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Stem-like CD8+ T cells in cancer
Chelsea Steiner, Nathan Denlinger, Xiaopei Huang*

and Yiping Yang*

Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus,
OH, United States
Stem-like CD8+ T cells (TSL) are a subset of immune cells with superior

persistence and antitumor immunity. They are TCF1+ PD-1+ and important for

the expansion of tumor specific CD8+ T cells in response to checkpoint blockade

immunotherapy. In acute infections, naïve CD8+ T cells differentiate into effector

and memory CD8+ T cells; in cancer and chronic infections, persistent antigen

stimulation can lead to T cell exhaustion. Recent studies have highlighted the

dichotomy between late dysfunctional (or exhausted) T cells (TLD) that are TCF1–

PD-1+ and self-renewing TCF1+ PD-1+ TSL from which they derive. TCF1+ TSL
cells are considered to have stem cell-like properties akin to memory T cell

populations and can give rise to cytotoxic effector and transitory T cell

phenotypes (TTE) which mediate tumor control. In this review, we will discuss

recent advances made in research on the formation and expansion of TSL, as well

as distinct niches required for their differentiation and maintenance in the setting

of cancer. We will also discuss potential strategies to generate these cells, with

clinical implications for stemness enhancement in vaccine design, immune

checkpoint blockade (ICB), and adoptive T cell therapies.
KEYWORDS

stem-like CD8 T cells (TSL), chronic viral infection, cancer models, immune, tertiary
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1 Introduction

Immune checkpoint blockade (ICB) therapy has generated impressive success in recent

years as 15~30% of cancer patients treated with ICB experience durable remissions (1). It

has been proposed that ICB can reverse exhausted or late dysfunctional CD8+ T cells (TLD)

to an effector-like state. However, recent studies have shown TLD cells have a terminally

differentiated phenotype and may not be readily rescued. Rather, proliferative bursts of a

relatively undifferentiated population of “stem-like” T cells (TSL) occur after ICB, which has

been correlated with clinical benefit. These TSL are identified by their expression of

transcription factor T cell factor-1 (TCF1), along with intermediate expression of

inhibitory receptor, programmed cell death protein-1 (PD-1). TCF1+ PD-1+ TSL cells

have the ability to expand, self-renew, and differentiate into transitory effector-like T cells

(TTE) and TLD cells. TSL cells have been identified to play a vital role in sustaining the CD8+

T cell response in both chronic infection and cancer. Their presence is associated with
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positive clinical outcomes of checkpoint immunotherapies in

patients with melanoma, colorectal, and non-small cell lung

cancer (NSCLC) (2–4). Here we will review the latest

developments regarding TSL population formation and expansion,

along with the specific niches required for their maintenance and

differentiation in the context of cancer. We will also explore

potential approaches to produce TSL cells and discuss the

therapeutic implications of enhancing stemness in adoptive T cell

therapies, ICB, and vaccine design.
2 Formation, expansion, and hallmarks
of stem-like CD8+ T cells

Stem-like CD8+ T cells have emerged as key players in response

to ICB, as a subset of cells that retain stemness, have memory

potential, and a high proliferative capacity. Targeting the PD-1:

PD-L1 pathway with ICB treatment drives the expansion of these

cells. This was first observed in chronic infection models (5–8) and

subsequently in mouse and human cancers (2–4, 9, 10). As shown in

Figure 1, the proliferation burst encompasses not only expansion of

TSL’S cells’ downstream TTE progeny, but also self-renewal of the TSL

population. TSL self-propagate an epigenetically distinct, stable pool

of TSL cells that persists during active disease. This population is

armed for subsequent proliferative bursts and fuels a downstream
Frontiers in Immunology 02
differentiated effector population in an antigen-dependent manner.

TSL cells survive and persist following antigen withdrawal, similar to

conventional memory cells. Additionally, they can mount a recall

response and continue to produce terminally differentiated progeny

(11, 12). Although this subset is more proliferative than other

differentiated exhausted subsets, compared to conventional

memory cells, TSL have reduced proliferative capacity and cytokine

function (13). TSL cells do share many markers with memory and

naïve T cells (Figure 2; Table 1). Markers such as CD62L and CD27

are more commonly expressed on naïve and memory populations,

while CCR7 and CD28 are often expressed by both naïve and TSL

cells. They are also induced/maintained by some similar transcription

factors (TFs) including TCF1, BCL6, FOXO1, STAT3, JUN, MYB,

BACH2, EOMES, TOX and ID3 (5–7, 14, 15). However, while TSL

cells share many memory and stem-like features, they are committed

to the exhaustion lineage, and transfer an exhausted phenotype to

their progeny (16). While ICB treatment results in the expansion or

proliferative bursts of this stem-like population, these cells and their

effector progeny show distinct epigenetic features and metabolic state

of exhausted T cells (17–19). Studies have observed that although

commitment toward the T cell exhaustion phenotype begins as early

as 5 days, it requires time for the epigenetic imprint to stabilize where

it cannot be overcome by ICB (16, 20–22). The TF nuclear factor of

activated T cells (NFAT) plays a pivotal role in effector and

exhaustion responses of CD8+ T cells and induces the effector
FIGURE 1

TSL cells drive and maintain CD8+ T cell responses in cancer after ICB. Naïve and TSL CD8
+ T cells are primed and activated in the tumor draining

lymph node (TDLN) or tertiary lymphoid structures (TLS) within the tumor by conventional dendritic cells (cDCs) that present tumor derived antigen.
A portion of these activated TSL cells reside in the TDLN and maintain a reservoir that migrate and infiltrate the tumor microenvironment (TME).
Maintenance of TSL cells has yet to be fully determined within these immunological niches. Without ICB, following activation, TSL cells infiltrate
tumors and rapidly undergo exhaustion in the presence of persistent antigen stimulation. While transitory effector CD8+ T cells (TTE) cells
differentiate from TSL cells, TTE quickly adopt a late dysfunctional (TLD) phenotype but can carry a level of some tumor control through cytotoxic
cytokines and tumor cell targeting. Upon ICB, the TSL population undergoes self-renewal and proliferation, giving rise to the TTE subset and this
supports the majority of the CD8+ T cell antitumoral response, leading to tumor control.
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FIGURE 2

Model of the characteristics and differentiation of CD8+ T cell states in cancer. The transcription factors TCF1 and LEF1, as well as the adhesion and
lymphocyte homing molecules CD62L, are highly expressed in naïve T cells. Downstream, the population of stem-like CD8+ T (TSL) cells with strong
polyfunctionality and self-renewal ability is defined by TCF1. These cells have a strong proliferation capacity, are primarily quiescent in vivo, and are
able to support the CD8+ T cell response. By suppressing the expression of effector-associated genes like Id2, Blimp-1, Tbet and Tbx21 and
stimulating memory-associated genes like Eomes, Myb, Bcl-6, TCF1 facilitates the generation, maintenance, and functionality of these cells.
Phenotypically, TSL cells display CD28 and ICOS costimulatory markers, low or moderate amounts of PD-1, SLAMF6, and CXCR5. TSL cells expand
upon ICB and both maintain the TSL reservoir and differentiate into further subpopulations. Differentiation of TSL give rise to downstream transitory
effector CD8+ T cells (TTE) that express high PD-1 receptor, proliferate rapidly in steady state down regulating TCF1 expression, and upregulate T-
BET. T-BET inhibits TOX-mediated development of late dysfunctional T cells (TLD) phenotype in TTE cells. Transitory cells exhibit the expression of
CX3 chemokine receptor 1 (CX3CR1) and PD-1. TTE proliferate to help target and eliminate tumor cells. After chronic antigen stimulation, these TTE
cells develop into TLD cells which are characterized by high expression of checkpoint receptors (PD-1, TIM3, LAG3, CTLA-4, TIGIT, and CD101), poor
polyfunctionality, low proliferation capacity, but retain some cytotoxic potential.
TABLE 1 Summary of the transcription factors, biomarkers, and key features that define CD8+ T cell subsets in cancer.

Murine ■
Human ■
Both ■

Naïve T cell
T Stem-like

(TSL)
Transitory Effector

(TTE)
Late Dysfunctional (TLD)

Transcription
Factors

TCF1, LEF1
TCF1, LEF1, EOMES, TOX, MYB,

FOXO1, JUN, STAT3
ID3, BCL6, BACH2, EGR2

TBET, BLIMP1, BATF, IRF4, ID2, NFAT,
RUNX3, NR4A

EOMES, TOX, BATF, NFAT

Biomarkers

CD62L
CCR7
CD28
CD27

CD45RA
CD45

TCF1
PD-1

LY108/SLAMF6
CXCR5
CD28
ICOS
CCR7
CD69

CD45RO

PD-1
GZMB
TBET
LAG3

CX3CR1
CD45RO

PD-1
TIM3
LAG3
TIGIT
CD101
CTLA4
CX3CR1
CD45RO

Key Features

Immature cell
Circulate in lymph

and blood
Feeds

downstream subsets

Self-renewal
Expands/proliferate after ICB
Persistent population pool

Feeds downstream effector subsets

Effector/cytotoxic killing to control
tumor growth

Increased expression of inhibitory
receptors

Limited killing capacity
and proliferation
F
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program with its associate TF activator protein 1 (AP-1) and its

subunits JUN/FOS (23). In the absence of AP-1, NFAT induces a

program of negative feedback leading to T cell exhaustion.

Downstream targets of NFAT: TOX, NR4A1, NR4A2 are critical in

enforcing T cell exhaustion in TSL cells (24–27). Absence of TOX

results in the loss of the TSL population and loss over time in their

effector progeny in chronic infection and tumor models (5, 7, 25, 26).

Likewise, a recent study reported double deletion of NR4A1/NR4A2

in CD8+ tumor-infiltrating lymphocytes (TILs) resulted in murine

tumor eradication after transfer as well as expansion of TSL

population with increased chromatin accessibility of several stem-

like/memory-related genes (28). TSL cells, however, do not express

other co-inhibitory, exhausted T cell markers (TIM3, TIGIT, CTLA4)

but do express low to intermediate levels of PD-1, not as a marker of

exhaustion but rather activation (29). PD-1 has been shown to help

preserve the co-expressing PD-1+ TCF1+ TSL population by

attenuating TCR and co-stimulatory CD28, and by repressing

downstream effector differentiation (22, 30, 31). TSL also express

other markers such as inducible T cell costimulator (ICOS) molecule,

CD28, CXCR5, SLAMF6 (also known as LY108), which denote a

population of cells that have experienced antigen and require

lymphoid homing (3–6, 14, 32). In chronic viral infection, TSL

infiltrate B cell follicles correlating with CXCR5 expression on TSL

whereas in tumors, SLAMF6 is highly expressed and positively

correlates with TCF1 levels (2, 4, 9, 33).

Another critical feature of TSL cells is the uniform expression of

TCF1, encoded by the Tcf7 gene, which is essential for the

formation and function of this population (3, 5–7, 10, 14).

Originally identified as a TF essential for thymocyte development,

both TCF1 and its homologue LEF1, are now known to promote

memory T cell differentiation and inhibit effector differentiation

(34, 35). Open chromatin sites in TSL cells are highly enriched in the

TCF/LEF motif, similar to naïve T cells, and overlap frequently with

TCF1 binding peaks, suggesting direct regulation by TCF1 (20, 35,

36). Studies in chronic infection and tumor models have shown that

loss of TCF1 in CD8+ T cells limits their maintenance, function, and

overall response to ICB, but does not diminish their overall function

(3, 7, 10, 37). Additionally, a preclinical tumor study showing

ectopic expression of TCF1 skews TILs to adopt a TSL phenotype

while enhancing their polyfunctionality and further suppressing

inhibitory receptors and modulating the transcriptome to further

suppress TFs like BLIMP1, RUNX3, and TOX to improve viral and

tumor control (38). A recent study disputes that tumor

immunogenicity dictates reliance on TCF1 for ICB efficacy (39).

However, antitumor responses in poorly immunogenic tumors can

be improved by optimizing T cell priming through either

vaccination or enhancing antigen presentation on tumors (39).

Additionally, frequency of TCF7-expressing CD8+ T cells in

melanoma can correlate to positive response to ICB, whereas in

advanced clear cell renal carcinoma patients, it failed to predict any

clinical outcomes (40, 41). How TCF1 directly aids in forming and

expanding this crucial stem-like population within its environment

is still debated.

Together, the key features that define the formation and

expansion of TSL cells encompass multiple regulatory pathways.

Many of the features of TSL are similar to other well defined T cell
Frontiers in Immunology 04
subsets, therefore it is crucial to establish how regulatory

mechanisms operate uniquely in the TSL population in a variety

of environments. We have described how TSL cells self-renew while

maintaining an exhausted lineage; next we will delve into how this

subset continues to feed into the pool of CD8+ T cells and help

sustain responses to ICB.
3 Differentiation and maintenance of
stem-like CD8+ T cells

Studies from chronic viral infection and tumor models have

characterized two populations of epigenetically and spatially

distinct populations of CD8+ T cells: TCF1+ PD-1+ TIM3- CD8+

TSL and their progeny, TCF1- PD-1+ CD8+ T transitory effector-

like CD8+ T cells (TTE) (3–7, 9, 10). The TTE cells become

terminally differentiated, late dysfunctional TCF1lo/- PD-1+

TIM3+ T cells (TLD) that carry distinct transcriptional and

epigenetic programs that differ from those seen in traditional

memory and effector populations, both in cancer and chronic viral

infection (Figures 1, 2; Table 1) (8, 19, 22). It has been shown that

TSL drive the proliferative response after immunotherapy and are

often associated with clinical benefit, while TLD populations have

limited survival and re-expansion potential (3–7, 10, 42). TSL cells

and their progeny are committed to an exhausted phenotype,

however a unique feature of the TSL population being its ability to

be stimulated to expand by ICB, whereas TLD cells cannot be

reinvigorated (5, 7, 8, 16, 43). On the other hand, the majority of

the tumor specific population exhibits a TLD phenotype, which

may indicate a continuous immune response that requires a

precursor population generating and infiltrating from external

locations (37, 44–49).

The generation and maintenance of TSL cells may be

significantly impacted by varying environmental cues. In chronic

infection, most TSL cells are located within B cell follicles and the T

cell zone of the spleen while their progeny exist within the red pulp

taking up residency rather than migration (6, 14, 50). Contrastingly

in tumors, TSL cells migrate between perivascular niches or tertiary

lymphoid structures (TLS) within the tumor and reservoirs in the

tumor-draining lymph node (TDLN) (Figure 1) (3, 9, 32, 51–61).

Blocking migration using sphingosine 1-phosphate receptor 1

(S1P1)-agonist FTY720 in multiple preclinical tumor models

prevented tumor regression and challenged the understanding

that anti-PD-1 immunotherapy primarily targets intratumoral T

cells. This also suggests that TSL migration to TDLN may even be

required for TSL cell maintenance (51, 52, 55, 60, 61). These specific

tissue niches likely have two purposes for maintaining TSL cells: to

sequester away this population from inflammatory cues that quickly

drive differentiation into exhausted phenotypes and to provide

close, tightly regulated contact with antigen-presenting cells

(APCs) such as dendritic cells (DCs) (60, 62). Recent preclinical

research also implies that molecularly distinct lymph-node resident

CD8+ memory-like and TSL cells are sole mediators of ICB (61, 63).

Two additional recent studies in non-small cell lung cancer

(NSCLC) and head and neck squamous cell carcinoma (HNSCC)
frontiersin.org
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respectively, also support the idea that TSL cells respond to

immunotherapy within the lymph nodes (64, 65). Clusters of TSL

populations and APCs are also linked to significant T cell

infiltration in human malignancies, whereas their absence may

lead to immune evasion (9, 34). While TSL cells are clustered with

APCs and even CD4+ T cells within TLSs creating a supportive

network to promote effective differentiation into TTE subsets, TLD

cells are more scattered throughout the tumor parenchyma where

they can readily engage with target cells (57, 66–68). Evidence also

suggests that immunotherapy responses in sarcoma, melanoma and

renal cell carcinoma are favorably linked with TLSs containing B

cells and TSL cells (33, 69, 70). In tumors that possess obstacles

preventing the infiltration of T cells, such as solid tumors, immune

cell niches can persist and harbor concentrated populations of TSL

cells that are aggregated with APCs (71). Cells in such niches were

able to rapidly regenerate the immune response in patients with

brain metastases and these immune niches were prognostic for local

disease control (71). Thus, it is likely the interactions of TSL cells

with DCs and B cells within these niches are influential in the

maintenance and function of TSL and are required for durable CD8
+

T cell responses. As previously mentioned, epigenetic analysis of

TSL in chronic infection compared to TLD revealed unique open

chromatin sites, and TSL subsets show increased accessibility to

XCL1 which is involved in the interactions between DCs and T cells

(3, 4, 36, 72). XCL1 expressed on T cells promotes the recruitment

of XCR1+ conventional type 1 DCs (cDC1) which have superior

antigen processing and cross-presentation capabilities (73). Several

groups have highlighted the necessity of cDC1s in sustaining TSL

cells and inducing the proliferative burst after ICB within the TLS as

well as in maintaining the TDLN TSL reservoir in preclinical tumor

and chronic infection models, and patient samples (60, 62, 74).

Additionally, the B7/CD28 pathway, expressed on DCs and T cells

respectively, may have a role in structuring how these interactions

sustain the immune response as TSL have high CD28 expression

that is necessary for the proliferative burst after ICB (75, 76). By

blocking B7 costimulatory molecule on APCs or deletion of CD28

on T cells, effective responses to PD-1/PD-L1 ICB were

diminished (76).

Another environmental cue being investigated is the CXCR3

pathway as a significant axis of immunotherapy response that

regulates the infiltration and spatial positioning of T cells near

APCs expressing the ligands CXCL9/10/11 within the murine and

human tumor microenvironment (TME) (54, 77, 78). As multiple

myeloid populations within the TME express the ligand CXCL9,

including both DCs and tumor-associated macrophages (TAMs),

and these chemokines are broadly induced in response to

treatment, it remains another avenue to investigate in the

maintenance of TSL within TLSs (79–82). In the TME,

macrophages are more abundant and express higher levels of

CXCL9 than compared to DCs and may play a more prominent

role in the TME compared to DCs in the TDLN (81).

Differentiation of TSL into their cytolytic progeny TTE cells has

proved vital to the efficacy of ICB. The maintenance of this

population via the TDLN reservoir or in TLSs within the tumor

additionally have gained recognition in contributing to improved

clinical outcomes. Many of the networks and signaling pathways
Frontiers in Immunology 05
involved in these environments will likely aid in determining future

successes of therapeutics.
4 Therapeutic potential of stem-like
CD8+ T cells in cancer

4.1 Immune checkpoint blockade

ICB therapy against inhibitory receptors PD-1 and CTLA4 of

TILs has shown success in mounting a T cell response against

tumors in many cancer types. Efficacy is highest in tumors with

more mutational burden and typically higher TIL infiltration

suggesting leveraging an already present immune response. Prior

to the role of TSL, it was thought that TLD being “rescued” from their

late dysfunctional phenotype to a less exhausted, more effector

phenotype was the primary mechanism of ICB (83). Some clinical

studies have shown an abundance of cells with a TTE or TLD

phenotype rather than TSL cells can provide a better predictor for

response to ICB (84–88). While TCF1+ expression by TILs in

human melanoma coincides with clinical benefit of ICB, TCF1 is

produced also by bystander TILs which are less relevant for

antitumor response. High frequencies of TCF1+ PD-1+ TSL thus

may be an unreliable biomarker as a portion of these cells are not

tumor-specific (40, 89). Likely, the ratio of TSL to more

differentiated TILs may represent a more suitable biomarker for

outcome prediction as TSL frequencies are comparable to those

observed in responders versus non-responders (4, 40). In chronic

infection and tumor models, TSL have been shown to be critical in

amplifying the response to ICB by self-renewal, expansion, and

differentiation into TTE, supplying the pool of cytotoxic cells and

mediating disease control (90). Given their crucial role in ICB, it is

imperative to effectively control TSL cells. Continuous driving of

differentiation by immune checkpoints can negatively impact

maintenance of TSL cells and ultimately result in loss of the

ability to expand and differentiate, driving patients toward a

refractory state (22, 91, 92). Bi-specific antibody therapy has

shown promising outcomes in patients with hematologic

malignancies, although in cancers more resistant to ICB and

favorable outcomes are limited. One drug construct uses an anti-

PD-1 molecule as a targeting moiety fused to a stimulatory IL-2

variant (IL-2v) to deliver IL-2 to PD-1+ T cells in the TME.

Combining with anti-PD-L1 treatment resulted in murine tumor

regression, enhanced infiltration of the TSL population, and

reprogramming of TAMs (93). It is important to note, prolonged

exposure of T cells to bispecifics through continuous infusion can

also cause cells to adopt the TLD phenotype and therefore must be

carefully evaluated (93, 94). Other therapeutic strategies taken to

clinical trial include inhibiting cell division, T cell receptor (TCR)

signaling, or epigenetic pathways to hinder TSL differentiation (18,

19, 95–97). Additionally, depleting or altering T cell signaling

pathways in TSL cells have shown to promote stem-like

phenotype retention, allowing these cells to persist in harsh

environments that would otherwise push these populations

towards TLD phenotype, and instead still produce effective TTE
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progeny (98–100). Clinical data has also shown that ICB therapy

induced expansion of pre-treatment TSL cells present in patients

who were responders compared to non-responders which had more

pre-treatment TLD phenotypes, experienced therapy resistance (10,

40, 48, 49, 59, 90).

Quantity or presence of TSL alone may be insufficient as a

marker of response, because as previously mentioned, APC-dense

niches or TLSs tolerant for TSL self-renewal or expansion, may

additionally be required for effective responses. Clinical

observations have revealed that tumors with such regions

correlate with favorable therapeutic responses (51, 59, 71, 87, 88).

Additionally in other preclinical studies it has been observed that

blocking T cell egress from TDLN, surgically removing the TDLN,

or disrupting the migration of T cells from the TME diminishes ICB

response (51–54, 61). Further new studies from patient samples of

NSCLC, HNSCC, and melanoma also indicate TSL cells respond to

ICB directly in the TDLN, displaying local clonal expansion and

subsequent migration of these new clones to the TME (44, 64, 65,

83, 90). Therefore, targeting the establishment and cultivation of

these regions within the TME or TDLN, to enhance TSL

maintenance and differentiation, could further increase efficacy

(101, 102).
4.2 Adoptive cellular therapy

This therapy encompasses two main approaches: ex vivo

expansion of TILs or genetic modification of peripheral blood

mononuclear cells (PBMC)-derived T cells for tumor specific

subsets and subsequent reintroduction into the patient. Ex vivo

manufacturing and expansion strategies to induce TSL cells include

introducing IL-7, IL-15, and IL-21 to promote expression of

associated genes like TCF7, Eomes, and Bcl6 (103–107), or

promoting Notch signaling upstream of TCF1 (108, 109).

Suppressing genes associated with late dysfunctional or exhaustive

phenotypes such as Tbet, BATF, EOMES pharmacologically ex vivo

can maintain stem-like genes (TCF1/LEF1) and retains TSL cell

polyfunctionality (110, 111). Numerous studies of both preclinical

models and patients of ACT observe that less differentiated,

memory and stem-like cells elicit more of an effective antitumoral

response (112–118). Genetically engineering T cells using retroviral

transduction to incorporate a tumor reactive TCR or a chimeric

antigen receptor (CAR-T) has become standard of care for many

hematologic malignancies (119–125). Increased populations of

terminally exhausted CD8+ CAR-T cells present in pre-treatment

product correlate with worse outcomes however, presence of more

naïve and memory-like CAR-T phenotypes are correlated with

increased response rates (126–128). Although extensive clinical

research into TSL phenotypes in CAR-T products has yet to be

conducted, one recent study identified that PD-1+ TCF1+ stem-like

CAR-T and PD-1+ TIM3+ effector-like CAR-T correlated with

improved clinical outcomes (129). This study highlights the

importance of PD-1 expression on CAR-T cells post-infusion as a

marker of activation rather than exhaustion for optimal activation

as well as the potential for optimizing stem-like phenotypes in

CAR-T subsets to potentially improve clinical outcomes.
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Study of the epigenetic landscape of TSL, TTE and TLD subsets

has revealed several targets for controlling the differentiation and

antitumor response and are now in preclinical CAR-T models

(130–133). Exploration of the chromatin accessibility of CAR-T

cells at the single cell level, both in vitro and in vivo, identified two

distinct subsets (133). The subsets consisted of intermediate

exhausted CAR-T cells enriched for TFs of TSL cells (JUN/FOS)

and another with enriched motifs of BATF and IRF4 resembling

terminally exhausted or the TLD CAR-T subset. CAR-T cells with

knockdown of BATF, IRF4 or NR4A expression had enhanced

effector function, inhibited exhaustion and prolonged CAR-T cell

persistence in vivo (133, 134). A dual knockout of genes PRDM1

(encoding BLIMP1 TF) and NR43A in preclinical murine models,

skewed CAR-T cell phenotypes toward TSL subsets and away from

TLD, improving antitumor responses and not achieved by single

knockouts (132).

Additionally, several preclinical CAR-T models targeting

overexpression of TFs specific for TSL such as c-Jun and FOXO1,

promote stem-like phenotypes, enhanced expansion potential,

persistence and therapeutic efficacy in vivo (130, 131). Other

factors such as hub transcription factors, like FOXP1 and KLF2

that have high numbers of enhancers that are positioned in the

center of gene regulatory networks, can serve as checkpoints that

control lineage-defining TFs between stem-like and effector CAR-T,

and the decision between effector and late dysfunctional CAR-T

cells, respectively (135). While harnessing the power of TSL cell

phenotype in CAR-T therapy by targeting key transcriptional

regulators may lead to further successful trials, investigating the

relationships of other immune cells or combination therapy in

altering other environmental cues could be crucial to

their advancement.

Pre-existing TLS or APC-dense niches may also be required for

generating stem-like CAR-T phenotypes and catering to the

cultivation of these environments may also increase their

persistence (63, 136, 137). Utilizing stem-like CD8+ T cells and

their respective molecular determinants as biomarkers of response

to CAR-T may also prove beneficial within a clinical setting.

Cancer immunotherapy such as ICB and CAR-T rely on T cell

infiltration. The accumulated evidence above shows that combining

multiple therapeutic agents is crucial for cancer immunotherapy and

targeting stem-like CD8+ T cells requires more than one approach.
4.3 Cancer vaccination

Studies in the forefront of cancer vaccination are seeking to

harness the self-renewal, long lasting durability, and sustainability

of the TSL subset by targeting common tumor antigens or patient

specific neoantigens (neoAg) (138–140). Recent advances in

genomic sequencing have led to personalized cancer vaccines

targeting neoAg. Early studies show feasibility in mice and

clinical trials, but neoAg targeted CD8+ T cell responses have

been limited (139–145). Coupling self-assembling nanoparticle

vaccine platform technology, exploiting its ability to quickly drain

via lymphatics to DCs and enhance antigen presentation to CD8s,

the SNP-7/8a intravenous vaccination generated more TSL cells that
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are receptive to ICB in a therapeutic murine model (146).

Additionally, adenovirus (Ad)-vectored vaccines encoding tumor

neoAg combined with ICB have been shown to eradicate large

tumors and increases in TSL cells in the TDLN and TTE cells within

the TME in mice and have translated into similar results within the

clinic (147). Further, studies harnessing not only TSL cells but also

other tumor targeting progenitors, like stem-like natural killer (NK)

cells are gaining interest. Introduced at the contraction phase after

immunization with an artificial adjuvant vector cell (aAVC), an IL-

2/anti-IL-2 monoclonal antibody complex (IL-2Cx) combination

activated stem-like subsets that correlated with therapeutic

responses, and induced long-term memory CD8+ T cells that

conferred protection against tumor rechallenge in a leukemic

model (148). While tumor vaccine trial successes have been

mixed, expanding the population of tumor specific TSL cells is

likely the key consideration for the future of favorable tumor

vaccine outcomes.
5 Conclusions and outlook

The role of stem-like T cells has been underscored in recent

studies, highlighting their potential to improve the antitumor effect

of immunotherapies. However, to fully exploit this potential, a

complete understanding of how TSL cells form, maintain, and

function is necessary. Recent advances in deciphering this subsets’

key characteristics and hallmarks have led even further to questions

that require investigation. The most vital questions and potential

targets will likely center around TSL and APC interactions within

their relevant niches in a variety of models. The targeting and

harnessing of TSL cells will require multiple points of application.

In conclusion, while significant strides have been made in

understanding the role and potential of TSL cells in cancer

therapy, there is still much work to be done. Future research

should focus on elucidating the regulatory circuits that control

these cells, understanding the APC interactions with intratumoral

TSL cells and within niches, and developing methods for TSL cell

generation. These efforts will be crucial in harnessing TSL cells for

therapeutic interventions and enhancing immunotherapy against

cancer. The exploration of combination therapies and strategies to
Frontiers in Immunology 07
maintain the “stemness” of T cells represent promising avenues for

future research and could revolutionize cancer treatment.
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