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Cancer dependency maps have accelerated the discovery of tumor
vulnerabilities that can be exploited as drug targets when translatable to
patients. The Cancer Genome Atlas (TCGA) is acompendium of ‘maps’
detailing the genetic, epigenetic and molecular changes that occur during
the pathogenesis of cancer, yet it lacks a dependency map to translate

gene essentiality in patient tumors. Here, we used machine learning to

build translational dependency maps for patient tumors, which identified
tumor vulnerabilities that predict drug responses and disease outcomes.

A similar approach was used to map gene tolerability in healthy tissues to
prioritize tumor vulnerabilities with the best therapeutic windows. A subset
of patient-translatable synthetic lethalities were experimentally tested,
including PAPSS1/PAPSS12 and CNOT7/CNOT78, which were validated in vitro
andinvivo. Notably, PAPSSI synthetic lethality was driven by collateral
deletion of PAPSS2 with PTEN and was correlated with patient survival.
Finally, the translational dependency mapis provided as a web-based
application for exploring tumor vulnerabilities.

The rapid expansion of genomic technologies to characterize
healthy and diseased patient populations has provided unprec-
edented resolution to the pathophysiological drivers of cancer and
many other diseases. In 2018, TCGA completed a 10-year study of
33 tumor types across ~11,000 patients, which has broadly illumi-
nated the genetic underpinnings of cancer’. Building on the success
of TCGA, multiple other initiatives have been launched to explore
aspects of cancer initiation, evolution, metastasis and response to
therapy® ¢, with the hope that the deepening molecular charac-
terization of cancer will improve diagnosis, treatment and preven-
tion; however, a critical step toward fully leveraging patient data to
eradicate cancer is to assign functionality to the observations made
in TCGA that translate putative tumor dependencies to life-saving
therapies.

One approachto understanding tumor dependencies is through
genome-wide genetic and chemical perturbation datasets (for exam-
ple, DEPMAP’®, Project SCORE’ and Connectivity Map'®) that have
been paired with thousands of deeply characterized cancer models
(for example, Cancer Cell Line Encyclopedia®, Cancer Cell Line Fac-
tory™ and Human Cancer Models Initiative™). Multiple studies have
demonstrated the ability of DEPMAP to translate gene essentially to
therapeutic targets' " and a broader functional understanding of
tumor dependencies'**°. Compared to TCGA, a differentiating strength
of the ‘dependency maps’ is that hypotheses can be readily tested,
replicated and refined in different contexts, whereas patient datasets
are typically not amenable to functional experimentation; however,
the dependency maps also pose limitations when compared to the
translatability of TCGA, as homogeneous cell lines in culture dishes
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do not replicate the pathophysiological complexities of the intact
tumor microenvironment?. Further, the current experimental models
do not completely recapitulate the genetic drivers that are present
in the patient population?, and experimental outcomes of genetic
perturbation screens do not capture most aspects of disease outcome
and patient survival.

Toaddress the unique challenges posed by TCGA and DEPMAP, we
built a hybrid dependency map (TCGApgpmap) Via machine learning of
gene essentiality in the cell-based DEPMAP that was then translated to
TCGA patient tumors. Assuch, TCGApgpumap leverages the experimental
strengths of DEPMAP, while enabling patient-relevant translatability
of TCGA. A systematic analysis of TCGApgpyap revealed tumor vulner-
abilities that predicted treatment response and patient outcomes,
includinglineage dependencies, oncogenes and synthetic lethalities.
The flexible machine-learning framework was also used to assemble
maps that captured other aspects of patient-relevant features, includ-
ingtranslating dependencies to drug responsesin the Patient-Derived
Xenograft (PDX) Encyclopedia (PDXEpgpwap) and tolerability within
healthy tissues of the Genotype-Tissue Expression project (GTEXpgpmap)-
Combined with a user-friendly and freely available web-based applica-
tion, these data provide a resource for identifying patient-relevant
tumor vulnerabilities that can be exploited as drug targets.

Results

Predictive modeling of gene essentiality

Tobeginbuilding the translational dependency maps, predictive mod-
els of gene essentiality were trained on genome-wide CRISPR-Cas9
knockout screens from the DEPMAP® using elastic-net regularization
for feature selection and modeling® (Fig. 1a). Genome-wide gene essen-
tiality scores for DEPMAP cancer cellmodels (n = 897) were estimated
by CERES*, which measures the essentiality of each gene relative to
the distribution of effect sizes for common essential and nonessential
genes within each cell line”. Because many genes do not impact cell
viability, elastic-net models were attempted only for genes with at least
five dependent and nondependent cell lines, whichincluded 7,260 out
of'18,119 genes (40%) with gene essentiality scores in the DEPMAP. In
additionto gene essentiality scores, the input variables for elastic-net
predictive modelingincluded genome-wide gene expression, mutation
and copy number profiles for each cancer cellmodel. Based on previous
evidence that predictive modeling of gene essentiality with RNA expres-
sion performed comparably to similar modeling that alsoincluded DNA
features®?, two sets of elastic-net models were compared using RNA
alone (expression only) or combined with mutation and copy num-
ber profiles (multi-omics). Finally, the best fitting elastic-net models
were selected by a tenfold cross-validation to identify models with the
minimum error, while balancing the predictive performance with the
number of features selected (Methods).

The elastic-net models for predicting essentiality of the 7,260
genes (as described above) were compared by tenfold cross-validation
(Pearson’sr> 0.2; false discovery rate (FDR) <1 x 10~%) when considering
expression-only or multi-omics dataas input variables (Supplementary
Tables1and 2). The distribution of features per model skewed higher
in the multi-omics models (3-510 features, median of 98) (Fig. 1b)
compared to the expression-only models (3-369 features, median of
80) (Fig. 1c) and the performance of both improved with the number
of features per model (Fig.1d,e). Of the 7,260 models, cross-validation
confirmed1,966 expression-only models and 2,045 multi-omics mod-
els, of which most cross-validated models overlapped (n=1,797) (Sup-
plementary Table 3). The incidence of self-inclusion of the target gene
in the cross-validated models was also similar between multi-omics
dataset (31% of models) (Fig. 1f) and expression-only dataset (26% of
models) (Fig. 1g). The majority of cross-validated models (76%) per-
formed comparably (within a correlation coefficient of 0.05) using
either expression-only or multi-omics data. Likewise, 86 out of 103
annotated oncogenes (84%) with cross-validated models performed

similarly using either expression-only or multi-omics datasets (for
example, HER2, BRAF and PIK3CA), with a few notable examples that
included the oncogenes: NRAS, FLT3 and ARNT (Fig. 1h and Extended
Data Fig. 1a-e). Collectively, these data demonstrate that predictive
models of gene essentiality with expression-only (Supplementary
Table 1) and multi-omics (Supplementary Table 2) data as input vari-
ables perform comparably in detecting selective vulnerabilities of
cancer in most cases (Supplementary Table 3).

Constructing TCGApgpmar

TCGApepmap Was built using the expression-only elastic-net models of
gene essentiality, based onthe evidence here (Fig. 1) and elsewhere***
that the performance of most models was comparable to those includ-
ing genomic features. Moreover, as genetic information is withheld
from the expression-only elastic-net models, the transposed essen-
tiality scores can be correlated with genetic drivers in TCGApgpyap
patients who might otherwise be missed in cancer cellmodels. Finally,
expression-based predictive modeling of essentiality can also be
extended to non-oncological studies (for example, GTEX), which do
not have somatic mutations and copy number changes?.

As outlined in Fig. 2a, the expression-based predictive models
of DEPMAP dependencies were transposed using the transcriptomic
profiles of 9,596 TCGA patients, following alignment to account for
differences between the expression profiles of cell lines and tumor
biopsies with varying stromal content. The importance of transcrip-
tional alignment was evident from the strong correlation of the 1,966
cross-validated gene essentiality models with the tumor purity of
TCGA samples (Fig. 2b). To overcome this issue, expression data from
DEPMAP and TCGA were quantile normalized and transformed by con-
trastive principal-component analysis (cPCA), whichis a generalization
of the PCA that detects correlated variance components that differ
between two datasets. The removal of the top four principal compo-
nents (cPC1-4) between the DEPMAP and TCGA transcriptomes sig-
nificantly reduced the correlation of tumor dependencies with tumor
purity (Fig. 2b) and improved the alignment of the expression-based
dependency models (Fig. 2c,d and Extended Data Fig. 1f-h). Enrich-
ment analysis of gene essentiality scores with correlation coefficients
that changed the most between the pre- and post-aligned models
revealed a significant enrichment of pathways related to the stroma
(Supplementary Table 4). Combined, these data demonstrate that
without transcriptional alignment, the predicted gene essentialities
in patient samples were strongly correlated with tumor purity, which
should not be the case when one considers that these dependency
models were generated using cultured cancer cell lines without stroma.

To further benchmark the accuracy of TCGApgpumap, We tested
whether gene essentiality in patient tumors could predict tumor
lineages and oncogene dependencies, as has been reported in the
cell-based dependency maps®. The predicted negative values indicate
higher predicted essentiality. Unsupervised clustering of gene essenti-
alitiesacross TCGAepyap revealed striking lineage dependencies (Fig. 2e
and Supplementary Table 5), including well-known oncogenes such as
KRAS (Fig. 2f,g) and BRAF (Fig. 2h,i). For example, KRAS essentiality was
markedly stronger in KRAS-mutant stomach adenocarcinoma (STAD),
rectal adenocarcinoma (READ), pancreatic adenocarcinoma (PAAD)
and colon adenocarcinoma (COAD) lineages (Fig. 2f,g), whereas BRAF
essentiality was strongest in BRAF-mutant skin cutaneous melanoma
(SKCM) (Fig. 2h,i). We more broadly compared oncogene essentiality
in TCGA patients with or without a gain-of-function (GOF) event (muta-
tion or amplification), using the list of 100 cross-validated models
for oncogenes from the Cosmic Cancer Gene Census (https://cancer.
sanger.ac.uk/census). Of the 100 oncogenes, a total of 85 gene essen-
tialities predicted stronger dependencies in patients witha GOF event
(Supplementary Table 6). To ensure that the associations between
dependencies and mutations were not due to the same underlying
predictive features, the accuracy of elastic-net models to predict
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Fig.1|Predictive modeling of gene essentiality in the DEPMAP. a, Schematic
ofthe elastic-net models for predictive modeling of gene essentiality in the
DEPMAP using expression-only data or multi-omics data. Note the broad overlap
in cross-validated models using expression-only or multi-omics data.

b, Distribution of the number features per multi-omics model. ¢, Distribution

of the number of features per expression-only model. d, Number of features per
multi-omics model that passed (n =2,045) or failed (n = 5,215) cross-validation
based ona correlation coefficient of 0.2 threshold. e, Number of features per
expression-only model that passed (n =1,966) or failed (5,294) cross-validation
based ona correlation coefficient of 0.2 threshold. For d and e, the center

horizontal line represents the median (50th percentile) value. The box spans
from the 25th to the 75th percentile. The whiskers indicate the fifth and 95th
percentiles. f, Rank of the target gene (self) as a feature in the cross-validated
multi-omics models. g, Rank of the target gene (self) as a feature in the cross-
validated expression-only models. h, Comparison of model performance
(correlation coefficients) of cross-validated models from multi-omics and
expression-only data. Note for b-h that the performance and characteristics
of multi-omics and expression-only models are very similar. Pvalues indicated
ongraphs were determined by the Wilcoxon rank-sum test for two-group
comparison (dand e).
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essentiality and somatic mutations in the same genes were compared.
The comparisonwas restricted to genes with cross-validated models of
essentiality and somatic mutations with >2% prevalence (n = 891 mod-
els). Theelastic-net models were allowed to select the mostinformative
predictive features for mutation and essentiality for each gene, as the
best predictors for essentiality may not be the best features to predict
mutation. Comparison of the area under the curve (AUC) of the two
model sets revealed that transcriptomic features were significantly
more predictive of gene essentiality compared to mutational status
(Extended DataFig. 1i). Considering that the expression-only models of
essentiality did not include genomic features, these data further dem-
onstrate that the essentiality scores in TCGAppwap Canbe independently
correlated with genomic features in patient tumors. Combined with
theevidence that cross-validated gene essentiality models accurately
predict cancer lineages, these data suggest that the cross-validated
gene essentiality models are accurate and interpretable across awide
range of biological contexts, including oncogenic dependencies.

Selective dependencies in TCGApgpyap

Strongly selective dependencies (SSDs) have been characterized in
cell-based maps using the normality likelihood ratio test (NormLRT)
to rank whether an essentiality fits a normal or t-skewed distribution
(selective) across the cohort®®?, Astrength of this approach s the ability
to rank SSDs regardless of the underlying mechanisms of dependency
(forexample, lineage, genetic and expression). To compare the SSDs in
patients with cancer and cell models, NormLRT was applied to gene effect
scores for the cross-validated essentiality models in TCGApgpyap and DEP-
MAP, respectively. Most SSDs (NormLRT >100) correlated well between
TCGApepmar and DEPMAP (r=0.56, P<0.0001), including KRAS, BRAF,
MYCN and many other known SSDs (Fig. 2j and Supplementary Table 7).
Although most SSDs correlated well between TCGApgpyap and DEPMAP,
there were several examples where the SSDs differed between patients
and cellmodels (Fig. 2j,k). Notably, the druggable oncogenes (for exam-
ple, FLT3and PTPNI1I) were more prominent SSDs in TCGApgpyap Patients
than DEPMAP cell lines, whereas other notable SSDs in the DEPMAP (for
example, ATP6VOE1) were less noticeable in TCGApgpyap (Fig. 2j,k). The
top predictive features for essentiality of FLT3 (self-expression) and
ATPV6VOEI (paralog expression) did not differ between DEPMAP and
TCGApemap, Yet the distribution and prevalence of strong dependency
scores varied across lineages between patients and cell lines (Extended
DataFig.2a-d). Likewise, the dependency on PTPNI11 (SHP2) was notice-
ably more selective in TCGApgpyap than DEPMAP (Fig. 2j,k), which was
reflected by greater essentiality in a subset of patients with breast cancer

(BRCA) (Extended Data Fig. 2e) that was absent from BRCA cell lines
(Extended Data Fig. 2f). A Fisher’s exact test of the genetic drivers that
were enriched in TCGApgpyap Patients with BRCA that were most depend-
enton PTPNI11included TP53mutations and HER2/ERBB2 amplifications
(Extended Data Fig. 2g), whereas FAT3 deletions and GATA3 mutations
were depleted in these patients (Extended Data Fig. 2h). Particularly in
the case of HER2, which signals through SHP2 and the RAS pathway, these
data fit with the observation that RAS pathway inhibition, including
SHP2 inhibitors, are more potent in the three-dimensional (3D) versus
two-dimensional (2D) context®>*. Thus, the presence of TCGApgpyap
patients with BRCA that were highly dependent on PTPNIIislikely due to
the 3D context of patient tumors, whereas DEPMAP BRCA cell lines with
similar genetic drivers are not PTPNI1 dependent due to the 2D context
of cultured cells. Collectively, these data demonstrate that identifying
SSDs can be impacted by different prevalence and distributions of the
underlying driversin patients and cell models, which can be overcome
by patient-relevant dependency maps, such as TCGAppyiap-

Clinical phenotypes and outcomes in TCGApgpyap

Another strength of translational tumor dependency mapsis the ability
to assess the impact of gene essentiality on clinically relevant pheno-
types, such as molecular subtyping, therapeutic response and patient
outcomes. To evaluate the utility of TCGApgpumap fOr therapy-relevant
patient stratification, an unsupervised clustering of the 100 most vari-
able gene dependencies was performed using the TCGApgpyap BRCA
cohort (Fig. 3a). The 100-dependency signature (DEP100) performed
comparably to the established PAM50 signature® in classifying BRCA
subtypes (AUC > 0.8 for most subtypes), despite only three overlapping
genesbetween PAM50 and DEP100 (Fig. 3b). Dependency subtyping with
DEP100 predicted significantly higher ESRI essentiality in ER-positive
tumors (Fig.3c) and higher HER2 essentiality in HER2-amplified tumors
(Fig.3d).Finally, due to the limited accessibility of therapeutic response
datain TCGA*”, we identified nine clinical datasets for molecular thera-
peutics of tumor dependencies for which we had accurate models and
sufficient statistical power**~¢, Of these nine datasets, we found seven
outof nine dependency models significantly predicted clinical responses
and performed better or comparable to the target gene expressionin
predicting therapeutic responses (Fig. 3e-hand Supplementary Table 8).
Of the two nonsignificant datasets, both trended in the correct direc-
tion and would likely reach statistical significance with larger cohort
sizes. Taken together, these data establish the physiological relevance
of TCGApepumap t0 associate dependencies with common clinicopatho-
logical features, such as molecular subtyping and therapeutic response.

Fig.2|Building a translational dependency map: TCGAp;pyap- @, Schematic
of gene essentiality model transposition from DEPMAP to TCGA, following
alignment of genome-wide expression data to account for differencesin
homogeneous cultured cell lines and heterogenous tumor biopsies with
stroma. b, Coefficient of determination (R?) of the cross-validated gene
essentiality models and tumor purity before (n =1,966) and after transcriptional
alignment (n=1,966). The center horizontal line represents the median (50th
percentile) value. The box spans from the 25th to the 75th percentile. The
whiskersindicate the fifth and 95th percentiles. A two-sided Wilcoxon rank-

sum test was performed to test for statistical significance. ¢, Uniform Manifold
Approximation and Projection (UMAP) visualization of normalization of
genome-wide transcriptomes improves alignment between cultured cells and
patient tumor biopsies with contaminating stroma. d, Correlation coefficients
of essentiality profiles of different lineages of cultured cell models and TCGA
patient tumors. e, Unsupervised clustering of predicted gene essentiality scores
across TCGApgpwar revealed strong lineage dependencies. Blue indicates genes
with stronger essentiality and red indicates genes with less essentiality. f, KRAS
dependency was enriched in TCGAgpmap lineages (n = 9,593) with high frequency
of KRAS GOF mutations, including colon adenocarcinoma (COAD), LUAD, STAD,
READ, esophageal carcinoma (ESCA) and PAAD. g, KRAS essentiality correlated
with KRAS mutations in all TCGApgpwap lineages (n = 532 for KRAS™ and n = 7,049
for KRAS"™). h, BRAF dependency in TCGApgpuap (1 = 9,593) was enriched in

SKCM, which has a high frequency of GOF mutations in BRAF. i, BRAF essentiality
correlated with BRAF mutations in all TCGApgpwae lineages (n = 559 for BRAF™* and
n=7,022for BRAF").For f-i, the center horizontal line represents the median
(50th percentile) value. The box spans from the 25th to the 75th percentile. The
whiskers indicate the fifth and 95th percentiles. For g-i, a two-sided Wilcoxon
rank-sum test was performed to test for statistical significance. j, Scatter-plot

of model selectivity in TCGAgpymap and DEPMAP, as determined by normality
likelihood (NormLRT). k, Ranking of model selectivity between in TCGApgpyap
and DEPMAP, as determined by the NormLRT scores. ***P < 0.001, as determined
by the Wilcoxon rank-sum test for two-group comparison and Kruskal-Wallis
followed by Wilcoxon rank-sum test with multiple test correction for the multi-
group comparison. CNS, central nervous system; PNS, peripheral nervous
system; ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma;
CESC, cervical and endocervical cancers; CHOL, cholangiocarcinoma; GBM,
glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma;
KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell
carcinoma; LGG, lower-grade glioma; LIHC, liver hepatocellular carcinoma;
MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PRAD, prostate
adenocarcinoma; SARC, sarcoma; TGCT, testicular germ cell tumors; THCA,
thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial
carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.

Nature Cancer | Volume 5 | August 2024 | 1176-1194

179


http://www.nature.com/natcancer

Article

https://doi.org/10.1038/s43018-024-00789-y

The ability to associate gene essentiality with patient survivalis a
unique strength of TCGA¢p\ap, Whichis not accessible using cell-based

oncogenic pathways and genetic drivers of human cancers are likely
not captured by gene expression alone and rather require a readout

dependency maps. Moreover, outcomes driven by perturbations of  of gene essentiality. To test this possibility, the cross-validated gene
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essentiality models (n =1,966) were tested for association with the
progression-free interval (PFI) in TCGApgpyap- AMmong 29 cancer line-
ages that are well powered for PFlanalysis®, 105 known genetic drivers
of human cancer were significantly associated with the PFI of TCGA
patients (Supplementary Table 9), including 29 that were prognosticin
atleast four cancer lineages (Fig. 3i,j). For example, a stronger depend-
ency on the druggable oncogene, STAT3 (ref. 35), was significantly
associated withashortened time to disease progression of six different
cancers (Fig. 3i,j). Likewise, multiple other prevalent genetic drivers
of human malignancies were associated with a significantly shorter
PFl, including PAX5 and PDGFRA (Fig. 3i,j). Both proteins have been
investigated previously as prognostic indicators of poor outcomes
by expression analysis in patient biopsies®>® and this study shows that
dependency onthese oncogenesis associated with worse outcomein
patients using a translational dependency map.

Syntheticlethalities in TCGApgpyap

In addition to illuminating lineage and oncogenic dependencies, the
DEPMAP has dramatically expanded the list of potential synthetic
lethalities (the loss of a gene sensitizes tumor cells to inhibition of a
functionally redundant gene within the same pathway)®'*"***°; how-
ever, one of the current limitations of the DEPMAP is that the avail-
able cancer cell models do not yet fully recapitulate the genetic and
molecular diversity of TCGA patients®. Thus, we assessed the landscape
of predicted synthetic lethalities with loss-of-function (LOF) events
(damaging mutations or deletions) in TCGApyap- Lasso regression
analysis of gene essentiality profiles and 25,026 LOF events detected
in TCGAppwap Yielded 633,232 synthetic lethal candidates (FDR < 0.01)
(all candidates added as an R object to a figshare repository), which
were too numerous to experimentally validate by current methods.
To prioritize the synthetic lethal candidates, the gene interaction
scores were correlated with the mutual exclusivity of corresponding
mutations in TCGApgpuap, Which narrowed the list to 28,609 candidates
(FDR < 0.01). Multiple additional criteria were then applied to refine
the list further by enriching for predicted paralogs with close phylo-
genic distance to prioritize candidates with redundant functions due
to sequence homology. All told, this approachidentified many known
syntheticlethal pairs (for example, STAGI/STAG2, SMARCA2/SMARCA4
and EP300/CREBBP)"* and previously untested synthetic lethal can-
didates, demonstrating that TCGApgpuap is Well powered to predict
synthetic lethal relationships with LOF eventsin patient tumor biopsies
(Extended DataFig. 3a-d and Supplementary Table 10).

Synthetic lethalities that were predicted with LOF events in the
TCGApermar (n = 604 pairs) were experimentally tested using a mul-
tiplexed CRISPR/AsCas12a screening approach across representa-
tive cell models of five cancer lineages (Fig. 4a,b). Additional pairs
(n=261controls) were added to the library to control for screen per-
formance, including essential paralog pairs and nonessential pairs of
tumor suppressor genes (TSGs) and interacting partners (Supplemen-
tary Table 10). Aninitial pilot screen was performed using five cancer

cell models, which experimentally validated 69 TCGApgpyap Synthetic
lethalities in at least one representative cell model (Supplementary
Table 11). As these data were being generated, an enhanced AsCas12a
(enAsCasl2a) enzyme was reported to be compatible with CRISPR/
AsCasl2a libraries**, enabling replication of the initial pilot screens
and expansion to atotal of 16 cancer cellmodels. Notably, the replica-
tion of the initial screens was highly concordant across the five cell
modelsincommon (average r = 0.69) (Extended Data Fig. 3e-i), as well
asdetection of increased depletion of essential controls and synthetic
lethal partners compared to nonessential controls (Fig. 4c). In addi-
tion to novel pairs, multiple previously reported synthetic lethalities
(HSP9OAA1/HSP90OABI (ref. 45), DDX19A/DDX19B*, HDAC1/HDAC2
(refs. 45,46), SMARCA2/SMARCA4 (refs. 45,46), EP300/CREBBP*,
STAG1/STAG2 (refs.42,46) and CNOT7/8 (ref.47)) werereplicated across
multiple cell lines in both cohorts (Supplementary Table 11), demon-
strating the robustness of the multiplex CRISPR/Cas12ascreening plat-
formto test synthetic lethalities. Notably, as observed elsewhere®*4¢,
the sensitivity to synthetic lethalities varied between cell models and
lineages, implicating the prevalence of unknown modifiers of synthetic
lethality that manifest in different cellular contexts and are yet to be
fully understood.

Of the 604 synthetic lethalities predicted by TCGApgpuap, a total
of 78 (13%) were experimentally validated in at least one representa-
tive cell model (Fig. 4d,e and Supplementary Table 11). For example,
double knockout (DKO) of CNOT7/8 was synthetic lethalin 11 out of 14
cell lines that were screened (Fig. 4e) and was orthogonally validated
in five cell models by DKO using ribonucleoprotein (RNP) in both 2D
monolayer and 3D spheroid assays (Fig. 4f,g). Likewise, doxycycline
(dox)-inducible loss of CNOT8 was synthetic lethal in HT29 cells that
lacked CNOT7inbothinvitro 2D monolayers (Fig. 4h) and in vivo mouse
xenograft studies (Fig. 4i). Notably, loss of CNOT7 in single knockout
(KO) cells coincided with elevated CNOTS8 protein (Extended Data
Fig. 3j), fitting with previous observations that loss of CNOT7 increases
integration of CNOT8into the CCR4-NOT complex*®. Likewise, CNOTS
protein levels were inversely correlated with CNOT7 copy numbers
in patients with lung adenocarcinoma (LUAD) and BRCA in the NCI
Clinical Proteomic Tumor Analysis Consortium cohort (Extended
DataFig.3k). Collectively, these observations demonstrate the power
of TCGAppmar to detect patient-relevant synthetic lethal mechanisms,
which can be orthogonally validated and provide therapeutic targets
for drug discovery.

Another discovery using TCGAppwap Was the prediction of PAPSS1
synthetic lethality with deletion of PAPSS2 and the neighboring tumor
suppressor, PTEN, which were frequently co-deleted in TCGA patient
tumors (43% co-incidence) yet were largely unaffected in cancer
cell lines (Extended Data Fig. 4a-g). PAPSS1/PAPSS2 are functionally
redundant enzymes essential for synthesis of 3’-phosphoadenosine
5’-phosphosulfate (PAPS), which is required for all sulfonation reac-
tions*’, suggesting that loss of PAPSS1/PAPSS2 is synthetic lethal
due to the inability to sulfonate proteins. To test this hypothesis,

Fig.3 | Translating TCGAppuap to clinically relevant phenotypes and
outcomes. a, Unsupervised clustering of the top 100 dependencies in TCGA
breast cancer patients. b, AROC-AUC analysis was used to test the accuracy

of calling breast cancer subtypes using the top 100 dependencies. ¢, ESRI
dependencies are strongest in ER-positive luminal BRCA (n = 96 for basal-like,
n=>57forHER2, n=231for luminal A, n =126 for luminal Band n =7 for normal-
like). d, HER2 dependencies are strongest in HER2-amplified BRCA (n = 96 for
basal-like, n =57 for HER2", n = 231 for luminal A, n =126 for luminal Band n =7 for
normal-like) e, HER2 dependency predicts trastuzumab response in patients with
BRCA (n =6 for noresponse, n =33 for partial response and n = 9 for complete
response). f, BRAF dependency predicts sorafenib response in patients with
hepatocellular cancer (n =46 for non-responder and n = 21 for responder).

g, EGFR dependency predicts cetuximab response in patients with head and neck
cancer (n =26 for non-responder and n = 14 for responder). For c-g, *P < 0.05,

**P < 0.01and ***P < 0.001, as determined by the Wilcoxon rank-sum test for
two-group comparison and Kruskal-Wallis test followed by a Wilcoxon rank-sum
test with multiple test correction for the multi-group comparison. For boxplots
inc-g, the center horizontal line represents the median (50th percentile) value.
The box spans from the 25th to the 75th percentile. The whiskers indicate the
Sthand 95th percentiles. h, AUC values for drug response predictions based on
essentiality, expression and random essentiality scores generated viarandom
sampling (control). i, Top gene essentialities associated with the PFI by univariate
Cox proportional hazard regression model across multiple lineages in TCGA pgpyap
(Benjamini-Hochberg, FDR < 0.2).j, HRs of the top essentialities across
TCGA,epwar- Blue indicates a greater dependency associated with worse outcome
andred indicates a greater dependency is associated with better outcome.
Pvalues and HRs are shown in Supplementary Table 9.
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PAPSS1/PAPSS2were targeted in H1299 spheroids by RNP, followed by
measurement of spheroid growth and sulfonation levels of heparan
sulfate (HS) proteoglycan (HSPG) chains on the cell surface by flow
cytometry. Confirming the CRISPR/Cas12 screen data (Fig. 5a), dual

HER2 essentiality

loss of PAPSS1and PAPSS2 significantly reduced H1299 spheroid growth
compared to controls (Fig. 5b and Extended Data Fig. 4h,i), which
coincided with loss of HSPG sulfonation (Fig. 5¢c). Likewise, targeting
PAPSS1by RNP in UMUCS3 cells, which endogenously lack PAPSS2 and
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PTEN, also significantly depleted HSPG sulfonation and coincided
with significant spheroid growth reduction, which could be rescued
by addition of exogenous heparan sulfate (Fig. 5d and Extended Data
Fig. 4h,j). Finally, PAPSS1/PAPSS2 synthetic lethality was confirmed
in vivo, as demonstrated by a significant tumor growth reduction
of UMUC3 tumors without PAPSS1 and PAPSS2 compared to control
tumors lacking only PAPSS2 (Fig. Se and Extended Data Fig. 4k). Taken
together, these datademonstrate that translational dependency maps,
such as the TCGAppuap are powerful tools to uncover previously under-
represented synthetic interactions in cancer models that are likely to
be patient relevant.

TCGApuar IS UNique in its ability to uncover potential synthetic
lethalities that canbe related to patient outcomes, enabling the prior-
itization of the experimentally validated syntheticlethalities that cor-
relate with the worst outcome and therefore likely to have the greatest
clinicalimpactif druggable. To test this possibility, aCox log-rank test
was used to assess overall survival (OS) of TCGA patients who corre-
lated with predicted gene essentiality by TCGApgpmap and LOF events
(mutation, deletion or both) of the putative synthetic lethal partner.
After controlling for tumor lineage, PAPSS1 dependency in TCGApgpyap
was correlated with significantly worse OS (hazard ratio (HR) = 0.61,
P=0.0004) in patients with PAPSS2 deletion (Fig. 5f), demonstrating
that PAPSS1is asyntheticlethality target with potentially high transla-
tionalimpact. Collectively, these datademonstrate that translational
dependency maps canenable the discovery, validation and translation
of synthetic lethalities.

Constructing PDXEpgpmap

In addition to building TCGApgpwap, @ Similar approach was applied to
generating an orthogonal translational dependency map using the
PDX Encyclopedia (PDXEpgpyap)*’. As outlined in Fig. 6a, PDXEppyap Was
assembled by transferring the cross-validated 1,966 expression-only
models from the DEPMAP to the PDXE (n =191 tumors) using the aligned
genome-wide expression profiles from the PDXE (Supplementary
Table 12). Unsupervised clustering of gene essentialities across five
well-represented lineages in PDXEppyap cOnfirmed that lineage is a
key driver of gene dependencies (Fig. 6b), fitting with the observa-
tionsmade in TCGApgpmap (Fig. 2€). PDXEpepuap also detected markedly
stronger KRAS essentiality in KRAS-mutant PDX of pancreatic ductal
carcinoma (PDAC) and colorectal carcinoma (CRC) lineages (Fig. 6¢,d),
whereas BRAF essentiality was strongest in BRAF-mutant PDX of cutane-
ous melanoma (CM) (Fig. 6e,f). These data collectively demonstrate
that the PDXEpgpuar performed comparably to TCGApgpwap and is well
powered to detect gene essentiality signals in PDX models.

In addition to orthogonal validation of TCGApgpumap, @ Unique
strength of PDXEppuap i the ability to assess gene essentiality in the
context of therapeutic responses across five cancer lineages and 15
molecular therapies®. To test the ability of gene essentiality to predict
theresponse to corresponding targeted therapies, the change in PDX
burden from baseline to experimental end point was correlated with

target gene essentiality. This revealed that 80% of drugs (12 of 15) were
significantly correlated (P < 0.05) with the predicted essentiality of
the target gene (Supplementary Table 13). For example, trastuzumab
response inthe PDXEppyap Was strongly predicted by HER2 dependency
(R=0.4849, P=0.002, AUC = 0.75), in line with the predictive power
of HER2 dependency on trastuzumab responsiveness in patients with
HER2-amplified BRCA (Fig. 3e). Other examples, such as erlotinib
(R=0.4937,P=0.01,AUC = 0.78) and cetuximab (R =0.2293,P=0.06,
AUC = 0.83), which target the same gene (EGFR), provide the oppor-
tunity to explore dependency mechanisms of therapeutic resistance
across modalities. Comparisons of PDX responsesto erlotinib or cetuxi-
mab revealed dependencies within two common pathways: the SWI/
SNF complex (SMARCA2 and SMARCDI) and protein trafficking (EMC4,
EMCe6, VPS39 and MAPK14) (Fig. 6g,h). Notably, components of both
pathways have been implicated in resistance to EGFR inhibitors®*?,
suggesting that targeting these dependencies would likely improve
patient outcomes. Taken together, these datademonstrate the ability
of gene essentiality to predict therapeutic response and highlight the
translatability of PDX modeling to patient-relevant clinical outcomes.

Translating gene tolerability in GTEXgpyap

A final objective of this study was to define gene essentiality in the
context of healthy tissues, which would provide a resource for pri-
oritizing tumor dependencies with the best predicted tolerability.
To achieve this objective, the expression-based dependency models
from DEPMAP were transposed using the aligned expression datafrom
GTEX (GTEXpgpmap), @ compendium of deeply phenotyped normal tis-
sues collected from postmortem healthy donors (n=948)* (Fig. 7a
and Supplementary Table 14). To assess the sensitivity of GTEXpepmap
to dependencies with low tolerability, the molecular targets of drugs
withreported toxicitiesin the liver and blood (n = 241) were compared
across GTEXpepmar (Supplementary Table 15). Thisrevealed that the aver-
age essentiality was higherinliver and blood than other normal tissues
(Fig.7b). Likewise, unsupervised clustering of the 1,966 cross-validated
gene essentiality models revealed strong tissue-of-origin dependencies
in healthy organs (Fig. 7c), suggesting that tissue-specific biological
context also contributes to gene essentiality in normal physiological
settings. Taken together, these data demonstrate that GTEXpgpyap iS
sensitive to known toxicities, which cluster around different healthy
organ types.

Comparing essentiality scores of known druggable oncogenes in
TCGAppmar With GTEX pepwar revealed greater dependency in malignant
tissues versus a healthy tissue of origin. For example, KRAS and BRAF
essentialities seem to be concomitantly dependent on lineage and
genetic drivers, as the healthy tissues of origin were predicted to be
significantly less affected in the GTEXpgpyap cOmpared to TCGApepmap
(Fig. 7d,e). Likewise, similar observations were made for other onco-
genicdriversthatare approved therapeutic targets in patients with can-
cer, such as HER2-amplified BRCA (Extended Data Fig. 5a). In contrast,
there was markedly less separation in the predicted essentialities of

Fig. 4 | Using TCGApuap to translate synthetic lethalities in human cancer.

a, Schematic of the CRISPR/Cas12 library multiplexed guide arrays targeting

one or two genes per array. b, Schematic of the synthetic lethality screening
approachusing the CRISPR/Cas12 library. All CRISPR screens were performed
asn=3biological replicates per cell line. ¢, Violin plots of target-level CRISPR of
the average log, fold change (FC) across all tested cell lines for nontargeting (NT)
guide (neg CTRL), single knockout guides targeting essential genes (single KO
CTRL), DKO guides targeting essential genes (DKO CTRL), single knockout guides
of TCGApepmar candidates (single KO) and DKO guides of TCGAppwap candidates
(DKO).d, Rank plot of target-level gene interaction (GI) scores averaged across
n=14celllines in the CRISPR/Cas12 multiplexed screening (A549, DETROIT562,
FADU, H1299, H1703, HCT116, HSC2, HSC3, HT29, MDAMB231, MIAPACA2, PANC1,
PC3M and SNU1), including the top five synthetic lethalities (table insert). The
blackline indicates the mean and gray error bars show ts.e.m. e, Distribution

of synthetic lethal candidates from TCGApgpmap With experimental evidence

of synthetic lethality in the CRISPR/Cas12 multiplexed screening across 14
cancer cell lines. Ablue box indicates a Gl score < -2.f,g, Cell viability assessed

by CellTiterGlo (CTG) luminescence at 7 days after single (KO) or dual (DKO)
CNOT7/CNOT8knockouts, normalized to NT controls in five cell lines grownin 2D
monolayers (f) or 3D spheroids (g); n = 3 biological replicates per cell model per
condition with the exception of n = 5biological replicates for Hs578T grown in 2D
monolayer. Error bars are mean + s.d. h, Crystal violet staining of CNOT7"" clones
Cland C2stably expressing nontargeting (sgNT) or CNOT8-targeting (sgCNOTS8)
dox-inducible guide constructs, following 7 days of dox treatment (Methods).

i, Tumor xenograft studies of HT29 clones grown in mice fed dox-containing food
from day O (gray and green lines) or beginning on day 19 (blue lines). n =5 mice
per group. Error bars are +s.d. Asterisks in f, g and i reflect two-tailed, unpaired
Student’s t-test Pvalues; *P < 0.05; **P < 0.01; **P < 0.001.
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malignant tumors and healthy tissues of origin for molecular therapies
that have yet to be successfulinclinical trials (Supplementary Table 16).
To refine the list of oncogenic pathways with significant differences in
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Fig.5|PAPSS1and PAPSS2are novel synthetic lethal paralogs detected

by TCGAppmar- , Rank plot of target-level Gl scores in H1299 cells, including
the top ten synthetic lethalities (table insert). The novel synthetic lethality,
PAPSS1/PAPSS2, is highlighted in blue. All CRISPR screens were performed as
n=3biological replicates per cellline. b, Spheroid size of H1299 cells with single
or dual PAPSS1and PAPSS2 knockouts, normalized to NT control spheroids;
n=4biological replicates per condition. Datashow mean + s.d. *P < 0.05and
**P < 0.01as per unpaired, two-tailed t-test. ¢, Flow cytometry histogram overlay
plots of viable H1299 and UMUCS3 cells (DAPI") showing expression of cell
surface sulfonated HSPGs as measured by antibody clone 10E4-FITC. Dual loss
of PAPSS1/PAPSS2leads to total loss of sulfonation comparable to heparinase 1l
treatment (HeplII*) which specifically cleaves sulfonated HS chains. d, Growth

defects of UMUC3 spheroids following deletion of PAPSSI (yellow bars) were
partially rescued by the addition of 10 pg ml™ and 50 pg ml™ of exogenous HS as
compared to NT control spheroids (green bars); n = 4 biological replicates for
the untreated control and n = 3 biological replicates per treated condition. Data
aremean £s.d.*P<0.05as per unpaired, two-tailed t-test. e, Diagram showing
tumor volumes over time (d, days) after in vivo implantation of 1 x 10° UMUC3 NT
or PAPSS1-KO cells in SCID/beige mice. Each dot represents an individual mouse
(n=5mice per condition); **P < 0.001, as determined by unpaired, two-tailed
t-test of the final data point. f, Kaplan-Meier plot of TCGApyap patients with a
predicted PAPSS1/PAPSS2 synthetic lethality has aworse outcome compared to
therest of the cohort, as determined by a Cox log-rank test. DAPI, 4,6-diamidino-
2-phenylindole.

dependencies with the least tissue-of-origin toxicity revealed enrich-
ment of multiple oncogenic pathways and pathophysiological processes
(Supplementary Table 17), including dysregulation of oxidative phos-
phorylation (P=5.8 x10™) and mitochondrial translation (P=2.9 x 10™°)
pathways that were enriched in LUAD compared to healthy lung (Fig. 7g
and Extended Data Fig. 5b). Combined, these observations suggest
that predicted gene essentiality in the context of adriver mutation and

correspondingly low essentiality within the healthy tissue of origin is
likely to identify efficacious drug targets with acceptable tolerability.

Tool for visualizing translational dependencies

To enable visualization of the data, we have provided aninteractive
web-based application (https://xushiabbvie.shinyapps.io/TDtool/)
for exploring the data within TCGA pgppap, PDXEpgpmar aNd GTEXpepmiap-
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Fig. 6| Building a translational dependency map in patient-derived
xenografts: PDXE,pyap- 2, Schematic of gene essentiality model transposition
from DEPMAP to PDXE, following alignment of genome-wide expression data to
account for differences in homogeneous cultured cell lines and PDX samples with
contaminating stroma. b, Unsupervised clustering of predicted gene essentiality
scores across five lineages in PDXEppysp cOnfirmed similar lineage drivers of gene
dependencies, as observed in TCGApgpyap- Blue indicates genes with stronger
essentiality and red indicates genes with less essentiality. ¢, KRAS dependency
was enriched in PDXEpgpy,p lineages with high frequency of KRAS GOF mutations,
including CRC and PDAC. n =43 for BRCA, n=51for CRC, n =27 for NSCLC, n=39
for PDACand n =32 for CM. d, KRAS essentiality correlated with KRAS mutations
in all PDXEpgppap lineages (n = 74 for KRAS™ and n =117 for KRAS"").e, BRAF

dependency in PDXEgpyap Was enriched in CM, which has a high frequency of GOF
mutations in BRAF.n =43 for BRCA, n=51for CRC, n=27for NSCLC, n =39 for
PDAC and n =32 for CM. f, BRAF essentiality correlated with BRAF mutationsin all
TCGApepuap lineages (n =32 for BRAF™ and n =159 for BRAF"). For c—f, the center
horizontal line represents the median (50th percentile) value. The box spans from
the 25th to the 75th percentile. The whiskers indicate the fifth and 95th percentiles.
g, Top correlated gene essentiality models that correlate with PDX response to
erlotinibin PDXEcpuap. h, ToOp correlated gene essentiality models that correlate
with PDX response to cetuximab in PDXEpgpyap. ***P < 0.001, as determined by the
Wilcoxon rank-sum test for two-group comparison (d and f) and Kruskal-Wallis
test followed by a Wilcoxon rank-sum test with multiple test correction for amulti-
group comparison (cand e). NSCLC, non-small cell lung cancer.
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biopsies. b, Average gene essentiality profile across healthy tissues of GTEXpepmap
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¢, Unsupervised clustering of predicted gene essentiality scores across healthy
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with less essentiality. d, KRAS essentiality is significantly higher in PAAD with
GOF mutations compared to healthy pancreas in GTEXpgpyap (1 =146 for cancer
withn=106 KRAS™ and n =40 KRAS"", n = 328 for normal) e, BRAF essentiality
is significantly higher in SKCM with GOF mutations compared to normal skin
GTEXpepmar (11 =319 for cancer with n =165 BRAF™" and n =154 BRAF"',n=1,809
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for normal) Forb, d, and e, the center horizontal line represents the median
(50th percentile) value. The box spans from the 25th to the 75th percentile. The
whiskers indicate the fifth and 95th percentiles. f, Global differences between
the predicted target efficacy score (TCGApgpwap) and the healthy tissue-of-origin
tolerability score (GTEXpepmap)- 8 STRING network analysis of the top 100
LUAD targets with the greatest predicted tolerability in healthy lung reveals
significant connectivity (P <1x107®) and gene ontology enrichment oxidative
phosphorylation (blue-colored spheres; P=5.8 x 10™) and mitochondrial
translation (red-colored spheres; P=2.9 x107%°).***P < 0.001, as determined by
aWilcoxon rank-sum test for two-group comparison and Kruskal-Wallis test
followed by a Wilcoxon rank-sum test with multiple test correction for a multi-
group comparison (d and e).
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Discussion

Cancer dependency maps have accelerated the discovery of tumor
vulnerabilities, yet translating these findings to predict the therapeutic
window of potential drug targets in patients remains challenging. Here,
we used machine learning to build translational dependency mapsin
patient tumors and normal tissue biopsies that would enable tumor
vulnerabilities to be studied in the context of a drug target’s efficacy,
tolerability and outcome. The translational dependency maps were
built using elastic-net models of transcriptomic features to predict gene
essentiality. As the predictive models of essentiality did notinclude
genomic features, the dependency scores could be independently
tested for associations with genetic driversin patient tumors. Moreo-
ver, these expression-only models of gene essentiality could be applied
to healthy tissues that do not have appreciable levels of the somatic
alterations that are observed in malignant tissues®. Toillustrate how
these datacanbeintegrated to predict atarget’s therapeutic window,
we showed that KRAS and BRAF dependencies were elevated in patient
tumors with GOF mutations (TCGApgpyap and PDXEpepmap), Which was far
less pronounced in normal tissue biopsies lacking these driver muta-
tions (GTEXppmap). Combined, these new translational dependency
maps offer aunique and clinically relevant aspect to gene essentiality
thatis not currently accessible in the traditional cell-based depend-
ency maps. Finally, we made the dependency maps freely accessible
inauser-friendly and interactive web-based application for exploring
and visualizing the data.

During the completion of this study, Chiu et al.” took a com-
plementary approach to building a translational dependency map
(DeepDEP) using deep learning and the genomic, epigenomic and
transcriptomic profiles of TCGA patients and DEPMAP cell lines.
Here, we used elastic-net regularized regression models of expres-
sion data for predicting gene essentiality and tolerability, as these
expression-based models performed comparably to multi-omics mod-
elsand canbe applied to malignant tissue (TCGApgpyap aNd PDXEpepmap)
and nonmalignant tissue (GTEXgpumap)- The DeepDEP authors also high-
lighted that a simplified deep-learning model using expression only
(Exp-DeepDEP) performed comparably well to DeepDEP¥, suggesting
that both approaches are dominated by expression data”. For lack of
other ground truths, we compared the predicted tumor dependencies
of TCGApgpmap and DeepDEP by pan-cancer lineage and BRCA subtypes,
as these were annotated by TCGA and DEPMAP. Compared to Deep-
DEP, the predicted dependencies by TCGAppmap Were comparable in
identifying cancer lineages and BRCA subtypes (Extended Data Fig. 6).
Thus, the collective data demonstrated that the elastic-net models
underlying TCGApgpmaps PDXEpepmar and GTEX pepmapr performed well
compared to DeepDEP. As additional studies become available, more
in-depth benchmarking of approaches for translating dependencies
iswarranted, including the ability to detect genetic drivers, synthetic
lethalities and other patient-relevant features.

A strength of translational dependency maps is the ability to
recapitulate patient tumor context, therapeutic responses and many
aspects of disease outcomes. Fitting with observations that the tissue
of origin dominates the molecular landscape of cancer®®, TCGApgpmar
and PDXEpgpmap revealed that tumor vulnerabilities were tightly cor-
related with disease lineage and subtype. Oncogenic dependencies
were also predictive of response to molecularly targeted therapeutics
inboth TCGAppmap and PDXEppyap, @s Would be expected based onthe
response rates for molecular therapeutics targeting oncogenic drivers
in patients. In total, 85% of oncogenic dependencies had a GOF event
associated with increased dependency in patient tumors and 28%
could be associated with PFI, including some that predicted better
or worse outcomes depending on the cancer lineage. These data fit
with the observation that ~10% cancer-driver genes have evidence
for both oncogenic and suppressive characteristics depending on
tumor context. The selectivity of some oncogenic dependencies also
differed between patients and cell models, including FLT3, ATPV6VOE1

and PTPNI11. Some of these discrepancies seemed to be attributed to
cohort-specific distributions of the underlying drivers of SSDs (for
example, FLT3 and ATPV6VOEI), whereas others were likely attribut-
ableto different pathophysiological contexts, such asthe 3D contexts
ofintact tumors versus the 2D contexts of cultured cells (for example,
PTPN1I). Taken together, these data highlight the complexities of
interpreting gene essentiality in patient-relevant contexts, and future
studies are warranted to further translate the underlying mechanisms
of novel tumor dependencies thatimpact patient outcomes.

TCGApepmar detected multiple known synthetic lethalities
(for example, STAG1/STAG2, SMARCA2/SMARCA4 and EP300/CRE
BBP)***45% as well as synthetic lethalities that are less well charac-
terized (forexample, CNOT7/CNOT78 and PAPSS1/PAPSS2). As reported
elsewhere®**¢ syntheticlethalinteractions varied widely when tested
across different cancer cell models, suggesting that the currently
available models are insufficient to account for all patient-relevant
contexts. Nonetheless, both a commonly shared synthetic lethal-
ity (CNOT7/CNOT78) and a more selective synthetic lethality
(PAPSS1/PAPSS2) were validated in vitro and in vivo. CNOT7/CNOT78
are paralogous subunits of the CCR4-NOT complex that mediates
messenger RNA stability?, fitting with the observation that loss of both
subunits was broadly synthetic lethal. PAPSS1/PAPSS2 are paralogous
synthases of PAPS, which is required for sulfonation reactions®’. We
hypothesized that loss of PAPSS2 is likely driven by its proximity to
PTEN andis an example of collateral deletion in patient tumors®. This
observationwas confirmed by the synthetic lethalinteraction of PAPSS1
inUMUC3 cells thatlacked PAPPS2 and PTEN, which coincided with the
inability of these cells to sulfonate proteins. Notably, the unique ability
of TCGAppwap to detect and associate synthetic lethal mechanisms with
patient outcomesrevealed aworse OS of patients with an endogenous
loss of PAPSS2 and a predicted synthetic lethality with PAPSSI depend-
ency. Thus, these data collectively highlight the benefits of transla-
tional dependency maps that closely match the pathophysiological
contexts of intact patient tumors and the diversity of patient genomic
datasets to identify clinically relevant mechanisms™*.

Aunique aspect of this study was the ability to systematically com-
pare gene essentiality associated with somatic mutations in TCGApgpmap
with the healthy tissue-of-origin tolerability profiles in GTEXpgppap- SYS-
tematically expanding this analysis across all gene essentiality models
in TCGApepmap aNd GTEXpgpuap revealed wide variability in the predicted
tolerability windows, implicating the existence of other dependen-
cies with strong genetic drivers that are likely to be more tolerable as
therapeutic targets; however, when interpreting these data, we also
recommend exercising caution, as the tolerability windows predicted
by comparing tissue-of-origin gene essentiality between TCGAppyap
and GTEXgpmar likely does not yet fully capture the other dose-limiting
toxicities that pose challenges to clinical drug development®. As such,
future efforts to model gene essentiality in healthy tissues should
expand toincorporate systems approaches tointegrating tolerability
signals across multi-organ physiological pathways and systems.

The translational dependency maps presented in this study pro-
videinsights into gene essentiality and tolerability in the clinical con-
text of patient tumors and healthy tissues. The ability of these maps to
accurately translate dependencies to patients is reliant on the ability
to build predictive models from cell-based mapping, which is still
at the early stages and is expected to require 20x more data to fully
predict gene essentiality’. Further, the observations that cell-based
dependencies vary between 2D and 3D settings® and are impacted
by crosstalk with the tumor microenvironment*®, suggests that gene
essentiality is contextual and requires models with greater relevance
to intact tumors, such as organoids. Likewise, it is equally plausible
that accurately interpreting translational dependencies will require
adeeper understanding of clonal heterogeneity with patient tumors
that is lacking from homogenous cancer cell lines. To reach the full
potential of translational dependency mapping, the catalog of patient
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genomic datasets will alsolikely require expansion to capture various
stages of disease progression, including tumorigenesis’, metasta-
sis>*’ and therapeutic resistance®*. Furthermore, as precision cancer
clinical trials continue to expand (for example, MSK-IMPACT)*, it will
be increasingly possible to refine translational dependency maps by
testing outcomes of molecular therapeutics with predicted target
essentiality. The utility of translational ‘tolerability’ maps in healthy
tissues (for example, GTEXgpmap) remains to be fully explored and
will likely benefit from further refinements to better capture aspects
of dose-limiting toxicities thatimpact drug development. To this end,
we postulate that modeling gene tolerability could be best assessed in
normal cell types by pairing CRISPR perturbations with single-cell RNA
sequencing®®®'to broadly capture the alterations of pathways required
for healthy tissue homeostasis. Ultimately, we postulate that predictive
modeling of dependency and tolerability in patients will increase the
success of drug discovery by preemptively prioritizing targets with the
best therapeutic index (high dependency and tolerability).

Methods

Predictive modeling of gene essentiality using DEPMAP data
Two sets of elastic-net regression models were generated to predict
gene essentiality fromthe DEPMAP (n =897 cell lines) withRNA alone
(expression only) or combined with mutation and copy number profiles
(multi-omics). Gene effect scores were estimated by CERES*, which
measures the dependency probability of each gene relative to the dis-
tribution of effect sizes for common essential and nonessential genes
within each cell line*. Because many genes do notimpact cell viability
(CERES < -0.5), elastic-net models were attempted only for genes with
at least five dependent and nondependent cell lines, which included
7,260 out 0f 18,119 genes (40%) with effects scoresin the DEPMAP (1Q21
release). Genome-wide datasets (19,005 genes) for RNA-seq, muta-
tions and copy number variants (log, relative to ploidy +1) for the 897
cell lines were downloaded directly from the DEPMAP (1Q21; https://
depmap.org/portal/). The ‘glmnet’ package (v.4.1.3)* was used to build
elastic-net regularized regression models with balanced weights for
L1and L2 normregularization. The a values were kept constant at 0.5
for all models. Models were tenfold cross-validated using ‘lambda.
min’ from cv.glmnet from the glmnet R package (100 lambdas tested
per model by default) to select the lambda showing the minimum
error balanced with the prediction performance and the number of
features selected, as described previously®.. The performance of the
optimal modelwas then assessed by Pearson’s correlation coefficient
(R), with a ‘pass’ threshold of R > 0.2 and FDR < 0.001 to correct for
multiple hypothesis testing. The cross-validated models were also
compared to models generated using the DepMap confounders dataset
asanulldistribution, including sex, cas9 activity, age, lineage, primary
or metastasis, growth pattern, library, screen quality and cancer type.
Asshownin Extended DataFig. 7, the expression-only gene essentiality
models significantly outperformed the models built on confounders,
withthe 0.2 cross-validation threshold corresponding to P < 0.03in the
confounder distribution (7,000 models). Cross-validation confirmed
1,966 expression-only models and 2,045 multi-omics models, of which
the majority of cross-validated models overlapped (n =1,797) between
the two datasets (Supplementary Table 3).

Model transposition following transcriptional alignment

of DEPMAP to TCGA, PDXE and GTEX datasets to build
TCGApepmar PDXEpgpmap and GTEXpepmap

The translational dependency maps TCGApgpyaps PDXEpgpmar and
GTEXpepmap Were built using expression-only models of gene essential-
ity, based onrelatively marginal performance gains in the multi-omics
models of gene essentiality, as reported elsewhere?*”, To enable trans-
position of the cross-validated expression-only models (n=1,966)
from the DEPMAP to TCGA (n = 9,596 tumors), PDXE (n =191 tumors)
and GTEX (n=17,382 tissues across 54 tissues and 948 donors), the

genome-wide gene expression datasets were downloaded for TCGA
(https://xenabrowser.net/datapages/), PDXE* and GTEX (https://gtex-
portal.org/home/datasets). For TCGA data, if multiple samples were
collected from the same patient, only the primary tumor biopsy was
included in TCGAppwap- FOr GTEX, the potential biases introduced by
sampling multiple organtissues from eachindividual was assessed by
Uniform Manifold Approximation and Projection (UMAP) analysis of
the gene expression profiles across GTEX samples, which revealed that
GTEX samples are clustered by tissue types rather than by individu-
als. Likewise, no evidence of clustering was observed based on other
patient-specific clinical variables (for example, cause of deathand age),
suggesting that the tissue-specific effects are the predominant drivers
of gene expressionin healthy tissues.

Unsupervised cluster analyses by UMAP dimension reduction were
used to evaluate the similarities in expression profiles of the DEPMAP
celllines compared to the tissue biopsies from TCGA, PDXE and GTEX.
As reportedly previously*®, DEPMAP and TCGA expression profiles
do not cluster well by UMAP alignment due to contaminating tran-
scriptional profiles of stromal and immune cells, whichwould impact
expression-based predictive modeling of gene essentiality. Likewise,
UMAP clustering of expression profiles from the DEPMAP cell line data
compared to PDXE and GTEX samples revealed that transcriptional
alignment of these data was equally problematic. To overcome this
issue, expression datafrom DEPMAP and TCGA were quantile normal-
ized and transformed by cPCA, which is a generalization of the PCA
that detects correlated variance components that differ between two
datasets. When comparing the transcriptional profiles of the DepMap
celllinesand TCGA patient tumors, the top contrastive principal com-
ponents (cPC1-4) derived from the stromal contamination in TCGA,
which were then removed followed by multiple-batch correction to
normalize the expression data by matching the corresponding clusters
in TCGA and DEPMAP. To assess transcriptional alignment on model
transposition, all pre- and post-aligned TCGApuar gene essentiality
models were compared to tumor purity, which revealed a strong cor-
relation between gene essentiality and tumor purity that was removed
by transcriptional alignment. An identical approach was utilized for
aligning PDXE expression data, with the slight modification that only
cPC1-3 required removal, as PDX models grown in immunocompro-
mised mice lack the adaptiveimmune system and typically have lower
stromal contamination. For aligning DEPMAP and GTEX data, aslightly
different approach was used to combine quantile normalization and
ComBat®* to remove potential batch effects without using cPCA, as
GTEX data only includes nonmalignant tissue. Finally, the observed
(DepMap) and predicted (TCGApgpmap, PDXEpepmap and GTEX pgppiap)
gene essentiality scores were aligned by linear regression, whereby the
slopes of eachmodel werefitted using a constant to make the absolute
value comparable to the measured essentiality values. Notably, because
this approach used a scaling factor, the pattern of gene essentiality
scores was not affected. All data are available on figshare®.

Characterization of TCGApgpyap

The distribution of the cross-validated expression-only models of
gene essentiality (n=1,966) across lineages was assessed by unsu-
pervised cluster analysis (Ward.D2 method) and visualized using the
ComplexHeatmap R package (v.2.6.2). Asimilar approach was used for
unsupervised cluster analysis and heatmap visualization for molecular
subtyping of the BRCA cohort of TCGApgpysp Using the DEP100 across
BRCA cohortonly. Forlack of other ground truths, the performance of
TCGAprpumap to classify molecular subtypes of BRCA was benchmarked
using alinear discriminant analysis with leave-one-out cross-validation
performed using the MASS package (v.7.3.51.4) forRand the CV = TRUE
optionin the function. Predictions for each cancer type and subtype
was evaluated separately and the AUC values were determined using
the function ‘roc’ from the pROC (v.1.18.0) package for R and com-
pared to the molecular typing and subtyping reported by the TCGA
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(https://www.cbioportal.org/)®*. In addition to BRCA molecular sub-
types, a distinct subset of the 100 most variable dependencies from
the pan-cancer TCGAppyap dataset was used to benchmark TCGApgpyap
more broadly, using an identical linear discriminant analysis with
leave-one-out cross-validation, as described above. Finally, both analy-
ses were repeated with the DeepDEP gene essentiality values reported
by Chiu et al.”” and the receiver operating characteristic (ROC) AUC
values were compared between TCGApgpmap and DeepDEP predictions
of cancer lineages and BRCA cancer subtypes.

Associations of dependencies with genomic features (somatic
mutations and copy number variants) in TCGApgpuap Were assessed
using a Wilcoxon rank-sum differential test as implemented using
stat_compare_means function of ggpubr R package (v.0.4.0). The
ability of expression features to predict essentiality and mutational
status of same gene by elastic-net modeling was compared using the
glmnet R package (v.4.1) with the same parameters for both model
sets. The elastic-net models were allowed to select the most informa-
tive predictive features for mutation and essentiality for each gene,
as the best predictors for essentiality may not be the best features
to predict mutation. For AUC evaluation, we used —0.5 as the cutoff
for gene essentiality scores to determine sensitive and resistant cells
for gene models. The AUC values are calculated using pROC R pack-
age (v.1.16.2). To characterize SSDs, a normality likelihood ratio test
(NormLRT)* was performed with slight modifications to rescale the
larger NormLRT values observed in TCGAppwap due to a tenfold larger
cohortsize (n=9,596) compared to DEPMAP (n=897). Abootstrapping
ofthe DEPMAP gene effect scores was performed to estimate how the
NormLRT scores change when scaling up from the DEPMAP cohort
size (n =897 cell models) to the cohort size of TCGA (9,596). A linear
fitting was performed to estimate the slope between DEPMAP and
bootstrapped equivalent, which was asascaling factor (0.07) torescale
TCGANormLRT scores. Notably, outliers were identified based on the
ranking NormLRT scores within each cohort, which therefore was not
affected by the rescaling TCGA NormLRT scores. For TCGA patients
with BRCA (n =765), we divided the patientsinto PTPNII dependent and
nondependent groups. The PTPNII-dependent patients (77 patients)
were selected asthe top 10% patients with BRCA with the lowest PTPN11
essentiality scores. Amongall the variants, we applied Fisher’s exact test
for mutations with more than 5% frequency (12 mutations), deletions
with more than 10% frequency (4,891 deletions) and amplifications
with more than 10% frequency (4,831 amplifications). The test was
performed using the fisher.test functioninthe stats (v.4.0.3) R package
with options ‘alternative = greater’ to calculate Pvalues for enrichment
of variants for PTPN1I dependent and nondependent groups. The
gene models (890 models) used for mutation predictions are selected
from1,966 cross-validated expression-only essentiality models witha
mutation frequency >2%.

Associating clinical outcomes with tumor dependencies in
TCGApepmar

Owing to the limited accessibility of therapeutic response data in
TCGA®, the association of HER2 essentiality with response to trastu-
zumab (anti-HER2 antibody) was tested in a recent trastuzumab clini-
cal trial of 50 HER2' patients with BRCA with pre- and post-treatment
biopsies that were analyzed by microarray**. The microarray expression
datawere downloaded from NCBIGEO (accession code GSE76360) and
patient responses were defined by the study authors®*. Differencesin
predicted HER2 essentiality in patients with different clinical responses
were tested using ggpubr R package (v.0.4.0), followed by a Wilcoxon
rank-sum test using the stat_compare_means function in the package.
Correlation of HER2 essentiality and HER2 expression after treatment
was tested by a Pearson’s correlation, as calculated by the stat_cor func-
tionggpubr R package (v.0.4.0). For predicting essentiality response to
sorafenib, althoughitis amulti-kinase inhibitor (BRAF, CRAF, VEGFR2,
VEGFR3, PDGFRB, FLT3 and cKIT), its role in treating hepatocellular

carcinoma (HCC) is widely attributed to inhibiting oncogenic RAF
signaling. This combined with the observation that BRAF essential-
ity model performance (R =0.71) was far better than the other target
models (R=0.2to 0.45), led us choose the BRAF essentiality model to
predict sorafenib response in the HCC cohort.

Additionally, the correlation of TCGAppuapr dependencies with
the PF1of TCGA patients was performed, excluding the acute myeloid
leukemia (AML), diffuse large B-cell lymphoma (DLBC), kidney chro-
mophobe (KICH) and pheochromocytoma and paraganglioma (PCPG)
cohortsbased on the recommendations of Liuetal.”>. The PFl data were
directly downloaded from Liu et al.”* and the maximally selected rank
statistics from the ‘maxstat’ R package was used to determine the opti-
mal cutoff point for dichotomization (high versus low) of dependency
scores (n=1,966 cross-validated models). The prognostic value of the
resulting dichotomized dependency scores was evaluated using the
log-rank test with FDR correction (Benjamini-Hochberg adjusted) to
account for multiple hypothesis testing. The data were visualized by
Kaplan-Meier curves and are interpreted as HR > lindicating aworse
expected outcome in patients with a higher dependency score at an
FDR<0.2.

Predicting synthetic lethality relationships in TCGApgpyap
Multiple approaches wereintegrated to predict and prioritize synthetic
lethality relationships with LOF events (defined as a predicted copy
number loss or damaging mutation) in TCGApgpuap- Lasso regression
was used toidentify gene essentialities (n = 7,260 expression-only mod-
els) with increased dependencies associated with 25,026 LOF events
in TCGA, as annotated by Bailey et al.*. For each model, the lambda
value was selected as the lowest error by fivefold cross-validation and
the resulting models with coefficients >0.3 were further evaluated
by a t-test. The lasso regression analysis identified 633,232 predicted
synthetic lethal candidates (FDR < 0.01), which were too numerous
to experimentally validate and required further prioritization. First,
UNCOVER®*was used to prioritize synthetic lethal candidates predicted
by TCGAppmar that correlated with endogenous mutual exclusivity of
LOF mutations (3-70% prevalence) in TCGA, with the hypothesis that
these candidates would have greater translational relevance. UNCOVER
wasraningreedy mode (UNCOVER_greedyv2.py) toidentify negative
association withamutated gene sets of maximum ten genes. To evalu-
ate the confidence of association, we set the number of permutations
as 100 to compute Pvalues and applied a threshold of P< 0.01. Of the
633,232 predicted syntheticlethal candidates predicted by TCGApepmap
28,609 pairs also had evidence of mutually exclusive mutation rates
in TCGA. The candidate list was then refined further by prioritizing
paralogs using the biomaRt paralog database (v.2.28.0) R package. We
additionally included pairs characterized by phylogenetic distance
with threshold less than 1.5, as described previously®”*®. The candi-
date list received a final filtering based on overall patient prevalence
of LOF events, protein—protein interactions with TSGs®*”°, previous
experimental evidence of gene-gene interactions®'*"***°and manual
curationtoinclude essential and nonessential controls. The final list of
gene pairs that were prioritized for experimental validation included
601 synthetic lethality candidates from the original lasso regression
of TCGAppwmap and anadditional 264 pairs that were retained as library
controls. The list of all synthetic lethal pairs that were predicted by
TCGApmaps s Well as annotations of mutual exclusivity and phylo-
genetic distance, is provided as an R object in the figshare repository
(https://figshare.com/s/a76d338a425273b42c8b)".

Multiplexed screening synthetic lethalities using AsCas12a
(AsCpfl) and enAsCas12a (enAsCpfl)

Guides were designed using the TTTV PAM for AsCas12a and synthe-
sized into four-guide arrays with direct repeats (DR)-0, -1, -2 and -3
preceding eachguide, followed by cloninginto a guide-only lentiviral
vector (pPRDA_052), as described previously**¢. A DKO construct was
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designed with two guides x two genes (n =4 guides total per construct)
foreach pair of synthetic lethal candidates. Single KO constructs were
also designed two guides x one gene + two nontargeting (NT) guides
(n=4 guides total per construct) for each pair of synthetic lethal
candidates. For some pairs, multiple single KOs were used to assess
overall library variance and were collapsed to the median values for
downstream gene interaction analysis. A total of 500 constructs with
four NT guides were also included in the library as negative controls.
Aninitial set of pilot screens were performed in triplicate using A549
(ATCC),NCI-H1299 (ATCC), MDA-MB-231 (ATCC), PC3M (MD Anderson)
and DETROIT562 (ATCC) that stably express AsCasl12a, as described
previously*. Anenhanced AsCasl2a (enAsCas12a) enzyme was recently
reported that is compatible with CRISPR/AsCas12alibraries**, enabling
an independent replication of the initial pilot screens and expansion
to a total 14 total cancer cell models. The subsequent screens using
enAsCas12awere performedin triplicate using A549 (ATCC), NCI-H1299
(ATCC), MDA-MB-231(ATCC),NCI-H1703 (ATCC), PC3M (MD Anderson),
DETROIT562 (ATCC), HT29 (ATCC), HCT116 (ATCC), PANC1 (ATCC),
MIAPACA2 (ATCC), SNU1(ATCC), HSC2 (JCRB), HSC3 (JCRB) and FADU
(ATCC).Forallscreens, cells were infected at amultiplicity of infection
of 0.3 and cultured for 14 days while continuously maintaining 500x
coverage, followed by DNA extraction and PCR-barcoding using the
p5 Agon and p7 Kermit primers*®. The PCR-barcoded libraries were
single-end sequenced using an Illumina HiSeq4000 (300x cycle),
followed by demultiplexing of sequencing reads (bcl2fastq, Illumina)
and quantification of guide array abundance across all samples was
performed with acustom Perl script. Sequences between the flanking
sequences or by location were extracted and compared to a database
of sgRNA for each library. Only perfectly matched sgRNA sequences
were kept and used in the generation of count matrix. Normalization
between all samples was conducted using the ‘TMM’ method”*imple-
mented in the edgeR R Bioconductor package. The log, fold changes
(L2FCs) of guide array abundance were calculated by comparing day
14 libraries with the plasmid library using limma-voom’. Gls were
calculated by comparing the expected and observed L2FC of double
and single KO constructs, as described previously*®. In brief, the
expected L2FC for DKO constructs is calculated as a sum (LF2C) of
the individual knockout (sgRNA + NT). Synthetic lethal and buffering
interactions are defined for DKO in which the observed double knock-
out L2FCissignificantly greater or less than that of the expected L2FC,
respectively. No statistical methods were used to predetermine sample
sizes but our sample sizes are similar to those reported in previous
publications that have used multiplexed CRISPR to screen synthetic
lethal interactions®*,

Experimental validation of PAPSS1/2 and CNOT7/8 synthetic
lethality

CRISPR/Cas12 KOs of PAPSS1, PAPSS2, CNOT7 and CNOT8 were per-
formed with Casl12 Ultra (Integrated DNA Technologies, 10007804)
according to the manufacturer’s instructions by Neon electroporation
of RNPs (Invitrogen). Guides were designed using the Broad Institute
CRISPick algorithm and the two best-performing guides for each gene
were used in combination (Supplementary Data). Protein expression
was quantified by Simple Western (ProteinSimple, BioTechne) using the
following antibodies; PAPSS1clone 1F4 (Abnova, HO0009061-MO05) at
1:100 dilution, PAPSS2 (Cell Signaling Technology, 70638) at 1:50 dilu-
tion, PTEN (Cell Signaling Technology, 9552) at 1:100 dilution, CNOT7
(Santa Cruz, sc-101009) at 1:10 dilution, CNOTS8 (LSBio, LS-C99242-
400) at 1:1,000 dilution with B-actin clone 8H10D10 (Cell Signaling
Technology, 3700), 1:1000 GAPDH clone 14C10 (Cell Signaling Tech-
nology, 2118) or 1:1,000 a-tubulin (Cell Signaling Technology, 2144)
asloading controls. Flow cytometry analysis of sulfonated HSPGs was
performed with the 10E4 antibody conjugated to FITC and used at1:200
dilution (US Biological Life Sciences, H1890-10) (Extended Data Fig. 8).
Bacteroides heparinase Il was obtained from New England Biolabs

(P0737L) and used as per manufacturer’s protocol by treating cells for
1hinreactionbuffer at 30 °C before FACS analysis. Spheroid cultures
were performed on ultra-low attachment 96-well plates (Corning,
7007), growthwas tracked onIncucyte S3 (Sartorius) and CellTiterGlo
(CTG) readouts were performed for viability measurements (Pro-
mega, G9681). For rescue experiments, HS was used at 10-50 pg ml™
(Sigma, H7640). For CNOT7-null single-clone generation, HT29 (ATCC)
cellswere transduced with pFUN_104 Cas9 plasmid (Broad Institute),
CNOT7-KO was performed with CRISPR/Cas12 RNP electroporation,
CNOT7-KOsingle clones wereisolated and expanded and clones sc2 and
sc7 were transduced with the Cellecta pRSGTEP-U6Tet-sg-EF1-TetRep-
2A-Puro vector containing the CNOT8-targeting sgRNA (sgCNOTS;
5’-CCAGGTTATCTGTGAAGTGT-3’ (CVCRC-PX, 98847-3P) or NT control
(sgNT; 5-GGCAGTCGTTCGGTTGATAT-3’ SGCTL-NT-pRSGTEP). Cells
were then cultured in medium containing Tet System Approved FBS
(TakaraBio, 631101) and dox was used at 1 pg ml™ for in vitro experi-
ments. For in vivo experiments, 1 x 10 UMUC3 (ATCC) or HT29 cells
were reconstituted in Hanks balanced salt solution, mixed 1:1 with
Matrigel (Corning, 356235) and 200 pl inoculated in the right flank
(n =5 mice per condition). Female CB17/SCID and SCID/beige at 6-8
weeks of age were obtained from Charles River. In vivo experiments
were conducted incompliance with AbbVie’s Institutional Animal Care
and Use Committee and the National Institutes of Health guidelinesin
the Health Guide for Care and Use of Laboratory Animals. Tumor meas-
urements of length (L) and width (W) were obtained using calipers and
volume (V) calculated using the formula V= (L x W2)/2. Amaximum of
2,000 mm?tumor volume was allowed as per institutional guidelines.
PAPSS1/PAPSS2 tumors were extracted at day 22, mechanically dis-
sociated with scalpels and single-cell suspensions were made using
Liberase and DNase I (Millipore Sigma, 05401127001 and 11284932001,
respectively) incubated at 37 °C for 1 h and mouse cells were mag-
netically depleted on LS columns using mouse cell depletion cocktail
(Miltenyi, 130-104-694 and 130-042-401). No statistical methods were
used to predetermine sample sizes but our sample sizes are similar to
thosereported in previous publications that have tested tumor vulner-
abilities and synthetic lethalities'®***>"*7,

Characterization of PDXEgpyap

The distribution of the cross-validated expression-only models of
gene essentiality (n=1,966) across lineages was assessed by unsu-
pervised cluster analysis (Ward.D2 method) and visualized using the
ComplexHeatmap R package (v.2.6.2). Associations of dependencies
with genomic features were assessed using a Wilcoxon rank-sum dif-
ferential test asimplemented using stat_compare_means function of
the ggpubr R package (v.0.4.0). To test the ability of gene essentiality
to predict the response to corresponding targeted therapies, the
change in PDX burden from baseline to experimental end point was
correlated with target gene essentiality in PDXEppuap Using a Pearson’s
correlationtestand FDR correction of Pvalues for multiple hypothesis
testing. ROC AUC analysis was performed using the pROC R package
(v.1.18.0) to assess the accuracy of drug responses predicted by the
target gene essentiality scores. Only drugs with at least 20 treated
PDX models were evaluated and the metrics are reported in Supple-
mentary Table13.

Characterization of GTEXpgpyap

The distribution of the cross-validated expression-only models of
gene essentiality (n =1,966) across healthy tissues was assessed by
unsupervised cluster analysis (Ward.D2 method) and visualized using
the ComplexHeatmap R package (v.2.6.2). Differences ingene essential-
ity in healthy and malignant tissues, as well as malignant tissues with
genomic features, were assessed using a Wilcoxon rank-sum differential
test asimplemented using stat_compare_means function of ggpubrR
package (v.0.4.0). Notably, the distributions of dependencies between
TCGApgpmar and GTEXppmar by PCA revealed that that the predicted
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dependency scales are similar between the two datasets (Extended Data
Fig.9) and thus any differences in gene essentiality are due to underly-
ingbiological mechanisms that differ between healthy and malignant
tissues. To evaluate the sensitivity and specificity of GTEXpgpmap tO
genes associated with tissue-specific toxicities, we profiled GTEXpgppap
genes associated with both blood disorders and drug-induced liver
toxicity using the Cortellis OFF-X database (https://targetsafety.info/).
The OFF-X database is a drug and target safety intelligence database
that predicts potential associations based on both preclinical and
clinical safety dataalerts from peer-reviewed journals, company com-
munications, clinical trials and regulatory agency communications.
These blood and liver toxicity associations were further evaluated to
identify overlapping or unique genes for each toxicity and annotated
with the frequency of associated safety alerts. In total, the Cortellis
OFF-X database identified drug targets associated with potential tox-
icitiesinblood (n = 82), liver (n = 85) or blood and liver (n = 74), which
were then compared across healthy tissue lineages in GTEXpgpyap- TO
compare gene essentiality between malignant and healthy tissues,
TCGApgpmapr and GTEXpepuap Samples were matched based on the tis-
sue of origin and a Student’s ¢-test was applied to differential analysis
between the dependency profiles of tumor and healthy tissue of the
same lineages. The ¢-statistic was used to characterize the dependency
difference between the tumor and corresponding healthy tissue with
anegative ¢-statistic value corresponding to a higher dependency in
tumor as compared to the healthy tissue. Gene set enrichment analy-
sis was performed across all paired malignant and healthy tissues of
origin. The list of genes for the lung network was generated using the
top 100 genes showing the largest differentiation in gene essential-
ity between cancer compared to healthy tissue in lung based on the
negative ¢-statistic values. Network connectivity and gene ontology
enrichment were calculated using STRING (https://string-db.org/),
asdescribed previously’.

Statistics and reproducibility

Alldata used for the machine learning and translation of gene essential-
ity are from publicly available consortia with detailed methodologies
for data collection, blinding, randomization and protection. Because
the essentiality profiles have along tail distribution, we have used the
nonparametric Wilcoxon test, which does not require a particular
probability distribution of the dependent variable in the analysis.
Therefore, no tests were required for the normality assumption. No
statistical method was used to predetermine sample size. No data were
excluded from the analyses. The experiments were not randomized.
The investigators were not blinded to allocation during experiments
and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All dataareavailablein the supplementary information and the figshare
repository at https://figshare.com/projects/TCGADEPMAP_Mapping_
Translational_Dependencies_and_Synthetic_Lethalities_within_The_
Cancer_Genome_Atlas/130193 (ref. 63). Source dataare provided with
this paper.

Code availability

The Rscripts used to download, format and analyze the data and pro-
duce the interactive R/Shiny app are available on GitHub (https://
github.com/xushiabbvie/TDtool).
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| The characteristics of gene essentiality models

before and after transcriptional alignment cell models and patient tumor
biopsies. (a) The performances of expression-only and multi-omics models

of gene essentiality were compared across 103 annotated oncogenes. Note the
strong correlation of expression-only and multi-omics models with a few notable
outliers, such as NRAS, FLT3and ARNT. (b) The distribution of the number of
features for the multi-omics models for the 103 annotated oncogenes. (c) The
number of features per multi-omics model for the 103 annotated oncogenes

that passed (n =95) or failed (n =102) cross-validation. (d) The distribution

of the number of features per expression-only models for the 103 annotated
oncogenes. (e) The number of features per expression-only model for the 103
annotated oncogenes that passed (n =101) or failed (n = 96) cross-validation.
Note similarities in the characteristics and performances of multi-omics and
expression-only models, and that only 7% of the multi-omics models significantly
outperformed the expression-only models in the cross-validation while 84% were
comparable when applying a cutoff of 0.05 correlation coefficient difference
between models as ameaningful improvement in performance. As areference
using the same criteria 15% of multi-omics models outperformed expression-
based models and 76% were comparable when we used the whole set of 2,211
models. (f, g) The heatmaps show the Pearson correlation between the gene

expression of DepMap and TCGA before (f) and after (g) expression alignment
by identification and removal of the most variant signatures (cPC1-4; that s,
stromal signatures) before elastic-net ML. The rows are TCGA lineages and
columns are DepMap lineages. (h) Shows that the correlation of expression for
the same lineage (n =22) in TCGA and DepMap is significantly improved by our
expression alignment pipeline. (i) Comparison of expression-only elastic-net
models for gene essentiality and gene mutational status (n = 890). To make
performance metrics (AUC) comparable with binary mutational status, the
essentiality scores were binarized using a -0.5 essentiality score as a cutoff. To
calculate the accuracy of predicting dependencies and mutations, elastic-net
machine learning was run to predict mutations and essentiality using the same
settings and expression data for 891 genes with mutations at >2% prevalence

in TCGApgpmar Patients. Of note, the elastic-net models were allowed to select
the mostinformative predictive features for mutation and essentiality for each
gene, as the best predictors for essentiality may not be the best features to
predict mutation. For (C,E,H,I), the center horizontal line represents the median
(50th percentile) value. The box spans from the 25th to the 75th percentile. The
whiskersindicate the 5th and 95th percentiles. The two-sided Wilcoxon rank test
was used for (C,E,H) and for (I) ****P < 0.0001 by Student unpaired t-test.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| Characterization of synthetic lethalities. (a) STAGI
synthetic lethality with STAG2 mutation (n = 163 for STAG2VV" and n = 7,418 for
STAG2""), (b) SMARCAZ2 synthetic lethality with SMARCA4 mutation (n = 223 for
SMARCA4M'T and n = 7,358 for SMARCA4™"), (c) CREBBP synthetic lethality with
EP300 mutation (n =937 for EP300°" and n = 6,644 for EP300""), and (d) CNOT7
synthetic lethality with CNOT8 deletion are examples of synthetic lethalities that
were detected by TCGApgpmap- (N = 550 for CNOTS™ and n = 7,031 for SMARCA4"™)
***P < 0.001, as determined by the Wilcoxon rank-sum test. (E-I) Comparison of
multiplexed CRISPR/Cas12 screens performed using AsCas12a and EnAsCas12a
enzymes. Analysis was performed using a Pearson’s correlation and coefficients
(r) are displayed on the graphs. (j) Simple Western blots of protein expression

of CNOT7, CNOT8 and housekeeping control Beta-Actin of nontargeting (NT)

control, single (KO) and dual (DKO) knockout cells 3 days after CRISPR/RNP
electroporation. (k) Plots showing the protein abundance ratio of CNOT8 (Y-axis)
and copy number status of CNOT7 (X-axis) in the CPTAC Lung Adenocarcinoma
(LUAD) and Breast Cancer (BRCA) cohorts showing a significant upregulation

of CNOT8 protein in tumors with CNOT7 copy number loss (shallow and deep
deletions) compared to diploid and gain tumors (for LUAD n =7 for gain, n =51
for diploid and n = 55 for shallow deletion; for BRCA n =22 for gain, n =33 for
diploid and n = 67 for shallow deletion). For (A-D and K), the center horizontal line
represents the median (50th percentile) value. The box spans from the 25th to the
75th percentile. The whiskers indicate the 5th and 95th percentiles. The two-sided
Wilcoxon rank test was used for (A-D) ***p < 0.001 and ***p < 0.001 as determined
by Student’s unpaired, two-tailed t-test for (K).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Supporting evidence of PAPSS1/2 synthetic lethality.
a,b) PAPSS1is anovel synthetic lethality in the context of PAPSS2 deletion, which
isnot detectable in (a) DEPMAP cell lines (n = 905) and is only detectable in (b)
TCGApermar Patient samples (n = 7,581). (¢, d) Likewise, PAPSS1 is not synthetic
lethal with PTEN deletion in DEPMAP cell lines (c, n = 905) and is only detectable
in TCGApgpumap Patient samples (d, n = 7,581). For (A-D), the center horizontal line
represents the median (50th percentile) value. The box spans from the 25th to
the 75th percentile. The whiskers indicate the Sth and 95th percentiles. (e) Unlike
cultured cell models, PAPSS2is frequently co-deleted with PTENin TCGA patients.
(f) PAPSS2is a closely neighboring gene of PTEN. (g) A schematic representation
summarizing the hypothesized synthetic lethality of PAPSS1 that is driven by

collateral deletion of PAPSS2 with the tumor suppressor gene (TSG), PTEN, in
patients but not cell lines. ***P < 0.001, as determined by the Wilcoxon rank-sum
test. (h) Endogenous expression by Simple Western of PAPSS1, PAPSS2, and

PTEN in the model cell lines UMUC3 and NCI-H1299. (i j) Validation of PAPSSI and
PAPSS2single (KO) and double (dKO) knockouts by RNP in spheroid experiments
for NCI-H1299 (i) and UMUC3 (j). (k) Validation of PAPSS1 knockout in the UMUC3
xenograft experiment tumors (n =5 tumors per condition fromn=1independent
experiment). Molecular weight marker lanes are shown in kDa. Data shown in
(h-j) arerepresentative from at least 3 independent experiments. The two-sided
Wilcoxon rank test was used for (A-D), ***P < 0.001.
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determined by the Wilcoxon rank-sum test. For the boxplot, the center horizontal ~ p =5.8 x10™) and mitochondrial translation (red-colored spheres; p = 2.9 x107°).
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Extended Data Fig. 6 | TCGApyap OUtperforms DeepDEP. a) Precision-recall
analysis of pan-cancer lineage predictions by the AUC values are significantly
higher for TCGApepwap in predicting cancer lineages based on top 100 variable
dependencies compared with DeepDEP. (b) The ROC curves for predicting the
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breast cancer subtypes based on the top 100 variable gene dependencies. The
TCGAepmar Significantly outperforms DeepDEP in predicting any of the breast
cancer subtypes (TCGApgpyap continuous line; DeepDEP dotted line).
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Extended Data Fig. 7| Comparison of cross-validated models with models
generated using the DepMap confounders dataset as a null distribution,
including sex, cas9 activity, age, lineage, primary or metastasis, growth
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performance across expression-only and confounder models. (b) The
expression-only gene essentiality models significantly outperformed the models
built on confounders, with the 0.2 cross-validation threshold corresponding to

p <0.03inthe confounder distribution (-7000 models).
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Extended Data Fig. 9| The GTEX and TCGA expression profiles were aligned
and normalized independently to the same DepMap expression profile
and the same models (genes and coefficients) were used for both datasets.
(a) Overall range of effect sizes for both datasets was investigated using a PCA,
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which demonstrates that the dependency distributions show that the predicted
dependency scale is very similar for the two datasets. (b) The distribution of gene
essentiality scores is similar between TCGApgpyap aNd TCGApepyar-
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Data collection  Public clinical data analyzed are available at:
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The PDXE models are available as Supplementary Material:
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The TCGA data is available:
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The GTEX data:
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Data analysis Custom code was published in the github page (https://github.com/xushiabbvie/TCGADEPMAP).
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pROC 1.18.0 (R package)
FlowJo 10.8.1 (flow cytometry
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Data exclusions  No data was excluded from the synthetic lethality screens.

Replication The replication was done using both AsCas12a and enAsCas12a across 14 different cell lines and showed very high correlation between the
replicates.

Randomization  In this experiment there was no randomization. We followed similar experimental designs as the experiments cited above. Because of the
smaller sample size of the animal experiments it would have been challenging to control for possible covariates.

Blinding The investigators were not blinded to allocation during experiments and outcome assessment.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

>
Q
]
(e
(D
1®)
(@)
=
S
c
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<
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Eukaryotic cell lines |:| |Z Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
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Clinical data
X Dual use research of concern
X Plants
Antibodies

Antibodies used Protein expression was quantified by Simple Western (ProteinSimple, BioTechne) using the following antibodies; PAPSS1 clone 1F4
(Abnova, HO0009061-M05) at 1:100, PAPSS2 (Cell Signaling Technology (CST), #70638) at 1:50, PTEN (CST, #9552) at 1:100, CNOT7
(Santa Cruz, #sc-101009) at 1:10, CNOTS8 (LSBio, #L.5-C99242-400) at 1:1000 with beta-Actin clone 8H10D10 (CST, #3700), 1:1000
GAPDH clone 14C10 (CST, #2118) or 1:1000 alpha-Tubulin (CST, #2144) as loading controls. Flow cytometry analysis of sulfonated
HSPGs was performed with 10E4 antibody conjugated to FITC and used at 1:200 (USBiological Life Sciences, #41890-10)

Validation Antibodies were validated by CRISPR knockout and data presented in Extended Figure 3] (CNOT7/CNOT8) and Extended Figure 4l-)

(PAPSS1, PAPSS2). PTEN antibody specificity was confirmed in UMUC3 cells which carry endogenous deep deletion of PTEN and
PAPSS2 (Extended Figure 4H). Specificity of antibody clone 10E4 (https://www.usbio.net/antibodies/H1890-10/Heparan%20Sulfate/
data-sheet) for detection of sulfated Heparan Sulfate proteoglycans (HSPGs) was confirmed by enzymatic digestion with bacterial
Heparinase Il (shown in Figure 5D).

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) All cell lines were acquired from ATCC except PC3M (MD Anderson), HSC2 and HSC3 (JCRB).
Authentication Cell line identity was confirmed by IDEXX STR testing.
Mycoplasma contamination Cell lines were confirmed Mycoplasma negative by IDEXX mycoplasma testing.

Commonly misidentified lines  None of the cell lines used are part of the ICLAC v12 registry.
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Mouse, CB17/SCID and Mouse, SCID/Beige were used in this study (Charles River).
Wild animals N/A
Reporting on sex N/A

Field-collected samples  N/A




Ethics oversight In vivo experiments were conducted in compliance with AbbVie’s Institutional Animal Care and Use Committee and the NIH
guidelines in the Health Guide for Care and Use of Laboratory Animals. Tumor measurements of length (L) and width (W) were
obtained using calipers and volume (V) calculated using the formula V=(LxW2)/2. A maximum of 2000 mm3 tumor volume was
allowed as per institutional guidelines.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration = We have only analyzed public clinical data generated by others. The list of datasets are available and protocols were published in
earlier publications (see: https://github.com/PangeaResearch/enlight-data)

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Flow Cytometry

Plots

Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

|Z A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation Adherent cell lines were harvested and single-cell suspended by standard techniques (trypsinization).
Instrument BD LSRFortessa X-20, Model no. 658226R1
Software Flowjo v10.8.1
Cell population abundance No FACS sorting was performed.
Gating strategy Cells were first gated by FSC-A/SSC-A (~95%) and single cells by FSC-A/FSC-H (~98%). DAPI staining was used to gate viable

cells (~98%). Unstained cells and/or Heparinase Ill treated cells were used for establishing the 10E4-FITC positive gates.
Gating strategy is shown in Extended Figure 8.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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