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Building a translational cancer dependency 
map for The Cancer Genome Atlas

Xu Shi    1,4, Christos Gekas1,4, Daniel Verduzco2,4, Sakina Petiwala2, 
Cynthia Jeffries2, Charles Lu2, Erin Murphy2, Tifani Anton2, Andy H. Vo2, 
Zhiguang Xiao1, Padmini Narayanan1, Bee-Chun Sun1, Aloma L. D’Souza1, 
J. Matthew Barnes2, Somdutta Roy1, Cyril Ramathal2, Michael J. Flister    3,5   & 
Zoltan Dezso    1,5 

Cancer dependency maps have accelerated the discovery of tumor 
vulnerabilities that can be exploited as drug targets when translatable to 
patients. The Cancer Genome Atlas (TCGA) is a compendium of ‘maps’ 
detailing the genetic, epigenetic and molecular changes that occur during 
the pathogenesis of cancer, yet it lacks a dependency map to translate 
gene essentiality in patient tumors. Here, we used machine learning to 
build translational dependency maps for patient tumors, which identified 
tumor vulnerabilities that predict drug responses and disease outcomes. 
A similar approach was used to map gene tolerability in healthy tissues to 
prioritize tumor vulnerabilities with the best therapeutic windows. A subset 
of patient-translatable synthetic lethalities were experimentally tested, 
including PAPSS1/PAPSS12 and CNOT7/CNOT78, which were validated in vitro 
and in vivo. Notably, PAPSS1 synthetic lethality was driven by collateral 
deletion of PAPSS2 with PTEN and was correlated with patient survival. 
Finally, the translational dependency map is provided as a web-based 
application for exploring tumor vulnerabilities.

The rapid expansion of genomic technologies to characterize 
healthy and diseased patient populations has provided unprec-
edented resolution to the pathophysiological drivers of cancer and 
many other diseases. In 2018, TCGA completed a 10-year study of 
33 tumor types across ~11,000 patients, which has broadly illumi-
nated the genetic underpinnings of cancer1. Building on the success 
of TCGA, multiple other initiatives have been launched to explore 
aspects of cancer initiation, evolution, metastasis and response to 
therapy2–6, with the hope that the deepening molecular charac-
terization of cancer will improve diagnosis, treatment and preven-
tion; however, a critical step toward fully leveraging patient data to 
eradicate cancer is to assign functionality to the observations made 
in TCGA that translate putative tumor dependencies to life-saving  
therapies.

One approach to understanding tumor dependencies is through 
genome-wide genetic and chemical perturbation datasets (for exam-
ple, DEPMAP7,8, Project SCORE9 and Connectivity Map10) that have 
been paired with thousands of deeply characterized cancer models 
(for example, Cancer Cell Line Encyclopedia11, Cancer Cell Line Fac-
tory12 and Human Cancer Models Initiative13). Multiple studies have 
demonstrated the ability of DEPMAP to translate gene essentially to 
therapeutic targets14–18 and a broader functional understanding of 
tumor dependencies19,20. Compared to TCGA, a differentiating strength 
of the ‘dependency maps’ is that hypotheses can be readily tested, 
replicated and refined in different contexts, whereas patient datasets 
are typically not amenable to functional experimentation; however, 
the dependency maps also pose limitations when compared to the 
translatability of TCGA, as homogeneous cell lines in culture dishes 
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similarly using either expression-only or multi-omics datasets (for 
example, HER2, BRAF and PIK3CA), with a few notable examples that 
included the oncogenes: NRAS, FLT3 and ARNT (Fig. 1h and Extended 
Data Fig. 1a–e). Collectively, these data demonstrate that predictive 
models of gene essentiality with expression-only (Supplementary 
Table 1) and multi-omics (Supplementary Table 2) data as input vari-
ables perform comparably in detecting selective vulnerabilities of 
cancer in most cases (Supplementary Table 3).

Constructing TCGADEPMAP

TCGADEPMAP was built using the expression-only elastic-net models of 
gene essentiality, based on the evidence here (Fig. 1) and elsewhere26,27 
that the performance of most models was comparable to those includ-
ing genomic features. Moreover, as genetic information is withheld 
from the expression-only elastic-net models, the transposed essen-
tiality scores can be correlated with genetic drivers in TCGADEPMAP 
patients who might otherwise be missed in cancer cell models. Finally, 
expression-based predictive modeling of essentiality can also be 
extended to non-oncological studies (for example, GTEX), which do 
not have somatic mutations and copy number changes28.

As outlined in Fig. 2a, the expression-based predictive models 
of DEPMAP dependencies were transposed using the transcriptomic 
profiles of 9,596 TCGA patients, following alignment to account for 
differences between the expression profiles of cell lines and tumor 
biopsies with varying stromal content. The importance of transcrip-
tional alignment was evident from the strong correlation of the 1,966 
cross-validated gene essentiality models with the tumor purity of 
TCGA samples (Fig. 2b). To overcome this issue, expression data from 
DEPMAP and TCGA were quantile normalized and transformed by con-
trastive principal-component analysis (cPCA), which is a generalization 
of the PCA that detects correlated variance components that differ 
between two datasets. The removal of the top four principal compo-
nents (cPC1–4) between the DEPMAP and TCGA transcriptomes sig-
nificantly reduced the correlation of tumor dependencies with tumor 
purity (Fig. 2b) and improved the alignment of the expression-based 
dependency models (Fig. 2c,d and Extended Data Fig. 1f–h). Enrich-
ment analysis of gene essentiality scores with correlation coefficients 
that changed the most between the pre- and post-aligned models 
revealed a significant enrichment of pathways related to the stroma 
(Supplementary Table 4). Combined, these data demonstrate that 
without transcriptional alignment, the predicted gene essentialities 
in patient samples were strongly correlated with tumor purity, which 
should not be the case when one considers that these dependency 
models were generated using cultured cancer cell lines without stroma.

To further benchmark the accuracy of TCGADEPMAP, we tested 
whether gene essentiality in patient tumors could predict tumor 
lineages and oncogene dependencies, as has been reported in the 
cell-based dependency maps8. The predicted negative values indicate 
higher predicted essentiality. Unsupervised clustering of gene essenti-
alities across TCGADEPMAP revealed striking lineage dependencies (Fig. 2e 
and Supplementary Table 5), including well-known oncogenes such as 
KRAS (Fig. 2f,g) and BRAF (Fig. 2h,i). For example, KRAS essentiality was 
markedly stronger in KRAS-mutant stomach adenocarcinoma (STAD), 
rectal adenocarcinoma (READ), pancreatic adenocarcinoma (PAAD) 
and colon adenocarcinoma (COAD) lineages (Fig. 2f,g), whereas BRAF 
essentiality was strongest in BRAF-mutant skin cutaneous melanoma 
(SKCM) (Fig. 2h,i). We more broadly compared oncogene essentiality 
in TCGA patients with or without a gain-of-function (GOF) event (muta-
tion or amplification), using the list of 100 cross-validated models 
for oncogenes from the Cosmic Cancer Gene Census (https://cancer.
sanger.ac.uk/census). Of the 100 oncogenes, a total of 85 gene essen-
tialities predicted stronger dependencies in patients with a GOF event 
(Supplementary Table 6). To ensure that the associations between 
dependencies and mutations were not due to the same underlying 
predictive features, the accuracy of elastic-net models to predict 

do not replicate the pathophysiological complexities of the intact 
tumor microenvironment21. Further, the current experimental models 
do not completely recapitulate the genetic drivers that are present 
in the patient population22, and experimental outcomes of genetic 
perturbation screens do not capture most aspects of disease outcome 
and patient survival.

To address the unique challenges posed by TCGA and DEPMAP, we 
built a hybrid dependency map (TCGADEPMAP) via machine learning of 
gene essentiality in the cell-based DEPMAP that was then translated to 
TCGA patient tumors. As such, TCGADEPMAP leverages the experimental 
strengths of DEPMAP, while enabling patient-relevant translatability 
of TCGA. A systematic analysis of TCGADEPMAP revealed tumor vulner-
abilities that predicted treatment response and patient outcomes, 
including lineage dependencies, oncogenes and synthetic lethalities. 
The flexible machine-learning framework was also used to assemble 
maps that captured other aspects of patient-relevant features, includ-
ing translating dependencies to drug responses in the Patient-Derived 
Xenograft (PDX) Encyclopedia (PDXEDEPMAP) and tolerability within 
healthy tissues of the Genotype-Tissue Expression project (GTEXDEPMAP). 
Combined with a user-friendly and freely available web-based applica-
tion, these data provide a resource for identifying patient-relevant 
tumor vulnerabilities that can be exploited as drug targets.

Results
Predictive modeling of gene essentiality
To begin building the translational dependency maps, predictive mod-
els of gene essentiality were trained on genome-wide CRISPR-Cas9 
knockout screens from the DEPMAP8 using elastic-net regularization 
for feature selection and modeling23 (Fig. 1a). Genome-wide gene essen-
tiality scores for DEPMAP cancer cell models (n = 897) were estimated 
by CERES24, which measures the essentiality of each gene relative to 
the distribution of effect sizes for common essential and nonessential 
genes within each cell line25. Because many genes do not impact cell 
viability, elastic-net models were attempted only for genes with at least 
five dependent and nondependent cell lines, which included 7,260 out 
of 18,119 genes (40%) with gene essentiality scores in the DEPMAP. In 
addition to gene essentiality scores, the input variables for elastic-net 
predictive modeling included genome-wide gene expression, mutation 
and copy number profiles for each cancer cell model. Based on previous 
evidence that predictive modeling of gene essentiality with RNA expres-
sion performed comparably to similar modeling that also included DNA 
features26,27, two sets of elastic-net models were compared using RNA 
alone (expression only) or combined with mutation and copy num-
ber profiles (multi-omics). Finally, the best fitting elastic-net models 
were selected by a tenfold cross-validation to identify models with the 
minimum error, while balancing the predictive performance with the 
number of features selected (Methods).

The elastic-net models for predicting essentiality of the 7,260 
genes (as described above) were compared by tenfold cross-validation 
(Pearson’s r > 0.2; false discovery rate (FDR) < 1 × 10−3) when considering 
expression-only or multi-omics data as input variables (Supplementary 
Tables 1 and 2). The distribution of features per model skewed higher 
in the multi-omics models (3–510 features, median of 98) (Fig. 1b) 
compared to the expression-only models (3–369 features, median of 
80) (Fig. 1c) and the performance of both improved with the number 
of features per model (Fig. 1d,e). Of the 7,260 models, cross-validation 
confirmed 1,966 expression-only models and 2,045 multi-omics mod-
els, of which most cross-validated models overlapped (n = 1,797) (Sup-
plementary Table 3). The incidence of self-inclusion of the target gene 
in the cross-validated models was also similar between multi-omics 
dataset (31% of models) (Fig. 1f) and expression-only dataset (26% of 
models) (Fig. 1g). The majority of cross-validated models (76%) per-
formed comparably (within a correlation coefficient of 0.05) using 
either expression-only or multi-omics data. Likewise, 86 out of 103 
annotated oncogenes (84%) with cross-validated models performed 
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Fig. 1 | Predictive modeling of gene essentiality in the DEPMAP. a, Schematic 
of the elastic-net models for predictive modeling of gene essentiality in the 
DEPMAP using expression-only data or multi-omics data. Note the broad overlap 
in cross-validated models using expression-only or multi-omics data.  
b, Distribution of the number features per multi-omics model. c, Distribution 
of the number of features per expression-only model. d, Number of features per 
multi-omics model that passed (n = 2,045) or failed (n = 5,215) cross-validation 
based on a correlation coefficient of 0.2 threshold. e, Number of features per 
expression-only model that passed (n = 1,966) or failed (5,294) cross-validation 
based on a correlation coefficient of 0.2 threshold. For d and e, the center 

horizontal line represents the median (50th percentile) value. The box spans 
from the 25th to the 75th percentile. The whiskers indicate the fifth and 95th 
percentiles. f, Rank of the target gene (self) as a feature in the cross-validated 
multi-omics models. g, Rank of the target gene (self) as a feature in the cross-
validated expression-only models. h, Comparison of model performance 
(correlation coefficients) of cross-validated models from multi-omics and 
expression-only data. Note for b–h that the performance and characteristics 
of multi-omics and expression-only models are very similar. P values indicated 
on graphs were determined by the Wilcoxon rank-sum test for two-group 
comparison (d and e).
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essentiality and somatic mutations in the same genes were compared. 
The comparison was restricted to genes with cross-validated models of 
essentiality and somatic mutations with >2% prevalence (n = 891 mod-
els). The elastic-net models were allowed to select the most informative 
predictive features for mutation and essentiality for each gene, as the 
best predictors for essentiality may not be the best features to predict 
mutation. Comparison of the area under the curve (AUC) of the two 
model sets revealed that transcriptomic features were significantly 
more predictive of gene essentiality compared to mutational status 
(Extended Data Fig. 1i). Considering that the expression-only models of 
essentiality did not include genomic features, these data further dem-
onstrate that the essentiality scores in TCGADEPMAP can be independently 
correlated with genomic features in patient tumors. Combined with 
the evidence that cross-validated gene essentiality models accurately 
predict cancer lineages, these data suggest that the cross-validated 
gene essentiality models are accurate and interpretable across a wide 
range of biological contexts, including oncogenic dependencies.

Selective dependencies in TCGADEPMAP

Strongly selective dependencies (SSDs) have been characterized in 
cell-based maps using the normality likelihood ratio test (NormLRT) 
to rank whether an essentiality fits a normal or t-skewed distribution 
(selective) across the cohort20,29. A strength of this approach is the ability 
to rank SSDs regardless of the underlying mechanisms of dependency 
(for example, lineage, genetic and expression). To compare the SSDs in 
patients with cancer and cell models, NormLRT was applied to gene effect 
scores for the cross-validated essentiality models in TCGADEPMAP and DEP-
MAP, respectively. Most SSDs (NormLRT > 100) correlated well between 
TCGADEPMAP and DEPMAP (r = 0.56, P < 0.0001), including KRAS, BRAF, 
MYCN and many other known SSDs (Fig. 2j and Supplementary Table 7). 
Although most SSDs correlated well between TCGADEPMAP and DEPMAP, 
there were several examples where the SSDs differed between patients 
and cell models (Fig. 2j,k). Notably, the druggable oncogenes (for exam-
ple, FLT3 and PTPN11) were more prominent SSDs in TCGADEPMAP patients 
than DEPMAP cell lines, whereas other notable SSDs in the DEPMAP (for 
example, ATP6V0E1) were less noticeable in TCGADEPMAP (Fig. 2j,k). The 
top predictive features for essentiality of FLT3 (self-expression) and 
ATPV6V0E1 (paralog expression) did not differ between DEPMAP and 
TCGADEPMAP, yet the distribution and prevalence of strong dependency 
scores varied across lineages between patients and cell lines (Extended 
Data Fig. 2a–d). Likewise, the dependency on PTPN11 (SHP2) was notice-
ably more selective in TCGADEPMAP than DEPMAP (Fig. 2j,k), which was 
reflected by greater essentiality in a subset of patients with breast cancer 

(BRCA) (Extended Data Fig. 2e) that was absent from BRCA cell lines 
(Extended Data Fig. 2f). A Fisher’s exact test of the genetic drivers that 
were enriched in TCGADEPMAP patients with BRCA that were most depend-
ent on PTPN11 included TP53 mutations and HER2/ERBB2 amplifications 
(Extended Data Fig. 2g), whereas FAT3 deletions and GATA3 mutations 
were depleted in these patients (Extended Data Fig. 2h). Particularly in 
the case of HER2, which signals through SHP2 and the RAS pathway, these 
data fit with the observation that RAS pathway inhibition, including 
SHP2 inhibitors, are more potent in the three-dimensional (3D) versus 
two-dimensional (2D) context30,31. Thus, the presence of TCGADEPMAP 
patients with BRCA that were highly dependent on PTPN11 is likely due to 
the 3D context of patient tumors, whereas DEPMAP BRCA cell lines with 
similar genetic drivers are not PTPN11 dependent due to the 2D context 
of cultured cells. Collectively, these data demonstrate that identifying 
SSDs can be impacted by different prevalence and distributions of the 
underlying drivers in patients and cell models, which can be overcome 
by patient-relevant dependency maps, such as TCGADEPMAP.

Clinical phenotypes and outcomes in TCGADEPMAP

Another strength of translational tumor dependency maps is the ability 
to assess the impact of gene essentiality on clinically relevant pheno-
types, such as molecular subtyping, therapeutic response and patient 
outcomes. To evaluate the utility of TCGADEPMAP for therapy-relevant 
patient stratification, an unsupervised clustering of the 100 most vari-
able gene dependencies was performed using the TCGADEPMAP BRCA 
cohort (Fig. 3a). The 100-dependency signature (DEP100) performed 
comparably to the established PAM50 signature32 in classifying BRCA 
subtypes (AUC > 0.8 for most subtypes), despite only three overlapping 
genes between PAM50 and DEP100 (Fig. 3b). Dependency subtyping with 
DEP100 predicted significantly higher ESR1 essentiality in ER-positive 
tumors (Fig. 3c) and higher HER2 essentiality in HER2-amplified tumors 
(Fig. 3d). Finally, due to the limited accessibility of therapeutic response 
data in TCGA33, we identified nine clinical datasets for molecular thera-
peutics of tumor dependencies for which we had accurate models and 
sufficient statistical power34–36. Of these nine datasets, we found seven 
out of nine dependency models significantly predicted clinical responses 
and performed better or comparable to the target gene expression in 
predicting therapeutic responses (Fig. 3e–h and Supplementary Table 8). 
Of the two nonsignificant datasets, both trended in the correct direc-
tion and would likely reach statistical significance with larger cohort 
sizes. Taken together, these data establish the physiological relevance 
of TCGADEPMAP to associate dependencies with common clinicopatho-
logical features, such as molecular subtyping and therapeutic response.

Fig. 2 | Building a translational dependency map: TCGADEPMAP. a, Schematic 
of gene essentiality model transposition from DEPMAP to TCGA, following 
alignment of genome-wide expression data to account for differences in 
homogeneous cultured cell lines and heterogenous tumor biopsies with 
stroma. b, Coefficient of determination (R2) of the cross-validated gene 
essentiality models and tumor purity before (n = 1,966) and after transcriptional 
alignment (n = 1,966). The center horizontal line represents the median (50th 
percentile) value. The box spans from the 25th to the 75th percentile. The 
whiskers indicate the fifth and 95th percentiles. A two-sided Wilcoxon rank-
sum test was performed to test for statistical significance. c, Uniform Manifold 
Approximation and Projection (UMAP) visualization of normalization of 
genome-wide transcriptomes improves alignment between cultured cells and 
patient tumor biopsies with contaminating stroma. d, Correlation coefficients 
of essentiality profiles of different lineages of cultured cell models and TCGA 
patient tumors. e, Unsupervised clustering of predicted gene essentiality scores 
across TCGADEPMAP revealed strong lineage dependencies. Blue indicates genes 
with stronger essentiality and red indicates genes with less essentiality. f, KRAS 
dependency was enriched in TCGADEPMAP lineages (n = 9,593) with high frequency 
of KRAS GOF mutations, including colon adenocarcinoma (COAD), LUAD, STAD, 
READ, esophageal carcinoma (ESCA) and PAAD. g, KRAS essentiality correlated 
with KRAS mutations in all TCGADEPMAP lineages (n = 532 for KRASmut and n = 7,049 
for KRASwt). h, BRAF dependency in TCGADEPMAP (n = 9,593) was enriched in 

SKCM, which has a high frequency of GOF mutations in BRAF. i, BRAF essentiality 
correlated with BRAF mutations in all TCGADEPMAP lineages (n = 559 for BRAFmut and 
n = 7,022 for BRAFwt). For f–i, the center horizontal line represents the median 
(50th percentile) value. The box spans from the 25th to the 75th percentile. The 
whiskers indicate the fifth and 95th percentiles. For g–i, a two-sided Wilcoxon 
rank-sum test was performed to test for statistical significance. j, Scatter-plot 
of model selectivity in TCGADEPMAP and DEPMAP, as determined by normality 
likelihood (NormLRT). k, Ranking of model selectivity between in TCGADEPMAP 
and DEPMAP, as determined by the NormLRT scores. ***P < 0.001, as determined 
by the Wilcoxon rank-sum test for two-group comparison and Kruskal–Wallis 
followed by Wilcoxon rank-sum test with multiple test correction for the multi-
group comparison. CNS, central nervous system; PNS, peripheral nervous 
system; ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; 
CESC, cervical and endocervical cancers; CHOL, cholangiocarcinoma; GBM, 
glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; 
KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell 
carcinoma; LGG, lower-grade glioma; LIHC, liver hepatocellular carcinoma; 
MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PRAD, prostate 
adenocarcinoma; SARC, sarcoma; TGCT, testicular germ cell tumors; THCA, 
thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial 
carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.
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The ability to associate gene essentiality with patient survival is a 
unique strength of TCGADEPMAP, which is not accessible using cell-based 
dependency maps. Moreover, outcomes driven by perturbations of 

oncogenic pathways and genetic drivers of human cancers are likely 
not captured by gene expression alone and rather require a readout 
of gene essentiality. To test this possibility, the cross-validated gene 
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essentiality models (n = 1,966) were tested for association with the 
progression-free interval (PFI) in TCGADEPMAP. Among 29 cancer line-
ages that are well powered for PFI analysis33, 105 known genetic drivers 
of human cancer were significantly associated with the PFI of TCGA 
patients (Supplementary Table 9), including 29 that were prognostic in 
at least four cancer lineages (Fig. 3i,j). For example, a stronger depend-
ency on the druggable oncogene, STAT3 (ref. 35), was significantly 
associated with a shortened time to disease progression of six different 
cancers (Fig. 3i,j). Likewise, multiple other prevalent genetic drivers 
of human malignancies were associated with a significantly shorter 
PFI, including PAX5 and PDGFRA (Fig. 3i,j). Both proteins have been 
investigated previously as prognostic indicators of poor outcomes 
by expression analysis in patient biopsies37,38 and this study shows that 
dependency on these oncogenes is associated with worse outcome in 
patients using a translational dependency map.

Synthetic lethalities in TCGADEPMAP

In addition to illuminating lineage and oncogenic dependencies, the 
DEPMAP has dramatically expanded the list of potential synthetic 
lethalities (the loss of a gene sensitizes tumor cells to inhibition of a 
functionally redundant gene within the same pathway)6,16,17,39,40; how-
ever, one of the current limitations of the DEPMAP is that the avail-
able cancer cell models do not yet fully recapitulate the genetic and 
molecular diversity of TCGA patients25. Thus, we assessed the landscape 
of predicted synthetic lethalities with loss-of-function (LOF) events 
(damaging mutations or deletions) in TCGADEPMAP. Lasso regression 
analysis of gene essentiality profiles and 25,026 LOF events detected 
in TCGADEPMAP yielded 633,232 synthetic lethal candidates (FDR < 0.01) 
(all candidates added as an R object to a figshare repository), which 
were too numerous to experimentally validate by current methods. 
To prioritize the synthetic lethal candidates, the gene interaction 
scores were correlated with the mutual exclusivity of corresponding 
mutations in TCGADEPMAP, which narrowed the list to 28,609 candidates 
(FDR < 0.01). Multiple additional criteria were then applied to refine 
the list further by enriching for predicted paralogs with close phylo-
genic distance to prioritize candidates with redundant functions due 
to sequence homology. All told, this approach identified many known 
synthetic lethal pairs (for example, STAG1/STAG2, SMARCA2/SMARCA4 
and EP300/CREBBP)41–43 and previously untested synthetic lethal can-
didates, demonstrating that TCGADEPMAP is well powered to predict 
synthetic lethal relationships with LOF events in patient tumor biopsies 
(Extended Data Fig. 3a–d and Supplementary Table 10).

Synthetic lethalities that were predicted with LOF events in the 
TCGADEPMAP (n = 604 pairs) were experimentally tested using a mul-
tiplexed CRISPR/AsCas12a screening approach across representa-
tive cell models of five cancer lineages (Fig. 4a,b). Additional pairs 
(n = 261 controls) were added to the library to control for screen per-
formance, including essential paralog pairs and nonessential pairs of 
tumor suppressor genes (TSGs) and interacting partners (Supplemen-
tary Table 10). An initial pilot screen was performed using five cancer 

cell models, which experimentally validated 69 TCGADEPMAP synthetic 
lethalities in at least one representative cell model (Supplementary 
Table 11). As these data were being generated, an enhanced AsCas12a 
(enAsCas12a) enzyme was reported to be compatible with CRISPR/
AsCas12a libraries44, enabling replication of the initial pilot screens 
and expansion to a total of 16 cancer cell models. Notably, the replica-
tion of the initial screens was highly concordant across the five cell 
models in common (average r = 0.69) (Extended Data Fig. 3e–i), as well 
as detection of increased depletion of essential controls and synthetic 
lethal partners compared to nonessential controls (Fig. 4c). In addi-
tion to novel pairs, multiple previously reported synthetic lethalities 
(HSP90AA1/HSP90AB1 (ref. 45), DDX19A/DDX19B45, HDAC1/HDAC2 
(refs. 45,46), SMARCA2/SMARCA4 (refs. 45,46), EP300/CREBBP43, 
STAG1/STAG2 (refs. 42,46) and CNOT7/8 (ref. 47)) were replicated across 
multiple cell lines in both cohorts (Supplementary Table 11), demon-
strating the robustness of the multiplex CRISPR/Cas12a screening plat-
form to test synthetic lethalities. Notably, as observed elsewhere39,41,46, 
the sensitivity to synthetic lethalities varied between cell models and 
lineages, implicating the prevalence of unknown modifiers of synthetic 
lethality that manifest in different cellular contexts and are yet to be 
fully understood.

Of the 604 synthetic lethalities predicted by TCGADEPMAP, a total 
of 78 (13%) were experimentally validated in at least one representa-
tive cell model (Fig. 4d,e and Supplementary Table 11). For example, 
double knockout (DKO) of CNOT7/8 was synthetic lethal in 11 out of 14 
cell lines that were screened (Fig. 4e) and was orthogonally validated 
in five cell models by DKO using ribonucleoprotein (RNP) in both 2D 
monolayer and 3D spheroid assays (Fig. 4f,g). Likewise, doxycycline 
(dox)-inducible loss of CNOT8 was synthetic lethal in HT29 cells that 
lacked CNOT7 in both in vitro 2D monolayers (Fig. 4h) and in vivo mouse 
xenograft studies (Fig. 4i). Notably, loss of CNOT7 in single knockout 
(KO) cells coincided with elevated CNOT8 protein (Extended Data 
Fig. 3j), fitting with previous observations that loss of CNOT7 increases 
integration of CNOT8 into the CCR4–NOT complex48. Likewise, CNOT8 
protein levels were inversely correlated with CNOT7 copy numbers 
in patients with lung adenocarcinoma (LUAD) and BRCA in the NCI 
Clinical Proteomic Tumor Analysis Consortium cohort (Extended 
Data Fig. 3k). Collectively, these observations demonstrate the power 
of TCGADEPMAP to detect patient-relevant synthetic lethal mechanisms, 
which can be orthogonally validated and provide therapeutic targets 
for drug discovery.

Another discovery using TCGADEPMAP was the prediction of PAPSS1 
synthetic lethality with deletion of PAPSS2 and the neighboring tumor 
suppressor, PTEN, which were frequently co-deleted in TCGA patient 
tumors (43% co-incidence) yet were largely unaffected in cancer 
cell lines (Extended Data Fig. 4a–g). PAPSS1/PAPSS2 are functionally 
redundant enzymes essential for synthesis of 3′-phosphoadenosine 
5′-phosphosulfate (PAPS), which is required for all sulfonation reac-
tions49, suggesting that loss of PAPSS1/PAPSS2 is synthetic lethal 
due to the inability to sulfonate proteins. To test this hypothesis, 

Fig. 3 | Translating TCGADEPMAP to clinically relevant phenotypes and 
outcomes. a, Unsupervised clustering of the top 100 dependencies in TCGA 
breast cancer patients. b, A ROC–AUC analysis was used to test the accuracy 
of calling breast cancer subtypes using the top 100 dependencies. c, ESR1 
dependencies are strongest in ER-positive luminal BRCA (n = 96 for basal-like, 
n = 57 for HER2+, n = 231 for luminal A, n = 126 for luminal B and n = 7 for normal-
like). d, HER2 dependencies are strongest in HER2-amplified BRCA (n = 96 for 
basal-like, n = 57 for HER2+, n = 231 for luminal A, n = 126 for luminal B and n = 7 for 
normal-like) e, HER2 dependency predicts trastuzumab response in patients with 
BRCA (n = 6 for no response, n = 33 for partial response and n = 9 for complete 
response). f, BRAF dependency predicts sorafenib response in patients with 
hepatocellular cancer (n = 46 for non-responder and n = 21 for responder).  
g, EGFR dependency predicts cetuximab response in patients with head and neck 
cancer (n = 26 for non-responder and n = 14 for responder). For c–g, *P < 0.05, 

**P < 0.01 and ***P < 0.001, as determined by the Wilcoxon rank-sum test for 
two-group comparison and Kruskal–Wallis test followed by a Wilcoxon rank-sum 
test with multiple test correction for the multi-group comparison. For boxplots 
in c–g, the center horizontal line represents the median (50th percentile) value. 
The box spans from the 25th to the 75th percentile. The whiskers indicate the 
5th and 95th percentiles. h, AUC values for drug response predictions based on 
essentiality, expression and random essentiality scores generated via random 
sampling (control). i, Top gene essentialities associated with the PFI by univariate 
Cox proportional hazard regression model across multiple lineages in TCGADEPMAP 
(Benjamini–Hochberg, FDR < 0.2). j, HRs of the top essentialities across 
TCGADEPMAP. Blue indicates a greater dependency associated with worse outcome 
and red indicates a greater dependency is associated with better outcome. 
 P values and HRs are shown in Supplementary Table 9.
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PAPSS1/PAPSS2 were targeted in H1299 spheroids by RNP, followed by 
measurement of spheroid growth and sulfonation levels of heparan 
sulfate (HS) proteoglycan (HSPG) chains on the cell surface by flow 
cytometry. Confirming the CRISPR/Cas12 screen data (Fig. 5a), dual 

loss of PAPSS1 and PAPSS2 significantly reduced H1299 spheroid growth 
compared to controls (Fig. 5b and Extended Data Fig. 4h,i), which 
coincided with loss of HSPG sulfonation (Fig. 5c). Likewise, targeting 
PAPSS1 by RNP in UMUC3 cells, which endogenously lack PAPSS2 and 
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PTEN, also significantly depleted HSPG sulfonation and coincided 
with significant spheroid growth reduction, which could be rescued 
by addition of exogenous heparan sulfate (Fig. 5d and Extended Data 
Fig. 4h,j). Finally, PAPSS1/PAPSS2 synthetic lethality was confirmed 
in vivo, as demonstrated by a significant tumor growth reduction 
of UMUC3 tumors without PAPSS1 and PAPSS2 compared to control 
tumors lacking only PAPSS2 (Fig. 5e and Extended Data Fig. 4k). Taken 
together, these data demonstrate that translational dependency maps, 
such as the TCGADEPMAP are powerful tools to uncover previously under-
represented synthetic interactions in cancer models that are likely to 
be patient relevant.

TCGADEPMAP is unique in its ability to uncover potential synthetic 
lethalities that can be related to patient outcomes, enabling the prior-
itization of the experimentally validated synthetic lethalities that cor-
relate with the worst outcome and therefore likely to have the greatest 
clinical impact if druggable. To test this possibility, a Cox log-rank test 
was used to assess overall survival (OS) of TCGA patients who corre-
lated with predicted gene essentiality by TCGADEPMAP and LOF events 
(mutation, deletion or both) of the putative synthetic lethal partner. 
After controlling for tumor lineage, PAPSS1 dependency in TCGADEPMAP 
was correlated with significantly worse OS (hazard ratio (HR) = 0.61, 
P = 0.0004) in patients with PAPSS2 deletion (Fig. 5f), demonstrating 
that PAPSS1 is a synthetic lethality target with potentially high transla-
tional impact. Collectively, these data demonstrate that translational 
dependency maps can enable the discovery, validation and translation 
of synthetic lethalities.

Constructing PDXEDEPMAP

In addition to building TCGADEPMAP, a similar approach was applied to 
generating an orthogonal translational dependency map using the 
PDX Encyclopedia (PDXEDEPMAP)50. As outlined in Fig. 6a, PDXEDEPMAP was 
assembled by transferring the cross-validated 1,966 expression-only 
models from the DEPMAP to the PDXE (n = 191 tumors) using the aligned 
genome-wide expression profiles from the PDXE (Supplementary 
Table 12). Unsupervised clustering of gene essentialities across five 
well-represented lineages in PDXEDEPMAP confirmed that lineage is a 
key driver of gene dependencies (Fig. 6b), fitting with the observa-
tions made in TCGADEPMAP (Fig. 2e). PDXEDEPMAP also detected markedly 
stronger KRAS essentiality in KRAS-mutant PDX of pancreatic ductal 
carcinoma (PDAC) and colorectal carcinoma (CRC) lineages (Fig. 6c,d), 
whereas BRAF essentiality was strongest in BRAF-mutant PDX of cutane-
ous melanoma (CM) (Fig. 6e,f). These data collectively demonstrate 
that the PDXEDEPMAP performed comparably to TCGADEPMAP and is well 
powered to detect gene essentiality signals in PDX models.

In addition to orthogonal validation of TCGADEPMAP, a unique 
strength of PDXEDEPMAP is the ability to assess gene essentiality in the 
context of therapeutic responses across five cancer lineages and 15 
molecular therapies50. To test the ability of gene essentiality to predict 
the response to corresponding targeted therapies, the change in PDX 
burden from baseline to experimental end point was correlated with 

target gene essentiality. This revealed that 80% of drugs (12 of 15) were 
significantly correlated (P < 0.05) with the predicted essentiality of 
the target gene (Supplementary Table 13). For example, trastuzumab 
response in the PDXEDEPMAP was strongly predicted by HER2 dependency 
(R = 0.4849, P = 0.002, AUC = 0.75), in line with the predictive power 
of HER2 dependency on trastuzumab responsiveness in patients with 
HER2-amplified BRCA (Fig. 3e). Other examples, such as erlotinib 
(R = 0.4937, P = 0.01, AUC = 0.78) and cetuximab (R = 0.2293, P = 0.06, 
AUC = 0.83), which target the same gene (EGFR), provide the oppor-
tunity to explore dependency mechanisms of therapeutic resistance 
across modalities. Comparisons of PDX responses to erlotinib or cetuxi-
mab revealed dependencies within two common pathways: the SWI/
SNF complex (SMARCA2 and SMARCD1) and protein trafficking (EMC4, 
EMC6, VPS39 and MAPK14) (Fig. 6g,h). Notably, components of both 
pathways have been implicated in resistance to EGFR inhibitors51,52, 
suggesting that targeting these dependencies would likely improve 
patient outcomes. Taken together, these data demonstrate the ability 
of gene essentiality to predict therapeutic response and highlight the 
translatability of PDX modeling to patient-relevant clinical outcomes.

Translating gene tolerability in GTEXDEPMAP

A final objective of this study was to define gene essentiality in the 
context of healthy tissues, which would provide a resource for pri-
oritizing tumor dependencies with the best predicted tolerability. 
To achieve this objective, the expression-based dependency models 
from DEPMAP were transposed using the aligned expression data from 
GTEX (GTEXDEPMAP), a compendium of deeply phenotyped normal tis-
sues collected from postmortem healthy donors (n = 948)28 (Fig. 7a 
and Supplementary Table 14). To assess the sensitivity of GTEXDEPMAP 
to dependencies with low tolerability, the molecular targets of drugs 
with reported toxicities in the liver and blood (n = 241) were compared 
across GTEXDEPMAP (Supplementary Table 15). This revealed that the aver-
age essentiality was higher in liver and blood than other normal tissues 
(Fig. 7b). Likewise, unsupervised clustering of the 1,966 cross-validated 
gene essentiality models revealed strong tissue-of-origin dependencies 
in healthy organs (Fig. 7c), suggesting that tissue-specific biological 
context also contributes to gene essentiality in normal physiological 
settings. Taken together, these data demonstrate that GTEXDEPMAP is 
sensitive to known toxicities, which cluster around different healthy 
organ types.

Comparing essentiality scores of known druggable oncogenes in 
TCGADEPMAP with GTEXDEPMAP revealed greater dependency in malignant 
tissues versus a healthy tissue of origin. For example, KRAS and BRAF 
essentialities seem to be concomitantly dependent on lineage and 
genetic drivers, as the healthy tissues of origin were predicted to be 
significantly less affected in the GTEXDEPMAP compared to TCGADEPMAP 
(Fig. 7d,e). Likewise, similar observations were made for other onco-
genic drivers that are approved therapeutic targets in patients with can-
cer, such as HER2-amplified BRCA (Extended Data Fig. 5a). In contrast, 
there was markedly less separation in the predicted essentialities of 

Fig. 4 | Using TCGADEPMAP to translate synthetic lethalities in human cancer. 
a, Schematic of the CRISPR/Cas12 library multiplexed guide arrays targeting 
one or two genes per array. b, Schematic of the synthetic lethality screening 
approach using the CRISPR/Cas12 library. All CRISPR screens were performed 
as n = 3 biological replicates per cell line. c, Violin plots of target-level CRISPR of 
the average log2 fold change (FC) across all tested cell lines for nontargeting (NT) 
guide (neg CTRL), single knockout guides targeting essential genes (single KO 
CTRL), DKO guides targeting essential genes (DKO CTRL), single knockout guides 
of TCGADEPMAP candidates (single KO) and DKO guides of TCGADEPMAP candidates 
(DKO). d, Rank plot of target-level gene interaction (GI) scores averaged across 
n = 14 cell lines in the CRISPR/Cas12 multiplexed screening (A549, DETROIT562, 
FADU, H1299, H1703, HCT116, HSC2, HSC3, HT29, MDAMB231, MIAPACA2, PANC1, 
PC3M and SNU1), including the top five synthetic lethalities (table insert). The 
black line indicates the mean and gray error bars show ±s.e.m. e, Distribution 

of synthetic lethal candidates from TCGADEPMAP with experimental evidence 
of synthetic lethality in the CRISPR/Cas12 multiplexed screening across 14 
cancer cell lines. A blue box indicates a GI score < −2. f,g, Cell viability assessed 
by CellTiterGlo (CTG) luminescence at 7 days after single (KO) or dual (DKO) 
CNOT7/CNOT8 knockouts, normalized to NT controls in five cell lines grown in 2D 
monolayers (f) or 3D spheroids (g); n = 3 biological replicates per cell model per 
condition with the exception of n = 5 biological replicates for Hs578T grown in 2D 
monolayer. Error bars are mean ± s.d. h, Crystal violet staining of CNOT7−/− clones 
C1 and C2 stably expressing nontargeting (sgNT) or CNOT8-targeting (sgCNOT8) 
dox-inducible guide constructs, following 7 days of dox treatment (Methods).  
i, Tumor xenograft studies of HT29 clones grown in mice fed dox-containing food 
from day 0 (gray and green lines) or beginning on day 19 (blue lines). n = 5 mice 
per group. Error bars are ±s.d. Asterisks in f, g and i reflect two-tailed, unpaired 
Student’s t-test P values; *P < 0.05; **P < 0.01; ***P < 0.001.
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malignant tumors and healthy tissues of origin for molecular therapies 
that have yet to be successful in clinical trials (Supplementary Table 16). 
To refine the list of oncogenic pathways with significant differences in 

tumor efficacy and healthy tissue-of-origin tolerability, we compared 
dependency (TCGADEPMAP) and tolerability (GTEXDEPMAP) scores across 
all genes and tissues (Fig. 7f). Pathway analysis of the strongest tumor 
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dependencies with the least tissue-of-origin toxicity revealed enrich-
ment of multiple oncogenic pathways and pathophysiological processes 
(Supplementary Table 17), including dysregulation of oxidative phos-
phorylation (P = 5.8 × 10−11) and mitochondrial translation (P = 2.9 × 10−20) 
pathways that were enriched in LUAD compared to healthy lung (Fig. 7g 
and Extended Data Fig. 5b). Combined, these observations suggest 
that predicted gene essentiality in the context of a driver mutation and 

correspondingly low essentiality within the healthy tissue of origin is 
likely to identify efficacious drug targets with acceptable tolerability.

Tool for visualizing translational dependencies
To enable visualization of the data, we have provided an interactive 
web-based application (https://xushiabbvie.shinyapps.io/TDtool/) 
for exploring the data within TCGADEPMAP, PDXEDEPMAP and GTEXDEPMAP.

a

Rank
0

–5

0

5

500 1,000

0

0.5

1.0

1.5
H1299

PAPSS1

Ctrl

HS 10
 µg m

l–
1

HS 50 µg m
l–
1

PAPSS2

PAPSS1/2

G
en

e 
in

te
ra

ct
io

n 
sc

or
e

Sp
he

ro
id

 s
iz

e,
no

rm
al

iz
ed

 to
 N

T 
ct

rl
Sp

he
ro

id
 s

iz
e,

no
rm

al
iz

ed
 to

 N
Tc

tr
l

b H1299

*
**

NT

c
H1299 (PAPSS2+/+) H1299 (PAPSS2+/+

NT

51%

52%

43%

0.7%

51%

0.8%

1.7%

0.7%

10E4 (FITC)
101 102 103 104 105

10E4 (FITC)
101 102 103 104 105

PAPSS1

PAPSS1

PAPSS1 + HepIII*

PAPSS2

PAPSS1/2

NT

NT + HepIII*

d UMUC3

*
NS NS

e f
UMUC3 NT No predicted PAPSS1/2 SL

Predicted PAPSS1/2 SL
HR = 0.61, FDR = 0.0004

***

UMUC3 PAPSS1-KO

Days after implantation
0

0

500

1,000

1,500 1.0

0.8

0.6

0.4

0.2

0
1 5 8 12 15 19 22

0 2,000 4,000 6,000 8,000 10,000

Days

Tu
m

or
 s

iz
e 

(m
m

3 )

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0

0.5

1.0

1.5

PAPSS1/PAPSS2 6 –2.71
2
3
4
5

–3.2
SAR1A/SAR1B 7

8
9
10 –2.4

–2.4
–2.5
–2.6

TNPO1/TNPO2
MYL12A/MYL12B
DDX19A/DDX19B

–3.2
–3.1
–3.1
–2.9

MOAP/PNMA1

CREBBP/EP300
NUDC/WDR61
ANKRD26P1/PTPRD

PTPRD/SL31A1

Gene pair Rank Score Rank ScoreGene pair
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PAPSS1/PAPSS2, is highlighted in blue. All CRISPR screens were performed as 
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2-phenylindole.
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Fig. 6 | Building a translational dependency map in patient-derived 
xenografts: PDXEDEPMAP. a, Schematic of gene essentiality model transposition 
from DEPMAP to PDXE, following alignment of genome-wide expression data to 
account for differences in homogeneous cultured cell lines and PDX samples with 
contaminating stroma. b, Unsupervised clustering of predicted gene essentiality 
scores across five lineages in PDXEDEPMAP confirmed similar lineage drivers of gene 
dependencies, as observed in TCGADEPMAP. Blue indicates genes with stronger 
essentiality and red indicates genes with less essentiality. c, KRAS dependency 
was enriched in PDXEDEPMAP lineages with high frequency of KRAS GOF mutations, 
including CRC and PDAC. n = 43 for BRCA, n = 51 for CRC, n = 27 for NSCLC, n = 39 
for PDAC and n = 32 for CM. d, KRAS essentiality correlated with KRAS mutations 
in all PDXEDEPMAP lineages (n = 74 for KRASmut and n = 117 for KRASwt). e, BRAF 

dependency in PDXEDEPMAP was enriched in CM, which has a high frequency of GOF 
mutations in BRAF. n = 43 for BRCA, n = 51 for CRC, n = 27 for NSCLC, n = 39 for 
PDAC and n = 32 for CM. f, BRAF essentiality correlated with BRAF mutations in all 
TCGADEPMAP lineages (n = 32 for BRAFmut and n = 159 for BRAFwt). For c–f, the center 
horizontal line represents the median (50th percentile) value. The box spans from 
the 25th to the 75th percentile. The whiskers indicate the fifth and 95th percentiles. 
g, Top correlated gene essentiality models that correlate with PDX response to 
erlotinib in PDXEDEPMAP. h, Top correlated gene essentiality models that correlate 
with PDX response to cetuximab in PDXEDEPMAP. ***P < 0.001, as determined by the 
Wilcoxon rank-sum test for two-group comparison (d and f) and Kruskal–Wallis 
test followed by a Wilcoxon rank-sum test with multiple test correction for a multi-
group comparison (c and e). NSCLC, non-small cell lung cancer.
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Fig. 7 | Building a translational dependency map in normal tissues: 
GTEXDEPMAP. a, Schematic of gene essentiality model transposition from 
DEPMAP to GTEX, following alignment of genome-wide expression data to 
account for differences in homogeneous cultured cell lines and healthy tissue 
biopsies. b, Average gene essentiality profile across healthy tissues of GTEXDEPMAP 
(n = 17,382) for molecular targets with known liver and blood toxicities (in blue). 
c, Unsupervised clustering of predicted gene essentiality scores across healthy 
tissues. Blue indicates genes with stronger essentiality and red indicates genes 
with less essentiality. d, KRAS essentiality is significantly higher in PAAD with 
GOF mutations compared to healthy pancreas in GTEXDEPMAP (n = 146 for cancer 
with n = 106 KRASmut and n = 40 KRASwt, n = 328 for normal) e, BRAF essentiality 
is significantly higher in SKCM with GOF mutations compared to normal skin 
GTEXDEPMAP (n = 319 for cancer with n = 165 BRAFmut and n = 154 BRAFwt, n = 1,809 

for normal) For b, d, and e, the center horizontal line represents the median 
(50th percentile) value. The box spans from the 25th to the 75th percentile. The 
whiskers indicate the fifth and 95th percentiles. f, Global differences between 
the predicted target efficacy score (TCGADEPMAP) and the healthy tissue-of-origin 
tolerability score (GTEXDEPMAP). g, STRING network analysis of the top 100 
LUAD targets with the greatest predicted tolerability in healthy lung reveals 
significant connectivity (P < 1 × 10−16) and gene ontology enrichment oxidative 
phosphorylation (blue-colored spheres; P = 5.8 × 10−11) and mitochondrial 
translation (red-colored spheres; P = 2.9 × 10−20). ***P < 0.001, as determined by 
a Wilcoxon rank-sum test for two-group comparison and Kruskal–Wallis test 
followed by a Wilcoxon rank-sum test with multiple test correction for a multi-
group comparison (d and e).

http://www.nature.com/natcancer


Nature Cancer | Volume 5 | August 2024 | 1176–1194 1188

Article https://doi.org/10.1038/s43018-024-00789-y

Discussion
Cancer dependency maps have accelerated the discovery of tumor 
vulnerabilities, yet translating these findings to predict the therapeutic 
window of potential drug targets in patients remains challenging. Here, 
we used machine learning to build translational dependency maps in 
patient tumors and normal tissue biopsies that would enable tumor 
vulnerabilities to be studied in the context of a drug target’s efficacy, 
tolerability and outcome. The translational dependency maps were 
built using elastic-net models of transcriptomic features to predict gene 
essentiality. As the predictive models of essentiality did not include 
genomic features, the dependency scores could be independently 
tested for associations with genetic drivers in patient tumors. Moreo-
ver, these expression-only models of gene essentiality could be applied 
to healthy tissues that do not have appreciable levels of the somatic 
alterations that are observed in malignant tissues28. To illustrate how 
these data can be integrated to predict a target’s therapeutic window, 
we showed that KRAS and BRAF dependencies were elevated in patient 
tumors with GOF mutations (TCGADEPMAP and PDXEDEPMAP), which was far 
less pronounced in normal tissue biopsies lacking these driver muta-
tions (GTEXDEPMAP). Combined, these new translational dependency 
maps offer a unique and clinically relevant aspect to gene essentiality 
that is not currently accessible in the traditional cell-based depend-
ency maps. Finally, we made the dependency maps freely accessible 
in a user-friendly and interactive web-based application for exploring 
and visualizing the data.

During the completion of this study, Chiu et al.27 took a com-
plementary approach to building a translational dependency map 
(DeepDEP) using deep learning and the genomic, epigenomic and 
transcriptomic profiles of TCGA patients and DEPMAP cell lines. 
Here, we used elastic-net regularized regression models of expres-
sion data for predicting gene essentiality and tolerability, as these 
expression-based models performed comparably to multi-omics mod-
els and can be applied to malignant tissue (TCGADEPMAP and PDXEDEPMAP) 
and nonmalignant tissue (GTEXDEPMAP). The DeepDEP authors also high-
lighted that a simplified deep-learning model using expression only 
(Exp-DeepDEP) performed comparably well to DeepDEP27, suggesting 
that both approaches are dominated by expression data27. For lack of 
other ground truths, we compared the predicted tumor dependencies 
of TCGADEPMAP and DeepDEP by pan-cancer lineage and BRCA subtypes, 
as these were annotated by TCGA and DEPMAP. Compared to Deep-
DEP, the predicted dependencies by TCGADEPMAP were comparable in 
identifying cancer lineages and BRCA subtypes (Extended Data Fig. 6). 
Thus, the collective data demonstrated that the elastic-net models 
underlying TCGADEPMAP, PDXEDEPMAP and GTEXDEPMAP performed well 
compared to DeepDEP. As additional studies become available, more 
in-depth benchmarking of approaches for translating dependencies 
is warranted, including the ability to detect genetic drivers, synthetic 
lethalities and other patient-relevant features.

A strength of translational dependency maps is the ability to 
recapitulate patient tumor context, therapeutic responses and many 
aspects of disease outcomes. Fitting with observations that the tissue 
of origin dominates the molecular landscape of cancer53, TCGADEPMAP 
and PDXEDEPMAP revealed that tumor vulnerabilities were tightly cor-
related with disease lineage and subtype. Oncogenic dependencies 
were also predictive of response to molecularly targeted therapeutics 
in both TCGADEPMAP and PDXEDEPMAP, as would be expected based on the 
response rates for molecular therapeutics targeting oncogenic drivers 
in patients. In total, 85% of oncogenic dependencies had a GOF event 
associated with increased dependency in patient tumors and 28% 
could be associated with PFI, including some that predicted better 
or worse outcomes depending on the cancer lineage. These data fit 
with the observation that ~10% cancer-driver genes have evidence 
for both oncogenic and suppressive characteristics depending on 
tumor context. The selectivity of some oncogenic dependencies also 
differed between patients and cell models, including FLT3, ATPV6V0E1 

and PTPN11. Some of these discrepancies seemed to be attributed to 
cohort-specific distributions of the underlying drivers of SSDs (for 
example, FLT3 and ATPV6V0E1), whereas others were likely attribut-
able to different pathophysiological contexts, such as the 3D contexts 
of intact tumors versus the 2D contexts of cultured cells (for example, 
PTPN11). Taken together, these data highlight the complexities of 
interpreting gene essentiality in patient-relevant contexts, and future 
studies are warranted to further translate the underlying mechanisms 
of novel tumor dependencies that impact patient outcomes.

TCGADEPMAP detected multiple known synthetic lethalities 
(for example, STAG1/STAG2, SMARCA2/SMARCA4 and EP300/CRE
BBP)42,43,45,46, as well as synthetic lethalities that are less well charac-
terized (for example, CNOT7/CNOT78 and PAPSS1/PAPSS2). As reported 
elsewhere39,41,46, synthetic lethal interactions varied widely when tested 
across different cancer cell models, suggesting that the currently 
available models are insufficient to account for all patient-relevant 
contexts. Nonetheless, both a commonly shared synthetic lethal-
ity (CNOT7/CNOT78) and a more selective synthetic lethality 
(PAPSS1/PAPSS2) were validated in vitro and in vivo. CNOT7/CNOT78 
are paralogous subunits of the CCR4–NOT complex that mediates 
messenger RNA stability47, fitting with the observation that loss of both 
subunits was broadly synthetic lethal. PAPSS1/PAPSS2 are paralogous 
synthases of PAPS, which is required for sulfonation reactions49. We 
hypothesized that loss of PAPSS2 is likely driven by its proximity to 
PTEN and is an example of collateral deletion in patient tumors54. This 
observation was confirmed by the synthetic lethal interaction of PAPSS1 
in UMUC3 cells that lacked PAPPS2 and PTEN, which coincided with the 
inability of these cells to sulfonate proteins. Notably, the unique ability 
of TCGADEPMAP to detect and associate synthetic lethal mechanisms with 
patient outcomes revealed a worse OS of patients with an endogenous 
loss of PAPSS2 and a predicted synthetic lethality with PAPSS1 depend-
ency. Thus, these data collectively highlight the benefits of transla-
tional dependency maps that closely match the pathophysiological 
contexts of intact patient tumors and the diversity of patient genomic 
datasets to identify clinically relevant mechanisms1,55.

A unique aspect of this study was the ability to systematically com-
pare gene essentiality associated with somatic mutations in TCGADEPMAP 
with the healthy tissue-of-origin tolerability profiles in GTEXDEPMAP. Sys-
tematically expanding this analysis across all gene essentiality models 
in TCGADEPMAP and GTEXDEPMAP revealed wide variability in the predicted 
tolerability windows, implicating the existence of other dependen-
cies with strong genetic drivers that are likely to be more tolerable as 
therapeutic targets; however, when interpreting these data, we also 
recommend exercising caution, as the tolerability windows predicted 
by comparing tissue-of-origin gene essentiality between TCGADEPMAP 
and GTEXDEPMAP likely does not yet fully capture the other dose-limiting 
toxicities that pose challenges to clinical drug development56. As such, 
future efforts to model gene essentiality in healthy tissues should 
expand to incorporate systems approaches to integrating tolerability 
signals across multi-organ physiological pathways and systems.

The translational dependency maps presented in this study pro-
vide insights into gene essentiality and tolerability in the clinical con-
text of patient tumors and healthy tissues. The ability of these maps to 
accurately translate dependencies to patients is reliant on the ability 
to build predictive models from cell-based mapping, which is still 
at the early stages and is expected to require 20× more data to fully 
predict gene essentiality7. Further, the observations that cell-based 
dependencies vary between 2D and 3D settings57 and are impacted 
by crosstalk with the tumor microenvironment58, suggests that gene 
essentiality is contextual and requires models with greater relevance 
to intact tumors, such as organoids. Likewise, it is equally plausible 
that accurately interpreting translational dependencies will require 
a deeper understanding of clonal heterogeneity with patient tumors 
that is lacking from homogenous cancer cell lines. To reach the full 
potential of translational dependency mapping, the catalog of patient 
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genomic datasets will also likely require expansion to capture various 
stages of disease progression, including tumorigenesis2, metasta-
sis3,59 and therapeutic resistance3,4,59. Furthermore, as precision cancer 
clinical trials continue to expand (for example, MSK-IMPACT)4, it will 
be increasingly possible to refine translational dependency maps by 
testing outcomes of molecular therapeutics with predicted target 
essentiality. The utility of translational ‘tolerability’ maps in healthy 
tissues (for example, GTEXDEPMAP) remains to be fully explored and 
will likely benefit from further refinements to better capture aspects 
of dose-limiting toxicities that impact drug development. To this end, 
we postulate that modeling gene tolerability could be best assessed in 
normal cell types by pairing CRISPR perturbations with single-cell RNA 
sequencing60,61 to broadly capture the alterations of pathways required 
for healthy tissue homeostasis. Ultimately, we postulate that predictive 
modeling of dependency and tolerability in patients will increase the 
success of drug discovery by preemptively prioritizing targets with the 
best therapeutic index (high dependency and tolerability).

Methods
Predictive modeling of gene essentiality using DEPMAP data
Two sets of elastic-net regression models were generated to predict 
gene essentiality from the DEPMAP (n = 897 cell lines) with RNA alone 
(expression only) or combined with mutation and copy number profiles 
(multi-omics). Gene effect scores were estimated by CERES24, which 
measures the dependency probability of each gene relative to the dis-
tribution of effect sizes for common essential and nonessential genes 
within each cell line25. Because many genes do not impact cell viability 
(CERES < −0.5), elastic-net models were attempted only for genes with 
at least five dependent and nondependent cell lines, which included 
7,260 out of 18,119 genes (40%) with effects scores in the DEPMAP (1Q21 
release). Genome-wide datasets (19,005 genes) for RNA-seq, muta-
tions and copy number variants (log2 relative to ploidy + 1) for the 897 
cell lines were downloaded directly from the DEPMAP (1Q21; https://
depmap.org/portal/). The ‘glmnet’ package (v.4.1.3)23 was used to build 
elastic-net regularized regression models with balanced weights for 
L1 and L2 norm regularization. The α values were kept constant at 0.5 
for all models. Models were tenfold cross-validated using ‘lambda.
min’ from cv.glmnet from the glmnet R package (100 lambdas tested 
per model by default) to select the lambda showing the minimum 
error balanced with the prediction performance and the number of 
features selected, as described previously61. The performance of the 
optimal model was then assessed by Pearson’s correlation coefficient 
(R), with a ‘pass’ threshold of R > 0.2 and FDR < 0.001 to correct for 
multiple hypothesis testing. The cross-validated models were also 
compared to models generated using the DepMap confounders dataset 
as a null distribution, including sex, cas9 activity, age, lineage, primary 
or metastasis, growth pattern, library, screen quality and cancer type. 
As shown in Extended Data Fig. 7, the expression-only gene essentiality 
models significantly outperformed the models built on confounders, 
with the 0.2 cross-validation threshold corresponding to P < 0.03 in the 
confounder distribution (~7,000 models). Cross-validation confirmed 
1,966 expression-only models and 2,045 multi-omics models, of which 
the majority of cross-validated models overlapped (n = 1,797) between 
the two datasets (Supplementary Table 3).

Model transposition following transcriptional alignment 
of DEPMAP to TCGA, PDXE and GTEX datasets to build 
TCGADEPMAP, PDXEDEPMAP and GTEXDEPMAP

The translational dependency maps TCGADEPMAP, PDXEDEPMAP and 
GTEXDEPMAP were built using expression-only models of gene essential-
ity, based on relatively marginal performance gains in the multi-omics 
models of gene essentiality, as reported elsewhere26,27. To enable trans-
position of the cross-validated expression-only models (n = 1,966) 
from the DEPMAP to TCGA (n = 9,596 tumors), PDXE (n = 191 tumors) 
and GTEX (n = 17,382 tissues across 54 tissues and 948 donors), the 

genome-wide gene expression datasets were downloaded for TCGA 
(https://xenabrowser.net/datapages/), PDXE50 and GTEX (https://gtex-
portal.org/home/datasets). For TCGA data, if multiple samples were 
collected from the same patient, only the primary tumor biopsy was 
included in TCGADEPMAP. For GTEX, the potential biases introduced by 
sampling multiple organ tissues from each individual was assessed by 
Uniform Manifold Approximation and Projection (UMAP) analysis of 
the gene expression profiles across GTEX samples, which revealed that 
GTEX samples are clustered by tissue types rather than by individu-
als. Likewise, no evidence of clustering was observed based on other 
patient-specific clinical variables (for example, cause of death and age), 
suggesting that the tissue-specific effects are the predominant drivers 
of gene expression in healthy tissues.

Unsupervised cluster analyses by UMAP dimension reduction were 
used to evaluate the similarities in expression profiles of the DEPMAP 
cell lines compared to the tissue biopsies from TCGA, PDXE and GTEX. 
As reportedly previously56, DEPMAP and TCGA expression profiles 
do not cluster well by UMAP alignment due to contaminating tran-
scriptional profiles of stromal and immune cells, which would impact 
expression-based predictive modeling of gene essentiality. Likewise, 
UMAP clustering of expression profiles from the DEPMAP cell line data 
compared to PDXE and GTEX samples revealed that transcriptional 
alignment of these data was equally problematic. To overcome this 
issue, expression data from DEPMAP and TCGA were quantile normal-
ized and transformed by cPCA, which is a generalization of the PCA 
that detects correlated variance components that differ between two 
datasets. When comparing the transcriptional profiles of the DepMap 
cell lines and TCGA patient tumors, the top contrastive principal com-
ponents (cPC1–4) derived from the stromal contamination in TCGA, 
which were then removed followed by multiple-batch correction to 
normalize the expression data by matching the corresponding clusters 
in TCGA and DEPMAP. To assess transcriptional alignment on model 
transposition, all pre- and post-aligned TCGADEPMAP gene essentiality 
models were compared to tumor purity, which revealed a strong cor-
relation between gene essentiality and tumor purity that was removed 
by transcriptional alignment. An identical approach was utilized for 
aligning PDXE expression data, with the slight modification that only 
cPC1–3 required removal, as PDX models grown in immunocompro-
mised mice lack the adaptive immune system and typically have lower 
stromal contamination. For aligning DEPMAP and GTEX data, a slightly 
different approach was used to combine quantile normalization and 
ComBat62 to remove potential batch effects without using cPCA, as 
GTEX data only includes nonmalignant tissue. Finally, the observed 
(DepMap) and predicted (TCGADEPMAP, PDXEDEPMAP and GTEXDEPMAP) 
gene essentiality scores were aligned by linear regression, whereby the 
slopes of each model were fitted using a constant to make the absolute 
value comparable to the measured essentiality values. Notably, because 
this approach used a scaling factor, the pattern of gene essentiality 
scores was not affected. All data are available on figshare63.

Characterization of TCGADEPMAP

The distribution of the cross-validated expression-only models of 
gene essentiality (n = 1,966) across lineages was assessed by unsu-
pervised cluster analysis (Ward.D2 method) and visualized using the 
ComplexHeatmap R package (v.2.6.2). A similar approach was used for 
unsupervised cluster analysis and heatmap visualization for molecular 
subtyping of the BRCA cohort of TCGADEPMAP using the DEP100 across 
BRCA cohort only. For lack of other ground truths, the performance of 
TCGADEPMAP to classify molecular subtypes of BRCA was benchmarked 
using a linear discriminant analysis with leave-one-out cross-validation 
performed using the MASS package (v.7.3.51.4) for R and the CV = TRUE 
option in the function. Predictions for each cancer type and subtype 
was evaluated separately and the AUC values were determined using 
the function ‘roc’ from the pROC (v.1.18.0) package for R and com-
pared to the molecular typing and subtyping reported by the TCGA 
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(https://www.cbioportal.org/)64. In addition to BRCA molecular sub-
types, a distinct subset of the 100 most variable dependencies from 
the pan-cancer TCGADEPMAP dataset was used to benchmark TCGADEPMAP 
more broadly, using an identical linear discriminant analysis with 
leave-one-out cross-validation, as described above. Finally, both analy-
ses were repeated with the DeepDEP gene essentiality values reported 
by Chiu et al.27 and the receiver operating characteristic (ROC) AUC 
values were compared between TCGADEPMAP and DeepDEP predictions 
of cancer lineages and BRCA cancer subtypes.

Associations of dependencies with genomic features (somatic 
mutations and copy number variants) in TCGADEPMAP were assessed 
using a Wilcoxon rank-sum differential test as implemented using 
stat_compare_means function of ggpubr R package (v.0.4.0). The 
ability of expression features to predict essentiality and mutational 
status of same gene by elastic-net modeling was compared using the 
glmnet R package (v.4.1) with the same parameters for both model 
sets. The elastic-net models were allowed to select the most informa-
tive predictive features for mutation and essentiality for each gene, 
as the best predictors for essentiality may not be the best features 
to predict mutation. For AUC evaluation, we used −0.5 as the cutoff 
for gene essentiality scores to determine sensitive and resistant cells 
for gene models. The AUC values are calculated using pROC R pack-
age (v.1.16.2). To characterize SSDs, a normality likelihood ratio test 
(NormLRT)29 was performed with slight modifications to rescale the 
larger NormLRT values observed in TCGADEPMAP due to a tenfold larger 
cohort size (n = 9,596) compared to DEPMAP (n = 897). A bootstrapping 
of the DEPMAP gene effect scores was performed to estimate how the 
NormLRT scores change when scaling up from the DEPMAP cohort 
size (n = 897 cell models) to the cohort size of TCGA (9,596). A linear 
fitting was performed to estimate the slope between DEPMAP and 
bootstrapped equivalent, which was as a scaling factor (0.07) to rescale 
TCGA NormLRT scores. Notably, outliers were identified based on the 
ranking NormLRT scores within each cohort, which therefore was not 
affected by the rescaling TCGA NormLRT scores. For TCGA patients 
with BRCA (n = 765), we divided the patients into PTPN11 dependent and 
nondependent groups. The PTPN11-dependent patients (77 patients) 
were selected as the top 10% patients with BRCA with the lowest PTPN11 
essentiality scores. Among all the variants, we applied Fisher’s exact test 
for mutations with more than 5% frequency (12 mutations), deletions 
with more than 10% frequency (4,891 deletions) and amplifications 
with more than 10% frequency (4,831 amplifications). The test was 
performed using the fisher.test function in the stats (v.4.0.3) R package 
with options ‘alternative = greater’ to calculate P values for enrichment 
of variants for PTPN11 dependent and nondependent groups. The 
gene models (890 models) used for mutation predictions are selected 
from 1,966 cross-validated expression-only essentiality models with a 
mutation frequency >2%.

Associating clinical outcomes with tumor dependencies in 
TCGADEPMAP

Owing to the limited accessibility of therapeutic response data in 
TCGA33, the association of HER2 essentiality with response to trastu-
zumab (anti-HER2 antibody) was tested in a recent trastuzumab clini-
cal trial of 50 HER2+ patients with BRCA with pre- and post-treatment 
biopsies that were analyzed by microarray34. The microarray expression 
data were downloaded from NCBI GEO (accession code GSE76360) and 
patient responses were defined by the study authors34. Differences in 
predicted HER2 essentiality in patients with different clinical responses 
were tested using ggpubr R package (v.0.4.0), followed by a Wilcoxon 
rank-sum test using the stat_compare_means function in the package. 
Correlation of HER2 essentiality and HER2 expression after treatment 
was tested by a Pearson’s correlation, as calculated by the stat_cor func-
tion ggpubr R package (v.0.4.0). For predicting essentiality response to 
sorafenib, although it is a multi-kinase inhibitor (BRAF, CRAF, VEGFR2, 
VEGFR3, PDGFRB, FLT3 and cKIT), its role in treating hepatocellular 

carcinoma (HCC) is widely attributed to inhibiting oncogenic RAF 
signaling. This combined with the observation that BRAF essential-
ity model performance (R = 0.71) was far better than the other target 
models (R = 0.2 to 0.45), led us choose the BRAF essentiality model to 
predict sorafenib response in the HCC cohort.

Additionally, the correlation of TCGADEPMAP dependencies with 
the PFI of TCGA patients was performed, excluding the acute myeloid 
leukemia (AML), diffuse large B-cell lymphoma (DLBC), kidney chro-
mophobe (KICH) and pheochromocytoma and paraganglioma (PCPG) 
cohorts based on the recommendations of Liu et al.33. The PFI data were 
directly downloaded from Liu et al.33 and the maximally selected rank 
statistics from the ‘maxstat’ R package was used to determine the opti-
mal cutoff point for dichotomization (high versus low) of dependency 
scores (n = 1,966 cross-validated models). The prognostic value of the 
resulting dichotomized dependency scores was evaluated using the 
log-rank test with FDR correction (Benjamini–Hochberg adjusted) to 
account for multiple hypothesis testing. The data were visualized by 
Kaplan–Meier curves and are interpreted as HR > 1 indicating a worse 
expected outcome in patients with a higher dependency score at an 
FDR < 0.2.

Predicting synthetic lethality relationships in TCGADEPMAP

Multiple approaches were integrated to predict and prioritize synthetic 
lethality relationships with LOF events (defined as a predicted copy 
number loss or damaging mutation) in TCGADEPMAP. Lasso regression 
was used to identify gene essentialities (n = 7,260 expression-only mod-
els) with increased dependencies associated with 25,026 LOF events 
in TCGA, as annotated by Bailey et al.65. For each model, the lambda 
value was selected as the lowest error by fivefold cross-validation and 
the resulting models with coefficients >0.3 were further evaluated 
by a t-test. The lasso regression analysis identified 633,232 predicted 
synthetic lethal candidates (FDR < 0.01), which were too numerous 
to experimentally validate and required further prioritization. First, 
UNCOVER66 was used to prioritize synthetic lethal candidates predicted 
by TCGADEPMAP that correlated with endogenous mutual exclusivity of 
LOF mutations (3–70% prevalence) in TCGA, with the hypothesis that 
these candidates would have greater translational relevance. UNCOVER 
was ran in greedy mode (UNCOVER_greedyv2.py) to identify negative 
association with a mutated gene sets of maximum ten genes. To evalu-
ate the confidence of association, we set the number of permutations 
as 100 to compute P values and applied a threshold of P < 0.01. Of the 
633,232 predicted synthetic lethal candidates predicted by TCGADEPMAP, 
28,609 pairs also had evidence of mutually exclusive mutation rates 
in TCGA. The candidate list was then refined further by prioritizing 
paralogs using the biomaRt paralog database (v.2.28.0) R package. We 
additionally included pairs characterized by phylogenetic distance 
with threshold less than 1.5, as described previously67,68. The candi-
date list received a final filtering based on overall patient prevalence 
of LOF events, protein–protein interactions with TSGs69,70, previous 
experimental evidence of gene–gene interactions6,16,17,39,40 and manual 
curation to include essential and nonessential controls. The final list of 
gene pairs that were prioritized for experimental validation included 
601 synthetic lethality candidates from the original lasso regression 
of TCGADEPMAP and an additional 264 pairs that were retained as library 
controls. The list of all synthetic lethal pairs that were predicted by 
TCGADEPMAP, as well as annotations of mutual exclusivity and phylo-
genetic distance, is provided as an R object in the figshare repository 
(https://figshare.com/s/a76d338a425273b42c8b)71.

Multiplexed screening synthetic lethalities using AsCas12a 
(AsCpf1) and enAsCas12a (enAsCpf1)
Guides were designed using the TTTV PAM for AsCas12a and synthe-
sized into four-guide arrays with direct repeats (DR)−0, −1, −2 and −3 
preceding each guide, followed by cloning into a guide-only lentiviral 
vector (pRDA_052), as described previously45,46. A DKO construct was 
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designed with two guides × two genes (n = 4 guides total per construct) 
for each pair of synthetic lethal candidates. Single KO constructs were 
also designed two guides × one gene + two nontargeting (NT) guides 
(n = 4 guides total per construct) for each pair of synthetic lethal 
candidates. For some pairs, multiple single KOs were used to assess 
overall library variance and were collapsed to the median values for 
downstream gene interaction analysis. A total of 500 constructs with 
four NT guides were also included in the library as negative controls. 
An initial set of pilot screens were performed in triplicate using A549 
(ATCC), NCI-H1299 (ATCC), MDA-MB-231 (ATCC), PC3M (MD Anderson) 
and DETROIT562 (ATCC) that stably express AsCas12a, as described 
previously46. An enhanced AsCas12a (enAsCas12a) enzyme was recently 
reported that is compatible with CRISPR/AsCas12a libraries44, enabling 
an independent replication of the initial pilot screens and expansion 
to a total 14 total cancer cell models. The subsequent screens using 
enAsCas12a were performed in triplicate using A549 (ATCC), NCI-H1299 
(ATCC), MDA-MB-231 (ATCC), NCI-H1703 (ATCC), PC3M (MD Anderson), 
DETROIT562 (ATCC), HT29 (ATCC), HCT116 (ATCC), PANC1 (ATCC), 
MIAPACA2 (ATCC), SNU1 (ATCC), HSC2 ( JCRB), HSC3 ( JCRB) and FADU 
(ATCC). For all screens, cells were infected at a multiplicity of infection 
of 0.3 and cultured for 14 days while continuously maintaining 500× 
coverage, followed by DNA extraction and PCR-barcoding using the 
p5 Agon and p7 Kermit primers46. The PCR-barcoded libraries were 
single-end sequenced using an Illumina HiSeq4000 (300× cycle), 
followed by demultiplexing of sequencing reads (bcl2fastq, Illumina) 
and quantification of guide array abundance across all samples was 
performed with a custom Perl script. Sequences between the flanking 
sequences or by location were extracted and compared to a database 
of sgRNA for each library. Only perfectly matched sgRNA sequences 
were kept and used in the generation of count matrix. Normalization 
between all samples was conducted using the ‘TMM’ method72 imple-
mented in the edgeR R Bioconductor package. The log2 fold changes 
(L2FCs) of guide array abundance were calculated by comparing day 
14 libraries with the plasmid library using limma-voom73. GIs were 
calculated by comparing the expected and observed L2FC of double 
and single KO constructs, as described previously39,45. In brief, the 
expected L2FC for DKO constructs is calculated as a sum (LF2C) of 
the individual knockout (sgRNA + NT). Synthetic lethal and buffering 
interactions are defined for DKO in which the observed double knock-
out L2FC is significantly greater or less than that of the expected L2FC, 
respectively. No statistical methods were used to predetermine sample 
sizes but our sample sizes are similar to those reported in previous 
publications that have used multiplexed CRISPR to screen synthetic 
lethal interactions39,45.

Experimental validation of PAPSS1/2 and CNOT7/8 synthetic 
lethality
CRISPR/Cas12 KOs of PAPSS1, PAPSS2, CNOT7 and CNOT8 were per-
formed with Cas12 Ultra (Integrated DNA Technologies, 10007804) 
according to the manufacturer’s instructions by Neon electroporation 
of RNPs (Invitrogen). Guides were designed using the Broad Institute 
CRISPick algorithm and the two best-performing guides for each gene 
were used in combination (Supplementary Data). Protein expression 
was quantified by Simple Western (ProteinSimple, BioTechne) using the 
following antibodies; PAPSS1 clone 1F4 (Abnova, H00009061-M05) at 
1:100 dilution, PAPSS2 (Cell Signaling Technology, 70638) at 1:50 dilu-
tion, PTEN (Cell Signaling Technology, 9552) at 1:100 dilution, CNOT7 
(Santa Cruz, sc-101009) at 1:10 dilution, CNOT8 (LSBio, LS-C99242-
400) at 1:1,000 dilution with β-actin clone 8H10D10 (Cell Signaling 
Technology, 3700), 1:1000 GAPDH clone 14C10 (Cell Signaling Tech-
nology, 2118) or 1:1,000 α-tubulin (Cell Signaling Technology, 2144) 
as loading controls. Flow cytometry analysis of sulfonated HSPGs was 
performed with the 10E4 antibody conjugated to FITC and used at 1:200 
dilution (US Biological Life Sciences, H1890-10) (Extended Data Fig. 8). 
Bacteroides heparinase III was obtained from New England Biolabs 

(P0737L) and used as per manufacturer’s protocol by treating cells for 
1 h in reaction buffer at 30 °C before FACS analysis. Spheroid cultures 
were performed on ultra-low attachment 96-well plates (Corning, 
7007), growth was tracked on Incucyte S3 (Sartorius) and CellTiterGlo 
(CTG) readouts were performed for viability measurements (Pro-
mega, G9681). For rescue experiments, HS was used at 10–50 μg ml−1 
(Sigma, H7640). For CNOT7-null single-clone generation, HT29 (ATCC) 
cells were transduced with pFUN_104 Cas9 plasmid (Broad Institute), 
CNOT7-KO was performed with CRISPR/Cas12 RNP electroporation, 
CNOT7-KO single clones were isolated and expanded and clones sc2 and 
sc7 were transduced with the Cellecta pRSGTEP-U6Tet-sg-EF1-TetRep-
2A-Puro vector containing the CNOT8-targeting sgRNA (sgCNOT8; 
5′-CCAGGTTATCTGTGAAGTGT-3′ (CVCRC-PX, 98847-3P) or NT control 
(sgNT; 5′-GGCAGTCGTTCGGTTGATAT-3′ SGCTL-NT-pRSGTEP). Cells 
were then cultured in medium containing Tet System Approved FBS 
(TakaraBio, 631101) and dox was used at 1 μg ml−1 for in vitro experi-
ments. For in vivo experiments, 1 × 106 UMUC3 (ATCC) or HT29 cells 
were reconstituted in Hanks balanced salt solution, mixed 1:1 with 
Matrigel (Corning, 356235) and 200 μl inoculated in the right flank 
(n = 5 mice per condition). Female CB17/SCID and SCID/beige at 6–8 
weeks of age were obtained from Charles River. In vivo experiments 
were conducted in compliance with AbbVie’s Institutional Animal Care 
and Use Committee and the National Institutes of Health guidelines in 
the Health Guide for Care and Use of Laboratory Animals. Tumor meas-
urements of length (L) and width (W) were obtained using calipers and 
volume (V) calculated using the formula V = (L × W2)/2. A maximum of 
2,000 mm3 tumor volume was allowed as per institutional guidelines. 
PAPSS1/PAPSS2 tumors were extracted at day 22, mechanically dis-
sociated with scalpels and single-cell suspensions were made using 
Liberase and DNase I (Millipore Sigma, 05401127001 and 11284932001, 
respectively) incubated at 37 °C for 1 h and mouse cells were mag-
netically depleted on LS columns using mouse cell depletion cocktail 
(Miltenyi, 130-104-694 and 130-042-401). No statistical methods were 
used to predetermine sample sizes but our sample sizes are similar to 
those reported in previous publications that have tested tumor vulner-
abilities and synthetic lethalities16,42,43,74,75.

Characterization of PDXEDEPMAP

The distribution of the cross-validated expression-only models of 
gene essentiality (n = 1,966) across lineages was assessed by unsu-
pervised cluster analysis (Ward.D2 method) and visualized using the 
ComplexHeatmap R package (v.2.6.2). Associations of dependencies 
with genomic features were assessed using a Wilcoxon rank-sum dif-
ferential test as implemented using stat_compare_means function of 
the ggpubr R package (v.0.4.0). To test the ability of gene essentiality 
to predict the response to corresponding targeted therapies, the 
change in PDX burden from baseline to experimental end point was 
correlated with target gene essentiality in PDXEDEPMAP using a Pearson’s 
correlation test and FDR correction of P values for multiple hypothesis 
testing. ROC AUC analysis was performed using the pROC R package 
(v.1.18.0) to assess the accuracy of drug responses predicted by the 
target gene essentiality scores. Only drugs with at least 20 treated 
PDX models were evaluated and the metrics are reported in Supple-
mentary Table 13.

Characterization of GTEXDEPMAP

The distribution of the cross-validated expression-only models of 
gene essentiality (n = 1,966) across healthy tissues was assessed by 
unsupervised cluster analysis (Ward.D2 method) and visualized using 
the ComplexHeatmap R package (v.2.6.2). Differences in gene essential-
ity in healthy and malignant tissues, as well as malignant tissues with 
genomic features, were assessed using a Wilcoxon rank-sum differential 
test as implemented using stat_compare_means function of ggpubr R 
package (v.0.4.0). Notably, the distributions of dependencies between 
TCGADEPMAP and GTEXDEPMAP by PCA revealed that that the predicted 
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dependency scales are similar between the two datasets (Extended Data 
Fig. 9) and thus any differences in gene essentiality are due to underly-
ing biological mechanisms that differ between healthy and malignant 
tissues. To evaluate the sensitivity and specificity of GTEXDEPMAP to 
genes associated with tissue-specific toxicities, we profiled GTEXDEPMAP 
genes associated with both blood disorders and drug-induced liver 
toxicity using the Cortellis OFF-X database (https://targetsafety.info/). 
The OFF-X database is a drug and target safety intelligence database 
that predicts potential associations based on both preclinical and 
clinical safety data alerts from peer-reviewed journals, company com-
munications, clinical trials and regulatory agency communications. 
These blood and liver toxicity associations were further evaluated to 
identify overlapping or unique genes for each toxicity and annotated 
with the frequency of associated safety alerts. In total, the Cortellis 
OFF-X database identified drug targets associated with potential tox-
icities in blood (n = 82), liver (n = 85) or blood and liver (n = 74), which 
were then compared across healthy tissue lineages in GTEXDEPMAP. To 
compare gene essentiality between malignant and healthy tissues, 
TCGADEPMAP and GTEXDEPMAP samples were matched based on the tis-
sue of origin and a Student’s t-test was applied to differential analysis 
between the dependency profiles of tumor and healthy tissue of the 
same lineages. The t-statistic was used to characterize the dependency 
difference between the tumor and corresponding healthy tissue with 
a negative t-statistic value corresponding to a higher dependency in 
tumor as compared to the healthy tissue. Gene set enrichment analy-
sis was performed across all paired malignant and healthy tissues of 
origin. The list of genes for the lung network was generated using the 
top 100 genes showing the largest differentiation in gene essential-
ity between cancer compared to healthy tissue in lung based on the 
negative t-statistic values. Network connectivity and gene ontology 
enrichment were calculated using STRING (https://string-db.org/), 
as described previously76.

Statistics and reproducibility
All data used for the machine learning and translation of gene essential-
ity are from publicly available consortia with detailed methodologies 
for data collection, blinding, randomization and protection. Because 
the essentiality profiles have a long tail distribution, we have used the 
nonparametric Wilcoxon test, which does not require a particular 
probability distribution of the dependent variable in the analysis. 
Therefore, no tests were required for the normality assumption. No 
statistical method was used to predetermine sample size. No data were 
excluded from the analyses. The experiments were not randomized. 
The investigators were not blinded to allocation during experiments 
and outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data are available in the supplementary information and the figshare 
repository at https://figshare.com/projects/TCGADEPMAP_Mapping_
Translational_Dependencies_and_Synthetic_Lethalities_within_The_
Cancer_Genome_Atlas/130193 (ref. 63). Source data are provided with 
this paper.

Code availability
The R scripts used to download, format and analyze the data and pro-
duce the interactive R/Shiny app are available on GitHub (https://
github.com/xushiabbvie/TDtool).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | The characteristics of gene essentiality models 
before and after transcriptional alignment cell models and patient tumor 
biopsies. (a) The performances of expression-only and multi-omics models 
of gene essentiality were compared across 103 annotated oncogenes. Note the 
strong correlation of expression-only and multi-omics models with a few notable 
outliers, such as NRAS, FLT3 and ARNT. (b) The distribution of the number of 
features for the multi-omics models for the 103 annotated oncogenes. (c) The 
number of features per multi-omics model for the 103 annotated oncogenes 
that passed (n = 95) or failed (n = 102) cross-validation. (d) The distribution 
of the number of features per expression-only models for the 103 annotated 
oncogenes. (e) The number of features per expression-only model for the 103 
annotated oncogenes that passed (n = 101) or failed (n = 96) cross-validation. 
Note similarities in the characteristics and performances of multi-omics and 
expression-only models, and that only 7% of the multi-omics models significantly 
outperformed the expression-only models in the cross-validation while 84% were 
comparable when applying a cutoff of 0.05 correlation coefficient difference 
between models as a meaningful improvement in performance. As a reference 
using the same criteria 15% of multi-omics models outperformed expression-
based models and 76% were comparable when we used the whole set of 2,211 
models. (f, g) The heatmaps show the Pearson correlation between the gene 

expression of DepMap and TCGA before (f) and after (g) expression alignment 
by identification and removal of the most variant signatures (cPC1–4; that is, 
stromal signatures) before elastic-net ML. The rows are TCGA lineages and 
columns are DepMap lineages. (h) Shows that the correlation of expression for 
the same lineage (n = 22) in TCGA and DepMap is significantly improved by our 
expression alignment pipeline. (i) Comparison of expression-only elastic-net 
models for gene essentiality and gene mutational status (n = 890). To make 
performance metrics (AUC) comparable with binary mutational status, the 
essentiality scores were binarized using a –0.5 essentiality score as a cutoff. To 
calculate the accuracy of predicting dependencies and mutations, elastic-net 
machine learning was run to predict mutations and essentiality using the same 
settings and expression data for 891 genes with mutations at >2% prevalence 
in TCGADEPMAP patients. Of note, the elastic-net models were allowed to select 
the most informative predictive features for mutation and essentiality for each 
gene, as the best predictors for essentiality may not be the best features to 
predict mutation. For (C,E,H,I), the center horizontal line represents the median 
(50th percentile) value. The box spans from the 25th to the 75th percentile. The 
whiskers indicate the 5th and 95th percentiles. The two-sided Wilcoxon rank test 
was used for (C,E,H) and for (I) ****P < 0.0001 by Student unpaired t-test.
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Extended Data Fig. 2 | Examples of dependencies with different selectivity 
profiles across TCGADEPMAP and DEPMAP cohorts. (a) FLT3 was classified 
as a strongly selective dependency (SSD) with markedly higher dependency 
in blood lineage cancers of TCGADEPMAP (blue bar, n = 7,021), (b) whereas FLT3 
showed higher dependency in some blood lineage cancers but does not meet 
the threshold of an SSD in DEPMAP (n = 810). (c) ATPV6V0E1 essentiality scores 
varied widely across TCGADEPMAP (n = 7,021), (d) while ATPV6V0E1 was classified as 
an SSD that was restricted to only a few lineages in DEPMAP (blue bars, n = 810). 
(e) PTPN11 was classified as an SSD with very strong dependencies in a subset 

of breast cancer patients in TCGADEPMAP (blue bar, n = 7,021), (f) whereas no 
selectivity of PTPN11 essentiality was detected in DEPMAP (n = 810). For (A-F), the 
center horizontal line represents the median (50th percentile) value. The box 
spans from the 25th to the 75th percentile. The whiskers indicate the 5th and 95th 
percentiles (g) Top cancer driver mutations enriched in TCGADEPMAP breast cancer 
patients that were highly dependent on PTPN11. (h) Top cancer driver mutations 
depleted in TCGADEPMAP breast cancer patients that were highly dependent on 
PTPN11. For (g, h), ***FDR < 0.01, **P < 0.01, and *P < 0.05, as determined by Fisher 
exact test.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Characterization of synthetic lethalities. (a) STAG1 
synthetic lethality with STAG2 mutation (n = 163 for STAG2MUT and n = 7,418 for 
STAG2WT), (b) SMARCA2 synthetic lethality with SMARCA4 mutation (n = 223 for 
SMARCA4MUT and n = 7,358 for SMARCA4WT), (c) CREBBP synthetic lethality with 
EP300 mutation (n = 937 for EP300DEL and n = 6,644 for EP300WT), and (d) CNOT7 
synthetic lethality with CNOT8 deletion are examples of synthetic lethalities that 
were detected by TCGADEPMAP. (n = 550 for CNOT8DEL and n = 7,031 for SMARCA4WT) 
***P < 0.001, as determined by the Wilcoxon rank-sum test. (E-I) Comparison of 
multiplexed CRISPR/Cas12 screens performed using AsCas12a and EnAsCas12a 
enzymes. Analysis was performed using a Pearson’s correlation and coefficients 
(r) are displayed on the graphs. (j) Simple Western blots of protein expression 
of CNOT7, CNOT8 and housekeeping control Beta-Actin of nontargeting (NT) 

control, single (KO) and dual (DKO) knockout cells 3 days after CRISPR/RNP 
electroporation. (k) Plots showing the protein abundance ratio of CNOT8 (Y-axis) 
and copy number status of CNOT7 (X-axis) in the CPTAC Lung Adenocarcinoma 
(LUAD) and Breast Cancer (BRCA) cohorts showing a significant upregulation 
of CNOT8 protein in tumors with CNOT7 copy number loss (shallow and deep 
deletions) compared to diploid and gain tumors (for LUAD n = 7 for gain, n = 51 
for diploid and n = 55 for shallow deletion; for BRCA n = 22 for gain, n = 33 for 
diploid and n = 67 for shallow deletion). For (A-D and K), the center horizontal line 
represents the median (50th percentile) value. The box spans from the 25th to the 
75th percentile. The whiskers indicate the 5th and 95th percentiles. The two-sided 
Wilcoxon rank test was used for (A-D) ***p < 0.001 and ***p < 0.001 as determined 
by Student’s unpaired, two-tailed t-test for (K).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Supporting evidence of PAPSS1/2 synthetic lethality. 
a, b) PAPSS1 is a novel synthetic lethality in the context of PAPSS2 deletion, which 
is not detectable in (a) DEPMAP cell lines (n = 905) and is only detectable in (b) 
TCGADEPMAP patient samples (n = 7,581). (c, d) Likewise, PAPSS1 is not synthetic 
lethal with PTEN deletion in DEPMAP cell lines (c, n = 905) and is only detectable 
in TCGADEPMAP patient samples (d, n = 7,581). For (A-D), the center horizontal line 
represents the median (50th percentile) value. The box spans from the 25th to 
the 75th percentile. The whiskers indicate the 5th and 95th percentiles. (e) Unlike 
cultured cell models, PAPSS2 is frequently co-deleted with PTEN in TCGA patients. 
(f) PAPSS2 is a closely neighboring gene of PTEN. (g) A schematic representation 
summarizing the hypothesized synthetic lethality of PAPSS1 that is driven by 

collateral deletion of PAPSS2 with the tumor suppressor gene (TSG), PTEN, in 
patients but not cell lines. ***P < 0.001, as determined by the Wilcoxon rank-sum 
test. (h) Endogenous expression by Simple Western of PAPSS1, PAPSS2, and 
PTEN in the model cell lines UMUC3 and NCI-H1299. (i,j) Validation of PAPSS1 and 
PAPSS2 single (KO) and double (dKO) knockouts by RNP in spheroid experiments 
for NCI-H1299 (i) and UMUC3 (j). (k) Validation of PAPSS1 knockout in the UMUC3 
xenograft experiment tumors (n = 5 tumors per condition from n = 1 independent 
experiment). Molecular weight marker lanes are shown in kDa. Data shown in 
(h-j) are representative from at least 3 independent experiments. The two-sided 
Wilcoxon rank test was used for (A-D), ***P < 0.001.
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Extended Data Fig. 5 | Essentiality profiles of genes in cancer versus normal 
tissues. (a) ERBB2 essentiality is significantly higher in malignant breast cancer 
with ERBB2 amplifications (TCGADEPMAP, n = 137 for ERBB2AMP and n = 932 for 
ERBB2WT) compared with normal breast (GTEXDEPMAP, n = 459). ***P < 0.001, as 
determined by the Wilcoxon rank-sum test. For the boxplot, the center horizontal 
line represents the median (50th percentile) value. The box spans from the 25th 

to the 75th percentile. The whiskers indicate the 5th and 95th percentiles. (b) 
STRING network analysis of the top 100 LUAD targets with the greatest predicted 
tolerability in normal lung reveals significant connectivity (p < 1 × 10−16) and gene 
ontology enrichment for oxidative phosphorylation (blue colored spheres; 
p = 5.8 × 10−11) and mitochondrial translation (red-colored spheres; p = 2.9 × 10−20).
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Extended Data Fig. 6 | TCGADEPMAP outperforms DeepDEP. a) Precision-recall 
analysis of pan-cancer lineage predictions by the AUC values are significantly 
higher for TCGADEPMAP in predicting cancer lineages based on top 100 variable 
dependencies compared with DeepDEP. (b) The ROC curves for predicting the 

breast cancer subtypes based on the top 100 variable gene dependencies. The 
TCGADEPMAP significantly outperforms DeepDEP in predicting any of the breast 
cancer subtypes (TCGADEPMAP continuous line; DeepDEP dotted line).
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Extended Data Fig. 7 | Comparison of cross-validated models with models 
generated using the DepMap confounders dataset as a null distribution, 
including sex, cas9 activity, age, lineage, primary or metastasis, growth 
pattern, library, screen quality and cancer type. (a) Distribution of model 

performance across expression-only and confounder models. (b) The 
expression-only gene essentiality models significantly outperformed the models 
built on confounders, with the 0.2 cross-validation threshold corresponding to 
p < 0.03 in the confounder distribution (~7000 models).
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Extended Data Fig. 8 | Gating strategy for Flow Cytometry plots. Cells were first gated by FSC-A/SSC-A (~95%), and single cells by FSC-A/FSC-H (~98%). DAPI staining 
was used to gate viable cells (~98%). Unstained cells and/or Heparinase III treated cells were used for establishing the positive 10E4-FITC gate.

http://www.nature.com/natcancer


Nature Cancer

Article https://doi.org/10.1038/s43018-024-00789-y

Extended Data Fig. 9 | The GTEX and TCGA expression profiles were aligned 
and normalized independently to the same DepMap expression profile 
and the same models (genes and coefficients) were used for both datasets. 
(a) Overall range of effect sizes for both datasets was investigated using a PCA, 

which demonstrates that the dependency distributions show that the predicted 
dependency scale is very similar for the two datasets. (b) The distribution of gene 
essentiality scores is similar between TCGADEPMAP and TCGADEPMAP.
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