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Anhedonia severity 
mediates the relationship 
between attentional networks 
recruitment and emotional 
blunting during music listening
Marie‑Stephanie Cahart *, Vincent Giampietro , Laura Naysmith , Mathilde Muraz , 
Fernando Zelaya , Steven C. R. Williams  & Owen O’Daly 

Emotion studies have commonly reported impaired emotional processing in individuals with 
heightened anhedonic depressive symptoms, as typically measured by collecting single subjective 
ratings for a given emotional cue. However, the interindividual variation in moment‑to‑moment 
emotional reactivity, and associated time‑varying brain networks recruitment as emotions 
are unfolding, remains unclear. In this study, we filled this gap by using the unique temporal 
characteristics of music to investigate behavioural and brain network dynamics as a function of 
anhedonic depressive symptoms severity. Thirty‑one neurotypical participants aged 18–30 years 
completed anhedonic depression questionnaires and then continuously rated happy, neutral and sad 
pieces of music whilst undergoing MRI scanning. Using a unique combination of dynamic approaches 
to behavioural (i.e., emotion dynamics) and fMRI (i.e., leading eigenvector dynamics analysis; 
LEiDA) data analysis, we found that participants higher in anhedonic depressive symptoms exhibited 
increased recruitment of attentional networks and blunted emotional response to both happy and 
sad musical excerpts. Anhedonic depression mediated the relationship between attentional networks 
recruitment and emotional blunting, and the elevated recruitment of attentional networks during 
emotional pieces of music carried over into subsequent neutral music. Future studies are needed to 
investigate whether these findings could be generalised to a clinical population (i.e., major depressive 
disorder).

Characterized by diminished pleasure or interest and significant impairments in daily functioning and quality of 
life, depressive disorders are among the most common affective disorders and are considered the largest contribu-
tors to global  disability1. Depressive symptoms are common and vary significantly in severity both in  clinical2 
and non-clinical  populations3. In fact, in the general population, individual variation in the way and degree to 
which individuals react to positive and negative emotional stimuli around them has been strongly associated 
with differences in mental illness and suicidal ideation later in  life4. In particular, anhedonia, a core symptom of 
depressive disorders characterized by an inability to experience the pleasure typically associated with pleasant 
stimuli and life events, has been shown to account for much greater variance in emotional reactivity than low 
 mood5. However, to date, the nature of the observed effects (i.e., increased or reduced reactivity to positive and 
negative cues) remains unclear, especially regarding negative emotional  reactivity5.

At present, there are three main perspectives on emotional reactivity in depression: (i) attenuated response 
to positively valenced stimuli (i.e., Positive Attenuation theory), (ii) potentiated reactivity to negatively valenced 
cues (i.e., Negative Potentiation theory), or (iii) reduced reactivity to both positive and negative information 
(i.e., Emotion Context Insensitivity; ECI)6. In the context of music listening, Vuoskoski and  Eerola7 found that 
neuroticism, anger, depression and tension scores correlated positively with perceived sadness in neurotypical 
adults, supporting Negative Potentiation theory. Similarly, other music studies also observed a positive correla-
tion between neuroticism and sadness, anger and anxiety  ratings8,9. In contrast, a blunted response to sad music 
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was found in children with greater levels of depressive symptoms drawn from the general  population10. In a large 
meta-analysis covering studies which used a range of emotional stimuli such as images, reward tasks and stress 
tasks, Bylsma et al.11 also found evidence for a blunted emotional response to both positive and negative stimuli 
in Major Depressive Disorder (MDD), providing clear support for the ECI  theory6. In particular, anhedonia 
has also been found to significantly predict blunted emotional reactivity to both positive and negative  images5.

It has been argued that these discrepancies across studies could be explained by the fact that most emotion 
studies, until recently, have used methods where participants are required to provide a single subjective rating 
for a given emotional  cue12. This method has been questioned, as it does not allow for the study of emotional 
states as they unfold over  time12. We argue that gaining a better understanding of the interindividual variation 
in the time-varying behavioural and neural correlates of emotional reactivity in the broader population may, 
ultimately, lead to identifying markers of vulnerability to affective disorders that could inform early prevention 
and intervention  strategies13.

In fact, a growing number of studies have shown that psychological well-being is reflected in the variabil-
ity of emotional states over time, not just in average emotional states  (see14 for a meta-analysis). Indeed, the 
rapidly changing nature of emotions allows human beings to flexibly adapt to their environment by alerting 
them of important changes around  them14. As such, exploring how emotions change across time elucidates a 
process of psychological adjustment and therefore represents a unique window on emotional  functioning14. 
Two dynamic measures, the within-subject standard deviation (STD) and the root mean square of successive 
differences (RMSSD), have been developed to summarize emotional  variability14–18. While a full description of 
these metrics can be found in the Methods section, increased STD and RMSSD (i.e., greater intensity and more 
frequent changes in emotional states) have typically been associated with lower psychological wellbeing  (see14 for 
a meta-analysis). However, it is worth noting that these studies employed experience sampling or diary methods 
(ESM), whereby participants were invited to rate how they felt every few hours throughout the day in the absence 
of any standardized stimulus, which makes it difficult to make formal comparisons across individuals in terms 
of their emotional reactivity to specific valence-loaded cues.

In the last decade, neuroimaging studies have provided considerable insight into the neural basis of emotional 
reactivity as a function of emotional wellbeing in the context of music listening. Using a region of interest analysis, 
Park et al.19 found positive correlations between neuroticism severity and activation in the orbitofrontal cortex, 
the basal ganglia and the insula in response to happy music. However, their sample size was very small (i.e., 12 
participants), and the pieces of music used as a reference had previously been validated to convey a pleasant rather 
than neutral state, potentially triggering some affective responses. Additionally, the participants were not required 
to rate how each piece of music made them feel. Instead, they were simply asked to passively listen to the music, 
making it difficult to establish whether the emotional induction worked. Trait anhedonia has also been shown 
to negatively correlate with pleasantness ratings and with activity in the nucleus accumbens, the basal forebrain, 
the hypothalamus, the anterior insula and the orbitofrontal cortex in a music listening task in healthy  adults20. 
However, as in most music studies, the subjective ratings here were collected following the scan, using a single 
rating for each piece of music, which again precludes the examination of the dynamics of emotional reactivity.

In this study of healthy adults, we used the temporal characteristics of music to explore the dynamic features of 
continuous subjective emotional experience in response to happy, neutral and sad emotional pieces of music as a 
function of anhedonic depressive symptoms severity. We uniquely combined continuous reporting measures with 
a novel fMRI analysis method called Leading Eigenvector Dynamics Analysis (LEiDA;21). LEiDA is a technique 
that characterises the dynamics behaviour of brain networks and helps understand changes in brain functional 
connectivity during the course of a scan. It identifies patterns of neural activity, called states, or clusters, that the 
brain transitions between over time. The primary outputs for each state are (i) the probability of occurrence (i.e., 
the percentage of timepoints during which the state dominates during the scan), (ii) the lifetime (i.e., the mean 
number of consecutive timepoints during which the cluster dominates), (iii) the switching probability (i.e., the 
probability of switching from one state to another).

LEiDA affords the exploration of dynamic neural processes at the group level while preserving idiosyncratic 
information about moment-to-moment BOLD fluctuations. Using this approach, greater subclinical depres-
sion scores have previously been associated with increased activity of the Default Mode Network (DMN) and 
fronto-parietal networks, whereas visual and Dorsal Attention networks were diminished in their  prominence22. 
However, those findings were observed using resting-state fMRI. It is worth noting that resting-state fMRI is easy 
to collect and has shed light on different patterns of network dysfunction in specific symptoms of depression, 
such as atypical frontostriatal and orbitofrontal connectivity in  anhedonia23. However, recent studies have shown 
that it is outperformed by naturalistic paradigms when it comes to predicting  behaviour24,25. Indeed, naturalistic 
paradigms provide more ecologically valid stimuli that better mimic real-world experiences and engage multiple 
cognitive and perceptual processes simultaneously, leading to better insights into brain-behaviour relationships 
compared to the static and less engaging nature of resting-state  scans24. Resting-state has also been linked to 
lower test–retest reliability of functional connectivity  metrics26,27, as well as a difficulty inferring specific mental 
processes from unconstrained brain  activity28,29, hence why we decided to focus on rich naturalistic paradigms 
such as music in this study.

Based on the findings observed in previous emotion and LEiDA studies described above, we hypothesized 
that we would observe:

• An atypical pattern of emotion dynamics in participants with higher levels of anhedonic depressive symp-
toms, as evidenced by a significant correlation between their anhedonic depressive scores and the emotional 
variability metrics (i.e., STD and RMSSD).
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• An atypical behaviour of brain networks (i.e., the DMN, fronto-parietal, visual and Dorsal Attention net-
works) in participants with higher anhedonic depressive symptoms, as evidenced by a significant correlation 
between anhedonic depressive scores and brain activity metrics (i.e., LEiDA’s probability of occurrence and 
mean lifetime) for each network.

• An atypical behaviour of these same brain networks (i.e., DMN, fronto-parietal, visual and Dorsal Attention 
networks) in participants with an atypical pattern of emotion dynamics, as evidenced by a significant correla-
tion between emotional variability metrics (i.e., STD and RMSSD) and brain activity metrics (i.e., LEiDA’s 
probability of occurrence and mean lifetime) for each network.

Additionally, given the anhedonia-specific atypical brain behaviours observed in previous studies, and the 
strong association between anhedonia and emotional reactivity, we propose that anhedonia may act as a mediator 
in the relationship between brain network behaviours and emotional variability. We hypothesized that:

• Atypical behaviours of brain network dynamics (i.e., DMN, fronto-parietal, visual, and Dorsal Attention 
networks) are associated with anhedonic depressive symptoms.

• Anhedonic depressive symptoms determine emotional variability (i.e., STD and RMSSD).
• Anhedonia mediates the relationship between brain network dynamics and emotional variability, suggesting 

that brain network dysfunctions lead to altered emotional dynamics via their link to anhedonic symptoms.

Methods
Participants
Thirty-nine neurotypical right-handed adults initially participated in the study after providing written informed 
consent. All participants were recruited based on the following inclusion criteria: between 18 and 30 years of 
age, good physical health, absence of any psychiatric or neurological disorder, and absence of any MRI counter-
indications (i.e., pacemaker, metal in the body, claustrophobia). This age range is commonly used in music studies 
focussing on emotion  processing7–9. Furthermore, young adults below 30 years old have been shown to consider 
music as more important in their lives than adults above  3030.

Of the 39 participants who took part, one had incomplete fMRI data and two reported feeling excessively 
distracted by the background noise generated by the scanner, resulting in an inability to feel emotions that 
matched those evoked by the songs; these participants were therefore discarded from the analyses. A further 
three participants had excessive head motion (> 3.3 mm), and another two had more than 15% invalid scans as 
determined by the CONN toolbox Version 20b (Functional Connectivity toolbox; 31). These participants were 
also excluded. Consequently, the final number of participants included in the analyses was 31 (17 males and 14 
females) (M = 22.6 ± 4.0 years). The study was approved by the King’s College London Human Research Ethics 
Committee (number HR-19/20-18771) and was carried out in accordance with the Declaration of Helsinki. After 
data acquisition was completed, the researchers visually inspected the scans to check for artifacts, and a quali-
fied neuroradiologist also reviewed the images to rule out any major neural anomaly, in line with the policies of 
King’s College London’s Department of Neuroimaging.

MRI data acquisition
Participants were all scanned in the same 3-Tesla MR scanner (Discovery MR750, General Electric, Milwaukee, 
WI, USA) at the Centre for Neuroimaging Sciences (Institute of Psychiatry, Psychology and Neuroscience; 
King’s College London). The MRI data was collected by experienced radiographers using a 12-channel head 
coil. Anatomical T1-weighted images (MPRAGE) had the following parameters: TR = 7.35 ms, TE = 3.04 ms, 
flip angle = 11°, slice thickness = 1.2 mm, in-plane resolution 1.05 mm. The functional images were collected 
using a 2D multi-slice, gradient-recalled Echo-Planar Imaging (EPI) sequence with the following parameters: 
TR = 2 s, TE = 33 ms, flip angle = 75°, slice thickness = 3 mm, field of view = 240 mm, 64 × 64 matrix. EPI is an 
advanced MRI technique that enables fast acquisition of multiple images of the brain, using rapid variations in 
the magnetic field gradients to capture detailed images of the brain in a matter of seconds. The total duration of 
the fMRI run was 8 min and 27 s. Four dummy scans were acquired at the beginning of the time series, to allow 
the signal to achieve steady state. Those four volumes (i.e., the first 8 s) were not part of the analysed time series. 
All participants were provided with earplugs and padded headphones to limit any discomfort deriving from the 
background noise generated by the scanner.

MRI data pre‑processing
The data were pre-processed using the CONN toolbox Version  20b31, MATLAB R2020a (MathWorks, Natick, 
MA, USA). The pre-processing consisted of realignment to correct for volume-to-volume head motion, co-regis-
tration of the functional data to the anatomical image, and spatial normalization into the Montreal Neurological 
Institute (MNI) standardized space using the parameters generated during segmentation of the T1 weighted 
structural image. Finally, the normalized functional MRI data were smoothed with full width at half-maximum 
isotropic Gaussian kernel of 8 mm. The artifact rejection tool (ART), implemented in CONN (http:// www. nitrc. 
org/ proje cts/ artif act_ detect), was used to detect outlier volumes in the timeseries with respect to head motion 
and global signal changes. One covariate for each outlier volume was then entered in the denoising step to 
lessen the contribution of those scans to the results of the fMRI analyses. Finally, white matter and CSF signal 
were extracted and broken into components, capturing major sources of variance, using principle component 
analysis, and the resulting components were regressed out of the data. This anatomical component-based noise 
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correction approach (aCompCor;32) was also used to ensure that physiological and other sources of noise which 
were unlikely to be neuronal in origin did not confound the subsequent connectivity analysis.

Stimuli and procedures
During the fMRI acquisition, all participants were required to listen to 13 pieces of classical music and asked 
to continuously rate how each piece of music made them feel on a scale of − 6 (very sad) to + 6 (very happy). 
These pieces of music were chosen as they have previously been identified as eliciting happy, neutral and sad 
emotional states in healthy  adults33. The participants listened to the auditory stimuli through headphones, and 
they responded by using a two-button box. Pressing the left button made the slider move left towards − 6, while 
pressing the right button made it move right towards + 6. The equipment was tested before the scan started to 
ensure auditory clarity. All songs were presented in the exact same order for all participants to facilitate analysis 
methods, with 2 s of silence separating each pair of pieces of music. Overall, the run consisted of 3 happy songs, 
3 sad songs and 7 neutral songs. It started with a neutral song, and then each sad song and each happy song was 
followed by a neutral song. The name of each musical piece, the name of the composer, the order of presentation, 
the song type and the start and end times are presented in Table 1. The pieces of music slightly varied in length 
to minimise abrupt and harsh stops.

Self‑report measures
Prior to the scan, participants were required to fill in questionnaires aimed at assessing their familiarity with 
each piece of music, their music background, anhedonic depression severity, neuroticism, rumination levels and 
trait emotional reactivity (see details below).

Personality and mental health questionnaires. The participants were then required to fill in the following question-
naires: the anhedonic depression subscale of the Mood and Anxiety Symptoms Questionnaire (MASQ-AD;34), the 
neuroticism subscale of the Big Five Inventory (BFI;35),the rumination subscale of the Rumination-Reflection Ques-
tionnaire (RRQ;36) and the short version of the Perth Emotional Reactivity Scale (PERS-short; (37).

Mood and anxiety symptoms questionnaire‑anhedonic depression subscale (MASQ‑AD)
The 14-item MASQ-AD subscale of the MASQ was chosen to evaluate participants’ levels of anhedonic 
 depression34. This subscale has previously been used to examine the neural basis of anhedonic depression in the 
context of music listening, and it was specifically chosen for this study because it has demonstrated satisfactory 
variance and high sensitivity to individual differences in a healthy adult  population20. It comprises items that 
assess loss of interest and enjoyment concerning a wide-range of everyday situations. For each item, participants 
were required to indicate on a five-point scale (1 = not at all, 5 = extremely) to what extent each statement applied 
to them. Scores were then summed up across all 14 items, and the overall scores ranged between 14 and 70. A 
score of 14 indicates an absence of anhedonic symptoms, while a score of 70 reflects high levels of anhedonic 
depression. The MASQ-AD has shown good internal consistency alpha in university samples (α = 0.80;38).

For this paper, we focussed on anhedonic depressive symptoms and therefore only the MASQ-AD and key 
associated findings are fully described in this paper. More information about the other scales can be found in 
Supplementary Material 1a.

Familiarity ratings. The participants were first required to listen to each piece of music through the Lime 
Survey online tool (limesurvey.org) and rate them in terms of how familiar they were with each of them on 
a five-point scale (1 = I have never heard this piece of music before, 5 = I know this piece of music very well). 
Lime Survey is an open-source platform that allows users to design customizable surveys and collect data freely 

Table 1.  Names of each music piece, order of presentation, start and end times, composer and song types.

Order of presentation Start time (s) End time (s) Musical pieces Composer Song type

1 0 29 Water music—passepied Handel Neutral

2 31 65 Kol Nidrei Bruch Sad

3 67 109 Violin romance no.2 in F major Beethoven Neutral

4 111 147 Radetzky march Strauss Happy

5 149 183 L’oiseau prophete Schumann Neutral

6 185 225 Suite for violin and orchestra in A minor Sinding Sad

7 227 259 Clair de lune Debussy Neutral

8 261 301 A little night music—allegro Mozart Happy

9 303 337 Water music menuet Handel Neutral

10 339 381 Concerto de Aranjuez—Adagio Rodrigo Sad

11 383 425 The Planets—Venus Holst Neutral

12 427 467 A little night music—Rondo Allegro Mozart Happy

13 469 507 La Traviata—Prelude to the 1st scene Verdi Neutral
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online. The mean and standard deviation of the familiarity ratings were then calculated for each song across all 
participants.

Music background. The music background questionnaire consisted in four statements which the participants 
were asked to rate in terms of how much they each applied to them (1 = not at all, 5 = extremely): “I enjoy lis-
tening to music” (question 1), “I enjoy listening to classical music” (question 2), “I have a broad knowledge of 
classical music (e.g., I can recognise and name different classical music pieces, composers, instruments etc.)” 
(question 3), and “I can play a musical instrument” (question 4).

Behavioural analyses
For all behavioural analyses, normality of each variable (e.g., MASQ-AD, STD, RMSSD, familiarity ratings and 
music background questions) was tested using the Shapiro–Wilk test (significance was set at 0.05).

Familiarity ratings and music background
Pearson’s correlations were carried out between music background questions and summary measures of the 
familiarity ratings for each song type (i.e., Familiarity_H for the familiarity with the happy songs, Familiarity_S 
for the familiarity with the sad songs, Familiarity_N for the familiarity with the neutral songs). Question 3 (i.e., 
I have a broad knowledge of classical music) consistently exhibited strongest associations with all four familiarity 
summary measures, therefore the question 3 scores were added to gender and age as a nuisance covariate for the 
subsequent analyses. Full details are provided in Supplementary Material 2a.

From this point, reference to music background/familiarity will refer to the responses to question 3.

MASQ‑AD and mean subjective ratings
We carried out a repeated-measures ANOVA, followed by two post-hoc paired t-tests to explore whether there 
were significant differences between mean subjective ratings for ‘happy’, ‘neutral’ and ‘sad’ pieces of music. We 
then correlated mean ratings with MASQ-AD scores to explore associations between the anhedonic depression 
symptoms and mean subjective ratings for each song type. Full details are provided in Supplementary Material 3a.

In all cases, the threshold for significance was set at p < 0.05.

MASQ‑AD and emotional blunting/variability
For each participant, we calculated two metrics representing emotional blunting/variability: the within-subject 
standard deviation (STD) and the within-subject root mean square of the successive differences (RMSSD). The 
STD provides information about the variance of the participant’s emotional states across the entire task, where 
high and low values reflect heightened emotional reactivity and blunted responses,  respectively17. The RMSSD 
reflects moment-to-moment fluctuations in emotional reactivity across the entire task, where higher scores reflect 
greater emotional lability, characterized by more significant emotional swings from one moment to the next, 
while lower scores suggest a less flexible emotional  response18. For each participant, the STD and the RMSD 
were calculated as follows, in line with Jahng, Trull and  Wood39, where n is the number of timepoints, µ is the 
average of the subjective ratings over the entire task,  xi is the subjective rating at time t, and  xi+1 is the subjective 
rating at time t + 1:

To identify whether anhedonic depression was related to either of the participants’ emotional blunting/
variability metrics, we then calculated Pearson’s correlation coefficients between the MASQ-AD and the within-
subject STD and RMSSD metrics, controlling for age, gender and music background/familiarity.

LEiDA analyses
The LEiDA analyses were carried out in MATLAB R2020a (MathWorks, Natick, MA, USA) using scripts adapted 
from Cabral et al., 2017 (21; https:// github. com/ juani tacab ral/ LEiDA). N = 105 regions of interest (ROI) defined 
anatomically based on the Harvard–Oxford cortical atlas were extracted from the CONN  toolbox31. In line with 
previous work by Cabral et al.22, the cerebellar ROIs were excluded from the analyses because of the absence 
of cerebellar networks within the Yeo parcellation used for this  study40. The Yeo parcellation is widely used in 
neuroimaging research and typically divides the brain into seven meaningful functional networks, including the 
default-mode network, the fronto-parietal network, the limbic network, the visual network, the somato-motor 
network, the ventral attention network and the dorsal attention  network40.

Full details of the implementation of the LEiDA method can be found in Cabral et al.21, but in brief: for each 
ROI, the timeseries of the blood oxygen level dependent (BOLD) signal was first Hilbert-transformed to cre-
ate an analytic signal which captures the time-varying phase of the BOLD oscillations. We then calculated the 
degree to which BOLD phases were synchronised between pairs of ROIs at each timepoint t, as reflected in the 
dynamic phase-locking matrix dPL(t) (Fig. 1).

STD =

√

∑

(xi − µ)2

n

RMSSD =

√

∑

n−1

i=1
(xi+1 − xi)

2

n− 1

https://github.com/juanitacabral/LEiDA
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The next step consisted in calculating a leading eigenvector  V1(t) for each dynamic phase-locking matrix 
dPL(t) to identify recurrent patterns in the dPL with reduced dimensionality. The leading eigenvector  V1(t) is 
the vector associated with the largest eigenvalue of the dPL(t) matrix, capturing the most significant pattern of 
variance in the data. It typically highlights the dominant, or strongest, pattern of synchronization between differ-
ent regions of the brain at a given timepoint (t). Focussing on this primary pattern reduces the complexity of the 
data, while retaining the most important information about brain activity dynamics. In particular,  V1(t) contains 
N elements (i.e., brain regions) which each have either a positive or a negative sign depending on the direction 
their phase projects onto  V1(t). When all elements of  V1(t) have the same sign (i.e., negative), then all phases 
are pointing in the same direction and are considered globally synchronised, which reflects global coherence 

Figure 1.  Identification of recurrent phase-locking patterns (or states) in fMRI signals. At each timepoint (here, 
first volume t = 1), Bold phases of each ROI are represented in (a) cortical space, where each arrow reflects the 
phase orientation of a given ROI and is originated from the centre of gravity of that ROI, and (b) in complex 
plane, where each arrow is centred at the same origin and the leading eigenvector  V1 is represented as a dashed 
arrow. Phases are divided into two communities (i.e., blue or red) depending on the direction they project onto 
 V1. (c) Each element in the horizontal bar plot captures the relative contribution of a given ROI to  V1 at a given 
timepoint (here, first volume t = 1). (d) The 105 × 105 dynamic phase-locking matrix dPL(t) reflects the degree of 
alignment, or synchrony, between pairs of ROI phases at time t (here, first volume t = 1). The warmer the colour, 
the more synchronised the ROIs. For each participant, we obtain a leading eigenvector  V1 at each timepoint t. 
(e) All leading eigenvectors  V1 across all timepoints and all participants are then divided into k clusters using 
k-means clustering (here, k = 9). (f) Each cluster, or state, is illustrated in cortical space. Each sphere reflects 
the centre of gravity of a given ROI and is coloured depending on the direction it projects onto the leading 
eigenvector of that state.
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mode. In contrast, a positive sign reflects meaningful functional networks whose phases detach from the global 
coherence mode and dominate at a given  timepoint41,42. These phases are in synchrony between themselves and 
out of synchrony with the rest of the  brain41,42.

We then used k-means clustering to group similar brain activity patterns into distinct clusters, or states, 
based on their characteristics. K-means clustering iteratively clusters all leading eigenvectors  V1(t) into k = 5 
to k = 10 network states. In essence, the method attempts to identify the optimal (k) number of states such that 
the sum of squared differences between the data points and the k centroids is minimised (i.e., the centroids are 
placed such that the data point clusters are maximally separated). The Dunn score was then calculated for each 
clustering attempt, each with a different k-value, to identify the number of states k that best explained the data.

Once the optimal number of states k was identified, all three LEiDA metrics were calculated for each cluster 
or state (i.e., the probability of occurrence, the lifetime and the switching probability).

To assign to each state a meaningful reference label based on known functional networks, we then calculated 
the spatial similarities between each state and seven resting-state networks previously identified by Yeo et al.40. 
This consisted in computing the Pearson’s correlation coefficients between each of the seven networks and the 
centroids  Vk previously obtained from the k-means clustering analysis, following the methodology described in 
Vohryzek et al.42. Significance was set at p < 0.01/k.

For all LEiDA analyses, correction for multiple comparisons was implemented for each metric using False 
Discovery Rate (FDR)  correction43, and age, gender and music background/familiarity were controlled for. FDR 
correction attempts to minimise the proportion of positive results likely to be false positives, typically below 5%.

Across the entire task
MASQ-AD and LEiDA metrics. We first investigated whether the severity of anhedonic depression symptoms 
was associated with each of the LEiDA measures across the entire task by calculating the Pearson’s correlation 
coefficients between the MASQ-AD and each LEiDA metric for each identified state.

Emotional blunting/variability and LEiDA metrics. We then explored whether each of the LEiDA metrics was 
associated with emotional blunting/variability by calculating the Pearson’s correlation coefficients between each 
LEiDA metric and the within-subject STD, and between each LEiDA metric and the within-subject RMSSD for 
each state.

Mediation analysis. To better understand the relationship between the LEiDA metrics, MASQ-AD scores 
and emotional blunting, we carried out a mediation analysis using IBM SPSS Statistics version 29 and macro-
programme PROCESS version 4.244. We used the LEiDA metrics as an independent variable (IV), emotional 
blunting as a dependent variable (DV) and MASQ-AD as the mediator (M). A series of regression models were 
then fitted. The first step consisted in predicting M using IV (i.e., a-path) and then predicting DV using M (i.e., 
b-path). The second step consisted in measuring the indirect effect of IV on DV through M, by multiplying a 
and b. This allowed us to explore how M mediates the relationship between IV and DV. In order to investigate 
whether the mediation model was partial or full, we also estimated the direct effect of IV and DV, as well as the 
total effect.

Focussing on each song type
Previous studies have found a stronger brain/behaviour relationship during less emotional moments of a natural-
istic task in depressed  adolescents45, and carry-over effects into subsequent conditions have also been previously 
observed in the context of sad emotional  states46 and  lethargy47 in depression. Therefore, we decided to explore 
further whether the relationship between the anhedonic depressive symptoms and the probability of occurrence 
of a given state was related to the valence of the song being played. We first extracted LEiDA metrics for each song 
type, only for the states where a significant correlation was observed between the MASQ-AD and their LEiDA 
metrics across the entire song. For each relevant state, each LEiDA metric was averaged across all songs within 
the same song type. We then calculated the Pearson’s correlation coefficients between the MASQ-AD and each 
of the LEiDA measures of a given state for each song type.

Results
Behavioural results
All of the behavioural variables (e.g., MASQ-AD, STD, RMSSD, familiarity ratings and music background ques-
tions) were normally distributed, as reflected by a non-significant Shapiro–Wilk normality test (p > 0.05).

Descriptive statistics
Personality and mental health questionnaires. The mean and between-subject standard deviation for the 
Mood and Anxiety Symptoms Questionnaire (MASQ-AD) were 34.26 and 8.843, respectively. Descriptive statis-
tics representing the mean and between-subject standard deviation for the other personality and mental health 
questionnaires can be found in Supplementary Material 1b, alongside correlations between each pair of ques-
tionnaires, and associated p-values.

We chose to focus on the MASQ-AD subscale for the rest of the analyses because the focus of this study was 
on anhedonic depressive (AD) symptoms, and because of the highly correlated scores between MASQ-AD and 
the other four questionnaires.
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Subjective ratings and familiarity ratings. Descriptive statistics representing the mean and between-subject 
standard deviation of the subjective ratings for each song can be found in Table 2. Subjective ratings ranged 
between − 6 (very sad) to + 6 (very happy), and familiarity ratings ranged between 1 (I have never heard this 
piece of music before) and 5 (I know this piece of music very well).

Familiarity ratings and music background
Full details about the mean and standard deviation of the music background questions and familiarity ratings 
for each song type can be found in Supplementary Material 2b.

Full details about the coefficients of determination and correlation coefficients between the music background 
questions and the familiarity scores are also provided in Supplementary Material 2b.

As question 3 consistently exhibited the highest coefficients of determination and correlation coefficients 
for the four familiarity summary measures, the question 3 scores were used as a nuisance covariate for the 
subsequent analyses.

MASQ‑AD and mean subjective ratings
Mean ratings were significantly higher for happy compared to neutral songs and significantly lower for sad 
compared to neutral songs. Additionally, MASQ-AD significantly negatively correlated with happy ratings, 
and significantly positively correlated with sad ratings. Significance was set at 0.05. Full details are provided in 
Supplementary Material 3b.

MASQ‑AD and emotional blunting/variability
There was a large, negative, correlation between the MASQ-AD and the within-subject STD of the subjective 
ratings (r = − 0.630, pFDR < 0.001), and between the MASQ-AD and the within-subject RMSSD of the subjective 
ratings (r = − 0.656, pFDR < 0.001). An illustration is provided in Fig. 2a,b.

It is worth noting that pFDR represents the p-value after False Discovery Rate (FDR)  correction43.
Figure 3 illustrates the lower amplitude (i.e., lower STD) in subjective ratings displayed by participants whose 

MASQ-AD scores fell into the top 33% of the range of MASQ-AD values (i.e., (c) higher levels of anhedonic 
depressive symptoms) compared to those in the middle 33% (i.e., (b)), and those in the bottom 33% (i.e., (a) 
lower levels of anhedonic depressive symptoms). Participants higher in anhedonic depressive symptoms (i.e., 
bottom panel c) displayed blunted, or less intense, responses to emotional pieces of music, as evidenced by higher 
ratings for sad songs and lower ratings for happy songs. This translated into lower within-subject emotional 
variability. In contrast, participants lower in anhedonic depressive symptoms (i.e., top panel a) displayed higher 
emotional variability and experienced more intense emotional responses, as evidenced by more pronounced 
emotional highs and lows.

LEiDA results
K-means clustering analyses revealed an optimal solution of 9 brain states based on the respective Dunn scores for 
the range of k-values we used. Figure 4 illustrates the direction and degree to which each of the 105 ROIs’ phases 
projects onto the leading vector  V1 of each state (a), and the rendering of each of these states on the cortex (b). 

Table 2.  Descriptive statistics providing the mean and between-subject standard deviation (SD) of the 
subjective ratings and familiarity ratings for each song. Participants (n = 31) were required to continuously rate 
each song in terms of how they made them feel, from − 6 (very sad) to + 6 (very happy) and were also asked to 
indicate how familiar they were with each song (1 = I have never heard this piece of music before, 5 = I know 
this piece of music very well).

Musical pieces Mean (SD) subjective ratings Mean (SD) familiarity ratings

Happy pieces

 Radetzky march 3.92 (1.55) 2.65 (1.43)

 A little night music—allegro 3.75 (1.67) 3.10 (1.47)

 A little night music—Rondo Allegro 3.24 (1.60) 2.13 (1.12)

Sad pieces

 Kol Nidrei − 2.06 (2.06) 1.48 (0.89)

 Suite for violin and orchestra in A minor − 2.98 (1.59) 1.39 (0.72)

 Concerto de Aranjuez—Adagio − 2.48 (1.88) 1.77 (1.20)

Neutral pieces

 Water music—passepied 1.28 (2.03) 2.26 (0.96)

 Violin romance no.2 in F major 1.15 (2.24) 2.29 (1.16)

 L’oiseau prophete − 0.05 (1.50) 1.29 (0.64)

 Clair de lune − 0.61 (2.83) 3.45 (1.41)

 Water music menuet 1.15 (1.38) 1.77 (1.06)

 The Planets—Venus − 1.62 (1.91) 1.74 (1.21)

 La Traviata—Prelude to the 1st scene 1.49 (1.72) 2.06 (1.09)
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In the top panel (a), the brain regions highlighted in red represent the brain regions that positively project onto 
 V1, for a given state. These same brain regions are then rendered in red on the cortex in the bottom panel (b).

Correlations between each LEiDA state and each Yeo network
State 4, which occurred 14% of the time on average, did not significantly correlate with any Yeo network and can 
therefore be considered as the global coherence network where all the ROIs’ phases point in the same direction 
(i.e., negative sign represented by blue bars in Fig. 4a). In contrast, the other eight states are each made up of a 

Figure 2.  Scatter plots representing the depression scores (MASQ-AD; x axis) and (a) the within-subject 
standard deviation of the subjective ratings (STD; y axis) and (b) the within-subject root mean square successive 
difference of the subjective ratings (RMSSD; y axis), with trendlines.
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specific set of ROIs whose phases have a positive sign (illustrated in red in Fig. 4a,b) and are in synchrony between 
themselves but out of synchrony with the rest of the ROIs. This limited group of ROIs detaches from the global 
coherence network and forms a meaningful network that spatially overlapped with one or more Yeo  networks40. 
State 1, which occurred 13% of the time, significantly correlated with the somato-motor and ventral attention 
networks of Yeo et al. (2011) (r = 0.72 and 0.47, respectively); state 2 (9%), with the Dorsal Attention Network 
(DAN; r = 0.58); state 3 (9%), with the visual and somato-motor networks (r = 0.43 and 0.42, respectively); state 
5 (12%), with the ventral attention and fronto-parietal networks (r = 0.47 and 0.53); state 6 (9%), with the visual 
network (r = 0.50); state 7 (11%), with the fronto-parietal and DMN networks (r = 0.60 and 0.56, respectively); 
state 8 (11%), with the limbic network (r = 0.60); and state 9 (12%), with the visual network (r = 0.73).

LEiDA metrics across the entire task
MASQ-AD and LEiDA metrics. Probability of occurrence A significant positive correlation was identified 
between the MASQ-AD (i.e., anhedonic deression) questionnaire and the probability of occurrence of state 
2 (i.e., Dorsal Attention Network; DAN) (r = 0.59, pFDR = 0.009; Fig. 5). There was no significant correlation 
between MASQ-AD and the probability of occurrence of the other states.

Lifetime There was no significant correlation between MASQ-AD and the lifetime of any of the states.
Switching probability There was a significant positive correlation between MASQ-AD and the probability of 

switching from the global coherence network (state 4) to the DAN (state 2) (r = 0.544;  puncorr = 0.003). We also 
found a significant positive correlation between the MASQ-AD and the probability of switching from the visual 
network (state 6) to the ventral attention and fronto-parietal networks (state 5) (r = 0.480;  puncorr = 0.011) and 
from the fronto-parietal and DMN networks (state 7) to the ventral attention and fronto-parietal networks (state 
5) (r = 0.384;  puncorr = 0.048). However, none of these correlations survived FDR correction type 1 error control 
for multiple comparisons (pFDR > 0.05).

Emotional blunting/variability and LEiDA metrics. There was a significant negative correlation between the 
probability of occurrence of the DAN (state 2) and the within-subject STD (i.e., spread in the subjective ratings) 
(r = − 0.393, pFDR = 0.043), and a non-significant negative correlation between this same network state (i.e., state 
2) and the within-subject RMSSD (r = − 0.348, pFDR = 0.076) (Fig. 6).

Figure 3.  Continuous subjective ratings throughout the entire music task, averaged across the participants 
with an MASQ-AD score (a) in the bottom 33% of the MASQ-AD values; (b) between the 34th and the 66th 
percentiles of the MASD-AD values; and (c) in the top 33% of the MASQ-AD values. The bold lines refer to the 
averaged subjective ratings. The red lines represent the standard deviation associated with the mean subjective 
ratings.
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Mediation. The first step of our mediation analysis showed that the probability of occurrence of the DAN sig-
nificantly positively predicted anhedonic depressive symptoms (i.e., MASQ-AD; a = 0.54, p = 0.0012) which, in 
turn, significantly negatively predicted the within-subject standard deviation of the subjective ratings (i.e., STD; 
b = − 0.62, p = 0.0048).

Step 2 revealed a significant indirect effect of the probability of occurrence of the DAN on STD, through 
MASQ-AD (i.e., ab = − 0.33, bootstrapped confidence interval [− 0.66 − 0.04]). Additionally, the direct effect of 
the probability of occurrence of the DAN on STD was non-significant (c’ = − 0.03, p > 0.05), while the total effect 
was significant (c = − 0.36, p = 0.0425). Taken together, these findings demonstrate that anhedonic depressive 
symptoms fully mediated the relationship between the probability of occurrence of the DAN and STD (Fig. 7).

Here, we used the bootstrap test because it is known as the state-of-the-art method for testing indirect effects 
in mediation models and providing robust, reliable confidence  intervals48. In short, bootstrapping in mediation 
analysis is a commonly used statistical method that estimates the indirect effect of an independent variable on 
a dependent variable through a mediator, by repeatedly resampling with replacement from the data to obtain 
accurate confidence intervals for this effect.

LEiDA metrics with a focus on specific song types
Additional analyses revealed a significant positive correlation between the MASQ-AD and the probability of 
occurrence of state 2 (i.e., DAN) during neutral songs overall (r = 0.606, pFDR < 0.001). There was also a signifi-
cant positive correlation between the MASQ-AD and the probability of occurrence of state 2 (i.e., DAN) during 
neutral-following-sad songs (r = 0.698, pFDR < 0.001) and a significant positive correlation between the MASQ-
AD and the probability of occurrence of state 2 during neutral-following-happy songs (r = 0.459,  puncorr = 0.016), 
however the latter did not survive FDR correction.

To better understand how individuals with higher anhedonic depressive symptoms differ from those with 
lower anhedonic depressive symptoms in the way they transition from sad songs to neutral songs, we divided 
our participants into two groups: participants with a score above the median score on MASQ-AD (i.e., 34) and 

Figure 4.  Repertoire of the states deriving from the optimal clustering solution k = 9. Top panel (a) refers to 
the contribution of each brain region to each state. A blue colour represents a negative projection, while a red 
colour refers to a positive projection. Bottom panel (b) represents the rendering of all brain regions with positive 
projections onto the leading vector of that state.
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those below the median score. Figure 8 illustrates that the mean of the probability of occurrence of the DAN 
decreased in the transition from sad songs (P_S) into neutral-following-sad songs (P_Ns) for participants lower 
in anhedonia scores, while it remained elevated for participants higher in anhedonia scores.

Discussion
In line with our first hypothesis, we observed an atypical pattern of emotion variability (i.e., STD and RMSSD 
metrics) in participants with higher levels of anhedonic depressive symptoms (i.e., MASQ-AD). Blunted emo-
tional reactivity, as described by the Emotion Context Insensitivity (ECI;6) theory, aligns with our findings 
showing negative correlations between MASQ-AD and both STD and RMSSD, a negative correlation between 
MASQ-AD and the ‘happy’ beta (i.e., averaged ratings during happy songs), and a positive correlation between 

Figure 5.  Scatter plot representing the depression scores (MASQ-AD; x axis) and the probability of occurrence 
of the dorsal attention network (DAN; state 2; y axis), with trendline.

Figure 6.  Scatter plot representing the within-subject standard deviation (STD; x axis) and the probability of 
occurrence of the dorsal attention network (DAN; state 2; y axis), with trendline.
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MASQ-AD scores and the ‘sad’ beta (i.e., averaged ratings during sad songs). However, these findings are incon-
sistent with the ESM studies reviewed  by14. One could argue that higher STD and RMSSD observed with ESM 
techniques may reflect differences in environmental contexts to which depressed individuals are typically more 
exposed, such as higher levels of bullying and workplace violence and fewer exposure to pleasant  events49–51.

Partly supporting our second hypothesis, we observed atypical behaviour of the DAN in healthy participants 
with greater levels of anhedonic depressive symptoms. Attentional difficulties in clinical depression have been 
well-documented (see Rock et al.52 for a meta-analysis). The DAN, involved in externally oriented attention, 
has shown atypical behaviours both at rest (see Kaiser et al.53 for a meta-analysis) and during  tasks54 in MDD. 
Unlike Alonso-Martínez et al.22, who found lower DAN engagement in subclinical depression at rest, our task 
required participants’ active engagement through continuous subjective ratings. In fact, in resting-state studies, 
the absence of any manipulation of attention or emotion hinders the drawing of conclusions about the relation-
ship between atypical network recruitment and self-reported emotional  difficulties29. Indeed, it is difficult to 
infer specific patterns of affective processes from unconstrained brain  activity28.

We also demonstrated, for the first time to our knowledge, that blunted, or less intense, emotional responses 
(i.e., lower within-subject STD of the subjective ratings) during the task were linked to a higher likelihood of 
DAN occurrence. Further analyses revealed that MASQ-AD fully mediated the relationship between DAN 
recruitment and emotional blunting. More specifically, DAN recruitment positively predicted anhedonic depres-
sive symptoms which, in turn, negatively predicted the magnitude, or intensity, of the subjective ratings (i.e., 
within-subject standard deviation). These findings are consistent with the notions of numbing out and atypi-
cal engagement with the external environment previously described by  Rottenberg50 and the Constructionist 

Figure 7.  Summary findings of the mediation analysis displaying standardized regression coefficients (betas) 
and their level of significance for each analysis: *p < 0.05; **p < 0.01; n.s. non-significant. We found that 
anhedonic depressive symptoms fully mediated the relationship between the probability of occurrence of the 
dorsal attention network (i.e., DAN) and the within-subject standard deviation of the subjective ratings (i.e., 
STD).

Figure 8.  Mean and standard deviation of the probability of occurrence during sad songs (P_S) and during 
neutral-following-sad songs (P_Ns) for participants low in depression (MASQ-AD score < 34; blue) and high in 
depression (MASQ-AD score ≥ 34; orange).
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 theory55. Indeed, according to Constructionism, or Theory of Constructed Emotion, the depressed brain keeps 
making incorrect predictions about the body’s energy needs as if it was chronically predicting and reliving painful 
events from the past when the metabolic needs were high and  costly56. In response to these perceived high-energy 
demands, the depressed brain becomes hyper-focussed on its surroundings, hypervigilant to potential threats, 
overly prepared to mobilize resources that are not actually needed in the present. In an effort to cut down on 
perceived “expenditure”, the entire system may eventually shut down, which translates into emotional blunting, 
reduced motivation, withdrawal from activities and disengagement from the  environment50.

Exploratory analyses revealed that the relationship between MASQ-AD scores and DAN activity was even 
more evident while participants listened to neutral songs, particularly following sad music. In more depressed 
individuals, DAN activity remained elevated during transitions from emotional to neutral music, unlike in less 
depressed participants. These findings support the Emotion Context Insensitivity  (ECI6) theory which describes 
a lack of sensitivity in transitioning between emotional and neutral events in depression. They could reflect a 
carry-over effect as observed in previous studies where larger levels of lethargy that carried over across days 
have been found to temporally predict increases in  anhedonia46,47. This difficulty in recovering from a negative 
emotional state has also been described in the context of shifting impairments in the transition from negative 
to neutral information in dysphoric  adolescents57.

Limitations
This study has several limitations.

Firstly, “neutral” songs may have affective connotations. Indeed, even though in our study averaged ratings 
were significantly different between happy and neutral songs, and between sad and neutral songs, previous 
studies have shown that neutral stimuli may sometimes be interpreted as slightly  negative58, and this might have 
affected our findings.

Second, this study did not control for the perceptual properties of each song. Indeed, it is well-known that 
emotional responses to music may vary with features such as loudness, pitch level or  sharpness59. Future studies 
may investigate whether the relationship between the severity of anhedonic depressive symptoms, the subjective 
ratings and attentional networks recruitment was somehow related to some of the song features. Indeed, this may 
answer questions about the interactions between attention, perception and emotions.

Thirdly, overall, the happy songs were rated as more familiar by the participants than the sad songs. Some 
happy songs may have been associated with specific memories in some participants, which might have been 
reflected in their ratings. However, we did control for familiarity ratings in all analyses. Future studies should 
consider a post-scan debriefing session with the participants to further investigate potential autobiographical 
memories at play during the experiment. Additionally, we asked the participants to listen to the pieces of music 
outside of the scanner once before fMRI data acquisition. Even though this allowed us to successfully collect 
information about the participants’ familiarity with the different pieces of music, it might also have created a 
repetition effect, potentially impacting the emotional responses to the music whilst inside the  scanner60.

In addition, this study was carried out in a healthy sample, which means that, at this stage, we cannot gener-
alise these findings to clinical populations, but this encourages future research to explore dynamic responses to 
naturalistic paradigms in clinical samples, such as MDD.

Finally, it is worth noting that the background noise generated by the scanner may have impacted on the par-
ticipants’ emotional responses to the different pieces of music. Indeed, previous research has shown that scanner 
noise may distort affective brain  processes61. Future studies would benefit from exploring affective processing in 
the context of quieter MRI sequences such as Looping  Star62.

Conclusion
In this study, we explored behavioural and brain network dynamics as a function of anhedonic depressive symp-
toms severity in healthy adults during an emotionally provocative music listening task. Our findings highlight 
an increased occurrence of the Dorsal Attention Network (DAN) in participants with higher levels of anhe-
donic depressive symptoms, which was associated with a blunted emotional response to both happy and sad 
songs. In particular, anhedonia mediated the relationship between the occurrence of the DAN and emotional 
variability metrics. Indeed, increased occurrence of the DAN predicted higher levels of anhedonia which, in 
turn, predicted blunted emotional responses to both happy and sad pieces of music (i.e., lower within-subject 
standard deviation). Furthermore, this elevated recruitment of the Dorsal Attention Network during emotional 
pieces of music carried over into subsequent affectively neutral music in participants with higher anhedonia. 
Future research should explore whether these findings could be generalised to a clinical population (i.e., major 
depressive disorder).

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.
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