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Abstract
Replication-defective viral vector vaccines have several advantages over conventional subunit vaccines, including potent 
antibody responses, cellular responses critical for eliminating pathogen-infected cells, and the induction of highly immu-
nogenic and durable immune responses without adjuvants. The Human papillomavirus (HPV), a microorganism with over 
200 genotypes, plays a crucial role in inducing human tumors, with the majority of HPV-related malignancies expressing 
HPV proteins. Tumors associated with HPV infection, most of which result from HPV16 infection, include those affect-
ing the cervix, anus, vagina, penis, vulva, and oropharynx. In recent years, the development of therapeutic HPV vaccines 
utilizing viral vectors for the treatment of premalignant lesions or tumors caused by HPV infection has experienced rapid 
growth, with numerous research pipelines currently underway. Simultaneously, screening for optimal antigens requires more 
basic research and more optimized methods. In terms of preclinical research, we present the various models used to assess 
vaccine efficacy, highlighting their respective advantages and disadvantages. Further, we present current research status of 
therapeutic vaccines using HPV viral vectors, especially the indications, initial efficacy, combination drugs, etc. In general, 
this paper summarizes current viral vector therapeutic HPV vaccines in terms of HPV infection, antigen selection, vectors, 
efficacy evaluation, and progress in clinical trials.
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Introduction

Hundreds of types of human papillomavirus (HPV) have 
been detected, and it is a common sexually transmitted virus 
that infects the genital areas of men and women, including 
the skin of the penis, vulva (area outside the vagina), and 
anus, and the linings of the vagina, cervix, and rectum [1]. 

Most HPV infections are asymptomatic, and certain high-
risk HPV types can lead to cancer. Worldwide, HPV is one 
of the most prominent infectious agents that cause cancer 
and is associated with a variety of malignancies, most com-
monly cervical cancers. Nearly all cervical cancer cases are 
associated with HPV infection, particularly with high-risk 
HPV types, especially for HPV16. HPV is also associated 
with vaginal, penile, anal, and oropharyngeal cancers [2]. 
According to recent studies, one in five men > 15-years of 
age are infected with one or more of high-risk HPV geno-
types [3]. HPV prophylactic vaccines exhibit excellent 
immunogenicity and prevent the development of HPV-
related precancerous lesions and tumors [4]. There is signifi-
cant regional variation in global HPV vaccination coverage. 
HPV vaccine coverage in Australia is among the highest 
in the world, while many low-and middle-income countries 
have relatively low coverage. Although 96 countries have 
included HPV vaccines in the national immunization pro-
gram, the burden of HPV-related tumors remains heavy in 
low-and middle-income countries due to slow vaccine pro-
motion, low screening and early diagnosis rates, and limited 
treatment resources [5].
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In May 2024, the WHO issued a document clarifying that 
HPV therapeutic vaccine is an important means to eliminate 
tumors associated with HPV infection [6]. Partha Basu et al. 
conducted a meta-analysis of 12 Phase II/III clinical trials 
of HPV therapeutic vaccines prior to January 31, 2022, a 
total of 734 women received the HPV therapeutic vaccine 
for CIN2/3. 414 patients regressed to normal or CIN 1, the 
overall regression ratio in the vaccine group was 0.54 (95% 
confidence interval 0.39 to 0.69); while in the five rand-
omized controlled trials, the overall regression ratio of 166 
women receiving placebo was 0.27 (95% confidence inter-
val 0.20 to 0.34) [7]. Further, Aida Petca et al. analyzed 
the clinical trials from January 2018 to January2024 and 
found that HPV vaccine also had certain therapeutic effects 
in skin cancer and warts [8]. Of course, there are differences 
in immunogenicity and efficacy, and although promising, 
there is still room for improved efficacy [9].

Recombinant viral vectors have been used to deliver 
antigens from specific pathogens for > 40 years, including 
adenovirus (ADV), poxvirus, herpes simplex virus (HSV), 
vesicular stomatitis virus (VSV), lentivirus vectors (LV), 
cytomegalovirus (CMV), measles virus (MV) and lympho-
cytic choriomeningitis virus (LCMV) [10]. Viral vectors are 
designed to deliver antigens to specific cells and tissues. 
Viral vector vaccines can be further optimized to enhance 
the expression of transgenes in target cells during antigen 
delivery. Viral vectors have been used in preclinical and 
clinical trials as vaccines against various infectious diseases, 
such as HIV, malaria, Ebola virus, and Covid-19 [11–14]. 
With the worldwide spread of Covid-19, multiple vaccine 
platforms, including viral vector vaccines, have flourished. 
Viral vector-based therapeutic HPV vaccines have also been 
developed and enter the phase of clinical trials, and several 
products have recently announced the latest clinical results 
[15–23]. This paper provides an in-depth understanding of 
the evolving landscape of HPV vaccine technology, high-
lighting the vectors employed, the diseases they aim to tar-
get, the antigens chosen for optimal immune response, the 
metrics used to evaluate their effectiveness, and the signifi-
cant strides made in clinical evaluations.

HPV infection and its association with various 
cancer types

HPV infection has been firmly established as the primary 
causative factor in the majority of cervical cancer cases. 
And, cancers arising from diverse anatomical sites are also 
associated with HPV, albeit to varying extents. According 
to the Globocan 2012 and the Cancer Incidence in Five 
Continents (CI5-X) database, 88% of anal cancer, 78% of 
vaginal cancer, 50% of penile cancer, 24.9% of vulval cancer 
and 30.8% of oropharyngeal cancer is attributable to HPV 
[24]. Until now, a total of 14 HPV genotypes have been 

rigorously categorized as "high risk," primarily owing to 
their profoundly elevated potential for inducing carcinogene-
sis. Among these, HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 
58, and 59 have been specifically designated as Group 1 car-
cinogens by the esteemed International Agency for Research 
on Cancer (IARC), which underscores their exceptional 
threat. Additionally, HPV66 and HPV68 are also classified 
in this high-risk category, further broadening the scope of 
concern for these potentially hazardous genotypes [25]. In 
a study conducted in China in 2023, it was uncovered that 
HPV16, 58, 52, 33, and 31/18 are the foremost high-risk 
human papillomavirus (hrHPV) prevalent in both the CIN 2 
and CIN3 cohorts. Concurrently, the research highlights that 
the breakdown of CIN1, CIN2, and CIN3 cases associated 
with solitary HPV16 infection was 22.06% and 46.24% for 
CIN1 and CIN2, respectively, and a significant 55.21% for 
CIN3. This underscores the carcinogenicity of HPV16, mak-
ing it the most formidable hrHPV type in the progression 
of cervical precancerous conditions and malignant tumors 
[26]. HPV 16 is also responsible for approximately 50–80% 
of anogenital cancers, including vaginal, vulval, penile, and 
anal cancer. Other common HPV types that contribute to 
these cancers include HPV 33, 31, 18, and others [27–29]. 
Additionally, in the realm of oropharyngeal cancer, HPV 16 
holds the distinction of being the most frequently identified 
type globally, with HPV 33, 18, 31, and 35 following in its 
wake [30–32]. It is worth mentioning that globally, HPV-16 
is also the most common type of HR-HPV in men at 5%, 
followed by HPV 51 (3%), HPV 52 (3%), HPV 59 (2%) and 
HPV 18 (2%) [3]. Thus, HPV 16 remains the most threaten-
ing type to human health, and the current HPV therapeutic 
vaccines primarily target HPV16. However, a clinical trial 
of VGX3100, a therapeutic vaccine against both HPV16 and 
HPV18, revealed that persistent lesions may be linked to 
other HPV infections, indicating that patients may have had 
mixed infections prior to treatment [33].Therefore, future 
HPV therapeutic vaccines should aim to cover a broader 
range of HPV types beyond HPV16.

HPV structural characterization and antigen 
selection for therapeutic HPV vaccine

HPV also causes anogenital warts and recurrent respira-
tory papillomatosis. HPV has a circular double-stranded 
DNA genome approximately 8 kb in size, with early and 
late regions encoding early (E1, E2, E4, E5, E6, and E7) 
and late (L1 and L2) proteins, respectively [34]. The late 
proteins refer to the L1 (55 kDa) and L2 (64–78 kDa) 
proteins. Each viral capsid consists of 72 L1 pentamers 
and a small amount of L2 protein. L1, a protein with a 
molecular weight of approximately 55 kDa, which is the 
major structural component of the virion, is located in 
the outer layer of the capsid, and the L1 ORF is the most 
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conserved region of HPV. Therefore, an ORF similarity 
of < 60% for L1 is considered to be the basis for tradi-
tional HPV serotyping [1]. L2 is located in the inner layer 
of the capsid and plays several important roles in viral 
infection. L2 interacts with L1 to promote capsid assem-
bly and stability. Moreover, the L2 protein is involved in 
viral entry into host cells, introducing the viral genome 
through mechanisms associated with host cell membrane 
fusion. Furthermore, both L1 and L2 are antigenic options 
for prophylactic HPV vaccines [35, 36].

The early HPV proteins include seven proteins, E1-E7. 
E1 is the largest and most conserved ORF in the HPV 
genome, encoding 600–650 aa, and is involved in the 
regulation of viral replication and transcription [37]. The 
E2 protein enhances viral transcription and stable replica-
tion; however, E2 can strongly inhibit the expression of 
E6 and E7 proteins and induce HPV-positive cell growth 
arrest and senescence. However, studies have confirmed 
that E2 alone can induce cellular p53-dependent apop-
tosis in the absence of the HPV genome [38, 39]. An 
MVA vector carrying the bovine papillomavirus E2 gene 
was used for therapy [40]. E4 differs greatly among HPV 
types and functions in a ligand-like manner. Studies have 
shown that HPV E4 facilitates E6/E7 viral amplification. 
E5 is a small, hydrophobic transmembrane protein and 
is an oncogene [41]. E6 and E7 are the antigens most 
commonly used in therapeutic vaccines [42]. E6 (150 aa) 
can degrade p53 to promote cell proliferation, regulate 
expression of TOLL-like receptor-9 [43]. E6 suppresses 
the RIG-I-mediated induction of IFN-β, chemokines, 
and IFN-stimulated genes and mediate immune escape 
of HPV-infected cells [44]. E7 (100 aa) can degrade Rb 
and cause tumor cell proliferation [45].

Consistent with the requirements for other tumor vac-
cines, the requirements for HPV-related tumor vaccines 
are 1. High or specific expression of the antigenic protein 
by tumor cells. 2. Proteins can be processed naturally into 
suitable peptides to present. 3. Peptides have high affin-
ity for MHC molecules 4. Peptide/MHC complexes with 
responding T-cell TCRs have affinity [46]. Notably, the 
diversity of HLA (encoding MHC proteins) in the popula-
tion affects the production of immune responses [47–49]. 
The most studied proteins are E6 and E7, which have been 
confirmed to have high cellular immunogenicity and are 
currently the first choice for HPV-related tumor vaccines. 
Since E6 and E7 can degrade p53 and Rb, respectively, 
leading to tumorigenesis, E6 and E7 as antigens are often 
mutated to disable their tumorigenic capacity [43, 50]. In 
addition, E2 and E5 have also been found to be expressed 
by tumors and exhibit good immunogenicity, with the 
potential to become a vaccine [51–54].

Advantages of viral vector platforms

The use of viral vectors as vaccine platforms can induce 
innate immune responses without the need for adjuvants. 
Furthermore, analogous to the natural infection process, 
the viral vector in the target cells, devoid of any external 
adjuvants, is capable of eliciting robust humoral and cel-
lular immune responses [55]. After viral infection, target 
cells activate pathways associated with anti-viral pathways, 
such as the cGAS-STING pathway, IFN signal channel, 
TNF signaling pathway, etc. All have synergistic anti-tumor 
effects [56–58]. Simultaneously, viral infections can enhance 
the ability of macrophages to phagocytose tumor cells and 
induce and train macrophage memory cells to strengthen 
tumor cell surveillance [56, 59]. Natural killer (NK) cells 
activated by viral vectors are also major anti-tumor cells 
[60]. Furthermore, viral vectors carry specific antigens that 
can enable the effective expression of antigens in the human 
body, promote antigen presentation by host cells, activate 
dendritic cells (cDCs), and produce strong, sustained cel-
lular immunity to continuously remove target cells, thus 
becoming the main mechanism of therapeutic vaccines. 
Memory CD8 + T cells allow the body to prevent disease for 
a prolonged time [15]. Although humoral immunity involv-
ing therapeutic vaccines is not a major part of effectiveness 
evaluation, an increasing number of studies have found that 
B cell- and plasma cell-secreted antibodies play important 
roles in anti-tumor immunity, including antibodies that can 
activate the classical complement pathway (complement-
dependent cytotoxicity, CDC), kill target cells, and activate 
the participation of Fc receptor antibody-dependent cyto-
toxic effects (ADCCs) [61].

Replication-defective viral vectors, including adenovi-
rus type 5, adenovirus type 26, ChAdOx1, rhabdoviruses 
(VSV), flaviviruses (YF117D), arenaviruses, and modi-
fied vaccinia Ankara (MVA) have been used as therapeutic 
vaccines for HPV-related tumors. Due to their replication 
deficiencies, viral vectors possess extensive clinical epide-
miology and clinical trial data, exhibiting favorable safety 
profiles [62–65]. Adenoviruses (Ads) which is a commonly 
used vaccine vector exhibit extensive tropism for different 
cells due to their ability to infect non-dividing and divid-
ing cells, with a low risk of insertional oncogenesis due to 
their existence as episomes [66]. However, Ad5 neutraliz-
ing antibodies are common in the population, which can 
reduce the effectiveness of such vaccines [67].Thus, rare 
serotypes, such as Ad26, and non-human adenoviruses, such 
as ChAdOx1, have been developed. They have low or no 
seroprevalence in the population but are associated with a 
very rare clotting disorder, thrombosis, and thrombosis with 
thrombocytopenia syndrome (TTS) [68].MVA, derived from 
the vaccinia virus, has a high capacity for transgene inser-
tion and broad tropism for mammalian cells since infection 
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occurs through passive membrane fusion [69]. The VSV 
genome is simple and can induce mucosal immunity; how-
ever, it has the potential for neurovirulence [70]. Flavivi-
ruses and arenaviruses are emerging vaccine carriers that 
have been used as Lassa and Ebola virus vaccines [71].

Preclinical evaluation of HPV therapeutic vaccine

Similar to other active immunotherapeutic products, dur-
ing the preclinical stage, therapeutic HPV vaccines need to 
be verified using appropriate models, including the induc-
tion of appropriate immune responses, cellular and humoral 
immunity, and killing of tumor cells [72]. Immune responses 
are often detected in healthy animals, with C57BL/6 and 
non-human primates (cynomolgus and rhesus macaques) 
being the most commonly used animal species (Table 1). To 
evaluate the tumor suppressor effect of vaccines, TC-1 cells 
expressing HPV16-E6 and—E7 and activated Ras oncogene 
were used in C57BL-6 mice to analyze the anti-tumor effects 
and changes in immune cell types in the tumor microenvi-
ronment (TME) due to the therapeutic vaccine containing 
the HPV16 E6/E7 antigen [73]. Additionally, MOC1 cells 
engineered to express HPV6-E6 were used to evaluate the 
anti-tumor effects of PRGN-2012 in C57BL/6 mice [15]. 
There are also other cancer cell lines derived from C57BL/6 
mice: C3 cells, generated by immortalization and transfec-
tion of mouse embryonic cells, express the complete HPV16 
genome [74], and mEER cells, derived from mouse tonsil 
epithelium, have advantages in terms of better translation 
toward head and neck squamous cell carcinoma (HNSCC) 
[75]. However, C57BL/6 mice only express H-2 Kb and 
H-2Db MHC class I molecules, limiting their repertoire of 
class I epitopes. Therefore, the development of more appli-
cable animal models to verify vaccine effectiveness has been 
proposed. Beagle dogs expressing E7/HPV16 transgenes via 
intramuscular (IM) injection of lentiviral particles have been 
verified as a potential model for persistent infection [76]. 
Macaca Fascicularis papillomavirus type 3(MfPV3), which 
is phylogenetically and phenotypically similar to HPV16, 
is also suitable for macaques persistent genital infections 

[77]. However, Beagle dogs and macaques are difficult to 
be tumor-bearing and therefore difficult to evaluate the anti-
tumor effect of vaccines. Notably, the SfPV1/rabbit papil-
lomavirus model, which induces infection with long-term 
persistence and malignant progression of lesions, is suitable 
for both tumor suppression and persistent infection models 
[78].

Nevertheless, the utilization of animal models in assess-
ing the efficacy of tumor vaccines cannot overlook species-
specific disparities. Consequently, there is an imperative 
need for the establishment of alternative evaluation systems 
that better recapitulate human responses. The immunogenic-
ity and tumor suppression effects of vaccines can be demon-
strated in humanized mice. However, tumor blast cells neces-
sitate the corresponding HLA molecular transduction and 
antigen expression for effective treatment [79–81]. In vitro 
induction tests of human peripheral blood mononuclear cells 
(PBMCs) can detect vaccine reactivity with a large sample 
size and conduct in vitro killing testing; however, this can-
not mimic vaccine effectiveness tests with complex tumor 
cell compositions [82]. Organoids can better simulate tumor 
cell composition and immunosuppressive microenvironment 
and can be used as supplements to tumor vaccine suppres-
sion [83]. However, in vitro test cannot effectively evalu-
ate vaccine doses and procedures. Overall, multiple parallel 
evaluation strategies for the preclinical evaluation of HPV 
therapeutic vaccines are recommended, based on the respec-
tive defects of each evaluation system.

Current research status of therapeutic vaccines 
using HPV viral vectors

With the advent of tumor immunotherapy, such as PD-1/
PD-L1 inhibitors, Chimeric antigen receptor (CAR)-T cell 
therapy, tumor-infiltrating lymphocytes (TILs) therapy, T 
cell receptor-engineered T cells (TCR-T) therapy, and other 
products, the tumor-killing capacity of tumor-specific T 
cells in vivo has been further confirmed [84–86]. Tumor 
vaccines, as therapeutic modalities that effectively acti-
vate tumor-reactive T cells throughout the body, have also 

Table 1   Commonly Used Animal Models for the Evaluation of HPV therapeutic vaccine

Species models HPV type and immunogens Suit for tumor 
supression model

Suit for persistent 
infection model

References

C57BL/6N TC-1 HPV16 E6/E7  +  – [76]
Mouse cells

C3 cells Full genome HPV16  +  – [74]
mEER cells HPV16 E6/E7  +  – [75]

Cotton-tail rabbit PV High risk HPVs  +   +  [78]
Macaca fascicularis PV type 3 HPV16- –  +  [77]
Beagle dogs High risk HPVs –  +  [76]
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become the focus of many researchers. The development of 
a therapeutic vaccine for HPV-related tumors has entered a 
new stage. This paper summarizes the existing therapeutic 
vaccines for HPV (Table 2). Based on recent reports, as of 
March 20, 2024, only TA-HPV, a recombinant vaccinia virus 
expressing modified HPV-16 and -18 E6 and E7 genes and 
VTP-200, a prime-boost vaccine composed of ChAdOx1-
HPV and MVA-HPV, have completed phase II clinical trials. 
Furthermore, PRGN-2009 was in clinical phase II, whereas 
Vvax-001 had already entered clinical phase II. However, 
phase I of Ad-E6E7 and Ad26.HPV18 was terminated due 
to a low anti-viral potency and low enrollment. None of the 
other clinical trials entered Phase II.

TA-HPV showed immunogenicity in 29 patients with 
stage Ib or IIa cervical cancer; eight patients developed 
HPV-specific serological responses, and four patients devel-
oped HPV-specific CTLs after a single vaccination in phase 
I [16]. TA-HPV combined TA-CIN which is a recombinant 
fusion protein comprising HPV16- E6/E7/L2, showed sig-
nificant effects, 9 of 10 women with HPV 16-positive high 
grade VIN demonstrated HPV 16-specific proliferative T 
cell and/or serological responses and three patients addition-
ally exhibited lesion shrinkage or symptom relief [87]. A 
reduction in lesion size was observed in 6 patients (17%) and 
improved symptom atology in 15 (62%) in a phase II prime-
boost vaccine trial in 27 patients with vulval intraepithelial 
neoplasia grade 3, and in 2 patients with vaginal intraepithe-
lial neoplasia grade 3 [88].

The antigens of HPV viral vector therapeutic vaccine are 
mainly the E6 and E7 proteins, independent of or in the 
form of fusion proteins. Certain vaccines incorporate the 
E6 and E7 proteins of HPV18 to broaden the potential ben-
eficiary population of the vaccine. It is worth mentioning 
that researchers have gradually begun to apply bioinformatic 
methods to design and construct target proteins to achieve 
immunogenic coverage of more HPV types: research-
ers designed the synthetic gene ‘5GHPV3’ by selecting 
conserved regions from each of the six early proteins and 
generating consensus sequences to represent five hrHPV 
genotypes and inserted the ‘5GHPV3’ separately ChAdOx1 
and modified vaccinia MVA vectors to conduct ChAdOx1-
HPV and MVA-HPV [89]; PRGN-2012 is built on a gorilla 
adenovector platform with a fusion of regions from HPV 
proteins selected by bioinformatic approaches and protein 
engineering to elicit immune responses directed against 
HPV-infected cells [15].

A rigorous clinical trial evaluating the safety and immu-
nogenicity of Ad26—and MVA vector vaccine compo-
nents was conducted among women with cervical infec-
tions caused by HPV16 or HPV18 (NCT03610581). It is 
noteworthy that PRGN-2012 is indicated for the treatment 
of recurrent respiratory papillomatosis, papillomavirus 
infections, and Papillomaviridae, which stimulate immune 

responses against the low-risk HPV6/11 types [15]. The 
HPV therapeutic vaccines are universally used to treat can-
cers and precancerous lesions. During tumor formation, 
an immunosuppressive microenvironment is formed, with 
downregulation of MHC molecules, infiltration of Treg cells, 
and excessive expression of immune checkpoint proteins 
such as PD-L1 [90]. Therapeutic vaccines are capable of 
elevating the levels of systemic cytotoxic CD8 + T cells and 
facilitating an increase in CD8 + cell counts within tumor 
tissue. On this basis, studies have confirmed that a tumor 
vaccine combined with immune checkpoint blockade (ICB) 
can greatly improve tumor response rates and enhance anti-
tumor immune responses [91, 92]. From clinical trials of 
viral vector HPV treatment vaccines, if HPV-related tumors 
are selected as an indication, researchers will choose PD1/
PD-L1 inhibitors as co-use drugs, such as Atezolizumab, 
Pembrolizumab, and Avelumab. As reported in European 
Society for Medical Oncology (ESMO) meetings in 2020, 
after therapeutic vaccination with TG4001 co-administered 
with Avelumab in 34 patients with various recurrent/meta-
static HPV-positive cancers, one patient demonstrated com-
plete response (CR), and seven patients achieved partial 
response per RECIST versus 1.1 [93]. Thus, combinations of 
tumor-therapeutic vaccines and immune checkpoint inhibi-
tors represent an important direction for future treatments.

Viral vectors can also produce potent immune responses, 
including anti-viral cellular immunity and neutralizing anti-
bodies [94–96]. Therefore, some researchers choose a het-
erologous vector booster vaccination to stimulate a stronger 
anti-HPV immune response, similar to prime-boost vaccines 
ChAdOx1-HPV and MVA-HPV, and prime-boost vaccines 
Ad26.HPV16 and MVA.HPV16/18 [89].

Conclusions

This paper summarizes progress in the development of 
therapeutic HPV vaccines using recombinant viral vectors, 
including viral vectors, antigen selection, efficacy assess-
ment, and clinical trials. Currently, HPV-related tumor vac-
cines primarily achieve their efficacy by inducing immune 
responses and suppressing tumor growth. Several viral vec-
tor-based therapeutic HPV vaccines have entered clinical 
trials, exhibiting satisfactory safety profiles and tolerability. 
Additionally, they have demonstrated encouraging immu-
nogenicity and tumor suppressive effects in terms of their 
therapeutic efficacy. HPV vaccines based on viral vectors 
hold promising prospects for future development.

In future studies, therapeutic viral vector HPV vaccines 
will be developed in the following directions: 1. Investigate 
safer and more effective viral vectors that exhibit reduced 
virulence in the population while maintaining their ability 
to infect a greater number of APC cells, thereby eliciting 
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a more potent cellular immune response. 2. Antigens not 
limited to E6 or E7. Leveraging bioinformatics, we aim to 
devise an enhanced “super antigen” that exhibits broadened 
coverage against multiple HPV types and is compatible with 
a wider range of HLA typing individuals. And attention must 
be paid to certain matters during the development process:1. 
The selection of suitable platforms for the preclinical assess-
ment of vaccine efficacy in vitro is crucial. 2. As more clini-
cal trial data becomes available, the therapeutic strategies for 
HPV vaccines will be gradually consummate.
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