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Fine-tuning protein language models boosts
predictions across diverse tasks

Robert Schmirler 1,2,3 , Michael Heinzinger 1 & Burkhard Rost 1,4,5

Prediction methods inputting embeddings from protein language models
have reached or even surpassed state-of-the-art performance onmany protein
prediction tasks. In natural language processing fine-tuning large language
models has become the de facto standard. In contrast, most protein language
model-based protein predictions do not back-propagate to the language
model. Here, we compare the fine-tuning of three state-of-the-art models
(ESM2, ProtT5, Ankh) on eight different tasks. Two results stand out. Firstly,
task-specific supervised fine-tuning almost always improves downstream
predictions. Secondly, parameter-efficient fine-tuning can reach similar
improvements consuming substantially fewer resources at up to 4.5-fold
acceleration of training over fine-tuning full models. Our results suggest to
always try fine-tuning, in particular for problems with small datasets, such as
for fitness landscape predictions of a single protein. For ease of adaptability,
we provide easy-to-use notebooks to fine-tune all models used during this
work for per-protein (pooling) and per-residue prediction tasks.

How to speak protein? Transformer-based1 language models (LMs)
have revolutionized Natural Language Processing (NLP). Large lan-
guage models (LLMs) now perform at or above average human level.
The newest generative models (GPT42 or PaLM23) expand upon NLP
through impressive capabilities in coding, math, and even common
sense reasoning4. The success of LLMs has led to their widespread
application from computer vision5 over time series forecasting6 to
biologic language models7–13. For instance, protein language models
(pLMs) are trained on many protein sequences14–17. PLMs learn from
large data sets without any experimental annotation other than the
sequence. The information extracted by the pLM, more precisely the
value describing the last hidden layers, dubbed the embeddings, can
be readily transferred to any protein-related prediction task. This
generality makes pLMs suitable to a wide variety of prediction tasks
spanning from secondary structure14 over membrane regions18,
intrinsic disorder19, protein structure16,20, and protein-protein
interaction21 to predictions of stability22,23 or solubility24. Successful
applications to more function-related predictions include the identi-
fication of paratopes25, epitopes26, and signal peptides27, as well as,

other tasks, e.g., related to the effect of sequence variation28–31.
Embedding-based predictions seem particularly advantageous when
experimental data are very limited32. Effectively, the embeddings from
pLMs condense the understanding of the language of life7,14. Over the
last 30 years, the de facto standard in protein prediction has been the
use of evolutionary information, i.e., information from Multiple
Sequence Alignments (MSAs) as input to machine learning33. Now,
pLM-based predictions have reached and often even superseded the
MSA-based state-of-the-art (SOTA) expert devices formany prediction
tasks. Embeddings can be input to artificial feed-forward (ANN) or
convolutional neural networks (CNN). More complex architectures
have also been explored34. Continued unsupervised training can focus
models on specific protein families35 or enrich embeddings with
structural information essentially creating a bi-lingual pLM36. Training
specialist models from scratch on smaller, specific proteins, e.g.,
antibodies25,37, seems an alternative to continued training (train pLM
on large generic data and refine on specific proteins).

In contrast to the training recipes described above, which extract
static representations from the pLM’s last hidden layer without
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changing its weights, it was shown for NLP that finetuning the para-
meters of the LLM is beneficial for downstream prediction
performance38–40. This aligns well with the fact that the last layer’s
representation is not always optimal41,42 and finetuning gives access to
information stored in any layer of the model. However, for pLMs, fine-
tuning remains less studied than for NLP, although some prediction
tasks have been reported to profit from supervised, task-specific fine-
tuning21,43–45. Here, we evaluated the impact of task-specific supervised
fine-tuning by adding a simple ANN as a prediction head on top of the
pLM encoder and applied supervised training to both, the pLM enco-
der and the prediction head. We compared the results to predictions
using static, pre-trained embeddings (no finetuning of the pLM). For
the larger models (ProtT514, ProstT536, both Ankh15 models, and ESM2
3B16), we utilized LowRank Adaptation (LoRA)46, a particular version of
a more general approach known as PEFT (Parameter Efficient Fine-
Tuning)38. Freezing most of the model and updating only a small
fraction of the weights (Table 1) accelerates training and prevents
catastrophic forgetting47,48. This will become especially relevant, as
pLMs17 follow the NLP trend where bigger models usually translate to
better downstream performance17. We assessed diverse prediction
tasks from eight previously established benchmarks through the lens
of three pLMs from which we derived some rules of thumb (and
scripts) that simplify navigating the vastly growing space of PEFT
methods applied to pLMs.

Results and Discussion
Fine-tuning is mostly successful
We trained 615 individual predictionmethods (295 for fine-tuning, 320
using frozen embeddings from pre-trained pLMs - protein Language
Models) comprising eight models (Table 1), each trained on eight dif-
ferent data sets (Table 2). We trained each model-task combination
multiple times with different random seeds and all results constituted
averages over those runs. The corresponding validation set selected
the best training stop. For each prediction task (PT), we compared the
performance between fine-tuning and pre-training (1). For ProtT5-XL-
U5014 (labeled ProtT5) and all five tested ESM2 versions16 (differing in
parameter size between 8M (8*10^6) and 3B (3*10^9)), not all
improvements were statistically significant within the 95% confidence
interval (CI: Methods). Nevertheless, supervised fine-tuning numeri-
cally increased performance for almost all combinations (Fig. 1,
detailed results in supplementary onlinematerial (SOM)Tables S1–S6).
The exceptions were ESM2-150M applied to Stability prediction, and
both Ankh15 models. Ankh gained significantly by fine-tuning only for
the mutational landscape data (GFP, AAV, and GB1: blue in Fig. 1).

For these data, performance relied less on transfer from model
pretraining (Fig. S7) and mainly depended on the underlying trans-
former architecture. This might explain why Ankh performed similarly
to ProtT5 and the ESM2. For the diverse data sets, this was not the case.

Twomajor factors differentiate Ankh from the other pLMs. Firstly, the
T549masked spanpre-trainingdiffers from thatof BERT-like50 objective
used for the other models. Secondly, the training procedure and
architecture of Ankh was optimized using data (GFP, GB1, subcellular
location, and secondary structure) also utilized in this work15. This
might have reduced the ability to fine-tune these models.

For five of the 64 pLM/task combinations (tiles in Fig. 1), fine-
tuning performed worse. The observation ESM2-150M on stability
(Fig. 1 red tile) originated from instability in training picking a sub-
optimal model (Fig. S5). The other four originated from the Ankh pLM
family on disorder and secondary structure. We were not able to track
down a root cause here but suspect that the different natureof the pre-
training plays a role.

LoRA was competitive with alternative PEFT methods
For ProtT5 and sub-cellular location prediction, we compared three
parameter-efficient fine-tuning methods to LoRA46. Not having suffi-
cient resources to do this analysis for all prediction tasks/pLMs, we
chose this problemdue to its limit in size and because of the success of
fine-tuning on this problem (configuration in Method and Fig. 2). The
fraction of trained model parameters were 0.25% for LoRA, 0.28% for
DoRA51, 0.12% for IA352 and 0.5% for Prefix tuning53. Despite these dif-
ferences, runtimes for training and testing (inference) were within
±10% betweenmethods, except for DoRAwhich was about 30% slower
than the other three. In terms of prediction performance, LoRA and
DoRA outperformed IA3 and Prefix-tuning (Fig. 2). Overall, all fine-
tuning methods improved, on average, over pre-trained embeddings
(61.3% from Table S5). As no method improved significantly over the
well-established LoRA, we used it throughout our experiments. Of
course, these results for a singlemodel and datasetmust not hold true
in general. We encourage to explore parameter efficient fine-tuning of
pLMs, utilizing new combinations of high-quality datasets, state-of-
the-art models, and PEFT methods in future work and hope the note-
books made available by us help to pursue this research more easily.

Insignificant gain for secondary structure prediction
For per-residue, three-class secondary structure prediction (helix,
strand, other), fine-tuning improved only slightly (Fig. 2a; up to 1.2
percentage points for CASP1254 and NEW36414). We confirmed this for
the general-purpose ProtT514 and the bilingual, structure-tuned
ProstT536. Two effects might have hindered substantial improve-
ment. Firstly, secondary structuremight already havebeen captured in
unsupervised pre-training. In fact, embeddings already capture some
aspects of inter-residue contact formation10,20. Secondly, performance
may have reached an upper limit55. One limitation of the benchmark is
highlighted by the two data sets (CASP1254 and NEW36414). Both were
introduced to gauge the performance for unknown proteins. Other
than that CASP12 is much smaller (12 proteins vs. 364) implying higher

Table 1 | Protein language models (pLMs) applied in the study*

Model Architecture
(pretraining)

Number of parameters
(encoder)

Trained para-
meters LoRA

Encoder layers Emb size Huggingface model checkpoint

Ankh Base Encoder-Decoder 736M 2100K 48 768 ankh-base

Ankh Large 1900M 4900K 48 1536 ankh-large

ProtT5 1200M 3500K 24 1024 prot_t5_xl_uniref50

ProstT5 1200M 3500K 24 1024 ProstT5

ESM2 8M Encoder 8M 163K 6 320 esm2_t6_8M_UR50D

ESM2 35M 35M 483 K 12 480 esm2_t12_35M_UR50D

ESM2 150M 150M 1600K 30 640 esm2_t30_150M_UR50D

ESM2 650M 650M 3500K 33 1280 esm2_t33_650M_UR50D

ESM2 3B 3000M 7700K 36 2560 esm2_t36_3B_UR50D
*Emb size provides the dimension of the embeddings of the corresponding pLM. Throughout the paper, we used the standard acronyms K for 10^3, M for 10^6, and G for 10^9.
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statistical errors, there seems no a priori reason for choosing one over
the other, and no method compared here is expected to have any
systematic bias toward any of the two. Thus, the difference between
both should estimate the statistical error. In other words, boot-
strapping error estimates should be similar to the difference between
the two sets. This was not the case at all (Fig. 3a: differences between

CASP12 and NEW364 exceeded standard errors marked by distribu-
tions). Arguably, secondary structure prediction assessment is the
best-solved task in protein structure prediction sincedecades33,55. Even
for this relatively trivial problem, such a simple dichotomy seems not
easily resolvable. In fact, the standard mantra: larger data sets without
redundancy appears not to solve this dichotomy. These results

Table 2 | Task-specific datasets*

Prediction level Sequence diversity Prediction task/data set Number of sequences Average length (number of residues/
tokens)

Train Validation Test

per-protein Mutational landscapes GFP22,66 21,446 5362 27,217 237.0

AAV23,67 28,626 3181 50,776 736.3

GB123,68 2691 299 5743 265.0

Diverse datasets Stability22,69 53,614 2512 12,851 45.0

Meltome23,70 22,335 2482 3134 544.5

SubCellLoc34,71 9503 1678 490 519.9

per-residue Disorder19,56 1056 118 117 118.1

SecStr14,73 9712 1080 364 255.0
*Prediction level: Per-protein predictions make a single prediction for an entire protein; per-residue predictions provide one number for each residue (position) in a protein. Sequence diversity:
distinguishes between tasks with experimental data specific for individual proteins (mutational landscapes) and those for which data mixes different proteins from different organisms. Prediction
task: as described in Methods; SubCellLoc: sub-cellular location, SecStr: secondary structure prediction (in 3 states: helix, strand, other). A number of sequences (i.e., proteins, note this is NOT the
number of samples, e.g., for secondary structure prediction N proteins – number given in table - correspond to over 200*N residues in the data set): typical cross-validation using Train to optimize
fine-tuning, Validation to optimize hyperparameters, and Test only to assess performance (Methods).
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Fig. 1 | Fine-tuning improved for most pLMs and tasks. Asterisks (*) mark fully
fine-tuned models; the others were LoRA-optimized (SOM Fig. S1). Values reflect
percentage differences between the fine-tuned and pre-trained models (1) for the
eight prediction tasks (x-axis). We had to use different performance measures,
namely the Spearman rank correlation (GFP, AAV, GB1, stability, meltome and
disorder), 10-class accuracy (Q10: sub-cellular location), and 3-class per-residue
accuracy (Q3: secondary structure). Each tile compares fine-tuning to raw

embeddings for one task. Blue tiles mark statistically significant increases (>1.96
standard errors; fine-tuning better), yellow tiles mark statistically insignificant
changes (0 lies within the errormargins of ±1.96 stderr) and for red tiles supervised
fine-tuning significantly decreased performance. Error estimates (±percentage
values) represent the 95% confidence intervals (CI, Methods). Source data are
provided as a Source Data file.
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underscore howdifficult it is to just plug in standarddata sets to assess
the performance of prediction methods without updating data and
adapting it to advancing methods.

Fine-tuning boosted disorder prediction
PLM-based SETH19 reached the level of MSA-based SOTA methods,
such asODiNPred56 in the prediction of per-residue protein disorder as
described by CheZOD scores56. SETH inputs ProtT5 embeddings into a
two-layer CNN.

Keeping those hyper-parameters and adding LoRA fine-tuning
(dubbed SETH-LoRA), improved performance by 2.2 percentage
points (from Spearman 0.72 to 0.736, Fig. 3b). Fine-tuning the much
smaller 150M parameter ESM2 model (Spearman: 0.742) improved
overall solutions compared (Fig. 3b), including its larger counterparts
(ESM2 with 650M/3B parameters, Table S4). Compared to SETH-LoRA

where only 2.5 million out of its 1.2 billion parameters are trained, for
ESM2-150Mall parameterswerefine-tuned. Both approaches (2.5m for
ProtT5 vs 150m for ESM2) performed similarly (Fig. 3b).

LoRA topped pooling for subcellular location
Most predictions of subcellular location input signals averaged over
entire proteins (e.g., amino acid composition). Embedding-based
solutions do this through pooling, i.e., through embeddings derived
from averaging over all intrinsic residue-level embeddings14. Light
Attention (LA) substantially improves over such coarse-grained aver-
aging by learning the optimal per-residue signal and combining this
with the average34. LoRA fine-tuning combined the advantage of a small
model (fewer free parameters) with the learned, weighted averaging of
LA. Thereby, LoRA fine-tuning numerically surpassed LA, although the
difference was statistically significant only at an 88% confidence inter-
val (CI and not at the more common CI = 95% Table S9).

Fine-tuning better-captured effects of mutations
For predicting mutation landscapes (Fig. 1 leftmost three columns)
fine-tuning any pLM succeeded substantially. As differences between
fine-tuned models were small (Fig. S3), we averaged performance
across all fine-tuned pLMs (Fig. 4, for individual values refer to
Table S2), and compared to homology-based inference (HBI, using
MMseqs257 search) and to reference-free analysis (RFA58). RFA fits a
decent first-order model for the fitness landscape reflecting some
mutations for GB1 (protein G domain B159; all possible variants for four
residues, i.e., at four positions). For AAV260 (adeno-associated virus 2)
for which a much larger 28-residue window was mutated, RFA per-
formed less well. For GFP (green fluorescent protein61) the RFA ana-
lyses failed because some specific substitutions XnY (amino acid X at
position n mutated to Y) occurred only in the test set. The fact that
smaller and larger models performed alike on these tasks raised the
prospect of using small, fine-tuned pLMs as computationally afford-
able, high-quality solutions for protein engineering.

LoRA was substantially faster for larger models
The main drivers for the amount of computational resources required
for model training were the parameter sizes of pLMs along with
quadratic scaling of the attention mechanism (more resources for
longer proteins). More recent GPUs used for LLM training (anything
beyond 40GB of memory) will have sufficient memory to allow usage
of all pLMs tested here. For less powerful hardware (Fig. 5b), mixed
precision training nearly halved the required GPU memory without
performance loss (both Ankhmodels were exceptional, as they do not
support mixed precision training). Where GPU memory still was a

Fig. 3 | Disorder prediction better, secondary structure prediction not. Mean
values and 95% confidence intervals (CI) were estimated through bootstrapping
(n = 10 for a, n = 25 for b), violin plots reflect the data distribution. Source data are
provided as a Source Data file. a Values for the pre-trained models (ProtT514 and
ProstT536) taken from literature36 (no CI available for CASP12) and marked by
asterisk (*); fine-tuning in green, pre-trained embeddings in orange. We included

two previously used data sets (CASP1254 and NEW36414) to highlight the limitation
of benchmarks. b Intrinsically disordered residues can be proxied by CheZOD
scores56. The x-axis shows the Spearman correlation between experimental and
predicted CheZOD scores for six methods. Values marked by asterisks (*) taken
from the literature19. Fine-tuning results in green, pLM-based withoutMSA (SETH19)
in orange, MSA-based SOTA in gray56,72, and MSA-based AlphaFold276 in blue.
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Fig. 2 | Comparison of different PEFT methods. ProtT5 model assessed on the
prediction of sub-cellular location (x-axis: 10-state per-protein accuracyQ10).Mean
values aswell as 95% confidence intervals are computed from three training re-runs
for each of the four PEFT methods: LoRA46, DoRA51, IA352, and Prefix-tuning53. We
used the same configuration for LoRA and DoRA. The IA3 target modules were the
key, value, and feed-forward layers. Prefix-tuning used 20 virtual tokens with 1024
dimensions to fit the ProtT5 dimensions. Circles represent individual training
results. Differences between methods are mostly insignificant, with all four
numerically outperforming the pre-trained embedding predictor on average
(dashed grey line). Source data are provided as a Source Data file.
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bottleneck, we applied gradient accumulation to reduce the actual on-
device batch size as far as needed. When even an on-device batch size
of 1 was insufficient, we used DeepSpeed to offload the optimizer and
potential parameters to CPU-reduced GPU memory requirements
further. As a trade-off, both gradient accumulation andCPUoffloading
slowed down training. Hence, both should be used cautiously. Imple-
menting all thesemeasures, we could fine-tunemost pLMs tested here
even on older GPUs with as little as 8GB memory (Fig. 5b). Unin-
tuitively, both full model fine-tuning and parameter-efficient LoRA
fine-tuning required the same amount of GPU memory and only dif-
fered in training speed (Fig. 5a) when CPU offloading was utilized.
Embedding creation required much less GPU memory rendering it
feasible even for datasets with very long sequences (Fig. S1).

Fine-tuning recipe
To ease the simplicity of fine-tuning pLMs for your data set, we added
the following recommendations. Before starting model training,
dataset splits to measure model generalization and prevent over-
estimating performance23,28 are essential. First off: you need at least
three data sets: training (optimizingweights), cross-training/validation
(optimization of hyper-parameters, e.g., to decide between CNN and
ANN), and testing (only touched to estimate performance). Typically,
all entities in the test set (e.g. proteins) should adhere to the same split
required between training/validation and testing. In particular, pro-
teins have to be made non-redundant. This requires clustering by
sequence identity using standard alignment methods such as
MMseqs257 (simpler solutions tend to lead more likely to information
leakage). For structure-related tasks, redundancy is best removed
through 3D clustering as realized by Foldseek62. To optimize the pre-
diction of mutational landscapes for a single protein, it might be best
to train on k-mers with k = 1 (single amino acid variants) and test on
k-mers with k > 122,23 (although this approach might focus more on
avoiding over-fitting than on generating the best optimal model).

To predict landscapes ofmutational effects for specific proteins, a
challenge encountered in protein engineering, we recommend to first
fine-tune a smaller pLM (pre-trained embeddingswere limited: Fig. S3).
Optimize hyperparameters and head architectures on this smaller
model. If done, you could explore additional improvements from lar-
ger pLMs. For the fine-tuning on diverse tasks, larger mostly out-
performed smaller models (Figs. S3 & S4). Therefore, starting with raw
embedding-based solutions to identify the best model and to then
investigate different predictionheads appearedbetter thanoptimizing
the fine-tuning directly. Applying parameter-efficient LoRA fine-tuning
andoptimizing hyperparameters for the selectedmodel afterward,will
probably lead to an even better solution.

For our tasks, over-fitting mostly originated from data set char-
acteristics. On the one hand, given a data set prone to over-fitting (e.g.
too small, uninformative, or complex), neither hyperparameter nor
model optimization could fully avoid the trap. On the other hand, for
data sets not prone to over-fitting the training of fine-tuning was stable
regardless of other factors. These factors affected raw embedding-
based and fine-tuned models alike. Avoiding imbalanced datasets,
providing sufficient high-quality training data, and choosing smaller
models for limited data sets could mitigate over-fitting (SOM Sections
9 and 10).

Fig. 5 | Fine-tuning training speed and GPU requirements. a Relative training
speed of full fine-tuning (blue) and LoRA (red) is shown on a logarithmic scale,
ProtT5 LoRA fine-tuning served as reference speedwith value of 1 (x). The resulting
speed-up for each model (olive) is shown on a normal scale. Experiments were
performed with arbitrary sequences of length 1024 in a per-protein setting. For the
smallest model (ESM2 8M), LoRA fine-tuning was marginally slower than training
the entire model. The larger the model, the more advantageous LoRA became. For

the largest model (ESM2 3B), LoRA was about 4.5-fold faster. Panel b shows the
maximumsequence length before theGPU runs out ofmemory (for 8, 18, and 24GB
GPUs). All values obtained for memory-efficient training (mixed precision training,
gradient accumulation with on-device batch size 1, and DeepSpeed CPU off-
loading). Experiments were done for per-protein predictions, but memory
requirements for per-residue training will be similar. Results valid for full-model
and LoRA fine-tuning. Source data are provided as a Source Data file.
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on the assumption, thatmost of themutational effects can be described as the sumof
low-order effects. Source data are provided as a Source Data file.
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On the computational side, we recommend mixed precision
training. Gradient accumulation and DeepSpeed’s CPU-offloading
should only be reserved to avoid memory constraints. With all these
measures in place, a single 16 GB GPU enables fine-tuning in many
cases (Fig. 5). Comparing different common PEFTmethods (Fig. 2) did
not suggest a clear winner. The established LoRA46methodwas among
the best solutions and was stable across our experiments. The code-
base provided by us simplifies experimenting with different PEFT
approaches as it utilizes the Hugging Face PEFT63 framework. We
encourage you to compare different PEFT methods for your specific
use cases. PEFT is memory efficient, but CPU-offloading could achieve
the same. However, PEFT is also most compute-efficient for larger
pLMs (Fig. 5a); it stabilizes training (SOM Section 5) and it renders
saving model checkpoints orders of magnitude more memory effi-
cient, as only the trained parameters need to be stored. Thus, we
recommend LoRA fine-tuning for all models larger than ESM2 150M
(Fig. S2). We see little reason not to fully fine-tune smaller models.

In our hands, different random initialization seeds significantly
altered results. These random variations reached themagnitude effect
of hyperparameters or even model selection.

Concluding thoughts
We applied fine-tuning38,46 to a diversity of prediction tasks clearly
showing improvements, on average. The extent of this improvement
varied by task and pLM/model and was impacted by the amount of
training data (Fig. S10), dataset balance (Table S8), models size
(Fig. S3), and initial representation quality (Fig. S4).

Overall, our results revealed the gains initially observed in NLP
from supervised task-specific fine-tuning of LLMs39,40 to also apply to
large protein LMs (pLMs). Supervised fine-tuning unlocks additional
degrees of freedom in the predictor models. The last hidden layer has
been optimized for the unsupervised pre-training objective (learning to
reproduce masked sequences). This optimization might be suboptimal
for any downstream task41,42. PEFT (or finetuning in general) enables
information from middle layers to flow to the last layer, making it
accessible to downstream tasks. Additionally, for per-protein predic-
tions, the LoRA optimizationmay have learned weighted pooling of the
last hidden layer, and that improved significantly over average
pooling34. Lastly, the transformer models might extract additional
information directly from the task-specific training. Randomly initi-
alized smaller ESM2 models supported this view (Fig. S7, Table S17).

Therefore, we suggest to add supervised fine-tuning whenever
applying transfer-learning, i.e., when inputting pLM embeddings into
subsequent supervised prediction tasks. Our results suggested that
you will most often benefit from this. To ease this additional step, we
provided all our resources and added step-by-step recommendations.

Methods
Pre-trained pLMs
The pLMs used differed in size and architecture (Table 1), ranging from
8million (ESM28M) to 3 billion parameters (ESM23B). ESM2pLMs are
RoBERTa64 based encoder models trained using an unsupervised
masked languagemodeling objective16. The other three pLMs are built
on T549, an encoder-decoder LLM pre-trained applying span
masking14,15. We initialized our models using the pre-trained check-
points available on Huggingface.

Data
The data sets differentiated two aspects: prediction task level and
sequence diversity (Table 2). The prediction task level collected cases
of per-residue (e.g. secondary structure) and per-protein (e.g. sub-
cellular location) prediction. Sequence diversity is distinguished
between data sets with many sequence-diverse proteins and those
from mutational studies analyzing single proteins through deep
mutational scanning (DMS also known as MAVE) experiments65.

Mutational landscapes: these data described fitness landscapes
for three individual proteins: the green fluorescent protein (GFP61), the
adeno-associated virus 2 capsid protein VP-1 (AAV260), and the first
bindingdomainof the proteinG (GB159). All three constitute regression
tasks that measure prediction performance by ranking the correlation
between the predicted and the experimentally measured property for
each set. For GFP the property/fitness was measured through fluor-
escence intensity (experimental data66, data split22). Training and
validation set sequences were all within Hamming distance 3 (i.e. all
variants up to three changes from wild type). For the AAV task, fitness
wasmeasured as the viability for packagingDNApayloads bymutating
28-amino acid window67. We used the 2-vs-rest data split from the FLIP
benchmark23 (variants with ≤2 in training and validation sets, those
withmore in the test set). The GB1 fitness scoremeasures stability and
binding affinity. The original experiment68 mutated four positions,
while we took the three-vs-rest data split from FLIP for easier com-
parability to existing benchmarks.

Per-protein prediction tasks included three prediction tasks. The
first two sets focused on stability prediction formulated as regression
tasks in analogy to the fitness landscapes. Stability predictions were
assessed on measurements of protease susceptibility to digestion by
de novo-designed mini-proteins69. We reused the TAPE data split22 in
which training and validation sets contain sequences from four design
cycles while the test set holds neighborhoods at 1-Hamming distance
to 17 promising candidates. Meltome utilizes data from measuring
thermostability for proteins from 13 species70. We used themixed split
from the FLIP benchmark23, which clusters proteins at >20% pairwise
sequence identity (PIDE) through MMseqs257. Excluding any pair
within the same cluster from test and train/validation set, is the mini-
mal means to reducing potential information leakage. The third data
set included DeepLoc71 data (incl. training/validation/testing splits)
along with a novel test data set (setHARD34). The task is to predict the
sub-cellular location in one of ten classes. MMseqs257 removed all
sequence pairs at >20 PIDE between training, validation, and test sets.

Per-residue prediction tasks included disorder and secondary
structure. Disorder predictions used CheZOD data56 from nuclear
magnetic resonance (NMR) spectroscopy. We used previously pub-
lisheddata splits19 clustering at <20PIDEwithMMseqs257. The task is to
predict CheZOD scores72 which quantify the level of intrinsic disorder
for each residue in a protein (each amino acid position) through a
continuous scale. We bench-marked secondary structure predictions
through data sets provided by NetSurfP-2.073 distinguishing three
classes (H: helix, E: strand, and C: other/non-regular). In splitting these
data,we used a recent splitwithmore stringent redundancy-reduction,
along with another test set (NEW364)14.

Performance measures were copied from the data set developers
(Table 2). All regression tasks were evaluated using Spearman rank
correlations, i.e., all threemutational landscapes (GFP, AAV, GB1), both
stability-related data sets (Stability and Meltome), as well as, the per-
residue regression of Disorder. For the classification tasks, accuracy
was defined as a 10-class per-protein accuracy (Q10) for sub-cellular
location, and as a 3-class per-residue accuracy (Q3) for secondary
structure (for a detailed per-class analysis see SOM Section 2).

Model training
Top-level comparisons contrasted pre-trained to fine-tunedmodels as
follows. For the pre-trained results, we generated embeddings for all
data sets. For per-protein tasks,we averaged over the sequence length;
for each protein, this yielded a vector of dimension 1 x embedding_-
size. For per-residue tasks, we used all residue embeddings and their
labels; this resulted in vectors of the same dimension as for the per-
protein task (1 x embedding_size), albeit this time for each residue (i.e.,
L*embedding_size for a protein of length L). Next, we trained a single
fully connected layer of size 32, inputting exclusively these embed-
dings and outputting either a single value (regression) or going into
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another output layer with one neuron for each possible output class,
followed by a softmax layer to get a probability distribution. Reaching
a plateau in training loss terminated training. We repeated each
training five times with different random seeds. For fine-tuning, we
added the same fully connected layer (size 32) to the pLM encoder as a
prediction head. For ProtT514 and Ankh15, we used average pooling of
the last hidden states over the sequence length dimension during
training on per-protein tasks. Following the author’s advice for ESM216,
we connected the prediction head only to the very first token (special
token <CLS>). The training was repeated three times with different
random seeds. Training terminated when training and validation loss
flattened out. To increase training efficiency and save time, we applied
Parameter Efficient Fine-Tuning (PEFT38) to allmodels. Inparticular, we
applied the Low-Rank Adaptation (LoRA46) implementation of PEFT.
For the smaller ESM2 models (up to the 650M version), we could
investigate full model fine-tuning (SOM Section 3 and Fig. S1).

For embedding and fine-tuning we reported the performance of
the checkpoint with the lowest validation loss for each run. Finally, we
simply computed the percentage differences between the fine-tuned
and pre-trained models (1):

ΔðPTÞ=performanceðPTÞfinetuned � performanceðPTÞpretrained ð1Þ

We also performed a limited hyperparameter optimization at the
beginning (Table S11). Once selected, the hyperparameters were frozen
for most comparisons (Tables S10 and S12). We used the Adam
optimizer74 with default parameters. For LoRA fine-tuning we reused a
previously suggested configuration52, namely rank 4, alpha 1, applied to
query, key, value, and the output of the attention layers. Aminimal LoRA
rankof four has also been suggestedpreviously21 for pLMs. To realize the
batch size (Table S12) for fine-tuning, we applied gradient accumulation
as needed given our hardware. Initially, we fine-tuned models on full
precision but switched tomixed precision for largermodels. Embedding
generation used half precision. The Ankh models only support full pre-
cision for both. All training ran on a single NVIDIA A10G GPU with 24GB.
We used Torch version 1.13.1 with transformers version 4.26.1.

Training times for fine-tuning depended crucially on the available
GPU. Nevertheless, the following basic trends were notable. Training
times were mostly driven by model and dataset size, as well as, the
quadratic scaling with sequence length. As all these factors accumulate,
smaller models and shorter sequences led to much faster training
(Fig. 5a). For instance, for the small Disorder data (average sequence
length: 118 residues), fine-tuning the full ESM2-8M took 12minutes, while
the much larger ProtT5 (LoRA fine-tuning) took 190minutes (16-fold
increase). On the other end, for the AAV data (average length: 736 resi-
dues with nearly 30k proteins), ESM2-8M training took 130minutes while
a single ProtT5 training ranover 4Kminutes (>30-fold increase). The time
to train an embedding-based prediction method was mostly determined
by the time needed to compute embeddings because the relatively small
predictor models that we used required negligible runtime. The creation
of embeddings took approximately as long asfine-tuning the samemodel
for a single epoch (typically we needed 5-50 epochs, Table S12).

Per-residue secondary structure: We fine-tuned five models for
ProtT514 and another five for ProstT536, initializing with different ran-
dom seeds. For ProstT5, we added the prefix token <AA2fold> to each
sequence to code the input type (amino acid rather than structure as
ProstT5 is a bilingual pLM). We trained for five epochs and calculated
the validation loss at the end. For both models (ProtT5 and ProstT5),
utilizing the same two-layer CNN as applied previously14,36 for pre-
trained embeddings to simplify comparisons. Of the five, we selected
the model with the lowest validation loss and measured performance
on common data sets (CASP1254 and NEW36414). Bootstrapping
established confidence intervals (Fig. 2a).

Per-residue disorder fine-tuning stacked up two model variants to
compare to othermethods19. SETH-LoRAused ProtT5with the same two-

layer CNN as the original SETH. ESM2 150M reused the ESM2 setup from
the top-level evaluation (last hidden states of <CLS> token with single
dense layer prediction head). For both variants, we trained five models
withdifferent randomseeds for ten epochs, and calculated the validation
loss twice per epoch, selecting the model with the lowest validation loss
out of 100 checkpoints (5 random seeds, 10 epochs, 2 points per epoch).
Bootstrapping provided confidence intervals (Fig. 3b).

Per-protein subcellular location: For the 10-class classification, we
reused the single-layer dense network from our top-level evaluation.
We trained five models with different random seeds for five epochs,
calculating validation loss twiceper epoch.We selected themodelwith
the lowest validation loss in each run, and then calculated Q10 accu-
racy and standard errors from all five models on setHARD34 and
reported the averages (Table S9).

Fitness landscapes contrasted fine-tuned pLMs to two baselines,
namely, homology-based inference (HBI) and reference-free analysis
(RFA)58. We averaged test performance overall fine-tuned pLMs
(checkpoints with lowest loss on validation set) for the three muta-
tional landscape data sets (GFP, AAV, GB1).

HBI: MMSeqs257 searched each query (Q) in the test set against all
proteins training set proteins. The fitness value of the top training hit
(closest homolog) predicted that for Q.

RFA: We applied the R implementation of RFA (version 1.0.0)
withoutmodification to the GB1 data. For AAV, we removed sequences
not containing 735 residues (the algorithm failed on insertions and
deletions). This reduced the training data by about 1%. RFA failed for
GFP because some substitutions in the test set were missing from the
training set. ForAAV andGB1, we fitted afirst- and second-ordermodel
and reported results for the better of the two.

Statistics & Reproducibility
Replication of computational results is made possible by defining
random states (seed). These random seeds are given in the detailed
results (Table S1 and S2). The code and data provided by us will allow
complete reproduction of our results, in addition, results for each
individual model training run are provided with the source data.

During our research,we excluded a single training run (Finetuning
ESM2 150M on the AAV dataset, seed 98) which was a clear outlier, for
details check Table S2.

Since random data splits lead to a large overestimation23 of pre-
dictor performance, we used dataset splits from previous work
(Table 2) specifically designed to test for generalization.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data sets analyzed are freely available through the original sources:

• GFP and stability: https://github.com/songlab-cal/tape
• AAV, GB1, meltome and secondary structure: https://github.
com/J-SNACKKB/FLIP

• Sub-cellular location: https://github.com/HannesStark/protein-
localization

• Disorder: https://github.com/DagmarIlz/SETH
Easing access, we re-packaged all data at https://github.com/

RSchmirler/data-repo_plm-finetune-eval75. When using those data,
please quote and consult the authors of the original data sets. All data
generated for this study and source data to generate figures and tables
is also available in this repository. Source data are provided with
this paper.

Code availability
Wemade the notebooks forfine-tuning all ourmodels (Table 1) for per-
protein and per-residue tasks available at75. By default, these
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notebooks use LoRA fine-tuning; full-model fine-tuning is optional. To
create prediction methods based on pre-trained pLM embeddings, we
provided two additional notebooks (one to generate embeddings, and
another to train predictors) with sample data in the same repository.
RFA v1.0.0 R scripts are available from https://github.com/
whatdoidohaha/RFA.
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