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Viral myocarditis is characterized by infiltration of mononuclear cells
essential for virus elimination. GPR15 has beenidentified as a homing
receptor for regulatory T cellsin inflammatory intestine diseases, but
itsroleininflammatory heart diseases is still elusive. Here we show that
GPR15 deficiency impairs coxsackievirus B3 elimination, leading to adverse
cardiac remodeling and dysfunction. Delayed recruitment of regulatory

T cells in GPR15-deficient mice was accompanied by prolonged persistence
of cytotoxic and regulatory T cells. In addition, RNA sequencing revealed
prolonged inflammatory response and altered chemotaxis in knockout
mice. Inline, we identified GPR15 and its ligand GPR15L as animportant
chemokine receptor-ligand pair for the recruitment of regulatory and
cytotoxic T cells. Insummary, the insufficient virus elimination might be
caused by a delayed recruitment of T cells as well as delayed interferon-y
expression, resulting in a prolonged inflammatory response and an adverse
outcome in GPR15-deficient mice.

Myocarditisis aninflammatory disease of the myocardium character-
ized by mononuclear cellinfiltration’. It is predominantly caused by
infectious agents, suchas the cardiotropic enterovirus coxsackievirus
B3 (CVB3)>. Especially inyoung adults, myocarditis is amajor source of
sudden cardiacarrest®~. However, its clinical course has abroad spec-
trum of outcomes, ranging from mild symptoms and complete recovery

to cardiac dysfunction and dilated cardiomyopathy (DCM)>®. Inmore
than 65% of patients with DCM of unknown etiology, viral genomes
were detected in the myocardium®. DCM after acute viral myocarditis
arises due to sustained inflammation predominantly caused by insuf-
ficientvirus clearance and subsequent virus persistence in the cardiac
tissue>”%. Thus, virus elimination and dampening cardiac inflammation
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areeminent steps toward complete recovery for patients suffering from
myocarditis. As therapeutic strategies for viral myocarditis are limited,
regulators orchestrating virus elimination and cardiac inflammation
may display innovative targets for future treatment.

Chemoattractant G-protein-coupled receptors (GPCRs) are critical
regulatorsinrecruiting lymphocyte subsets from blood and secondary
lymphoid organs to peripheral tissues, such as the heart. Furthermore,
they areinvolved in the migration of these immune cells between and
within these organs and tissues in both homeostatic and inflamma-
tory states™”.

Based on sequence similarities, G-protein-coupled receptor 15
(GPR15) was discovered in1996 as achemokine receptor'*2. Function-
ally,ithasbeenidentified asaT cell homing receptor in the context of
inflammatory intestine and skin diseases™ . Because GPR15 controls
the specific homing of anti-inflammatory FOXP3" regulatory T (T,,)
cells to the large intestine in mice, GPR15-deficient mice developed
more severe inflammation during colitis”. Furthermore, GPRI1S is
important not only for recruiting T, cells to the mouse colon but
also for effector T cell recruitment in both homeostatic and inflam-
matory conditions”. Two ligands are known for GPR15: a subunit of the
membrane protein thrombomodulin and the chemokine-like ligand
GPRISL*®2°,

GPRI15-mediated recruitment of T, cells to the gut is essential
for dampening inflammation during colitis in mice', but the role of
GPR15in inflammatory heart diseases is still elusive. In this study, we
used the murine model of viral myocarditis of C57BI/6) (B6) mice, using
cardiotropic CVB3 (ref. 21). The B6 mouse strain has alow susceptibility
to CVB3 infection, which predominantly results in virus elimination
after acute myocarditis**?*. In B6 mice, CVB3-induced myocarditis
typically takes place in a three-phased manner*. During the first days
(days 2-4) post infection (p.i.), CVB3 itself exerts direct cardiotoxic
damage, followed by a highly inflammatory phase of immune cell
infiltration (days 4-14). In this latter phase, host immunity mostly
eliminates the virus from cardiac tissue?. The subsequent stage is
characterized by the recovery and reversion of cardiac remodeling.
Employing GPR15-deficient mice, we investigated the subacute phase
(16 days p.i.) and found that GPR15 deficiency affected the outcome
of CVB3-induced myocarditis. To elucidate the patho-mechanistical
function of GPR15 during myocarditis, we thoroughly investigated its
acute phase (5days, 6 days and 7 days p.i.). Thereby, we focused on the
following questions. Does GPR15 deficiency (1) lead to differences in
immune cellinfiltrate composition or cytokine expressionin the heart
during the acute phase of myocarditis; (2) affect the efficient elimina-
tionof CVB3inthe heart, thereby altering the outcome; and (3) have an
impact on chemotactic migration, adhesion or functionality of T cells?

Results

Poor recovery from myocarditis in GPR15-deficient mice

We examined the regulation of GPR15 in various heart failure entities
(Fig.1a). During the acute phase of CVB3-mediated myocarditis, Grp15
expressionwas 7.3-fold increased, whichwas the strongestincreasein
the heart failure modelsinvestigated. Therefore, we aimed to examine
the role of GPR15 during viral myocarditis.

To explore whether GPR15 has an impact on progression of or
recovery from viral myocarditis, we first investigated the subacute
phase 16 days p.i. Mice with GPR15 deficiency were employed as
depicted in Fig. 1b. To prove infection, we verified viremia in small
blood samples at day 4 p.i. As depicted in Fig. 1b,d, mice without veri-
fied viremia were excluded from subsequent analyses.

Albeitvirusload inblood 4 days p.i. was not different between both
genotypes (Fig. 1c), significantly more GPR15-deficient mice had per-
sisting virusin left ventricular (LV) tissue at 16 days p.i. Remarkably, 73%
of CVB3-infected WT mice (eight of 11) but only 13% of CVB3-infected
GPR15-deficient mice (two of 15) cleared the virus from the heart after
16 days (Fig.1d).Insitu hybridization on LV tissue sections revealed that

viral RNA was hardly detectable in the subacute phase. As exemplarily
shown in Fig. 1e, viral RNA was mainly localized in non-myocyte cells.
Despite the inefficient virus elimination from LV tissue, gene expres-
sion of chemokine (Ccl2) or T cell markers (Cd8a, cytotoxic T (T¢)
cells / Foxp3, T, cells) was not different compared to either infected
wild-type (WT) mice or corresponding sham controls (Fig. 1k). Further-
more, CVB3-infected mice, with or without effective virus clearance,
revealed similar gene expression of inflammatory markers compared
to the respective sham group. However, the significantly increased
gene expression of anti-viral Ifny in infected GPR15-deficient mice is
in line with the detected virus persistence. Decreasing body weight
was observed in both infected groups until 6 days p.i. Although WT
mice stabilized their body weight afterwards, the weight loss further
proceeded in GPR15-deficient mice, construed as asign of aggravating
disease severity (Fig. 1f). This divergent timecourse of body weight
started onday 7.Inline with this finding, GPR15-deficient mice revealed
significantly lower heart weights compared to WT mice at 16 days p.i.
(Fig. 1g). This was accompanied by larger lesions, presumably owing
to cardiomyocyte death, resulting in more reparative cardiac fibrosis
in GPR15-deficient mice (Fig. 1h,j). Interestingly, two of the three WT
mice without virus clearance had clearly larger fibrotic lesions than
those that had cleared the virus from LV tissue.

Additionally, pressure-volume (PV) loops revealed cardiac dys-
functionin both infected groups, indicating that they did not restore
their cardiac function in the subacute phase of myocarditis (Table 1).
However, GPR15-deficient mice showed a tendency to more impaired
cardiacfunction. Analyzing parameters that specifically characterize
systolic function, solely CVB3-infected GPR15-deficient mice showed
significantly impaired cardiac function compared to their sham con-
trols, whereas comparison of WT groups did not reach significance.
This is displayed, for example, by impaired preload-independent
and preload-dependent cardiac contractility (preload-recruitable
stroke work (PRSW) -23%, P=0.0256 and AP/At,,,, —29%, P=0.0272) in
GPR15-deficient mice but almost unaffected contractility in WT mice.
Analysis of diastolic function revealed significantly slowed relaxation
and increased myocardial stiffness (AP/At,,;, +27%, P=0.0151and Tau
+21%, P=0.0373) in GPR15-deficient mice, whichisinline withincreased
cardiacfibrosis determined by histology (Fig. 1h,j). Additionally, com-
paring both infected groups normalized to their sham controls, sig-
nificantly impaired parameters, such as preload-independent cardiac
contractility (PRSW -19%, P=0.0063), maximal pressure (P, —11%,
P=0.0175) and relaxation (AP/At,,;, +24%, P= 0.0016), were determined
in GPR15-deficient mice (Table1). Evenvirus clearance and resolved car-
diacinflammation, mainly observedininfected WT mice, did not result
in preserved cardiac function but may prevent more severe cardiac
dysfunction, as detected in GPR15-deficient mice with predominant
virus persistence.

Persistently high virus load in Gpr158”4” mice

Because we hypothesized that the observed differences arise from the
acute phase of myocarditis, we investigated CVB3-induced myocarditis
inmore detail on days 5, 6 and 7 p.i., as depicted in Fig. 2a. Virus load
inblood atday 4 p.i.and virus load in LV tissue at 5 days and 6 days p.i.
revealed no differences between genotypes (Fig.2b). At day 7 p.i., how-
ever, thevirusloadin LV tissue of WT mice was significantly lower than
in Gpr15¢”#" mice, which remained at a high level. Timecourse of body
weight showed significant weight loss for both infected groupsbut no
differences between genotypes (Fig. 2c). Compared to sham controls,
biventricular heart weight tended to be lower in CVB3-infected mice
6 days and 7 days p.i. in both genotypes (Fig. 2d) but reached signifi-
cance only in Gpr15%7% mice on day 6 p.i. With respect to the signifi-
cantly lower biventricular weight in GPR15-deficient mice at 16 days
p.i. (Fig.1g), we suggest that a disease progression in GPR15-deficient
mice becomes apparent at a later timepoint, which would be in line
with the decrease in body weight after day 7. Viral RNA visualized by
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Fig.1|Impact of GPR15 deficiency during the subacute phase of CVB3-
induced myocarditis16 days p.i. a, Gpri5expressionin LV tissue of WT mice
withangiotensin Il-induced hypertension (Angll), myocardial infarction (MI)
and myocarditis (CVB3). Ct values were normalized to the mean of 18S and
Cdknlb and to the corresponding sham controls (AACt). Unpaired two-tailed
t-test (Angll and CVB3) or ordinary one-way ANOVA with Holm-Sidak correction
(MI). nnumbers are represented by data points. b, Study design: CVB3-injected
mice, which revealed viral RNA neither in blood (4 days) norin LV (16 days), were
excluded from subsequent analyses. Within the arrow: n numbers per group,
with CVB3" mice and the original n number separated by a backslash. ¢, Virus
loadinblood and LV tissue. Ct values were normalized to Cdknlb (ACt). Unpaired
two-tailed t-test. n numbers according to b. d, Number of mice with verified
viremia (4 days) or virus persistence in LV (16 days). n numbers accordingtob are
plotted as stacked bar charts. Two-tailed Fisher’s exact test was performed on the
underlying contingency table. e, In situ hybridization visualized a representative

region with viral RNA (purple) in LV tissue from two CVB3* Gpr157&% mice with
co-stained nuclei (blue). Two technical replicates. f, Body weightin relation to
individualinitial weight (mean * s.e.m.). Two-tailed multiple ¢-tests with Holm-
Sidak correction. g, Ratio of biventricular weight to tibia length (mean + 95%

CI). Unpaired two-tailed ¢-test with Bonferroni correction. h, Representative
histological PSR staining of biventricular tissue. j, Quantification of fibrotic areas
(mean + 95% Cl). Unpaired two-tailed t-test with Bonferroni correction.

k, Ccl2, Ifny, Cd8a and Foxp3 expression in LV. Symbols filled in gray and light
green indicate mice that cleared virus from LV tissue. Ct values were normalized
to the mean of 18S and Cdkn1b and corresponding sham controls (AACt).
Unpaired two-tailed ¢-test with Bonferroni correction. a,d k, Gene expression
datawere plotted as 27 or 274 (geo-mean + 95% ClI). Significant, compared * to
sham of the same genotype, # between similarly treated groups of different
genotypes. (*, ***,***; P<0.05,0.001,0.0001). d, days; sh, sham; wk, weeks.
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Table 1| Cardiac function in the subacute phase (16 days p.i.) of myocarditis characterized by PV loops

Sham groups CVB3 myocarditis groups
WT Gori15%%6f  WT vs. Sh Gpr159/sfe vs. Sh Gpr15%%/4f ys, WT
Change (%) Pvalue® Change (%) Pvalue® Change (%) Pvalue®
Global function
Heart rate (bpm) 571116 613+13 553+19 -3 1.0000 552+19 -10 0.0544 =7/ 01514
Cardiac output 18.3%1 19.2+1.8 14319 -22 0.3406 13.2+13 =31 0.0243 -12 0.4487
(mlmin™)
Stroke volume (ul) 32+1 31£3 26+3 -20 0.2492 24 +2 =23 0.0876 -4 0.7987
Stroke work 2,699 £ 2,737+270 2,046 + -24 0.2218 1,707 £172 -38 0.006 -18 0.2533
(ulxmmHg) 146 270
Systolic function
Ejection fraction (%) 807 TA+4 59+6 -26 0.1042 59+5 -21 0.1056 +6 0.6219
PRSW (mmHg) 752+32 786+6.4 716+33 -5 0.9513 60.3+3.3 28 0.0256 -19 0.0063
P (MMHg) 101+4 103+3 93+3 -8 0.2366 84+3 -19 0.0001 -1 0.0175
AP/At,,, (mmHgs™) 10,786+ 12,379 9,943 + -8 1.0000 8759+726  -29 0.0272 -23 0.0642
563 1225 1053
Diastolic function
P.q (MmHg) 5+1 3.9+1 3.6+0.7 -28 0.5618 3.6+0.9 =7/ 1.0000 +29 0.4593
AP/At,;, (mmHgs™) -9,001+  -10,246 -8684+ +4 1.0000 -7531+436 +27 0.0151 +24 0.0016
453 906 428
Tau (ms) 49+01 45+0.3 51+0.3 +4 1.0000 54+0.2 +21 0.0373 +16 0.0648

Values are given as mean+s.e.m. “Two-tailed t-test with Bonferroni correction. °Comparison between infected genotypes was based on values normalized to the corresponding sham group.
Unpaired two-tailed t-test. Due to normalization, only one comparison was made, and P value was, therefore, not corrected for multiple testing. P values indicting significance are highlighted
in bold. WT sh/CVB3 (n=6/11); Gpr15979 sh/CVB3 (n=9/13). P,,,,,, maximum pressure; AP/At,,,, maximal rate of rise of LV pressure; P4, end-diastolic pressure; AP/At,,;,, maximal rate of decrease

of LV pressure; Sh, sham.

insitu hybridization was localized in cell infiltrates stained with wheat
germagglutinin (WGA) and frequently in cardiomyocytes identified by
troponin staining (Fig. 2e), whichwasin contrast to the subacute phase.

Prolonged cardiacinflammation in Gpr15474” mice

To investigate the innate and adaptive immune responses in the LV
tissue after CVB3 infection, gene expression of chemotactic, anti-viral
and anti-inflammatory cytokines was determined (Fig. 2f,g). Overall,
these cytokines were significantly increased in the infected LV tissue
at 5 days, 6 days and 7 days p.i. compared to respective sham groups,
revealing strongly induced cytokine expression during acute myo-
carditis in both genotypes. Comparing the infected genotypes, no
significant differences were observed at 6 days p.i. in contrast to 5
daysand 7 days p.i. At 5days p.i., GPR15-deficient mice showed signifi-
cantly lower gene expression of Ifny. At 7 days p.i., however, infected
GPR15-deficient mice exhibited significantly higher gene expression of
Ccl2,Ccl5, Cxcl10, Ifng, Ifny and I110. This might be caused by declined
cytokine levels ininfected WT mice but still increased cytokine levels
ininfected GPR15-deficient mice onday 7.

During theimmuneresponse, variousimmune cells of the adaptive
immune system, as well as monocytes and macrophages, are recruited
totheinfected LV tissue. Therefore, gene expression of specificimmune
cell markers was examined in LV tissue (Fig. 3a). Although the gene
expression of the B cell marker Cd19 was not altered compared to
sham controls, the T cell marker Cd3and the macrophage marker Cd68
were significantly increased in all infected groups. When comparing
the infected genotypes, no significant differences were observed for
Cd68, but Cd3was significantly different at 5 days and 7 days p.i. While
Cd3 expression at 5 days p.i. was significantly lower in LV tissue of
GPR15-deficient mice, it was significantly higherat 7 days p.i. compared
to WT mice.

Because the expression of the T-cell-specific marker Cd3 revealed
significant differences between both genotypes on days 5and 7 p.i.,

we subsequently examined markers for the T cell subpopulations
T helper (Ty, Cd4), T¢ (Cd8) and T, cells (Foxp3). In general, CVB3
infectionresulted in a slightly increased gene expression of Cd4 but a
strong increase of Cd8and Foxp3 compared to sham controls (Fig. 3b).
However, Foxp3 was not increased in GPR15-deficient mice at 5 days
p.i. When comparing the infected genotypes, significant differences
were detected inthe expression of Foxp3 (ondays5and 7 p.i.) and Cd8
(onday 7 p.i.) but not in the expression of Cd4. Furthermore, none of
these markers was differentially expressed on day 6 p.i. This indicates
genotype-specificand temporal differencesin theinfiltration of T,.;and
Tccells. Although at day 5 p.i. Foxp3 expression remained at basal levels
in GPR15-deficient mice but was significantly increased in WT mice, on
day 7 p.i.it wassignificantly higher in GPR15-deficient mice thanin WT
mice. This suggests delayed recruitment and prolonged persistence
of T, cells. Furthermore, Cd8 was not differentially expressed on
day 5and day 6, but it was significantly lower in WT mice at 7 days p.i.
than in GPR15-deficient mice. The latter finding indicates prolonged
persistence of Tc cellsintheinfected LV tissue of GPR15-deficent mice.
We could strengthen the gene expression data by staining T cell sub-
populationson LV tissue sections. Although no significant differences
were detected between the two genotypes, significantly more CD3"and
CD8" cells were detected in the infected GPR15-deficient mice at day
7 and at days 6 and 7, respectively. Representative images of immune
cellinfiltrates are shown (Fig. 3d and Extended Data Fig. 1a).

Figure 3c summarizes the results of the gene expression meas-
urements in terms of their temporal course as a heat map for each
genotype individually. In WT mice, gene expression of cytokines and
immune cell markersincreased as early as day 5, remained elevated on
day 6 and decreased significantly on day 7. In GPR15-deficient mice,
the gene expression significantly increased from day 5Stoday 6 p.i.and
remained elevated until 7 days p.i. This summary suggests, again, a
delayed and prolonged cardiacinflammation during acute myocarditis
in GPR15-deficient mice.
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Inaddition, we measured gene expression of the same T cell mark-
ersinblood and lymph nodes (Extended Data Fig. 1b,c). Five days p.i.,
the expression of all investigated markers (Cd3, Cd4, Foxp3 and CdS8)
were significantly increased inblood of CVB3-infected mice compared
to sham controls and tended to be even higher in blood of infected
GPR15-deficient mice. In contrast toblood, inlymph nodes, the expres-
sion of Cd4 and Cd8 was significantly lower at day 5, which was in line
with the observationsin LV tissue. This opposite effectimplies that the
T cellsremainin the circulation due to delayed tissue invasion.

More upregulated differentially expressed genes in Gpr15&P&®
miceat?7 daysp.i

We aimed to identify the patho-mechanisms behind the adverse out-
come observed at day 16 p.i. Given the decreasing body weight, higher
virus load and more severe cardiac inflammation in GPR15-deficient
mice, we assumed that the divergent disease progression might start
at day 7. Thus, we next investigated this turning point by whole tran-
scriptome analysis to determine the differences in gene expression
between infected WT and infected GPR15-deficient mice from days
6 and 7. Therefore, 3 mRNA sequencing was performed on aset of LV
tissue samples (six sham controls and 3-6 infected mice per genotype).
RNA sequencing revealed more than 30,000 annotated genes whose
expression was subsequently compared between different groups.

The 242 genes assigned to the Gene Ontology (GO) term
G0:0006915 ‘response to virus’ are highlighted in the volcano plot
in Extended Data Fig. 2. At 6 days p.i., approximately 30% of those
genes were significantly increased in both genotypes, confirming
the response to virus infection. At 7 days p.i., however, the number
of significantly increased genes was diminished in WT mice to 16%
but remained similar in GPR15-deficient mice. Lastly, both sham
groups were compared, and only two slightly downregulated genes
of that GO term were found in Gpr15%7%” mice. With respect to the
TagMan measurementsin Figs. 3 and 4, we labeled the genes assigned
to the highlighted GO term additionally with their gene symbol
(Ccl5, Cxcl10, Cd8a, Ifng, Ifny and Foxp3). This demonstrates that the
genesinthevolcano plots revealed similar expression, as measured
by TagMan.

The comparison of infected genotypes is depicted as volcano
plotsinFig.4afor 6 days p.i. (left) and 7 days p.i. (right). Differentially
expressed genes (DEGs) witha Pvalue lower than 0.05and afold change
(FC) higher or lower than 1.5 or -1.5 are highlighted. Comparing both
volcano plots revealed more DEGs on day 7 (Fig. 4a, right). Although
at 6 days p.i., 372 DEGs were detected (250 upregulated (red) and 122
downregulated (blue) in Gpr15¥7&? mice), 540 DEGs were identified
(404 upregulated (red) and 136 downregulated (blue)) at 7 days p.i.
The DEGs were further restricted by P < 0.001, resulting in top DEGs.
The 30 top DEGs for 6 days p.i. and the 48 top DEGs for 7 days p.i are
displayed as aheat mapin Fig. 4b.

To confirm the RNA sequencing data, three of the top DEGs from
day 7 were quantified, including all mice, using TaqMan. Therefore,
we selected genes related to immune response. As shown in Fig. 4c,
the gene expression of Gbp6, Parp14 and Irgm1 was similar between

bothinfected genotypes at 6 days p.i. and revealed higher expression
in GPR15-deficient mice at 7 days p.i.

Chemotaxis and T-cell-related GO terms are enriched at day 7
To go beyond single genes, RNA sequencing data were further pro-
cessed using GO enrichment analyses. First, we focused on general
differences between theinfected genotypes on both days. Comparing
the DEGs from days 6 and 7, we identified 69 DEGs that were similarly
regulated onboth days (Fig. 5a). Although 11 DEGs were downregulated,
58 were upregulated in GPR15-deficient mice (Fig. 5a and Extended
DataFig. 3). Based on the overlapping DEGs, we identified GO terms
including at least three of these 69 similarly regulated DEGs. GO terms
withmorethan2,000 annotated genesand P> 0.01 were excluded, and
closely related or redundant GO terms were removed using REVIGO®.
The remaining 17 terms with the assigned DEGs are depicted in the
GO chord graph (Fig. 5b). GPR15-deficent mice revealed upregulated
DEGs that were assigned to ‘response to virus’ and ‘defense response’
(highlightedinbold). The17 GO terms are plotted asadot plot to visu-
alize their regulation and significance (Fig. 5c). Of note, all GO terms
were enriched with upregulated genes in infected Gpri5#7%? mice (red
z-scores). Besides general terms—for example, ‘defense response’and
‘immune system process’—we also found more specific terms, such
as ‘cell migration’ and ‘cellular response to interferon-alpha’. Again,
it became obvious that the difference between both genotypes was
more pronounced on day 7. These results indicate that the cardiac
inflammation as response to virus infection seems to be prolongedin
the GPR15-deficient mice.

Next, we aimed to investigate the changes from day 6 to day 7
inmore detail. Therefore, we selected all GO terms from the domain
biological process (BP) that were significantly enriched with DEGs
between bothinfected genotypes on day 6 (358 GO terms), on day 7
(782 GO terms) or on both days (183 GO terms). These GO terms were
clustered by semantic similarity, as shown in Extended Data Fig. 4.
The GO terms of each cluster were sorted based on their P value as
follows: (1) not significant (NS), (2) significant (P < 0.05, gray) and
(3) highly significant (P < 0.01, dark gray). As shown in Fig. 5d, the
number of significantly and highly significantly enriched GO terms
noticeably increased from day 6 to day 7. This can be observed in
almost all clusters but is particularly clear for cluster 2 (‘chemot-
axis/migration immune cells’) and cluster 6 (‘immune response/
alphabeta T cells’). These changes of significance are displayed as
alluvial plotsin Fig. 5e.In cluster 2 (‘chemotaxis/migration immune
cells’), only eight of 48 GO terms were significantly enriched on day
6.In contrast, 47 GO terms were significantly or highly significantly
enriched with DEGs on day 7. Similarly, cluster 6 (‘immune response/
alphabeta T cells’), containing 179 GO terms, revealed 62 significantly
enriched GO terms on day 6, which was increased to 158 significantly
enriched GO terms on day 7. In summary, significantly enriched GO
terms regarding chemotaxis and T cell immune response became
evident for day 7.

Due to these results, we examined the 7-day timepoint in more
detail to identify important GO terms out of all three domains (BP,

Fig.2|Impact of GPR15 deficiency during acute phase of CVB3-induced
myocarditis 5 days, 6 daysand7 daysp.i. a, Study design toinvestigate the
impact of GPR1S in acute myocarditis. n numbers per group and timepoint

are specified within the arrow. CVB3-injected mice, which revealed viral RNA
neitherinblood (4 days) norinLV (5 days, 6 days or 7 days), were excluded
from subsequent analyses. n numbers of CVB3" mice included is given, with the
original n number after the backslash. b, Virus load was determined in blood and
LV tissue. Ct values were normalized to Cdknlb (ACt). ¢, Body weight plotted as
percentage to theindividual initial weight (mean + s.e.m.). Two-tailed multiple
t-tests with Holm-Sidak correction. d, Biventricular weight normalized to tibia
length (mean + 95% CI). Unpaired two-tailed ¢-test with Bonferroni correction.
e, Insitu hybridization visualized viral RNA (red) in cardiac tissue from a CVB3-

infected WT mouse co-stained with WGA (green) and troponin (white). Arrows
point to two infected cardiomyocytes (left) or infected infiltrated cells (right).
n=2miceintwoindependent experiments.f,g, Gene expression was determined
inLV tissue of WT and GPR15-deficient mice (f) from selected chemokines (Ccl2,
Ccl5and Cxcl10) (g), from selected anti-viral interferons (/fnf and Ifny) and
from the anti-inflammatory interleukin /{10. Ct values were normalized to

the mean of 18S and Cdkn1b and the corresponding sham controls (AACt).
b,f,g, Gene expression data were plotted as 272 or 2722 (geo-mean + 95% CI).
Unless stated otherwise, significance was tested using an unpaired two-tailed
t-test with Bonferroni correction. Significant, compared * to sham of the

same genotype, # between similarly treated groups of different genotypes.

(%, **, #xx w%0 P < 0.05,0.01,0.001, 0.0001). d, days; sh, sham; wk, week.
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cellular component (CC) and molecular function (MF)). Toidentify the
most prominently enriched GO terms, the 939 significantly enriched
GO terms from day 7 were restricted by gene ratio > 0.1and g < 0.001
and narrowed down using REVIGO to finally 25 GO terms, which were
plotted in Fig. 5f. These 25 GO terms are almost exclusively related to
theimmuneresponsetoaviralinfection andinclude genes significantly

upregulated in infected Gpr159”%? mice. Of note, many GO terms are
included in clusters 2 and 6 (highlighted in bold). Particularly note-
worthy are GO terms linked to chemotaxis and to T cells. So far, the GO
analyses of RNA sequencing datashowed marked upregulation of genes
in GPR15-deficient mice on day 7 assigned to GO terms associated with
chemotaxis ofimmune cells and T-cell-mediated immune response.
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Fig. 3| Analysis ofimmune cell infiltration in LV tissue during the acute
phase5 days, 6 daysand?7 days after CVB3infection. a,b, Gene expression
was determined in LV tissue of WT and GPR15-deficient mice (n numbers stated
inFig. 2a) from specificimmune cell markers for T cells (Cd3), B cells (Cd19) and
macrophages (Cd68) (a) and markers for the T cell subpopulations T,, (Cd4), T.
(Cd8) and T, cells (Foxp3) (b). Ct values were normalized to the mean of 18S and
Cdknlb and the corresponding sham controls (AACt). 2**“ values were plotted
(geo-mean = 95% Cl). ¢, For all genes that were significantly regulated at any of the
timepoints examined, the FC of gene expression compared to sham treatment is

shown as a heat map. Significance was tested using a paired two-tailed ¢-test with
Bonferroni correction.d, CD3*and CD8" cells were stained on tissue sections
from CVB3-infected mice (n numbers stated in Fig. 2a) and then quantified and
normalized to tissue area (mean + 95% Cl). Representative images show immune
cellinfiltrates in GPR15-deficient mice at 7 days p.i. Significance was tested using
anunpaired two-tailed ¢-test with Bonferroni correction unless otherwise stated.
Significant, compared * to sham of the same genotype, # between similarly
treated groups of different genotypes. (*, **, ***,***; P < 0.05, 0.01, 0.001, 0.0001).
NS, not significant; sh, sham.

GPR15 deficiency abolished chemotaxis of T cells
So far, the previous results point toward alterations in chemotaxis
and cardiac inflammation, particularly associated with T cells, in
GPR15-deficient mice during myocarditis. Based on those findings,
we investigated the interactions of GPR15 and its two known ligands,
GPR15L and the EGF-like domain 5 of thrombomodulin (TMES), in vitro.
Regardingthe results of the GO analysis, which particularly high-
lighted chemotaxis, we hypothesized that GPR15 may function as a
chemokine receptor mediating T cell homing during myocarditis. In
addition to the receptor expression, we, therefore, reconsidered the
blood samples of infected mice to evaluate the gene expression of the
ligand Gpri5linthe acute phase of myocarditis. The Gpr15/expression
was significantly increased in blood of GPR15-deficient mice at 4 days
p.i. aswell as 5 days p.i. (Fig. 6a). Next, we performed in vitro stimula-
tionexperiments on resident cardiac cells using the pro-inflammatory

cytokine TNFa to investigate the regulation of Gpri5l. As shown in
Fig. 6b, endothelial heart cells (MHEC-5T) and primary cardiac fibro-
blasts (cFBs), but not HL1 cells (Extended Data Fig. 5a), revealed an
increased gene expression of Gpr15! after TNFo stimulation.
Subsequently, weinvestigated theimpact of GPR15on T cell chem-
otaxis. Inafirstapproach, wetreated WT T cells with the ligand GPR15L
and quantified induced actin polymerization by phalloidin staining
(Fig. 6d). Subsequent flow cytometry analysis revealed that Tcand T,
cellssignificantly increased their actin polymerizationin response to
GPRI5L treatment. Because actin polymerizationis akey mechanismin
the process of cell migration, we next tested the migration of lympho-
cytes in a Boyden chamber assay. Therefore, the chemotactic migra-
tion of WT or GPR15-deficient splenocytes toward the ligand GPR15L
was examined. As depicted in Fig. 6e, the ligand GPR15L significantly
increased the number of migrated T cells, with T,.,and T cells showing
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the highest effect. This chemotaxis was completely abolished in cells
lacking the receptor GPR15.

Of note, both chemotaxis assays presented here indicate a
T-cell-specific effect. Thus, we quantified the gene expression of
GprlSindifferent T cell subsets (Fig. 6¢, left y axis). Although the T,
cells revealed only slightly higher Gpri5 gene expression compared
to double-negative (DN) cells, the expression in both T, and T cells
was remarkably higher. Additionally, we used Gpr158%? splenocytes
to quantify the number of GFP* cells, here used as equivalent of GPR15
protein expression, within the different T cell subsets by flow cytom-
etry (Fig. 6¢, right y axis). In contrast to T, cell populations, Tcand T,
cell populations revealed significant increased number of GFP* cells
compared to DN lymphocytes, with T, showing the highest number.
Thisisinline with the Gpri15 gene expression data.

To address whether GPR15 alters the functionality of T cells, iso-
lated T cells were activated in the absence or presence of the receptor
agonist GPR15L. Asshownin Extended DataFig. 5a, GPR15L itself did not
significantly change the protein expression of various T cell activation
markers. TMES, a domain of the transmembrane protein thrombo-
modulin on endothelial cells, is described as another GPR15 ligand®.
Pro-inflammatory stimulation of endothelial heart cells using TNFa
led to an increased gene expression of thrombomodulin (Extended
DataFig.5b). Toinvestigate the influence of GPR15 on leukocyte adhe-
sion on endothelial cells, a flow assay on an endothelial monolayer
was performed. As depicted in Extended Data Fig. 5c, the number of
adherent splenocytes increased on TNFa-activated endothelial cells
butwas not different between WT and GPR15-deficient splenocytes. In
terms of adhesion strength, on average around 50% of the splenocytes
remained firmly attached to the stimulated endothelial cells, regardless
ofthe presence of GPR15 (Extended Data Fig. 5b). These results indicate
that GPR15 has norelevantimpact on celladhesion to endothelial cells.

Taken together, GPR15 mediated the chemotactic migration of
T.c and T cells toward its chemoattractant ligand GPRI5L rather
than contributing to leukocyte attachment before transendothelial
migration orinfluencing T cell function. Therefore, our experiments
strengthen the hypothesis that GPR15 is essential for the recruit-
ment of T cells to the site of inflammation in the acute phase of
CVB3-induced myocarditis.

IFNy reduced CVB3 replication in cardiomyocytes

Furthermore, we aimed to investigate the causes and subsequent effects
ofthelower IFNylevelsinthe LV tissue of infected GPR15-deficient mice
atday 5 p.i. To this end, we analyzed Ifny gene expression in and IFNy
secretion from activated T cell subtypes in vitro (Fig. 7a,b). Although
the increase of Ifny gene expression after stimulation was significant
only in T, cells, IFNy secretion was significantly increased in all T cell
subtypes, with theincrease being highestin T, cells. This indicates that
activated T, cells are one of the main sources of IFNy in the infected
myocardium.

Next, we analyzed the influence of IFNy on virus load and replica-
tion in infected HL1 cells (Fig. 7c). Therefore, IFNy-treated HL1 cells
were infected with 0.5 multiplicity of infection (MOI) CVB3. Although
IFNy-treated cells revealed no difference in virus load but less virus

replication at 6 h p.i., at 24 h after infection both virus load and rep-
lication were decreased compared to untreated CVB3-infected cells.

Considering that /fny gene expression was lower in GPR15-deficient
mice 5 days p.i. (Fig. 2g), we returned to the animal experiment and
examined virus replication in LV tissue after 5 days, 6 days and 7 days
p.i. As shown in Fig. 7d, comparing infected WT and GPR15-deficient
mice, virusreplicationin LV tissue was not different at 5 days and 6 days
p.i.Incontrast, virus replication was not detected at 7 days p.i.in any of
theinfected WT mice but was detected in all infected GPR15-deficient
mice. Thissuggests alate consequence onvirus replication of the lower
Ifny expression in these mice at 5 days p.i.

Discussion

In this study, we examined the consequences of GPR15 deficiency
on development, progression and recovery in experimental
CVB3-induced viral myocarditis. Our main findings are as follows:
(1) GPR15 deficiency led to insufficient virus elimination accompa-
nied by further aggravated disease severity and impaired cardiac
functioninthe subacute phase of myocarditis. (2) Although similar
on day 5 and day 6, GPR15-deficient mice exhibited higher cardiac
virus load at day 7 p.i. (3) GPR15-deficient mice exhibited a delayed
recruitment of T, cells and lower Ifny expression at day 5 p.i. but
more pronounced inflammatory response at day 7 p.i. compared
to WT mice. (4) Bulk RNA sequencing revealed that the response to
virus did not decline from day 6 to day 7 in GPR15-deficient mice as
observed in WT mice. Significant enrichment of upregulated DEGs
in GO terms related to chemotaxis and T cells in GPR15-deficient
mice on day 7 was shown. (5) GPR15 was highly expressed on T, and
T cells, and its deficiency abolished chemotaxis of T cells toward
GPR15L invitro.

GPR15 was discovered owing to structural homology to known
chemokine receptors™. In humans, GPRIS is highest expressed in the
intestine and lymphoid tissues and is found on T and B cells in various
organs (Human Protein Atlas: GPR15; https://www.proteinatlas.org/
ENSG00000154165-GPR15). Inthe murine intestine, GPR15is preferen-
tially expressed ondistinct T cell subsets, particularly T,.,and T cells,
whereas a very low number of T,, cells express GPR15 (ref. 15).

GPR15 appears to be a counter-regulator of inflammation under
patho-physiological conditions;? its knockout exacerbates skin'® and
colon”inflammationin mice. During colitis, the receptor is described
asaT cellhomingreceptor especially for T, cells, but, in other organs,
such as skin, it also regulates the migration of other T cell subsets
during acute or chronic inflammatory states'®. Furthermore, clinical
cohort studies identified GPR15 as a major risk for cardiovascular
diseases” . In various murine heart failure models, Gpri5 expression
was highly increased during the inflammatory stage of myocardial
infarction and even more during acute viral myocarditis. Therefore,
GPR15-deficient mice were investigated in the context of CVB3-induced
viral myocarditis.

The non-susceptible C57BL/6) mouse strain used in this study
develops acute myocarditis to eliminate the virus, resolves cardiac
inflammation thereafter and, finally, recovers from myocarditis*-*>*°,
Kim et al.” unveiled GPRI15 as a homing receptor for T, cells during

Fig. 4|Identification of DEGs comparing cardiac tissue samples from Gpr155”/
&” and WT miceat 6 daysand7 days after CVB3 infection. a, Transcriptome
analysis was performed by bulk RNA sequencing of LV tissue from CVB3-infected
Gpr15¥”” mice compared to infected WT mice at 6 days (left) and 7 days (right)
p.i. FConxaxis and Pvalue ony axis are displayed in the volcano plot. Genes that
reveal an FC of atleast +1.5and P < 0.05 are highlighted. DEGs downregulated in
GPR15-deficient mice are shownin blue (P < 0.05, light blue; P < 0.001, dark blue),
whereas upregulated DEGs are showninred (P < 0.05, light red; P < 0.001, dark
red). The five most significant upregulated and downregulated DEGs are labeled.
DEGs were calculated with DESeq2 using the Wald test. b, Heat map of all top
DEGs (FC +1.5and P < 0.001) on day 6 (left) and day 7 (right) p.i. Gene expression

isnormalized to the mean of the respective infected WT group and plotted as

FC (log,) for each sample separately. DEGs were calculated with DESeq2 using
the Wald test. ¢, To validate sequencing data, gene expression of three top DEGs
onday 7 (Gbpé, Parp14 and Irgm1I) was determined in all mice (n numbers stated
inFig. 2a). Ct values were normalized to the mean of 18S and Cdknib and to the
corresponding sham controls (AACt). Unpaired two-tailed ¢-test with Bonferroni
correction. 2**“Tvalues were plotted (geo-mean + 95% Cl). Significant,
compared * to sham of the same genotype, # between similarly treated groups
of different genotypes. (*, **, ***,***; P< 0.05, 0.01, 0.001, 0.0001). d, days; Reg.,
regulated; sh, sham.

Nature Cardiovascular Research | Volume 3 | January 2024 | 76-93

83


http://www.nature.com/natcardiovascres
https://www.proteinatlas.org/ENSG00000154165-GPR15
https://www.proteinatlas.org/ENSG00000154165-GPR15

Article

https://doi.org/10.1038/s44161-023-00401-z

colitis and showed that GPR15is not required for controlling the infec-
tion but, rather, for dampening the immune response. In the pre-
sent study, we first analyzed the CVB3-induced myocarditis in the
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Fig.5|Upregulated GO termsrelated to T-cell-mediated immune response
and chemotaxis in infected Gpr155”%" mice on day 7 p.i. a, Venn diagram
visualizes the overlap of upregulated and downregulated DEGs between the
infected genotypes on both days p.i. Sixty-nine DEGs—58 upregulated and 11
downregulated—showed similar regulation on days 6 and 7 in GPR15-deficient
mice. b, GO terms with at least three of the 69 DEGs were selected. Only GO terms
with fewer than 2,000 genes and P < 0.01 were considered, further narrowed
down by REVIGO and presented in the GO chord graph. The genes on the left
side are connected by lines to the appertaining GO term on the right side. DEGs
assigned to ‘response to virus’ and ‘defense response’ are highlighted in bold.

¢, GO terms from the GO chord (b) are depicted as a dot plot for days 6 and 7. GO
terms are sorted according to the g value on day 7. d, Based on the differential
expression between both infected groups, 957 GO terms of the domain BP were
significantly regulated on day 6 and/or day 7. Using semantic similarity, GO
terms were grouped into eight clusters. Within one cluster, the number of GO
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terms based on their Pvalue is displayed as stacked bar charts to compare the
distribution of significantly regulated GO terms between days 6 and 7.e, The
number of GO terms of clusters 2 and 6 are shown in detail using alluvial plots.
This visualizes changes of significantly regulated GO terms from day 6 to day 7.

f, Dot plot of selected GO terms of all three domains between both infected
groupsonday 7. Selection is based on gene ratio (DEGs/annotated genes) greater
than 0.1and g < 0.001. Redundant and closely related GO terms were removed by
REVIGO. GO terms assigned to clusters 2 and 6 are highlighted in bold. c,f, Size

of the squares represents the number of annotated genes, and color represents
the z-score. Red z-scores indicate more upregulated than downregulated DEGs in
GPR15-deficient mice. Terms are sorted according to the -log,, of g value, which
is displayed on the x axis. b-f, Significance of GO term enrichment was calculated
by Fisher’s exact test based on DEGs (P < 0.05 and FC > +1.5 or FC < -1.5). Adjusted
Pvalues (g values) of GO terms were determined using the Benjamini-Hochberg
correction. d, days; NS, not significant.
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to 18S and the corresponding untreated controls (AACt). Unpaired two-tailed
t-test. ¢, Left y axis: splenocytes, pooled from 3-5 WT mice, were sorted into four
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GprlS5 gene expression was determined in three independent experiments. Ct
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way ANOVA. d, Evaluation of actin polymerization mediated by GPR15L. Isolated
Tcells (pooled from 2-3 WT mice) were incubated with 500 nM GPR15L for180's,
immediately fixed and subsequently labeled and analyzed by flow cytometry.
Actin polymerization was determined in two independent experiments. Median
fluorescence intensity of six biological replicates was normalized to non-
stimulated cells (mean + 95% CI). Unpaired two-tailed ¢-test. e, GPR15L-mediated
migration of primary splenocytes by Boyden chamber assays (n =12) in three
independent experiments. After 3 h, migrated cells were analyzed by flow
cytometry. Results were normalized to cells passively migrated to media without
GPRIS5L (mean + 95% Cl). Unpaired two-tailed t-test with Bonferroni correction.
Gene expression data were plotted as 272 (geo-mean + 95% Cl). Significant,
compared *to control or control of the same genotype, # between similarly
treated groups of different genotypes. (*, **, ***,***; P < 0.05, 0.01, 0.001, 0.0001).
d, days; sh, sham.

mice, they managed to dispel cardiacinflammation. However, cardiac
function wasimpaired, accompanied by enhanced cardiacfibrosis, in
GPR15-deficient mice.

Next, we extensively studied the key moment (5 days, 6 days and
7 days p.i.) when body weight development diverged between WT
and GPR15-deficient mice, which may emphasize the deteriorated
disease progression and severity in GPR15-deficent mice. WT and
GPR15-deficient mice revealed equal virus loads in LV tissue at days
5and 6 p.i., although, at day 5 p.i., the gene expression of Ifny, Cd3
and Foxp3 was significantly lower in GPR15-deficient mice. Lower
Foxp3 expression suggests delayed recruitment of T, cells. How-
ever, this conclusion is based only on gene expression data, as the
barely abundant cell type of T, cells is hardly detectable by histol-
ogy and flow cytometry. At day 6 p.i., both genotypes showed similar
inflammatory responsesinthe cardiactissue. Inline with the divergent
weight development, virus load and inflammatory response started to
declineininfected WT mice at day 7 but remained consistently highin
GPR15-deficient mice. We, therefore, investigated this turning point
betweenday 6 and day 7by RNA sequencing. GO term analyses uncov-
ered several chemotaxis-related terms to be significantly enriched
with highly upregulated genes in GPR15-deficent mice at 7 days p.i.
Because GPR15is described as achemokine receptor'?, especially on

T cells, we assume that GPR15 deficiency causes a primarily delayed
immune cell recruitment and, afterwards, a prolonged inflammatory
response, resulting in an impaired outcome. Similarly, deficiency of
other chemokine receptors, CCR5 or CX,CR1, leads to aggravated
pathogen-induced myocarditis described by increased mortality or
impaired cardiac function®.

Two ligands are known for GPR15: GPR15L, asoluble chemoattract-
ant protein, and TMES, a subunit of the integral membrane protein
thrombomodulin®™". In our study, Gpr15l expression was upregulated
incardiacresidential cells after pro-inflammatory stimulation facilitat-
ing T cell recruitment to the site of injury, as shown in other models™.
Invitro, GPR15 deficiency abolished chemotactic migration of T,.;and
T cells toward GPR15L, supporting the hypothesis that GPR15 acts
as a chemokine receptor. This finding was further strengthened by
increased actin polymerization after GPRISL treatment in T, and T¢
cells. In addition, we investigated the influence of GPR15 on the adhe-
sion of splenocytesto endothelial cells via the ligand TMES expressed
on the cell surface of endothelial cells and on cytokine production of
T cells, whereby no influence of GPR15 could be proven.

Previousstudies showed thatboth T.and T, cells have an impact
on the outcome of CVB3-induced myocarditis. Adoptive T, transfer
during theinflammatory phase of viral myocarditis or before induction
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Fig.7|IFNyindifferent T cell subtypes and its influence on virus load

and replicationinHLI1 cells. a, Isolated T cells (pooled from four mice) were
activated and sorted by FACS. Ifny gene expression was determined in three
independent experiments. Ct values were normalized to Cdkn1b. Unpaired
two-tailed t-test. Gene expression data were plotted as 27 (mean  s.e.m.).

b, Isolated T cells (n = 4 biological replicates, each pooled from 2-3 mice) were
activated to determine IFNy secretion. The number of IFNy* cells was normalized
to the number of IFNy* cells in the respective control group (mean + 95% CI).
Unpaired two-tailed ¢-test. ¢, HL1 cells were treated with 100 ng mI IFNy for

20 hbefore infection with 0.5MOI CVB3 for1 h. IFNy treatment was maintained
during and after infection (n =12 biological replicates in three independent
experiments). HL1 cells were lysed 6 h or 24 h after CVB3 infection. To determine
CVB3 virusload, isolated RNA was reversely transcribed by random primer.
Ctvalues were normalized to Hprt and untreated CVB3-infected cells (6 h p.i.)

(AACt). Unpaired two-tailed ¢-test with Bonferroni correction. 2% values were
plotted (geo-mean + 95% CI). To quantify virus replication, isolated RNA was
reversely transcribed using the tagged (-) strand-specific primer. Copy number
of the CVB3 minus strand was calculated based on a purified and quantified PCR
product. The number of samples without detectable replication is shown below
the dot plot. After 6 h, virus replication was not detectable in seven samples of
the IFNy-treated group (geo-mean + 95% CI). Unpaired two-tailed t-test with
Bonferroni correction. d, Virus replication was determined in LV tissue after
5days, 6 days and 7 days p.i. (n numbers are shown in Fig. 2a). The number of
samples without detectable replication is shown below the dot plot. Unpaired
two-tailed ¢-test with Bonferroni correction (geo-mean + 95% Cl). Unpaired
two-tailed ¢-test with Bonferroni correction. Significant, compared * to control,
#between similarly treated groups of different genotypes. (*,**,****; P<0.05,
0.01,0.0001). d, days; h, hours.

of myocarditis protects the heart against inflammatory damage***.
Here, delayed recruitment of T, cellsis followed by prolonged inflam-
mation and more severe cardiac damage. Henke et al.** showed that
depletion of T, cells led to improved survival in the early phase of
CVB3-induced myocarditis butincreased virus load, emphasizing their
important role in virus elimination®. Here, we show that activated T
cells highly increase their IFNy secretion and that IFNy reduces virus
load and virus replication in CVB3-infected cardiomyocytes in vitro.
Therefore, we assume that T, cells are one of the main sources of the
increased /fny expression in vivo and that the lower /fny expression
in GPR15-deficient mice might cause the impaired virus elimination.
However, the exact cause of the decreased /fny expression 5 days p.i.
in the LV tissue of GPR15-deficient mice cannot be elucidated here. It
canbeassumed that the recruitment not only of T, cells but also that
of Tc cells is impaired by GPR15 deficiency. This would correspond to
our invitro results, according to which T cells react strongly chemo-
tactically to the ligand GPR15L. Furthermore, IFNy has been shown
not only to be an anti-viral agent in itself*® but also to reduce fibrosis
and to prevent the development of severe chronic myocarditis®. The
here-observed late sequela of myocarditis by GPR15 deficiency might
betraced back to delayed recruitment of T, cells, but possibly also T
cells, into the virus-infected myocardium.

In conclusion, we identified GPR15 as a chemokine receptor cru-
cial for abetter outcome after acute viral myocarditis. In vitro, GPR15
facilitates GPR15L-mediated recruitment of T cells, particularly T,
cellsessential for virus elimination and T, cells essential for dampen-
ing cardiac inflammation. In myocarditis, GPR15 deficiency leads to
delayed migration of T, cells to the infected myocardium, resulting
in inflammatory-induced cardiac injury from day 7 p.i. In addition,
expression of Ifny was delayed in LV tissue of GPR15-deficient mice,
which might lead to ongoing virus replication in the early phase of
myocarditis and, thus, virus persistence later. In line with Kim et al.”,
GPR15isahoming receptor for T, cellsand important for dampening
the cardiacinflammation. Moreover, the GPR15-mediated migration of
Tccellsis essential for virus elimination in viral myocarditis to prevent
progression to heart failure.

Methods

Animal model

For the present study, we employed the previously described knock-in
mousestrain (B6; 129P2-Gpr15™-**/}) in which the endogenous GprlS
gene was replaced by the sequence of the GFP”. Thus, these mice
can be used as Gpr15 knockouts. Mice were bred on B6 background,
and male littermates or offsprings from littermates identified as
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homozygous B6 WT or GPR15-deficient mice were used for subse-
quent experiments.

Additionally, cDNA from LV tissue obtained by previous studies
was analyzed’. Three murine heart failure models were investigated:
(1) chronichypertensioninduced by continuous infusion of angiotensin
11, (2) myocardial infarction induced by permanent occlusion of the left
anterior descendingartery and (3) CVB3-induced myocarditis*-***°,

Experimental viral myocarditis. As depicted in Figs.1b and 2a, male
B6 WT (Gpri5**) or GPR15-deficient (Gpr15%™¢) mice were used at the
age of 7-9 weeks to induce experimental viral myocarditis*. There-
fore, 5 x 10° plaque-forming units (PFU) of CVB3 (Nancy strain) were
injected intraperitoneally under short-time CO,/0, anesthesia. Sham
controls were treated equally, but saline was used for injection. On
day 4, blood was drawn via facial vein to prove infection. The body
weight was monitored daily. Ifblood sampling did not yield sufficient
RNA to prove viremia, but virus infection was proven in the LV tis-
sue later, mice were included into the analysis. CVB3-infected mice
that did not show virus load in blood at day 4 p.i. orin LV tissue later
were excluded from the study. Timelines studying acute or subacute
phase of myocarditis are depicted in Figs. 2a and 1b, respectively.
The n numbers of included CVB3* mice and the original n numbers
areshown separately for each experiment and were calculated using
G*Power (version 3.1.9.7).

To study the acute phase, mice were killed 5 days, 6 days or 7 days
p.i. Blood was taken from the beating heart and snap frozen in liquid
nitrogen. After heart explantation, atria were removed, and hearts
were transversally cut to create a cross-section that was then fixed
in 10% neutral-buffered formalin solution for 24 h. The other part
of the LV tissue was immediately snap frozen in liquid nitrogen and
stored at -80 °C.Inaddition, lymphnodes were harvested for the 5-day
timepoint and snap frozen in liquid nitrogen. To study the subacute
phase, 16 days p.i., cardiac function was recorded by hemodynamic
measurements. Heart and blood were collected and processed as
described above.

Allmice were housed under pathogen-free conditionsin the animal
facility of the University Medical Centre Hamburg-Eppendorfat 22 °C
with ad libitum access to water and standard laboratory chow diet. All
animal experiments were approved by the local bioethics committee
of Hamburg, Germany (G13/115, G15/060, N060/2020, ORG821 and
ORG1068) and conform to the Guideforthe Care and Use of Laboratory
Animals, published by the US National Research Council (8th edition,
revised 2011)*.

Hemodynamics. APV loop system (ADV500, Transonic) was used for
hemodynamic measurementsin closed-chest approach®*2, Mice were
anesthetized using urethane (0.8-1.2 g kg™ body weight) accompa-
nied by buprenorphine analgesia (0.1 mg kg™ body weight). First, a
tracheotomy was performed for artificial ventilation. Subsequently,
a pressure-conductance catheter (1.2 F, Transonic) was inserted
in the right carotid artery and carefully pushed forward into the
LV. The catheter’s position inside the ventricle was optimized until
rectangular-shaped loops were obtained. PV loops were recorded
under short-time apnea. The inferior caval vein (ICV) was occluded
by gentle compression during the PV loop measurements. Using the
wash-in technique, a bolus of hypertonic saline (10%) was injected
into the left jugular vein to estimate the volume*’. Datawere acquired
usingiox2 (version 2.9.5.73, Emka Technologies). Subsequent analyses
of PV loops were performed in LabChart 7.3 Pro (ADInstruments).
For baseline analysis, 5-10 consecutive loops during end-expiratory
ventilation pause were selected to calculate preload-dependent
parameters. Preload-independent parameters were analyzed by
selectingloops during ICV occlusion®. Mice with too deep anesthesia
or excessive bleeding during the measurement were excluded from
the analysis.

RNA-based analyses

RNA isolation. Total RNA was isolated from snap-frozentissue samples
using QIAzol lysis reagent and further purified using an miRNeasy Mini
Kit (Qiagen) according to the manufacturer’s protocol. Previously,
frozen tissue was disrupted by stainless steel beadsina2 -ml tube filled
with QIAzol using a tissue lyser Il (Qiagen). To obtain total RNA from
blood and cells, an RNeasy MiniKit (Qiagen) was used according to the
manufacturer’s protocol. To avoid genomic DNA contamination within
theisolated RNA, DNase-1 (Qiagen) was applied directly on the column
during the purification protocol. RNA concentration was determined
using a NanoDrop 2000c spectrophotometer (Thermo Fisher Scien-
tific). RNA was stored at —80 °C.

Reverse transcription and gene expression analysis. RNA was
reversely transcribed into cDNA using a high-capacity cDNA kit (Life
Technologies). Depending onthe underlying experiment, we used 1 pug
of RNA from tissue samples, 0.1 ug from blood and 0.25 pg from cell
culture experiments for cDNA synthesis. Reverse transcription was
carriedoutat37 °Cfor 2 h, followed by aninactivation step of 5 minat
85 °C. Theresulting cDNA was diluted to a final working concentration
of 10 ng pl™* for tissue samples or 1.25 ng pl ™ for blood and cell culture
samples.

Quantitative real-time PCR was performed to assess gene expres-
sionof target genes using 2.5 pl of gene expression master mix (Thermo
Fisher Scientific) and 0.25 pl of gene expression assay (Supplementary
Table1). CVB3load was determined using primers and probe (Supple-
mentary Table 2)****, Avolume of 1 ul of cDNA was used astemplateina
final volume of 5 pl. Each sample was analyzed in duplicates. Real-time
PCRwas performed on a QuantStudio 7 Flex or QuantStudio 7 Pro sys-
tem (Thermo Fisher Scientific) using QuantStudio software version 1.3
or Design and Analysis software 2.6.0, respectively. Gene expression
of Cdknib and/or 18S or Hprt was determined as endogenous controls,
and ACt values were calculated for the target genes. The formula 27
was used to calculate absolute gene expression, and obtained values
were plotted as x-fold to Cdkn1b or 18S or the mean of both or Hprt.
For normalization, mean of ACt values of the respective control group
was used to calculate AACt values. Relative gene expression datawere
determined using the formula22*“and plotted as x-fold to the respec-
tive control®.

Detection of virus replication. Virus replication was determined by
strand-specific reverse transcription of the intermediate minus RNA
strand of CVB3, which is essential for production of the viral genome
of viral progeny. Therefore, isolated total RNA was reversely tran-
scribed into strand-specific cDNA using a high-capacity cDNA kit (Life
Technologies) in the presence of 1 uM minus strand-specific primer
(RT-CVB3_SE_tagged; 5-TGAGATAATTGCCCTGAATGCGGCTAATCC-%’,
TIB Molbiol). To avoid subsequent detection of non-specific cDNA
synthesis, the minus strand-specific primer for reverse transcription
was tagged by adding 11 nucleotides at the 5’ end (Supplementary
Table 3).In addition, cDNA synthesis was performed in the absence of
the minus strand-specific primer as an additive control of specificity.
Subsequently, the tagged minus strand-specific cDNA was quantified
with specific primers amplifying only tagged cDNA by real-time PCR
asdescribed above. Copy number was calculated using a purified and
quantified PCR product, because endogenous control genes were not
available.

MACE RNA sequencing analysis. Massive analysis of cDNA ends
(MACE) is a3 mRNA sequencing method based on the analysis of
Illumina reads derived from fragments that originate from 3’ mRNA
ends*®. Thirty-one RNA samples from the acute myocarditis model
were used for RNA sequencing (WT sham (n = 6) / Gpr1597%% sham
(n=6)/WT CVB3 (6 days n=6;7 days n=3) / Gpr15¥"&? CVB3 (6 days
n=>5;7 daysn=35)). RNA samples were processed by GenXPro using the
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MACEKit (version2) according to the manufacturer’s manual. In brief,
RNA was fragmented, and polyadenylated mRNA was enriched and
amplified by competitive PCR after poly(A)-specific reverse transcrip-
tion and template-switch-based second-strand syntheses. Duplicate
reads as determined by the implemented unique molecular identifiers
(TrueQuant IDs) were removed from the raw dataset. Low-quality
sequence bases were removed by Cutadapt software (version2.3)*’, and
poly(A) tails were clipped by anin-house Python script. The reads were
mapped to the mouse genome (mm10), and transcripts were quanti-
fied by HTSeq. Differential gene expression was determined using
DESeq?2 (version 1.20)*® and plotted as volcano plots using Graph Pad
Prism (GraphPad Software). For selected DEGs, gene expression of
all replicates was visualized as a heat map. A pseudo-count was intro-
duced for every not-expressed gene to allow logarithmic calculation
after normalization. The normalized gene count was standardized to
the mean of the normalized gene count of the respective sham group
and plotted aslog, FC. For datavisualization, the R statistical software
(version 3.6.3, RFoundation for Statistical Computing) tool Complex-
Heatmap was used™.

GO enrichment analysis. GO enrichment analysis was performed
using the R package topGO (version 2.42.0)°°. GO annotation data were
based on ENSEMBL. Enrichment of GO terms was calculated by Fisher’s
exact test based on DEGs (P< 0.05 and FC of at least £1.5). The results
were visualized using different R packages. Clustering of GO terms was
performed with the R package simplifyEnrichment (version 1.0.0)"".
First, the semantic similarity measurement was calculated based on the
method of Lin*2, The resulting similarity matrix was then clustered by the
k-means method. Based on their Pvalues, GO terms of particular clusters
were splitinto three categories and plotted as alluvial plots created with
ggforce (version 0.3.3)°* and ggplot2 (version 3.3.3)**. The latter was
also used to generate dot plots. Color of the symbol is based on the GO
term’s z-score. It is calculated for each GO term by taking the number
of upregulated DEGs, subtracting the number of downregulated DEGs
and dividing this number by the square root of the number of annotated
genes. Whether most DEGs in this GO term are upregulated or down-
regulated in Gpr1597%7 miceisindicated by the color gradient fromred
to blue, respectively. The chord plot was generated using GOChord
from the R package GOplot (version 1.0.2)*. It represents the associa-
tion of genes to GO terms. The chord plot also visualizes the direction
of regulation for depicted genes, with red representing upregulation
andblue representing downregulation in Gpr15¥7&? mice.

Histological analyses

Cross-sections of murine hearts were fixed in 10% neutral-buffered for-
malinsolution, dehydrated and embedded in paraffin (formalin-fixed
paraffin-embedded (FFPE)) afterwards. Then, 4-pum-thick cross-sections
were cut using a microtome. For all staining methods, FFPE sections
were deparaffinized and rehydrated in a descending ethanol series.

Picrosirius red staining. Picrosirius red (PSR) staining was used to
assess fibrosis of the cardiac tissue. Rehydrated slides were incubated
for90 sin Mayer’shemalumsolution (Merck Millipore) diluted 1:1with
distilled water to stain acidic structures and then blued in tap water at
approximately 60 °C for 10 min. The basic tissue structures were coun-
terstained by incubation for 60 sina1%eosin solution (Merck Millipore)
slightly acidified with glacial acetic acid (Roth). For collagen staining, a
PSR stain kit (Polysciences) was used according to the manufacturer’s
protocol. Then, sections were dehydrated using an ascending ethanol
series, followed by incubationin xylene substitute. Finally, the sections
were covered with EUKITT (ORSAtec).

Chromogenic immunohistochemistry. After dewaxing and inactiva-
tion of endogenous peroxidases (PBS/3% hydrogen peroxide), antigen
retrieval was performed using the Ventana BenchMark XT machine.

Sections were incubated with anti-CD3 or anti-CD8 antibody (Sup-
plementary Table 4) for 32 min. Anti-Rabbit Histofine Simple Stain
MAX PO conjugated with universal immunoperoxidase polymer
(medac-diagnostika) was used as secondary antibody. Detection
of secondary antibody was performed with an ultraView Univer-
sal DAB Detection Kit (Ventana). For subsequent counterstaining,
Hematoxylin Ventana Roche and Bluing Reagent Ventana Roche were
used. Regarding chromogenicimmunohistological staining and sub-
sequent quantification of CD3" and CD8" T cells in LV tissue: for one
GPR15-deficient CVB3-infected mouse (5 days), FFPE tissue was not
available. Furthermore, for one GPR15-deficient CVB3-infected mouse
(5 days) and one WT CVB3-infected mouse (5 days), CD8 staining was
not successful.

RNAscope. An RNAscope Multiplex Fluorescent v2 Reagent Kit
(323100, ACD) or an RNAscope 2.5 High Definition Reagent Kit-RED
(322350, ACD) was used to performin situ hybridizationto detect CVB3
plus strand RNA on FFPE sections of ventricular tissue*®”. In brief, sec-
tionswereincubated for1hat 60 °C and deparaffinized by xylene and
100% ethanol. To quench internal peroxidase activity, sections were
incubated with hydrogen peroxide incubation for 10 min, followed
by target retrieval at 95 °C for 10 min. Sections were permeabilized
with Protease Plus at 40 °C for 30 min. Probes were incubated for 2 h
at 40 °C, followed by RNAscope amplification steps. For subsequent
immunofluorescent staining, sections were blocked with 3% BSA/TBS
at room temperature for 2 h. Primary anti-troponin T antibody was
incubated overnight at 4 °C in 1% BSA/TBS. After washing, sections
were incubated with Alexa Fluor 488-coupled secondary antibody
and Alexa Fluor 633-coupled wheat germ agglutinin (WGA) for 2 h at
roomtemperature. The slides were mounted in DAPI Fluoromount-G.
For chromogenic signal detection, nuclei were counterstained using
hematoxylin. More detailed information about antibodies, probes and
reagentsis provided in Supplementary Table 5.

Microscopy. Images of PSR or chromogenic immunohistochemistry
staining were captured using a BZ 9000 microscope (Keyence) with
x10 CFI PL APO Lbd. (NA = 0.45), x20 CFIPL APO Lbd. (NA = 0.75) or
x60 CFI PL APO Lbd. H (NA =1.4) objective and processed with BZ
Il Analyzer software. Fibrotic areas were quantified using FIJI (ver-
sion 2.14.0). To quantify positive immune cells, tissue area of 2-3
cross-sections per mouse was measured with QuPath (version 0.4.3)*,
whereas positive cells were counted manually. To capture confo-
cal images, a Leica TCS SP5 confocal microscope (Leica Microsys-
tems) with x40 HCX PL APO CS (NA =1.3) and x63 HCX PL APO Lbd.
BIl. oil (NA =1.4-0.6) objectives was used. A maximum projection of
three-dimensional images was created using Leica LAS AF software
over the full range of the signal.

Cell-based analyses

Murine cardiac fibroblasts. Primary murine cardiac fibroblasts were
obtained by multiple repeated digestions of minced LV tissue from male
WT B6 mice (10-12 weeks old) using 0.1 mg ml™ Liberase (Roche)**,
Obtained cardiac fibroblasts were resuspended in DMEM (Pan) con-
taining 20% FCS (Thermo Fisher Scientific) and 100 U mI™ penicil-
lin-streptomycin (Thermo Fisher Scientific) and rapidly attached to
cell culture flasks. Cells were kept in a humidified atmosphere at 37 °C,
with 5% CO, and 95% air.

Isolation of splenocytes and T cells. Primary lymphocytes from
spleen were isolated from male WT and GPR15-deficient B6 mice at
8-16 weeks of age. Spleen was removed, kept in ice-cold DPBS and
mashed through a 70-pm cell strainer. Cells in the flow-through were
collected, washed with DPBS and passed through a 40-um cell strainer.
For purification, cell suspension was carefully layered over 3 ml of
Histopaque-1077 (Sigma-Aldrich) and centrifuged at 400g for 30 min.
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The splenocytes, contained in the interface, were aspirated, washed
with DPBS and finally resuspended in RPMI VLE 1640 media (Pan)
supplemented with 0.5% BSA. Before subsequent experiments, sple-
nocytes were rested for 2 h in a humidified atmosphere at 37 °C, with
5% CO, and 95% air. In case of subsequent T cell isolation by magnetic
cell separation, Pan T Cell Biotin-Antibody Kit Il (Milteny Biotec) was
used according to the manufacturer’s protocol.

Chemotaxis assay. Freshly isolated primary splenocytes were used
for a Boyden chamber assay. Cell culture inserts with 3 pm pore size
(353492, Falcon) were coated with 50 pl of fibronectin (10 pg ml™)
at 37 °C for 1 h. Fibronectin solution was removed, and inserts were
washed once with DPBS and dried at room temperature. Next, 1x 10°
splenocytes in 250 pl of medium were added to the inserts and set-
tled for 30 min. Wells of suited companion plate (Falcon) were filled
with 700 pl of media as negative control or media supplemented with
500 nM GPR15L (25-78, Phoenix Pharmaceuticals). Inserts containing
splenocytes were applied to the wells of the companion plate. Cell
migration was allowed for 3 h under cell culture conditions. Thereaf-
ter, inserts were removed to access the lower chamber containing the
migrated cells. To determine the initial population, splenocytes were
added directly to 700 pl of medium without aninterjacent insert and
used to calculate the percentage of migration.

Migrated splenocytes were analyzed using flow cytometry analy-
ses (Supplementary Fig. 1). First, splenocytes were blocked with 2%
ratserum (STEMCELL Technologies) and 500 ng ml™ anti-CD16/CD32
monoclonal antibody (clone 2.4G2, Bio X Cell) for 5 min at room tem-
perature. Next, splenocytes were incubated with the staining master
mix (Supplementary Table 6). Pacific Orange was used for live/dead
discrimination. After washing once with DPBS, splenocytes were resus-
pendedin 500 plof DPBS for flow cytometry analysis (LSRFortessa, BD
Biosciences, using FACSDiva software (version 9.0.1)). Single-stained
controls were used for compensation. Flow cytometry data were ana-
lyzed using FCSalyzer software (version 0.9.22-alpha). The gating
strategy for this analysisis shown in Supplementary Fig. 1.

Analysis of GPR15-expressing T cells. Using splenocytesisolated from
WT mice, Gpri5expression of T cell populations was examined on tran-
scriptomiclevel. WT splenocytes were sorted by fluorescence-activated
cell sorting (FACS) (Aria Illu, BD Biosciences, using FACSDiva soft-
ware (version 9.0.1)) and stained with the master mix (Supplementary
Table 6) asdescribed insection 5.4.3. Cells were sorted into tubes filled
with1 mlof RLT buffer containing 1% -mercaptoethanol forimmediate
celllysis. RNA isolation and gene expression analyses were performed
as described in section 5.2. GFP fluorescence as equivalent for GPR15
expression of T cell populations was examined using flow cytometry.
Therefore, Gpr15¢72% splenocytes were stained as described above.
GFP* cellswere counted during the flow cytometry analysis. The gating
strategy is shownin Supplementary Fig. 2.

Actin polymerization assay. Isolated T cells were incubated with or
without 500 nM GPRI15L for 180 s and immediately fixed in 4% para-
formaldehyde at room temperature for 20 min. Extracellular staining
master mix (Supplementary Table 7) was added and incubated for
30 min at 4 °C in the dark. Cells were washed in DPBS supplemented
with10% FCS and subsequently fixed with IC Fixation Buffer (eBiosci-
ence) for 30 min at 4 °C. Afterwards, cells were washed in permeabi-
lization buffer (eBioscience) and incubated in 1x Phalloidin-iFluor
488 (Abcam) diluted in permeabilization buffer for 30 min at 4 °Cin
the dark. Cells were washed again in permeabilization buffer, fixed
with CellFIX (BD Biosciences) and acquired in a FACSCanto (BD Bio-
sciences, using FACSDiva software (version 9.0.1)). Phalloidin median
fluorescence intensity of different T cell populations was analyzed
with FlowJo software (version 10.8.1). The respective gating strategy
isshownin Supplementary Fig. 3.

IFNy secretion assay. Isolated T cells were activated with Dynabeads
Mouse T-Activator CD3/CD28 (Thermo Fisher Scientific). In brief,
Dynabeads wereincubated with T cellsinal:1ratio for12 hina24-well
plate under cell culture conditions. After removal of Dynabeads, IFNy
secretion was detected using a Mouse IFNy Secretion Assay (Milteny
Biotec) asdescribed in the user manual. For subsequent flow cytomet-
ric analysis, cells were stained with staining master mix (Supplemen-
tary Table 8) and acquired in a FACSCanto Il (BD Biosciences). [IFNy
secretion was analyzed for different cell populations using FlowJo
software (version 10.8.1). The respective gating strategy is shown in
Supplementary Fig. 4.

Ifny gene expressionin T cell subsets. Isolated T cells were activated
with Dynabeads Mouse T-Activator CD3/CD28 as described in the
previous section. After removal of Dynabeads, cells were stained with
the staining master mix (Supplementary Table 8) and sorted by FACS
(Aria Ill, BD Biosciences, using FACSDiva software (version 9.0.1)).
Cells were sorted into tubes filled with 2-3 ml of RLT buffer contain-
ing 1% B-mercaptoethanol forimmediate cell lysis. RNA isolation and
subsequent TagMan gene expression analyses were performed as
describedinsection5.2.

IFNy treatment of CVB3-infected HL1 cells. HL1 cells (Merck, SCC065)
were plated on 24-well plates and grown until confluence. Then, cells
were stimulated with 100 ng mI™ IFNy (PeproTech) in RPMI VLE 1640
medium (0.5 % FCS and 100 U mI™ penicillin-streptomycin) for 20 h
inthe incubator (37 °C, 5% CO, and 95% air). Subsequently, cells were
infected with 0.5 MOI CVB3. After 1 h, virus suspension was removed,
and cells were further incubated for 23 h. Cells were lysed with 350 pl
of RLT buffer containing 1% B-mercaptoethanol. RNA isolation and
subsequent gene expression analyses were performed as described
insection 5.2.

T cell activation assay. Isolated T cells were activated with Dynabeads
Mouse T-Activator CD3/CD28 (Thermo Fisher Scientific) and/or 500 nM
GPR15L (25-78, Phoenix Pharmaceuticals) as described in previous sec-
tions. For subsequent FACS analysis, beads were removed magnetically,
and T cellswereresupended in DPBS supplemented with10% FCS. Next,
extracellular staining master mix (Supplementary Table 9) was added
andincubated at4 °Cfor 30 minin the dark. Cells were washed in DPBS
supplemented with 10% FCS and subsequently fixed with IC Fixation
Buffer (eBioscience) at4 °C for 30 min. Afterwards, cells were washed
in permeabilization buffer (eBioscience), and the staining master
mix for intracellular staining (Supplementary Table 10) was added
and incubated at 4 °C for 45 min in the dark. Once again, cells were
washed in permeabilization buffer, fixed with CellFIX (BD Biosciences)
and acquired in an LSRFortessa (BD Biocencies). Positive cells for the
intracellular markers (granzyme B, IL-17, IFNy and TNFa) were counted
for different T cell populations using Flowjo software (version 10.8.1).
Therespective gating strategy is shown in Supplementary Fig. 5.

Flow adhesion assay. In vitro flow adhesion assay was used to deter-
mine the attachment of splenocytes to endothelial cells. First, 100 pl
of cell suspension containing 5 x 10* MHEC-5T cells (DSMZ, ACC 336)
was injected into the channel of p-slides (0.4 Luer ibiTreat, ibidi)®’. All
subsequent steps were performed in ahumidified atmosphereat 37 °C,
with 5% CO,and 95% air. After allowing cellstoadhere for 4 h, ports were
filled with growth medium (DMEM (Pan),10% FCS,100 U ml™ penicillin
and 100 pg ml”streptomycin), and slides were placed on ashaker with
slow speed to ensure constant medium exchange. Approximately12 h
later, growth medium was carefully replaced by starvation medium
(DMEM and 0.5% FCS) for 6-8 h. Toenhance thrombomodulin expres-
sion, cells were stimulated with 25 ng mI™ recombinant murine TNFa
(PeproTech) instarvation medium for 24 h. Splenocytes were stained
inmedium supplemented with 2 uM CellTracker Red CMTPX (Thermo
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Fisher Scientific) for 30 min and rested for 2 h. Then, 1 x 107 stained
splenocytes were resuspended in 500 pl of medium and applied to the
invitro flow adhesion assay.

We used ibidi perfusion sets (WHITE: length 50 cm, ID 0.8 mm,
10-ml reservoirs) connected to a fluidic unit (ibidi, 10902), which was
attached toa pump building up a continuous flow. First, the perfusion
set was filled with pre-warmed 5 ml of RPMIVLE 1640 medium contain-
ing 0.5% BSA and attached to the p-slide containing the endothelial
monolayer, and air bubbles were removed. Next, the p-slide was placed
in an incubation unit (Tokai Hit, 5% CO, and 37 °C) inside a fluores-
cence microscope (BZ-9000, Keyence). The fluidic unit was placed
in an incubator (37 °C and 5% CO,). To start the flow adhesion assay,
unidirectional flow with a shear stress of 1 dyne per cm? was applied,
and splenocytes were added to the perfusion set. To record the adhe-
sion of splenocytes to the MHEC-5T monolayer, images were taken
every 30 s for 20 min using bright-field and red fluorescence channel
(tetramethylrhodamine (TRITC)). To investigate the adhesion strength,
flow was switched off for 5 min. Subsequently, flow was switched on to
remove not-adhered splenocytes, and images were captured. Adhered
splenocytes were counted with Fljl software (version 2.14.0). Theratio
between the total number of splenocytes and adherent splenocytes
was calculated to analyze adhesion strength.

Statistics

Geneexpressiondata (2*““and 2"**“values) are displayed with geomet-
ric mean + 95% confidence interval (CI). All other data are presented
asmean + 95% Cl, unless otherwise stated. All statistical analyses were
performed using Gaussian normally distributed data. Hence, the statis-
tics for the gene expression analyses were calculated with ACt or AACt
values. In general, statistical comparison of two groups was performed
using the unpaired two-tailed t-test with P < 0.05 considered as statis-
tically significant. If more than two groups from both genotypes, WT
and Gpri59&%, were compared, Bonferroni correction was addition-
ally used to adjust for multiple comparisons. If more than two groups
from one genotype, either WT or Gpr15¥7&?, were compared, ordinary
one-way ANOVA or repeated-measures one-way ANOVA (matched
data) was used, each corrected with the Holm-Sidak method. To test
for significance of daily weight measurements, multiple ¢-tests with
Holm-Sidak correction were used. Fisher’s exact test was used for
the analysis of contingency tables. Significance of GO term enrich-
ment was calculated by Fisher’s exact test based on DEGs (P< 0.05
and FC > +1.5 or FC < -1.5). Adjusted P values (q values) of GO terms
were determined using the Benjamini-Hochberg correction. All data
were analyzed using GraphPad Prism 6 (versions 6.07 and 9.5.1) or R
studio (version 4.0.2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
RNA sequencing data are available under GSE248521. Source data of
allmain figures are provided.

Code availability

The code used for processing of RNA sequencing data (poly(A)
tail clipping) is available at https://github.com/AGLindner/
GPR15-RNA-Sequencing.
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| Volcano plots to visualise DEGs assigned to the GO
term GO:0006915 “response to virus”. (a) Myocarditis - 6 days: CVB3-infected
WT (left) and Gpr15¥7%? (right) mice compared to their sham (sh) control 6 days
p.i. (b) Myocarditis - 7 days: CVB3-infected WT (left) and Gpr159P#? (right) mice
compared to their sh control 7 days p.i. (c) Comparison of sh WT and sh Gpr158%/
&P mice. Transcriptome analysis was performed by MACE-RNA seq of LV tissue.
Fold change (FC) and p-value are displayed in the Volcano plot to visualise
significant differences in gene expression. Genes assigned to the GO term

G0:0006915 “response to virus” were highlighted as follows: (i) Not significantly
regulated (black), (ii) significantly upregulated (FC > 1.5 & p-value < 0.05 (light
red), p-value < 0.001 (dark red)) or (iii) significantly downregulated (FC < -1.5&
p-value < 0.05 (light blue), p-value < 0.001 (dark blue)). Genes labelled with their
symbol are part of this GO term and were quantified by TagMan analyses and
plottedin Fig. 3. Genes not assigned to the GO term GO:0006915 are displayed in
grey. DEGs were calculated with DESeq2 using Wald test.
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Extended Data Fig. 3| 69 similar regulated DEGs found by comparing DEGs
from day 6 and day 7. Heat maps of the 69 DEGs (58 up- and 11 downregulated in
GPR15-deficient mice, FC +/-1.5and a p-value < 0.001) that were similar regulated
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similarity using the R package simplify enrichment. “Lin” method was used to
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Extended Data Fig. 5| Adhesion assay and analysis of GPR15-mediated T cell
functionality. (a) Gpr15l gene expressionin HL1 cardiomyocytes after TNFa
stimulation (10 ng/ml, 6 h, n = 4 biological replicates). Ct-values were normalised
to Cdnklb and the corresponding untreated control (AACt). Unpaired two-
tailed t-test. (b) Quiescent or activated T cells were incubated in the presence
orabsence of the receptor agonist GPR15L (500 nM). Percentage of positive
cells for the intracellular markers (GranzymeB (GrB), IL10, IL17, IFNy, TNF-a)
was quantified for three different T cell populations: CD4'CD25: T helper

cells (T,,); CD4°CD25": regulatory T cells (T,,); CD8": cytotoxic T cells (T¢).

(c) Thrombomodulin (Thbd) expression after TNFa stimulationin MHEC-5T
(25ng/mL, 5 h, n =4 biological replicates). Ct-values were normalised to 18 S

and the untreated control (AACt). Gene expression data were plotted as 2%
(geo-mean +95% CI). Unpaired two-tailed t-test. (d) MHEC-5 T monolayer were
either cultured with growth medium alone or supplemented with 25 ng/mL

TNFa for 24 h. Adhesion of primary splenocytes to MHEC-5 T monolayer (n = 6-13
biological replicates in 3 independent experiments) was investigated during
constant flow for 20 min. The adhesion strength of primary splenocytes was
analysed after 5 min of flow pause to allow cells to adhere before flow was turned
on to remove nonadherent splenocytes. Adherent splenocytes were counted via
FIJI (mean +95% CI). Unpaired two-tailed t-test. Significant, compared * to control
or control of the same genotype (*, **,****; p < 0.05, 0.01, 0.0001).
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Antibodies
Antibodies used For FcyR blocking, 500 ng/ml anti-CD16/CD32 monoclonal antibody was used (clone 2.4G2, BioXcell, BEOOOS).
All other antibodies (clones, sources and dilutions) are described in the supplemental tables S4, S5, S6, S7, S8, S9 and S10 of the
paper.
Validation All antibodies used in the manuscript have been validated commercially and in our hands using appropriate positive and negative
controls.

anti-CD16/CD32 monoclonal antibody (clone 2.4G2, BioXcell, BEOOO8); Trefzer A et al. 2021, Cell Reports, PMID:108748; Pezoldt J et
al. Nat Commun 13, 7227 (2022). https://doi.org/10.1038/s41467-022-34868-4

CD3 (ab16669): https://www.abcam.com/products/primary-antibodies/cd3-epsilon-antibody-sp7-ab16669.html

CD8 (HS-361003): https://sysy.com/product/HS-361003

Donkey anti mouse AlexaFluor488 (A21202): https://www.thermofisher.com/order/genome-database/dataSheetPdf?
producttype=antibody&productsubtype=antibody_secondary&productid=A-21202&version=359

Wheat germ agglutinin AlexaFluor633 (W21404): https://www.thermofisher.com/order/catalog/product/de/de/W21404

CD4_PE (12-0042-83): https://www.thermofisher.com/order/genome-database/dataSheetPdf?
producttype=antibody&productsubtype=antibody_primary&productld=12-0042-82&version=359

CD8_APC (100712): https://www.biolegend.com/en-us/products/apc-anti-mouse-cd8a-antibody-150?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=APC%20anti-mouse%20CD8a%
20Antibody.pdf&v=20230714033116

CD45_AlexaFluor700 (56-0451-82): https://www.thermofisher.com/order/genome-database/dataSheetPdf?
producttype=antibody&productsubtype=antibody_primary&productld=56-0451-82&version=359

CD25_PacificBlue (102021): https://d1spbj2x7gk4bg.cloudfront.net/en-ie/products/pacific-blue-anti-mouse-cd25-antibody-3315?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=Pacific%20Blue%E2%84%A2%20anti-mouse%
20CD25%20Antibody.pdf&v=20230714033116

Viability_PacificOrange (P30253): https://www.thermofisher.com/order/catalog/product/de/de/P30253

Phalloidin-iFluor 488 (ab176753): https://www.abcam.com/products/chip-kits/phalloidin-ifluor-488-reagent-ab176753.html
CD11b_PE-Cy7 (101216): https://www.biolegend.com/de-de/cell-health/pe-cyanine7-anti-mouse-human-cd11b-antibody-19217?
pdf=true&displaylinline=true&leftRightMargin=15&topBottomMargin=15&filename=PE/Cyanine7%20anti-mouse/human%20CD11b%
20Antibody.pdf&v=20230726063409

CD45_PerCP (103132): https://d1spbj2x7gk4bg.cloudfront.net/en-gh/products/percp-cyanine5-5-anti-mouse-cd45-antibody-42647?
pdf=true&displaylnline=true&leftRightMargin=15&topBottomMargin=15&filename=PerCP/Cyanine5.5%20anti-mouse%20CD45%
20Antibody.pdf&v=20230114013553

TCRb_APC-eFluor™ 780(47-5961-82): https://www.thermofisher.com/order/genome-database/dataSheetPdf?
producttype=antibody&productsubtype=antibody_primary&productld=47-5961-82&version=359

CD3_APC (100236): https://d1spbj2x7qk4bg.cloudfront.net/fr-ch/products/apc-anti-mouse-cd3-antibody-8055?
pdf=true&adisplayInline=true&leftRightMargin=15&topBottomMargin=15&filename=APC%20anti-mouse%20CD3%
20Antibody.pdf&v=20230726063409

CD4_APC (100516): https://d1spbj2x7qk4bg.cloudfront.net/ja-jp/products/apc-anti-mouse-cd4-antibody-477?
pdf=true&adisplayInline=true&leftRightMargin=15&topBottomMargin=15&filename=APC%20anti-mouse%20CD4%
20Antibody.pdf&v=20230726063409

CD4_PerCP-Cy5.5 (100431): https://d1spbj2x7gk4bg.cloudfront.net/ja-jp/products/percp-anti-mouse-cd4-antibody-4219?
pdf=true&adisplayInline=true&leftRightMargin=15&topBottomMargin=15&filename=PerCP%20anti-mouse%20CD4%
20Antibody.pdf&v=20220421053143

CD8a_BV421 (100753): https://d1spbj2x7gk4bg.cloudfront.net/nl-nl/products/brilliant-violet-42 1-anti-mouse-cd8a-antibody-7138?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=Brilliant%20Violet%20421%E2%84%A2%20anti-
mouse%20CD8a%20Antibody.pdf&v=20230920123134

CD25_PE (12-0251-82): https://www.thermofisher.com/order/genome-database/dataSheetPdf?
producttype=antibody&productsubtype=antibody_primary&productld=12-0251-82&version=359

Viability_eFluor506 (65-0866-14): https://www.thermofisher.com/order/catalog/product/de/de/65-0866-14

CD8_PerCP-Cy5.5 (100734): https://d1spbj2x7gk4bg.cloudfront.net/en-ie/products/percp-cyanine5-5-anti-mouse-cd8a-
antibody-4255?pdf=true&displaylinline=true&leftRightMargin=15&topBottomMargin=15&filename=PerCP/Cyanine5.5%20anti-
mouse%20CD8a%20Antibody.pdf&v=20230714033116

CD3_FITC (100204): https://www.biolegend.com/de-de/explore-new-products/fitc-anti-mouse-cd3-antibody-45?GrouplD=BLG6732
CD25_APC (102012): https://d1spbj2x7gk4bg.cloudfront.net/fr-lu/products/apc-anti-mouse-cd25-antibody-420?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=APC%20anti-mouse%20CD25%
20Antibody.pdf&v=20231114073227

CD45_PE-Cy7 (552848): https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/
single-color-antibodies-ruo/pe-cy-7-rat-anti-mouse-cd45.552848

CD4_BV421 (100443): https://www.biolegend.com/en-us/search-results/brilliant-violet-42 1-anti-mouse-cd4-antibody-71427?




pdf=true&adisplayInline=true&leftRightMargin=15&topBottomMargin=15&filename=Brilliant%20Violet%20421%E2%84%A2%20anti-
mouse%20CD4%20Antibody.pdf&v=20230803063053

CD45_PerCP (103132): https://d1spbj2x7gk4bg.cloudfront.net/en-gh/products/percp-cyanine5-5-anti-mouse-cd45-antibody-4264?
pdf=true&displaylnline=true&leftRightMargin=15&topBottomMargin=15&filename=PerCP/Cyanine5.5%20anti-mouse%20CD45%
20Antibody.pdf&v=20230114013553

CD11b_AF700 (101222): https://www.biolegend.com/en-us/search-results/alexa-fluor-700-anti-mouse-human-cd11b-
antibody-3388?pdf=true&displaylnline=true&leftRightMargin=15&topBottomMargin=15&filename=Alexa%20Fluor%C2%AE%
20700%20anti-mouse/human%20CD11b%20Antibody.pdf&v=20230726063409

CD11c_AF700 (117320): https://d1spbj2x7qk4bg.cloudfront.net/fr-lu/products/alexa-fluor-700-anti-mouse-cd11c-antibody-34297?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=Alexa%20Fluor%C2%AE%20700%20anti-mouse
%20CD11c%20Antibody.pdf&v=20231114073227

CD19_AF700 (115528): https://www.biolegend.com/de-de/cell-health/alexa-fluor-700-anti-mouse-cd19-antibody-3391?
pdf=true&adisplayInline=true&leftRightMargin=15&topBottomMargin=15&filename=Alexa%20Fluor%C2%AE%20700%20anti-mouse
%20CD19%20Antibody.pdf&v=20230714033116

F4/80_AF700 (123130): https://d1spbj2x7gk4bg.cloudfront.net/en-gb/products/alexa-fluor-700-anti-mouse-f4-80-antibody-6556?
pdf=true&adisplayInline=true&leftRightMargin=15&topBottomMargin=15&filename=Alexa%20Fluor%C2%AE%20700%20anti-mouse
%20F4/80%20Antibody.pdf&v=20230114013553

Ly6G_AF700 (127622): https://d1spbj2x7gk4bg.cloudfront.net/fr-lu/products/alexa-fluor-700-anti-mouse-ly-6g-antibody-67547?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=Alexa%20Fluor%C2%AE%20700%20anti-mouse
%20Ly-6G%20Antibody.pdf&v=20230801063041

TER-119_AF700 (116220): https://d1spbj2x7gk4bg.cloudfront.net/de-de/products/alexa-fluor-700-anti-mouse-ter-119-erythroid-
cells-antibody-3428?pdf=true&adisplayInline=true&leftRightMargin=15&topBottomMargin=15&filename=Alexa%20Fluor%C2%AE%
20700%20anti-mouse%20TER-119/Erythroid%20Cells%20Antibody.pdf&v=20230701123045

FR4_PE-Cy7 (125012): https://d1spbj2x7gk4bg.cloudfront.net/de-de/products/pe-cyanine7-anti-mouse-fr4-folate-receptor-4-
antibody-4924?pdf=true&displaylinline=true&leftRightMargin=15&topBottomMargin=15&filename=PE/Cyanine7%20anti-mouse%
20FR4%20(Folate%20Receptor%204)%20Antibody.pdf&v=20231114073227

CD4_PE/Dazzle (100566): https://d1spbj2x7gk4bg.cloudfront.net/de-de/products/pe-dazzle-594-anti-mouse-cd4-antibody-98457?
pdf=true&displaylnline=true&IeftRightMargin=15&topBottomMargin=15&filename=PE/Dazzle%E2%84%A2%20594%20anti-mouse%
20CD4%20Antibody.pdf&v=20230223043110

Viability_ APC-Cy7 (65-0865-18): https://www.thermofisher.com/order/catalog/product/de/de/65-0865-18

GranzB_FITC (372206): https://d1spbj2x7gk4bg.cloudfront.net/en-gb/products/fitc-anti-human-mouse-granzyme-b-recombinant-
antibody-14430?pdf=true&adisplayinline=true&leftRightMargin=15&topBottomMargin=15&filename=FITC%20anti-human/mouse%
20Granzyme%20B%20Recombinant%20Antibody.pdf&v=20221115073101

IL-17_BV785 (506928): https://d1spbj2x7gk4bg.cloudfront.net/de-de/products/brilliant-violet-785-anti-mouse-il-17a-antibody-7988?
pdf=true&adisplayInline=true&leftRightMargin=15&topBottomMargin=15&filename=Brilliant%20Violet%20785%E2%84%A2%20anti-
mouse%20IL-17A%20Antibody.pdf&v=20230114013553

IFNy_BV711 (505836): https://d1spbj2x7gk4bg.cloudfront.net/en-gb/search-results/brilliant-violet-711-anti-mouse-ifn-gamma-
antibody-7950?pdf=true&displaylnline=true&leftRightMargin=15&topBottomMargin=15&filename=Brilliant%20Violet%20711%E2%
84%A2%20anti-mouse%20IFN-%CE%B3%20Antibody.pdf&v=20230726063409

TNFa_BV650 (506333): https://d1spbj2x7gk4bg.cloudfront.net/fr-lu/products/brilliant-violet-650-anti-mouse-tnf-alpha-
antibody-8829?pdf=true&displaylnline=true&leftRightMargin=15&topBottomMargin=15&filename=Brilliant%20Violet%20650%E2%
84%A2%20anti-mouse%20TNF-%CE%B1%20Antibody.pdf&v=20230803063053

IL-10_BV605 (505031): https://d1spbj2x7gk4bg.cloudfront.net/en-gb/products/brilliant-violet-605-anti-mouse-il-10-antibody-93827?
pdf=true&adisplayInline=true&leftRightMargin=15&topBottomMargin=15&filename=Brilliant%20Violet%20605%E2%84%A2%20anti-
mouse%20IL-10%20Antibody.pdf&v=20230105073058

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

MHECS5-T were purched from DSMZ (ACC 336).
HL1 were purched from Merck (SCCO65).

Cell lines were purchased from DSMZ (MHEC5-T) and Merck (HL1). Morphological assessment via microscopy was used to
ensure origin of cell line.

Mycoplasma contamination no mycoplasma contamination tested.

Commonly misidentified lines Commonly misidentified cell lines were not used in this study.

(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

We used C57BL6 WT mice and the knock-in mouse strain (B6; 129P2-Gpr15tm1.1Litt/J) at the age of 7 to 10 weeks to induce viral
myocarditis in our studies. Primary murine cardiac fibroblasts were obtained from male WT B6 mice at the age of 10-12 weeks.
Primary lymphocytes from spleen were isolated from male WT and GPR15-deficient B6 mice at the age of 8-16 weeks. All mice were
kept under pathogen-free conditions in the laboratory animal facility University Hospital Hamburg-Eppendorf at 22°C with a 12 hour
light/dark cycle and free access to water and standard laboratory chow.
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Wild animals This study did not include wild animals.

Reporting on sex Male mice were exclusively used in this study.

Field-collected samples  This study did not involve samples collected from the field.

Ethics oversight All animal experiments were approved by the local bioethics committee of Hamburg, Germany (G13/115, G15/060, NO60/2020,
ORG821, ORG1068) and conform to the “Guide for the Care and Use of Laboratory Animals” published by the US NRC (8th edition,
revised 2011).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks N/A

Novel plant genotypes  N/A

Authentication N/A

Flow Cytometry

Plots
Confirm that:

|X| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|X| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

X, All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument

Software

Cell population abundance

Gating strategy

Cells are freshly isolated from mice spleens and stained with the indicated antibodies prior to FACS analyses.

Flow cytometry analysis was performed on LSR Fortessa™, FACSCanto and a FACSCanto Il, BD. Sorting was performed on
Arialllu, BD

Data were collected using BD FACS diva software. Flow cytometry data were analysed using FCSalyzer or FlowJo software.

Abundance of T-cell subtypes is given for sorting experiments in the supplemental part.

Sorting of splenocytes: The percentages of the populations are: CD4-CD8-, DN: 59.7 + 0.7 %; CD8+ TC: 9.7 + 1.4 %; CD4
+CD25- TH: 10.5 + 0.4 % and CD4+CD25+ Treg: 0.9 + 0.2 %.

Sorting of T cells:

The percentages of the populations for stimulated cells are: CD4-CD8-, DN: 2.1 + 0.7 of CD3+ cells; CD8+: 50.0 + 5.3 of CD3+
cells; CD4+CD25- 27.7 + 15.7 of CD4+ cells; CD4+CD25+ 60.7 + 25.0 of CD4+ cells

The percentages of the for unstimulated cells populations are: CD4-CD8-, DN: 2.7 + 0.2 of CD3+ cells; CD8+: 40.8 + 4.4 of CD3
+ cells; CD4+CD25- 95.3 + 0.9 of CD4+ cells; CD4+CD25+ 2.6 + 1.5 of CD4+ cells

All gating strategies are defined in the supplemental part for each experiment.

Gating strategy to sort splenocytes or to quantify GFP+ cells: Lymphocytes were gated via FSC and SSC and duplicates were
excluded. Based on the obtained cell population of single lymphocytes, the following immune cell subtypes were sorted with
primary fluorescence-labelled antibodies: double negative (CD4-CD8-, DN). lymphocytes, CD8+ TC, CD4+CD25- TH and CD4
+CD25+ Treg cells.

Gating strategy to gate T cell subsets after phalloidin assay: Lymphocytes were gated via FSC and SSC and duplicates were
excluded. Viable T cells were separated in CD8+ and CD4+ cells, which were further subdivided in CD4+CD25+ and CD4
+CD25- cells.

Gating strategy to gate T cell subsets after IFNy secretion assay: Lymphocytes were gated via FSC and SSC and duplicates
were excluded. Viable CD3+ T cell singlets were separeated in CD8+ and CD4+ cells, which were further subdivided in CD4
+CD25+ and CD4+CD25- cells. For each T cell subsets, proportion of IFNy+ cells was determined

Gating strategy to gate T cell subsets after stimulation with Dynabeads and GPR15L: Lymphocytes were gated via FSC and SSC
and duplicates were excluded. Viable T cells were separated in CD8+ and CD4+ cells, which were further subdivided in CD4
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+CD25+ and CD4+CD25- cells.

|Z| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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