals
in the physiopathogenesis of malaria has been addressed by a number of authors. Mice
infected with Plasmodium exhibit a progressive rise in oxidative stress and inflammatory
cytokines throughout various organs [17]. Monkeys infected with P. knowlesi showed high
levels of oxidative stress [18], and mice infected with P. berghei, P. yoelii, or P. chabaudi [19]
indicated that oxidative stress is a generalized phenomenon in Plasmodium infections.

P. berghei is a plasmodium species from the genus Plasmodium; it causes malaria in
rodents. Plasmodium berghei infection in mice is a commonly used model of experimental
CM [20]. The brain, liver, and lymphoid organs represent only some of the organs that
are affected by systemic P. berghei infection [21]. Therefore, many studies are conducted
on rodent malaria to examine resistance, drug screening, and inflammatory cytokines like
TNF-α, IFN-γ, and IL-10 [22,23]. Due to its many similarities to human cerebral malaria, the
P. berghei ANKA strain of rodents has long been utilized as an animal model to investigate
the pathogenesis of cerebral malaria [24,25].

The management of malaria mostly depends on vector control and chemotherapy [26].
Unfortunately, the currently available antimalarial drugs are being undermined by emer-
gence and spread of antimalarial-resistant parasites [27], which limit their clinical appli-
cation and patient compliance. It has been discovered that malaria is resistant to almost
every antimalarial medication now in use, such as amodiaquine, chloroquine, mefloquine,
quinine, and sulfadoxine-pyrimethamine [28]. The search began for alternate treatments
from medicinal plants as the malaria parasite developed resistance to the antimalarial
medications. Since they are more effective, less hazardous, and biodegradable, the search
for sustainable alternatives, such as plants or oils as well as biopesticides, is an ongoing
concern [29–31]. Current research has confirmed the potential properties of complementing
with antioxidant compounds from plants to strengthen the host’s immune system and
improve antioxidant defenses against Plasmodium or indirectly aid in the destruction of
malaria [29,32].

Beta vulgaris spp. plants are herbaceous perennial root vegetables, generally known as
‘beetroot’. Many researchers have examined the important anti-inflammatory, antioxidant,
and hepato-protective properties of B. vulgaris and its constituents [33–35]. In mice infected
with P. berghei, aqueous beetroot extract was reported to exhibit high antimalarial activ-
ity [21]. Previous reports have proven that beetroot is rich in minerals and vitamins like
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vitamin B, vitamin C, and vitamin K [36,37], and high in nitrate content [38]. Additionally,
B. vulgaris comprises phytochemicals like phenolic acids, flavonoids, saponins, and beta-
lains [36]. Betalains are water-soluble, nitrogen-containing pigments found in the vacuoles
of plant cells [39]. Betalains are further divided into two structural groups of pigment-rich
compounds, betacyanin and betaxanthin [40].

Numerous reports have proven that betalains have high antioxidant and anti-inflammatory
abilities to protect cellular components from oxidative injury in in vitro and in vivo animal
models [35,41,42]. In humans, betalains demonstrate free radical scavenging actions with
potential health benefits, including boosting the immune system and preventing cancer, car-
diovascular disease, and neurological diseases [43]. Therefore, this study aims to evaluate
the activity of Beta vulgaris betalains in comparison with chloroquine (reference compound)
against brain oxidative stress induced by Plasmodium berghei in male mice.

2. Results
2.1. Therapeutic Protocol (Curative Screening)
2.1.1. The Changes in the Parasitemia Level Percentage and Suppression Level

The results of the present research revealed in the negative control a parasitemia level
of 35.4% at the fourth day post-infection, which significantly increased to 51.2% at the ninth
day post-infection with P. berghei (Figure 1A and Table 1). Treatment of infected mice with
chloroquine (5 mg/kg) or betalains (70 mg/kg) for 5 consecutive days recorded significantly
decreased (p < 0.01 and p < 0.0001) parasitemia % as compared to their corresponding
percentages in pre-treatment and the negative control (distilled water) post-treatment,
respectively. Meanwhile, treatment with betalains showed a non statistically different
decrease (p >0.05) as compared to that of chloroquine in regard to the parasitemia %
(Figure 1B,C and Table 1). Accordingly, chloroquine- or betalains-treated groups exhibited
significant increased parasitemia suppression% (59.27 and 61.72, respectively) as compared
to the negative control group value (−47.46) (Figure 1D and Table 2).
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treatment with distilled water, chloroquine, and betalains in curative protocol of P. berghei-infected
mice. Panel (E) shows parasitemia % among the different studied experimental groups of mice in
prophylactic protocol at 2nd, 4th, and 6th days post-infection with P. berghei. Data are expressed as
mean ± SD. (ns) non-significance, significance at * p < 0.05, ** p < 0.01, **** p < 0.0001.

Table 1. Percentages of parasitemia in P. berghei-infected mice on day 9 of the curative experiment.

Groups
Parasitemia %

Pre-Treatment Post-Treatment

Group 1 (Negative control group) 35.40 ± 9.71 51.20 ± 12.27 a*
Group 2 (Chloroquine 5 mg/kg) 44.20 ± 8.58 19.40 ± 12.62 a**b****

Group 3 (Betalains 70 mg/kg) 41.20 ± 15.61 17.00 ± 10.41 a**b****
Data are expressed as mean ± std. deviation (SD); n = 6; superscript a represents significance compared to pre-
treatment between groups within the same raw. Significance within the same column by b represents significance
compared to negative control post-treatment group; significance at * p < 0.05, ** p < 0.01, **** p < 0.0001.

Table 2. Suppression percentages of malaria infection on day 9 of the curative experiment.

Groups Suppression %

Group 1 (Negative control group) −47.46 ± 28.67
Group 2 (Chloroquine 5 mg/kg) 59.27 ± 22.64 a****

Group 3 (Betalains 70 mg/kg) 61.72 ± 16.23 a****
Data are expressed as mean ± std. deviation (SD); n = 6; superscript a represents significance compared to distilled
water-treated group. Significant at **** p < 0.0001.

2.1.2. Histopathological Observations of Ions in Brain

Changes in the cerebral cortex
The cerebral cortex of control mice (Figure 2A,B) showed normal histological features

of the cortical tissue cell layers, molecular layer (ML), external granular layer (EGL),
external pyramidal layer (EPL), internal granular layer (IGL), internal pyramidal layer
(IPL), and polymorphic or multiform layer (PL). In the infected negative control group, the
cerebral layers appeared disorganized with disrupted ML, remarkable cellular infiltration
in the EPL and IPL, vacuolated granular cells, darkly stained nuclei of neuroglial cells,
and some congested and thickened wall blood capillaries (Figure 2C,D). The betalains-
treated group showed histological remarkable amelioration by disappearance of the cellular
infiltration, vacuolation, and dilated capillaries (Figure 2E,F). Meanwhile, the chloroquine-
treated group showed improvement in the histological appearance of the cortical layers
(Figure 2G,H). Hence, both treatments showed relative similarities in restoration of cerebral
histopathological signs induced by P. berghei infection.

Changes in the cerebellar cortex
Histologically, the cerebellar cortex from the control mice appeared with normal archi-

tectural patterns, whereas the cerebellar folia and layers are well-organized. Each folium
is made of an outer molecular layer (ML), middle Purkinje cell layer (PL), and an inner
granular cell layer (GL). The ML contains little basket cells and the dendrites of Purkinje
cells. The GL appeared rich with a high density of tightly packed small granular cells. The
PL consisted of one raw layer of large and pear-shaped neurons with prominent centrally
located nuclei and basophilic cytoplasm (Figure 3A,B). Sections of cerebellar cortex from
infected mice treated with distilled water showed remarkable histopathological changes,
including a less foliated cerebellar cortex with dilated and congested capillaries in the
ML, lysed and pyknotic Purkinje cells, and vacuolated, aggregated, and pyknotic granular
cells (Figure 4C,D). Meanwhile, treatment with betalains (Figure 3E,F) or chloroquine
(Figure 3G,H) successfully restored the altered histopathological signs caused by P. berghei
through the apparent well-organized architecture of cerebellar folia and their layers, while
some vacuolated cells still appeared in the sections.



Pharmaceuticals 2024, 17, 1064 5 of 24

Pharmaceuticals 2024, 17, x FOR PEER REVIEW  5  of  25 
 

 

similarities  in  restoration  of  cerebral  histopathological  signs  induced  by  P.  berghei 

infection. 

 

Figure 2. Photomicrographs of histological cerebral cortex sections of mice groups. Normal control 

group  shows  well-organized  cerebral  cortex  layers  (Panels  (A,B)).  The  distilled  water-treated 

(negative control) group shows remarkable disrupted molecular layer (red star), cellular infiltration 

(yellow star), vacuolated cells (V), congested and dilated capillaries (green star), and darkly stained 

nuclei of neuroglia cells (NG) (Panels (C,D)). In the betalains (Panels (E,F)) and chloroquine (Panels 

(G,H)) treated groups, cerebral cortex tissue appears more or less similar to the control. (H&E stain). 

Abbreviations:  Pia matter  (PM), molecular  layer  (ML),  external  granular  layer  (EGL),  external 

pyramidal  layer  (EPL),  internal  granular  layer  (IGL),  internal  pyramidal  layer  (IPL),  and 

polymorphic or multiform layer (PL). Corpus callosum (CC), blood vessel (BV), granular cell (GC), 

large pyramidal cells (LPC), and neuroglia cells (NG). 

Changes in the cerebellar cortex 

Histologically,  the  cerebellar  cortex  from  the  control mice  appeared with normal 

architectural patterns, whereas  the cerebellar  folia and  layers are well-organized. Each 

folium is made of an outer molecular layer (ML), middle Purkinje cell layer (PL), and an 

inner granular  cell  layer  (GL). The ML  contains  little basket  cells and  the dendrites of 

Purkinje cells. The GL appeared rich with a high density of tightly packed small granular 

cells. The PL consisted of one raw layer of large and pear-shaped neurons with prominent 

centrally  located nuclei and basophilic  cytoplasm  (Figure  3A,B). Sections of  cerebellar 

cortex  from  infected  mice  treated  with  distilled  water  showed  remarkable 

histopathological  changes,  including  a  less  foliated  cerebellar  cortex with dilated  and 

congested  capillaries  in  the ML,  lysed  and  pyknotic  Purkinje  cells,  and  vacuolated, 

aggregated,  and  pyknotic  granular  cells  (Figure  4C,D).  Meanwhile,  treatment  with 

Figure 2. Photomicrographs of histological cerebral cortex sections of mice groups. Normal con-
trol group shows well-organized cerebral cortex layers (Panels (A,B)). The distilled water-treated
(negative control) group shows remarkable disrupted molecular layer (red star), cellular infiltration
(yellow star), vacuolated cells (V), congested and dilated capillaries (green star), and darkly stained
nuclei of neuroglia cells (NG) (Panels (C,D)). In the betalains (Panels (E,F)) and chloroquine (Pan-
els (G,H)) treated groups, cerebral cortex tissue appears more or less similar to the control. (H&E
stain). Abbreviations: Pia matter (PM), molecular layer (ML), external granular layer (EGL), external
pyramidal layer (EPL), internal granular layer (IGL), internal pyramidal layer (IPL), and polymorphic
or multiform layer (PL). Corpus callosum (CC), blood vessel (BV), granular cell (GC), large pyramidal
cells (LPC), and neuroglia cells (NG).
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Figure 3. Photomicrographs of histological cerebellar cortex sections of mice groups. Normal control
group shows well-organized architecture, cerebellar cortex layers, and folia (Panels (A,B)). In the
distilled water-treated (negative control) group, the cerebellar cortex appears less foliated with dilated
capillaries in the ML, lysed (red star) and pyknotic Purkinje cells (PPC), vacuolated and aggregated
(arrow head), congested and dilated capillary (green star) and pyknotic granular cells (PGC) (Panels
(C,D). In the betalains (Panels (E,F)) and chloroquine (Panels (G,H)) treated groups, the layers and
folia of the cerebellar cortex appear more or less similar to the control (H&E stain). Abbreviations:
Cerebellar folia (F), molecular layer (ML), Purkinje cell layer (PJ), Purkinje cell (PC), granular layer
(GL), granular cells (GCs), and basket cell (BC), blood vessel (BV), white matter (WM), and arrows
point to the dendrites of PC.
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Figure 4. Photomicrographs of hippocampus histological sections of control mice (Panel (A–C)) shows
a well-organized regions architecture of the hippocampus. In infected mice treated with distilled
water (Panel (D–F)), the hippocampus cell layers show several deformities especially in the proper
(yellow asterisk) and dentate gyrus zones (red asterisk) with prominent vacuolation (V) and pyknosis
(blue asterisks) in their cells and dilated capillaries (green asterisk). Treatment of infected mice
with betalains (Panel (G–I)) or chloroquine (Panel (J–L)) display remarkable improvement in the
histological architecture of hippocampus compartments in spite of little deformities still present
especially in the cornu ammonis and dentate gyrus zones (H&E stain). Abbreviations: Blood vessel
(BV), Cornu ammonis (CA), dentate gyrus (DG), molecular layer (ML), stratum alveolus (SA), stratum
oriens (SO), stratum pyramidale (SP), stratum radiatum (SR), stratum molecular (SM), polymorph
layer (P), granular layer (G), molecular layer (M), glial cells (GC) (arrow head).

Changes in the hippocampus
In control mice, histological sections of the hippocampus showed the usual structure

of its distinct regions that were represented by the hippocampus proper, dentate gyrus, and
subiculum. The hippocampus proper is formed from the C -shaped cornu ammonis (CA),
which differentiates into four zones; CA1, CA2, CA3, and CA4. CA1 and CA2 contain small
pyramidal cells, while CA3 and CA4 are rich with large pyramidal cells and are continued
as subiculum. Moreover, the four zones of the hippocampal proper exhibit five strata:
stratum alveolus (SA), stratum oriens (SO), stratum pyramidale (SP), stratum radiatum
(SR), and stratum molecular (SM). The SP layer contains large-sized pyramidal neurons.
The dentate gyrus (DG) is seen surrounding CA4 by its upper and lower extensions and
is well differentiated into three distinct layers: the outer polymorph (P), middle granular
(G), and inner molecular (M) cell layers. The molecular layer (ML) appears at the concavity
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of the CA and of the DG. The granular cells of the DG appeared compact with darkly
stained nuclei as well as pyramidal cells also seen. Furthermore, the molecular (M) and
polymorphic (P) layers among neuronal processes, glial cells (GC), and blood capillaries
(BC) are visible (Figure 4A–C).

In P. berghei-infected mice treated with distilled water, the hippocampus cell lay-
ers showed several deformities especially in the proper and dentate gyrus zones, with
prominent multiple cytoplasmic vacuolation all over their granular and pyramidal cells.
Additionally, remarkable aggregation as well as apoptotic and pyknotic cells were noticed
in the four zones of the hippocampus proper (Figure 4D–F). On the other hand, treatment of
P. berghei-infected mice with betalains (Figure 4G–I) or chloroquine (Figure 4J–L) revealed
remarkable improvement in the histological architecture of hippocampal compartments in
spite of some little deformities still appearing especially in the cornu ammonis regions.

2.2. Protective Protocol (Prophylactic Screenings)
2.2.1. The Changes in Parasitemia Level

In this protocol, the experimental groups were primarily treated with the target
substances for four consecutive days, then inoculated with P. berghei on the fifth day. The
parasitemia at days 4 and 6, as compared to the corresponding negative control (distilled
water), values were significantly decreased in the betalains protective group recordings
(18.33% and 24.16%), with estimated inhibition % of 29.50% and 49.82%, respectively.
Likewise, there were significant decreases in the chloroquine-treated protective group
recording parasitemia (9.00% and 20.00%), with estimated inhibition % of 65.38.50 and
58.47%, respectively. Only the chloroquine group showed significantly (p < 0.05) decreased
parasitemia % at day 4 compared with the betalains group, (Figure 1E and Table 3).

Table 3. Percentages of parasitemia and inhibition of Plasmodium berghei-infected mice in all mice
every two days (2, 4, 6) in the prophylactic test.

Groups
Parasitemia and Inhibition%

Day 2 In% Day 4 In% Day 6 In%

Group 2 (Negative control group) 1.00 ± 0.81 - 26.00 ± 11.76 - 48.16 ± 8.37 -
Group 3 (Betalains 70 mg/kg) 0.45 ± 0.32 55 18.33 ± 9.20 a* 29.50 24.16 ± 6.11 a**** 49.82

Group 4 (Chloroquine 5 mg/kg) 0.23 ± 0.15 77 9.00 ± 5.32 a****b* 65.38 20.00 ± 4.47 a**** 58.47

Data are expressed as mean ± std. deviation (SD); n = 6. Significance within the same column by superscript
a represents significance compared to negative control group. b represents compared to betalains 70% group.
Significant at * p < 0.05, **** p < 0.0001. In% = inhibition percentage for each group compared to group 1 within
the same day.

2.2.2. The Changes in Hematological Parameters

As shown in Figure 5, the complete blood count (CBC) analysis from the negative
control (distilled water) infected mice group revealed a significant (p < 0.0001) increase
in the total WBCs count, while the RBC count and hematocrit and hemoglobin levels
were significantly decreased (p < 0.0001) as compared to the corresponding normal control
values. Meanwhile, in prophylaxis of the betalains or chloroquine groups, data showed
remarkable amelioration as compared with the negative group values. In the meantime, the
chloroquine prophylactic group showed prominent but not statistically different recovery
of CBC compared to the betalains group.
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2.2.3. The Changes in Biochemical Assays in Brain Tissues

Changes in antioxidant markers (NO, SOD, and GSH) and MDA
In the P. berghei-infected group previously treated with distilled water for four con-

secutive days showed a significant decrease (p < 0.0001) in the brain tissue NO and GSH
contents and SOD enzyme activity, in line with the significant increase (p < 0.0001) in MDA
level as compared with normal control group values. On the other hand, the NO and GSH
levels and SOD activity were significantly increased and the MDA level significantly de-
clined in betalains or chloroquine protected groups as compared with the negative control
(Figure 6). Comparatively, the prophylactic role of betalains appeared more prominent than
that of chloroquine against deleterious changes in the brain antioxidant markers induced
by P. berghei.
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Changes in inflammatory cytokines’ markers
The negative control group showed significant increase (p < 0.0001) in the levels of

brain tissue-tested inflammatory cytokines IL-6, IL-10, IL-12, TNF-α, and INF-γ as com-
pared with the normal control values. On the contrary, the activities of these inflammatory
markers were significantly decreased (p < 0.0001) in the betalains and chloroquine groups
as compared with the negative control values. Meanwhile, the betalains protective group
exhibited a restoring to normal inflammatory cytokines range as compared to normal con-
trol values with the exception of IL-10, which significantly increased (p < 0.0001) compared
to the normal value (Figure 7).
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Changes in brain neurotransmitters (Epinephrine, Norepinephrine, and Serotonin).
As shown in Figure 8, the levels of brain tissue epinephrine and norepinephrine

appeared significantly elevated (p < 0.0001) in the negative control group, while the level
of serotonin was significantly decreased (p < 0.0001) as compared with the normal control
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values. In the betalains group, the levels of epinephrine, norepinephrine, and serotonin
did not show statistically significant differences as compared to normal control values.
Meanwhile, chloroquine prophylactic treatment showed restoration of epinephrine and
norepinephrine levels to normal levels, while the level of serotonin was still significantly
higher (p < 0.05) than the normal control value.
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3. Discussion

The search for an adequate antimalarial medication has surged; however, the emer-
gence and propagation of antimalarial-resistant parasites has slowed down this attempt [27].
One class of naturally occurring pigments found in around 17 distinct plant families are
called betalains, which are considered bioactive chemical compounds [44]. Betalains are
currently being used as pharmaceutical therapeutic agents [45,46]. Even at relatively high
concentrations, betalains have been shown to be nontoxic and safe for administration for
developing cell cultures [39,47]. Accordingly, the present study aimed to discriminate the
therapeutic and prophylactic impacts of betalain compounds (from Beta vulgaris) in parallel
with chloroquine (standard antimalarial drug) against brain oxidative stress induced by
P. berghei in male mice.

The obtained results demonstrated that the treatment of P. berghei-infected mice with
distilled water for five consecutive days following infection for four days significantly
increased the parasitemia percentage level. However, on corresponding treatment of
P. berghei-infected mice with betalains or chloroquine, the level of parasitemia significantly
decreased as compared to the negative control. This indicates that betalains are effective
against malaria, but they are not significantly more effective than the usual treatment
with chloroquine. The data concerned with the therapeutic activity of betalains in this
study are in line with previous reports [39,48] that found pronounced antimicrobial and
antimalarial effects of betalains. Hilou et al. found that betalains from Amaranthus spinosus
and Boerhaavia erecta extracts can suppress parasitemia in P. berghei-infected mice [49]. This
is in line with the present study, as previously mentioned betalains constitute betacyanins
and betaxanthins pigments, and betacyanins comprise 75–95% betalains with the rest as
betaxanthins. In addition, betanin, isobetanin, and neobetanin are the main betacyanins as
previously reviewed [50]. In regard to betanin (betanidin 5-O-glucoside; CAS 37279-84-8),
the major constituent of betalains contains quaternary nitrogen in its structures, which
is a chemical group that is the most abundant betalain in beetroot and is well known
to inhibit Plasmodium growth by blocking the parasite’s choline intracellular transport
necessary for the biosynthesis of the essential molecules for the Plasmodium, which are
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the phosphatidylcholines [39,51]. Chang et al. added that betacyanins, which are a main
constituent of betalains, can attenuate dengue virus type 2 [52]. Additional research
demonstrated the antimicrobial activity of betalains by preventing the growth of bacteria
within the cells [53,54]. The ability of betacyanins, a key component of betalains that chelate
inner cations (Ca2+, Fe2+, and Mg2+) and prevent the intracellular transport of choline in
parasites, may be one the mechanisms by which betalains could reduce parasitemia [49,55].
The most widely used mouse models for researching malaria pathophysiology in various
organs are those infected with P. berghei ANKA [56,57]. The curative test, therefore, was
designed to look into the histological alterations in the brain tissues of the groups that
we studied.

In our current research, inoculation of male mice with P. berghei-infected RBCs showed
remarkable histopathological signs in the different brain regions including the cerebral
cortex, cerebellar cortex, and hippocampus. On the other hand, post-treatment of P. berghei-
infected mice with chloroquine or betalains, most of the histopathological signs induced by
P. berghei apparently disappeared. With regard to the cerebral cortex, P. berghei-infected mice
treated with distilled water showed disorganized cerebral cortex layers with disrupted ML,
cellular infiltration in the EPL and IPL, vacuolated granular cells, darkly stained nuclei
of neuroglial cells, as well as some blood capillaries appearing congested with obvious
thickened walls. Our histopathological results on the cerebral cortex are similar to previous
histological characteristics of the cerebral malaria model in mice induced by P. falciparum
infection [58,59].

Regarding the histopathological changes caused by P. berghei infection on the cerebellar
cortex in this study, they included a less foliated cerebellar cortex with dilated and congested
capillaries in the ML, lysed and pyknotic Purkinje cells, and vacuolated, aggregated, and
pyknotic granular cells. The obtained results are in agreement with those of previous
studies [60–62] where pronounced histopathological features were found in the cerebellar
cortex in P. berghei ANKA-infected mice as a malarian model.

In addition to the induction of histopathological aspects in the cerebral and cerebellar
cortex of P. berghei-infected animals treated with distilled water, the hippocampal cell layers
showed signs of disarray, particularly in the proper and dentate gyrus zones. Also, some
granular and pyramidal cells appeared vacuolated while other cells appeared pyknotic or
apoptotic in the four zones of the hippocampus proper. Consistent with our findings, Bedri
et al. observed significant hemorrhage, inflammation, and apoptosis in an experimental
cerebral malaria model [63].

Previous research has demonstrated that exposure to malaria infection may result in
increased secretion and release of pro-inflammatory cytokines, which can cause endothelial
activation, disrupt the blood–brain barrier, and trigger neurodegenerative events that cause
neurological and cognitive dysfunction in the brain regions in which histopathological
changes have been observed [9,64]. Additional findings have demonstrated that pRBCs
may provoke inflammation in the brain by upregulating the production of TNF-α, CD54,
and inflammatory cytokines [63,65].

Data from the current study that address the therapeutic action of chloroquine against
the histopathological features of the brain caused by P. berghei are consistent with those
from other studies that investigated chloroquine as an antimalarial drug [61,62]. According
to Zhang et al., chloroquine, as a prototype anti-malaria drug, showed anti-inflammatory
effects, demonstrated a high degree of penetration into the brain’s membranes, and has
been shown to play an important role in suppressing the DNA activity responsible for
brain injury [66].

Regarding the ameliorative role of betalains against P. berghei-induced histopatho-
logical signs in brain regions could be explained by the strong antioxidant properties of
betalains that are triggered by the presence of betacyanins that include betanidin and
betanin [67,68]. According to Moreno-Ley et al., betalains have a significant and useful role
in protecting brain tissues from the damaging effects of malaria [69]. A related study also
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found that betalains, which are isolated from beetroot, had a strong ameliorative impact on
renal tissue from oxidative stress caused by gentamycin [70].

Betalains have been shown to have a possible therapeutic effect against P. berghei-
induced brain tissue damage. This has prompted additional research to investigate the
preventive role of betalains against malaria infection by estimating certain biochemical
markers associated with brain pathophysiology. Data from the prophylactic screening
indicated that 4 and 6 days post-parasite inoculation, the percentage level of parasitemia
was much lower in the groups that had received betalains or chloroquine pretreatment
than in the negative control. The results showed that the preventive parasitemia activity of
betalains was predicted, and the results showed no significant difference in the effect of
betalains when compared to the reference drug. The obtained results were in agreement
with those published by Albohiri et al., who found a significant decrease in the para-
sitemia percentage level using Beta vulgaris aqueous extract in P. berghei-infected mice [21].
Additionally, various investigations have already assessed models of betalains used to
mitigate plasmodium activity [39,49,51]. A related study by Wondafrash et al. showed the
potent preventive effect of Cordia Africana leaf extract against parasite load in mice infected
with P. berghei. [71] The authors attributed the antimalarial activity of this extract to the
presence of the total flavonoids and total phenols. Our obtained results revealed that the
prophylactic role of betalains against parasitemia level was less prominent than its curative
role. This may be attributed to the rapid hepatic clearance or metabolism and the higher
bioavailability of the active component responsible for antimalarial activities, as previously
reported by Alehegn et al. [72].

Malaria is thought to be indicated by hematological abnormalities, and statistical
studies have demonstrated that a number of these hematological values may raise the
clinical suspicion of malaria. Numerous hematological changes, including leukocytosis,
thrombocytopenia, and steadily rising anemia, have been associated with malaria cases [73].
According to our findings, the group that received distilled water pretreatment had signif-
icantly lower RBC counts, and higher leukocyte counts than the control group, together
with significantly lower mean values of hemoglobin and hematocrit. This demonstrates
that leukocytosis-induced inflammation and a decrease in hemoglobin and RBC counts
are the results of malaria-induced anemia. The results obtained are consistent with the
earlier reports [73,74] which recorded remarkable anemia and inflammation in P. berghei
infected models. Moreover, leukocytosis was discovered to be associated with malaria in-
fection [75], which is consistent with our results. RBCs are one of Plasmodium’s main targets,
which accounts for the majority of the alterations in hematological parameters associated
with malaria infection [76]. According to Onohuean et al., hemoglobin degradation and
RBC rupture followed by the parasite are the main causes of the hemoglobin level drop
associated with malaria infection [77].

Oxidative stress is brought on by the Plasmodium parasite infection and is manifested
by a redox imbalance in the host as a result of increased production of reactive oxygen
and nitrogen species (ROS/RNS). The parasite destroys hemoglobin to obtain amino acids
for its own nutrition, and the host’s immune system also produces ROS/RNS inside the
phagocytes, resulting in the production of these oxidizing radicals [78]. Moreover, malaria
induces a rise in oxidative stress, which damages tissues and organs, including the brain
and lungs. Depending on the lesions in the brain parenchyma, this redox imbalance
can cause both physical and cognitive problems and has been linked to the more serious
forms involving cerebral malaria [79]. In our research, P. berghei-infected mice revealed
a significant increase in the activity of brain tissue oxidative stress markers, MDA (lipid
peroxidation), and a remarkable decrease in the activities of SOD and GSH. This supports
that a malarial infection causes oxidative stress in the brain. Our obtained results are in
parallel with the findings of Al-Shaebi et al. and Gomes et al., who recorded a significant
increase in MDA activity with a remarkable decrease in brain tissue CAT and GSH antiox-
idants in P. berghei-infected mice [32,80]. Since GSH is a crucial substrate for Plasmodium
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replication in its vertebrate host, the study’s reported decrease in GSH may be explained
by this consumption [81].

Increasing pro-inflammatory cytokines like TNF-α and IF-γ, as well as certain inter-
leukins like IL-6, IL-10, and IL-12, is probably a key to the etiology of cerebral malaria [82].
Our obtained data showed a remarkable increase in the levels of inflammatory cytokines in
the brain tissues of P. berghei-infected mice pre-treated with distilled water. It has been ob-
served that clinical or severe malaria is associated with increased levels of pro-inflammatory
cytokines, including IL-1β, IL-6, IL-8, IL-10, IL-12, IL-13, IL-31, IL-33, and TNF-α [83,84].
Moreover, pro-inflammatory cytokine overexpression induces brain endothelial cells to gen-
erate certain adhesion molecules, which in turn causes platelets, leukocytes, and platelets
to adhere to the brain endothelium and trigger damage to brain tissue. It has been observed
that TNF-α, IL-31, and IL-33 are associated with clinical or severe malaria [85,86]. Fur-
thermore, it has been established that IL-12 influences TNF-α and IF-γ expression. In the
first phase of infection, dendritic cells or macrophages may produce IF-γ at an appropriate
increased level in response to IL-12 [87,88], which remains a crucial component of pro-
inflammatory responses. Simultaneously, the IF-γ response has the ability to upregulate
TNF-α, indicating that it is a major mediator of malaria pathogenesis [89]. Evidence has
been found to suggest that high plasma levels of TNF-α are related to malaria infection [90].

The central nervous system (CNS) produces IL-10, which reduces the clinical symp-
toms of meningitis, stroke, multiple sclerosis, Alzheimer’s disease, and infection-related
behavioral abnormalities. The majority of neurological conditions are accompanied by
raised levels of IL-10, which protects brain neurons and all glial cells from damage by
inhibiting the actions of pro-apoptotic cytokines while promoting the expression of cell
survival signals [91]. Immune cells produce IL-6 when infected with malaria parasites,
and this has been associated with the immunopathogenesis of malaria [92]. Additionally,
the malarial infection has been associated with ROS formation that triggers the release of
TNF-α and IL-6 [77].

In the current study, the levels of brain inflammatory cytokines markedly declined to
near-normal values with the prophylactic use of betalains against P. berghei-infected mice.
Betalains were found to regulate inflammation processes such as NF-κB regulation, as well
as attenuate pro-inflammatory cytokines and stimulate anti-inflammatory mediators [93]. It
has been documented that betalains reduced inflammation and restored function to several
organs such as the lungs and airways [94], heart [95,96], gut [97], liver [95], kidney [98], and
reproductive organs [99]. Shunan et al. investigated the application of betalains to mitigate
the inflammation and oxidative stress caused by aluminum chloride in brain tissues [100].
The findings showed a notable reduction in MDA maintenance of antioxidant enzymes like
SOD, GSH, and CAT. In addition, betalains alleviated the expressions of pro-inflammatory
cytokines—IL-6, IL-1β, COX-2, iNOS, TNF-α, and NF-κB—via mRNA expression reversion.
Furthermore, it has been revealed that betanin, the main ingredient of betalains, inhibits
the in vitro lipopolysaccharide-induced inflammation of microglial cells by reducing the
generation of ROS, RNS, TNF-α, IL-1β, and IL-6 [101]. According to Imamura et al.,
betalains and iso-betalains protect mitochondria by reducing the production of ROS, which
in turn reduces inflammation in the brain caused by amyloid-β [102]. Betanin was indicated
as a COX-2 inhibitor [103]. Betanin anti-inflammatory effects, including TNF-α and IL-β
reduction and increased IL-10, were also reported by Martinez et al. [104]. This suggests
that betalains and their derivatives contribute to organ protection in disease conditions
via the regulation of antioxidant and anti-inflammatory processes, which are in agreement
with our obtained results.

Neurotransmitters are essential molecules of central and peripheral nervous systems.
These molecules are crucial for signaling, enabling nerve cells, or neurons, to effectively
transmit information both chemically and electrically [105]. The impairment of some
neurotransmitters was noticed in various parasitic infections such as Toxoplasma [106],
Schistosoma mansoni [107], Toxocara canis, and Trichinella spiralis [108]. According to Clark
et al., neurotransmitter activity impairment has been linked to the etiology of CM [109]. In
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the current study, we observed an increase in the activities of some brain neurotransmitters
like epinephrine and norepinephrine, while a decrease in serotonin was noted among
P. berghei-infected mice pre-treated with distilled water. Previous reports have declared that
the increase in the activities of epinephrine and norepinephrine during malaria infection
may help the host overcome the risk of fever [80,110]. Also, Roy et al. reported a remarkable
decrease in level of brain tissue serotonin in P. berghei-infected mice [111]. Additional
research has demonstrated that one of the signs of malaria is neuro-degeneration of brain
tissues, which results in an imbalance in neurotransmitter levels [101,112].

In our current study, the pretreatment of P. berghei-infected mice with betalains suc-
cessfully attenuated the deterioration of brain neurotransmitters caused by malaria to
nearly normal values as the control. This suggests the prophylactic role of betalains against
neurodegenerative effects induced by malaria. Studies have shown that betalains func-
tion as neuroprotective compounds by mitigating the oxidative stress and inflammation
brought on by neurotoxicants [100], amyloid-β aggregation [102], mitochondrial dysfunc-
tion [113], and brain microglia activation [101], thus preventing neurodegeneration [114].
According to Thong-asa et al., betanin can improve brain antioxidants, which may have a
neuroprotective impact against trimethyltin-induced neurodegeneration in rats [115]. The
researchers also evaluated the oxidation levels in brain tissue and found that there was a
notable decrease in MDA levels and an increase in catalase and SOD activity.

Collectively, the results of the present study are in line with the previously reviewed
mechanism of betalains from previous studies that suggested betalains may bind with heme
and inhibit hemozoin formation in Plasmodium parasite in a similar action to chloroquine
that interferes with the degradation of erythrocyte hemoglobin to prevent parasite growth
by the accumulation of its toxic material hematin. This is in line with the antioxidant
activity of betalains, which at low concentrations has been demonstrated to inhibit lipid
peroxidation and heme decomposition [44]. Also, this is in line with betalains’ previously
predicted antioxidant and anti-inflammatory activities [44,101].

4. Materials and Methods
4.1. Experimental Mice

In the current study, 48 male Swiss albino mice, weighing between 19 and 26 g and
aged between 6 and 8 weeks, were obtained from the Experimental Animal Unit at the King
Fahad Medical Research Centre, King Abdulaziz University in Jeddah, Saudi Arabia. The
mice were kept in individually ventilated cages (IVC) constructed from protective plastic to
keep the concentrations of ammonia and CO2 low and prevent the spread of diseases. The
mice were kept in a lab environment with controlled humidity (65%), room temperature
(20 ± 2), and artificial lighting with a 12-h cycle of light and dark. The mice were provided
with free access to commercial chow and were fed a standard diet ad libitum.

Plasmodium berghei inoculation
The Plasmodium berghei “ANKA Strain”, which is prone to chloroquine, was initially

obtained from the Institute of Immunology and Infection Research located in the European
Malaria Reagent Repository in Edinburgh. Liquid nitrogen was used to preserve the
infected blood for use in donor mice. Four donor mice received intra-peritoneal injections
of 80 µL, 100 µL, 130 µL, and 170 µL of cryopreserved Plasmodium berghei parasitized red
blood cells (pRBCs) after they had thawed at room temperature. The air-dried blood films
were fixed with 100% methanol, stained with 10% Giemsa stain solution, and inspected
under an high-power-objective microscope in order to confirm the infection [116].

According to Rahayu et al., the number of parasitized erythrocytes within at least
1000 RBCs was assessed by counting ten fields of around 100 erythrocytes each, and the par-
asitemia in mice was then calculated using the following equation: (Number of parasitized
RBCs/Total number of tested RBCs) × 100 [117]. Before being bled for Plasmodium infection,
donor mice had parasitemia levels between 2 and 15% [118]. Following the confirmation of
the parasitemia level, 0.2 mL of a solution made from 10 µL of infected mouse blood and
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5 mL of phosphate-buffered saline (PBS) was intraperitoneally administered into a new
mouse as part of the mechanical passage procedure.

The experimental mice were injected intraperitoneally with a 0.2 mL suspension of
1 × 106 parasitized RBCs of the P. berghei ANKA strain, in accordance with the Reece Lab
Protocols from The European Malaria Reagent Repository. The inoculated mice served
as both a source of experimental mice and as passage mice for the course of the study,
and were supplied with food and water in cages intended for experimental animals. All
procedures were approved by the Unit of Biomedical Ethics Research Committee at King
Abdulaziz University, Saudi Arabia, with animal study approval (reference no. 657-19).

4.2. Chemical Compounds Used

Betalains derived from Beta vulgaris was purchased from Shaanxi Baichuan Kangze Bio-
logical Technology Company (Xi’an XABC Biotech Co., Ltd. Xi’an, China), CAS No.: 37279-
84-8 [39,119]. With regard to betalains used in the present study under CAS No.: 37279-84-8
according to the Open Chemistry Database (PubChem) at the National Institutes of Health
(NIH), betalains chemicals are compounds derived from TYROSINE via betalamic acid, in-
cluding betaxanthins and betacyanins. They are found in the Caryophyllales order of plants
that Beta vulgaris belongs to and with the IUPAC name (2R)-1-[(2E)-2-(2,6-dicarboxy-2,3-
dihydro-1H-pyridin-4-ylidene) ethylidene]-6-hydroxy-5-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-
6-(hydroxymethyl)oxan-2-yl]oxy-2,3-dihydroindol-1-ium-2-carboxylate; https://pubchem.
ncbi.nlm.nih.gov/compound/56841626 (accessed on 12 August 2024).

Chloroquine diphosphate was purchased from Shanghai Huirui Chemical Technology
Company’s preferred medication (Hui Chem Co., Ltd., Shanghai, China) CAS No.: 50-63-5
and Bach No. HR2019060801.

4.3. Antimalarial Activity

In this study, we performed two screening protocols to evaluate the antimalarial
activity; the primary protocol is therapeutic, and the secondary is the prophylactic protocol
according to Fidock et al., with a few modifications [120].

4.3.1. Therapeutic Protocol (Curative Screening)

Twenty-four mice were utilized in this experiment; eighteen of the animals received
an intraperitoneal injection of a standard inoculum consisting of 106 Plasmodium berghei-
infected RBCs in 2.97 mL of PBS with an 18% parasitemia level. Following 96 h, on the fifth
day of the experiment, the mice were divided into four groups, with six mice per group,
based on the confirmation of the level of parasitemia.

Group 1: Negative control group; mice were infected with 106 Plasmodium berghei-
infected RBCs followed by oral administration of distilled water.

Group 2: Positive control group; mice were infected with 106 Plasmodium berghei-
infected RBCs followed by oral administration of 5 mg/kg of chloroquine.

Group 3: Mice were infected with 106 Plasmodium berghei-infected RBCs followed by
oral administration of 70 mg/kg of betalains.

Group 4: Normal NOT infected mice as control.
Following the fourth day of infection, all tested substances were administered to

groups G1, G2, and G3 for five consecutive days at a single dose. Blood smears for each
mouse in each group were collected at the end of the experiment (day 9) and examined
under a microscope to track any differences in parasitemia between the groups.

Determination of parasitemia percentage and suppression effect
According to Rahayu et al., the number of parasitized RBCs within at least 1000 RBCs

was assessed by counting ten fields of around 100 erythrocytes each [117], and the para-
sitemia in mice was then calculated using the following equation: (Number of pRBCs/Total

https://pubchem.ncbi.nlm.nih.gov/compound/56841626
https://pubchem.ncbi.nlm.nih.gov/compound/56841626
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number of tested RBCs) × 100. The suppression effect within each group was calculated as
follows using the formula provided by Enegide et al. [121]:

Suppression witjin group % =
Parasitemia (pre)− Parasitemia (post)

Parasitemia (pre)
(1)

Histopathological examination of brain (cerebrum, cerebellum, and hippocampus)
At the end of experiment, the mice groups were dissected, and the whole brain was

immediately removed, then washed in 0.9% sodium chloride solution and placed instantly
in 10% formalin. The tissues were dehydrated in ascending grades of ethyl alcohol, cleared
in xylene, and finally embedded in paraffin wax blocks. The paraffin blocks were cut on
glass slides using a rotary microtome at 4 µm thickness. The deparaffinized brain slices
were thoroughly cleaned in 100 percent ethyl alcohol before being stained with Ehrlich’s
hematoxylin [122]. A Philips digital pathology solutions microscope and imaging system
(Phillips Intelli Site Ultra-Fast Scanner, FMT0225, Eindhoven, Netherlands) was used to
investigate the brain sections at three regions (cerebrum, cerebellum, and hippocampus).

4.3.2. Prophylactic Protocol (Protective Screening)

In this experiment, twenty-four adult mice were split into four groups at random (n = 6).
Group 1: Normal NOT infected mice as control.
Group 2: Negative control; mice were administered distilled water followed by infec-

tion with 106 Plasmodium berghei-infected RBCs.
Group 3: Mice were administered doses of 70 mg/kg/day of betalains followed by

infection with 106 Plasmodium berghei-infected RBCs.
Group 4: Positive mice received doses of 5 mg/kg/day of chloroquine followed by

infection with 106 Plasmodium berghei-infected RBCs.
The experimental mice primarily received distilled water, betalains, and chloroquine

for 4 consecutive days. On the fifth day of the experiment, mice under experiment were
inoculated with standard inoculums of 106 Plasmodium berghei-infected RBCs with 21%
parasitemia level. The parasitemia level was estimated regularly in all mice every two days
post-infection (48, 96, 144 h).

At the end of the experimental period (after 6 days of infection), blood samples
were drawn from the orbital plexus using capillary tubes to assess the hematological
parameters assay (CBC) and placed in EDTA tubes [123]. Additionally, all animal groups
were sacrificed under mild anesthesia by diethyl ether, and the brain was excised, cleaned,
and homogenized in PBS and stored at −20 ◦C until use for estimation of the antioxidant
activities, inflammatory cytokines, and neurotransmitters.

Enzyme-linked immunosorbent assay (ELISA) kits, using the DYNEX DSX best
20,000 Automated ELISA System from DYNEX Technologies, Chantilly, VA, USA), were
used to conduct biochemical experiments. This microplate immunoanalyzer is fully auto-
mated and suited for medium-sized labs. Up to 48 tests can be conducted on 4 microplates
at once in a single profile.

Determination of Antioxidant Markers (NO, SOD, and GSH) and MDA
Nitric oxide (NO) was determined using the Mouse Total Nitric Oxide ELISA kit (Cat.

No. MBS720290); superoxide dismutase (SOD) activity was measured via the Mouse SOD
ELISA kit (Cat. No. MBS034842); and the malondialdehyde (MDA) level was determined
via the Mouse Malondialdehyde ELISA kit (Cat. No. MBS741034), which were purchased
from MYBioSource. Glutathione (GSH) was assayed using an ELISA kit purchased from
Elabscience, (Houston, TX, USA), (Cat. No. E-EL-0026). All procedures were performed
according to the manufacturers’ protocols.

Determination of Inflammatory Cytokines’ Markers
The interleukins IL-6, IL-12, and IL-1β and tumor necrosis factor alpha (TNF-α) levels

were determined using the Mouse IL-6 ELISA kit (Cat. No. ab100713), Mouse IL-12 ELISA
kit (Cat. No. ab213866), Mouse IL-1beta ELISA kit (Cat. No. ab197742), and Mouse TNF-α
ELISA kit (Cat. No. ab100747), respectively. All kits were purchased from Abcam Inc.
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Waltham, MA, USA. Meanwhile, IL-10 levels were estimated using the Mouse IL-10 ELISA
kit (Cat. No. MBS018124), and Interferon-gamma (INF-γ) levels were estimated using the
Mouse INF-γ ELISA kit (Cat. No. MBS2500105), which were acquired from MYBioSource,
San Diego, CA, USA. All procedures were performed according to manufacturers’ protocols.

Determination of Brian Neurotransmitters (Epinephrine, Norepinephrine, and Serotonin)
Norepinephrine (NE) levels were estimated using the Mouse Norepinephrine ELISA

kit (Cat. No. MBS9346061); epinephrine levels were estimated via the Mouse Epinephrine
ELISA kit (Cat. No. MBS162837); and serotonin/5hydroxytryptamine (5-HT) levels were
estimated via the Mouse Serotonin ELISA kit (Cat. No. MBS723181); all kits were purchased
from MYBioSource and all procedures were according to the manufacturers’ protocols.

4.4. Statistical Analysis

GraphPad®Prism Statistical Package Version 9 (2022) was used to visualize the data.
The Statistical Package for the Social Sciences for Windows (v. 21; IBM Corp., Armonk,
NY, USA) was used to analyze the data. Data are expressed in terms of the mean and
standard deviation (SD). Tests of normality (Shapiro–Wilk) were used for data distribution
assessments. Parametric tests were performed on normally distributed data. One-way
analysis of variance (ANOVA) was used to compare various groups, followed by the post
hoc least significant difference (LSD) multiple comparison test. Significance was accepted
at p < 0.05.

5. Conclusions

Based on our findings, betalains derived from Beta vulgaris succeeded in combating
the parasitemia load induced by P. berghei in male mice, whether using it in a therapeutic or
preventive capacity, at a concentration of 70 mg/kg. This was demonstrated through allevi-
ating the histopathological, inflammatory, and oxidative stress, as well as the hematological
changes caused by Plasmodium on the brain. Nevertheless, more research is needed to es-
tablish the exact means by which betalains can attenuate parasitemia and its complications
induced by Plasmodium on the brain.
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