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The global population is increasingly reliant on vaccines to maintain population health with billions of
doses used annually in immunisation programmes. Substandard and falsified vaccines are becoming
more prevalent, caused by both the degradation of authentic vaccines but also deliberately falsified
vaccine products. These threaten public health, and the increase in vaccine falsification is nowamajor
concern. There is currently no coordinated global infrastructure or screening methods to monitor
vaccine supply chains. In this study, we developed and validated a matrix-assisted laser desorption/
ionisation-mass spectrometry (MALDI-MS) workflow that used open-source machine learning and
statistical analysis to distinguish authentic and falsified vaccines. We validated the method on two
different MALDI-MS instruments used worldwide for clinical applications. Our results show that
multivariate data modelling and diagnostic mass spectra can be used to distinguish authentic and
falsified vaccines providing proof-of-concept that MALDI-MS can be used as a screening tool to
monitor vaccine supply chains.

Safe and effective medicines are crucial to people’s health worldwide but an
increase in substandard and falsified pharmaceutical products threatens
public health on a global scale. The World Health Organisation estimated
that over 10% of pharmaceutical products in lower and middle-income
countries were substandard or falsified (SF) in 2017 and has identified SF
medicines as one of the urgent health challenges for the next decade1,2.

Reports of SF vaccine products have been increasing in recent years,
including rabies, cholera,meningitis, yellow fever, hepatitis B and coronavirus
disease 2019 (COVID-19). For example, in the first 15 months of the global
COVID-19 vaccination programme, there were over 184 reports, across 48
countries, of diverted and SF COVID-19 vaccines, involving millions of
doses3.A rangeof adulterationand falsification incidentshavebeen identified,
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including replacement of vaccineswith saline orother adjuvants such as sugar
solutions and antibiotics, and errors in manufacture have led to substandard
production4–8. Before the COVID-19 pandemic, there were multiple exam-
ples, including low potency rabies vaccines for dogs in China9, contaminated
Salk polio vaccine in the USA10, falsified rabies vaccines in the Philippines11,
falsified yellow fever vaccine in Bangladesh12 and mass administration by
health workers of falsified routine childhood vaccines in Indonesia13.

Substandard vaccines arise from inadvertent errors in manufacturing
and/or degradation in supply chains (e.g. inappropriate cold chain man-
agement), and falsified (aka counterfeited) vaccines arise from criminal,
fraudulent activities14. It is important to distinguish these as the origins and
solutions are different, but both are amajor health risk for recipients with the
potential to lead to increased morbidity and mortality and undermine the
reputation of vaccines as safe medical products that play a vital role in
maintaining the health of communities worldwide15,16. With a rise in vaccine
use globally, it is becoming increasingly clear that a lack of risk analysis,
monitoring and interventionwithin supply chains is allowing the problem of
vaccine falsification, in particular, to develop17,18. The current lack of testing
and monitoring represents a significant vulnerability, and new methods are
required to enable risk-based post-market surveillance2. Vaccine supply
chains are complex and rigorous testing at the proximal end of the supply
chain, for example, will not mitigate against incidents downstream of this.
Screening at the distal end of the supply chainmay necessitate a larger, more
differentiated testing network, spanning multiple locations and requiring
rapid results. A range of techniques, devices andmethods are therefore likely
to be needed to effectively monitor supply chains for SF products and dif-
ferentiate these fromauthentic vaccines19.Many, if notmost, countries donot
have laboratories able to check the quality of a diverse range of vaccines.
Hence, testing methods are needed in central facilities that can rapidly give
detailed information to facilitate decisions, ensuring that appropriate samples
are sent to reference laboratories. Given the growing need for vaccine
authenticity testing and the current lack of suitable methods, we explored
matrix-assisted laser desorption/ionisationmass spectrometry (MALDI-MS)
as an approach for detecting vaccine falsification.

Mass spectrometry (MS) has emerged as an important platform for
molecular-level profiling, providing high sensitivity and high selectivity for
the analysis of molecular composition in complex samples20. Machine
learning and additional statistical approaches are also used to classify samples
and identify biomarkers21–24. For example, metabolite profiles are used to
differentiate healthy and disease states in biological extracts and blood pro-
ducts, such as serum and plasma, where machine learning is used to explore
the large amounts of chemical information inherent in such datasets and
implement 'untargeted' hypothesis-generating approaches to data
analysis25–27. Liquid chromatography–mass spectrometry (LC-MS) and gas

chromatography–mass spectrometry (GC-MS) are commonly used for
molecular characterisation but these research-grade instruments are expen-
sive, require high levels of expertise to operate and are not evenly distributed
worldwide, and therefore less favourable for screening at a global scale.

MALDI-MS is used in proteomics and, more recently, mass spectro-
metry imaging and molecular profiling applications such as metabolomics
and small molecule pharmaceutical analysis28–34. Low sample volume
requirements and the high-throughput nature of the analysis, provide sig-
nificant benefits35–39. Recent developments in MALDI-MS applications for
routine clinical testing are of specific interest; for example, used in high-
throughputmicroorganism identification where pathogenic bacteria can be
rapidly identified at low cost. The speed and effectiveness of this approach
has led to worldwide deployment of MALDI-MS instruments; mainly
Bruker MALDI Biotyper Sirius and bioMérieux VITEK MS systems in
clinical laboratories for routinemedical testing40. This provides an attractive,
low-costmass spectrometry platformwith a global infrastructure that could
be used for coordinated vaccine authenticity testing.

Vaccines, depending on their type, can contain a wide range of antigens
(as active ingredients), such as messenger RNAs (mRNAs), oligomers, viral
vectors, live attenuated or killed organisms, lipids, polymers, proteins and a
range of small molecule adjuvants which can include sugars and other
biomolecules41. The heterogeneity of different vaccines, both in terms of
diversity inactiveconstituents, physiochemicalproperties andconcentrations,
makes samples challenging to characterise from an analytical perspective. To
date, we are not aware of any applications using MALDI-MS for vaccine
characterisation and authentication studies but the inherent sensitivity and
molecular selectivity ofMALDI-MS, and the existingworldwide availabilityof
instrumentation in clinical microbiology laboratories, provides a compelling
case to explore its potential as a device for vaccine authentication. The focus of
this study was to explore the capabilities of MALDI-MS “biotyping” systems
forvaccineanalysisbydevelopingamethodandvalidating it for theanalysisof
authentic vaccine samples, falsified vaccines and their categorisation using
machine learning approaches. For the data analysis, we explored several data
processing software approaches, including SpectralWorks AnalyzerPro XD
software which was then successfully used for processing and statistical
analysis of the MALDI data. However, we found the open-source packages
MALDIquant42 and MetaboAnalyst 5.0 webtool43 highly effective in combi-
nationandused these for thedataanalysis reported in this study.Wetested the
workflow using four different commercially available vaccines and a range of
known-falsified vaccine compositions. We used machine learning and addi-
tional statistical analysis to model the data and predictm/z features from the
experimental data that had the potential to be used in an online database
approach for vaccine authenticity screening. Figure 1 provides a conceptual
overview of the workflow developed in this study.

Fig. 1 | Matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-
MS) sample preparation and analysis workflow. Step A: vaccine samples to be
analysed are pipetted into a 96-well plate positioned in the INTEGRA Assist Plus.
Step B: replicate spots of 1:1 (V/V) premixed sample and α-cyano-4-hydro-
xycinnamic acid (CHCA/HCCA)matrix are pipetted onto the target plates using the

Assist Plus robot. Step C: raw spectra are acquired using the MALDI-MS instru-
ments. Step D: data processing of the raw spectra and statistical analysis are per-
formed. MALDI: matrix-assisted laser desorption/ionisation; PLS-DA partial least
squares-discriminant analysis. This figure was created using BioRender.com.
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Results
Analysis of vaccines and falsified constituents by MALDI-MS
Four different authentic, commercially available, vaccines and eight falsified
surrogates previously reported in falsified vaccine products3, were used in

this study. The authentic vaccines were Nimenrix (Pfizer Ltd, Sandwich,
UK), a conjugate vaccine that protects againstNeisseriameningitidis groups
A, C, W-135 and Y; Engerix B (GlaxoSmithKline, Brentford, UK), which
protects against hepatitis B virus infection (HBV); Flucelvax Tetra (Seqirus
Ltd., Maidenhead, UK) which protects against influenza (Sept/Oct 2021 to
early 2022 season) and Ixiaro (Valneva Ltd., Fleet, UK), for immunisation
against Japanese encephalitis virus infection. Information about genuine
vaccines and falsified vaccine surrogates is provided in Table 13,8,44–49.

We performed sample analysis in parallel on two separateMALDI-MS
systems, both routinely used for microorganism clinical testing with
worldwide deployment. AMALDI Biotyper Sirius (BrukerDaltonics) and a
VITEKMS(bioMérieux,Craponne, France).The two instrumentsprovided
very similar performance when combined with data modelling but inter-
estingly provided slightly different mass spectral profiles when visually
compared. First, we acquiredmass spectra usingmethods adapted from the
standard in vitro diagnostic (IVD) parameters provided on both instru-
ments. We made slight adjustments to the laser raster pattern and per-
centage energy range to accommodate a broader range of sample types.
Spectra were acquired over three different overlapping m/z ranges: 0–900;
700–2500 and 2000–20,000. Representative spectra for Engerix B and the
eight falsified constituent samples at m/z 700–2500 and m/z 2000–20,000
mass ranges are shown in Supplementary Figs. 1, 2 for the Biotyper Sirius
and VITEK MS instruments, respectively. Visible peaks in the low-mass
range includedmatrix peaks that were common to all samples and could be
identified from matrix blanks, as well as analyte peaks related to the indi-
vidual samples.Given the rich spectral data obtained in them/z0–900 range,

Table 1 | Samples used for analysis

Vaccine/falsified
surrogate

Target pathogen/disease Refs.

Engerix B Hepatitis B infection 44

Flucelvax Tetra Influenza virus strains 45

Ixiaro Japanese encephalitis virus 46

Nimenrix Meningococcal disease 47

Amikacin 250mg/mL − 3

Milli-Q water − 3

Tap water − 3

Water for injection − 3

0.9% m/V sodium chloride − 3,48

5% m/V glucose solution − 8

Gentamicin 40mg/mL − 48

Hyaluronic acid − 49

Genuine vaccines (including target pathogen/disease) and falsified vaccine constituents (including
refs.) either previously reported to have been used or could be used as falsified vaccines.

Fig. 2 | Representative mass spectra (m/z 0–900) for α-cyano-4-hydroxycinnamic
acid (CHCA) matrix, Engerix B vaccine and eight samples of other compounds
and mixtures previously reported as being constituents of falsified vaccines.
a Biotyper Sirius mass spectra. b VITEK mass spectrometry (MS) spectra. Through

the presence, absence and relative intensity ratios of peaks in the spectra, the genuine
vaccine can be distinguished from the falsified constituents by manual inspection of
spectra. Common matrix peaks are indicated by shaded bars.
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where vaccine-specific excipients were found, we decided to focus on this
m/z range in further analyses. Figure 2 shows representativemass spectra for
the Engerix B vaccine and each of the surrogate falsified samples as well as
blank CHCA matrix at the m/z 0–900 range (similar comparisons for the
other vaccines are provided in Supplementary Figures 3 & 4). Non-matrix
peaks, thatwereunique to either individual vaccinesor falsifiedconstituents,
were identified by manual inspection of the spectra. The spectral peaks in
Fig. 3a, b provide an illustration of the presence and absence ofmass spectral
peaks which were observed for Engerix B and the falsified vaccine con-
stituents.These analyses established theproof-of-principle that theMALDI-
MS systems were capable of measuring mass spectral peaks that can dis-
tinguish genuine comparator vaccines from falsified vaccine surrogates.

MALDI method development and validation
Having established the feasibility of distinguishing vaccines and falsified
constituents by manual inspection, we next developed and validated a
method and workflow for data processing and analysis. The reproducibility
of MALDI-MSmass spectra is known to be largely affected by matrix type,
sample composition andmatrix-sample crystallisation conditions, aswell as
the specific laser ablation parameters50–52. We, therefore, investigated ana-
lytical reproducibility on both platforms.

In order to determine analytical “spot-to-spot” reproducibility and
intra-batch (vaccine vial-to-vial) reproducibility, we analysed replicates
of the four authentic vaccine samples and eight falsified surrogates. For
each sample vial, we created four replicate spots on the MALDI target
plate and replicated this three times using three separate vials (same
manufacturer batch number/part number), so there were 12 MALDI
sample spots for each vaccine and falsified constituent on a MALDI
plate. All samples were distributed across three Bruker MALDI plates
and six bioMérieux MALDI slides, respectively (due to the different
dimensions of the plates for both systems). We also created a pooled
quality control sample which comprised an equal volume mixture of
each of the four authentic vaccines and eight falsified vaccine samples.
The experiment was designed to investigate analytical reproducibility,
spot-to-spot variability and vial-to-vial reproducibility. A schematic
illustrating how the MALDI plate samples were spotted, and the plates
configured is shown in Fig. 3.

Each MALDI spot was analysed under the same settings for each
instrument. A randomised acquisition sequence was used to control for any
bias in sample preparation or run order. Table 2 provides the percentage
RSD for the total ion intensity for all 12 replicates of each sample and 24QC
replicates prior to intensity calibration from analysis on the Sirius MALDI
platform (equivalent data for theVITEK is given in SupplementaryTable 1).
These results show the total variation of the vaccine or falsified constituent
samples. The range in RSDvalues for all samples exceptAmikacinwas from
18 to 44% over all sample replicates for each group. This reproducibility in
signal intensity was similar to the RSDs reported in other MALDI-based

profiling studies using other sample types53. Figure 4a shows the vial-to-vial
reproducibility specifically (e.g., inter-vial variability) for each genuine
vaccine and falsified constituent, comprising individual percentage RSD
calculations for the four sample preparation replicates of each vial.
Equivalent data for the VITEK is shown in Supplementary Fig. 5a.

Analysis of Amikacin, Gentamicin, and Nimenrix gave some of the
highest RSD values and the total RSD for all 12 replicates of Amikacin was
anomalously high at 122% in the Sirius data (see Table 2). These higher
percentage RSD values correlated with poorer co-crystallisation of the
sample with the CHCA matrix on the MALDI plate prior to analysis. For
these three samples, all 12 replicates exhibited a shiny appearance on the
spot surface as opposed to appearing matte with visible matrix crystals
observed formost other samples. For Amikacin, the dried spotsmaintained
a droplet-like three-dimensional structure (unlike all other samples which
dried flat) and may have resulted in poor sample ionisation and, subse-
quently, greater intensity variation reflected in the percentage RSD values.
This demonstrates the importance of ensuring optimal sample-matrix
crystallisation conditions.

To investigate whether there was any observable bias in the intensity
measurements, wenext plotted the relationship between runorder andpeak
intensity across the QC samples. Figure 4b illustrates the result from the
Sirius showing no observable bias (similar results were obtained from the
VITEK shown in Supplementary Fig. 5b). This suggested the process of
analysing theMALDIplate in the ion sourcedoesnot lead tobias in intensity

Fig. 3 | Schema showing samples and a pooled quality control (QC) sample being
spotted onto a matrix-assisted laser desorption/ionisation (MALDI) target. A
pooled QC sample was prepared from the vaccines and falsified samples. An Assist
Plus robot was used to combine thematrix with each sample in a 1:1 (V/V) ratio and
then spot onto theMALDI plate. Only the QC and first three samples are illustrated,

but all four authentic vaccines and eight falsified constituent samples were prepared
in the same way across multiple MALDI plates which were analysed in a random
sequence within the MALDI instruments. CHCA: α-cyano-4-hydroxycinnamic
acid; MALDI-MS: matrix-assisted laser desorption/ionisation-mass spectrometry.
This figure was created using BioRender.com.

Table 2 | Evaluated reproducibility of the raw data from the
Biotyper Sirius (0–900m/z)

Sample RSD (%)

0.9% m/V sodium chloride 17.95

5% m/V glucose 26.17

Amikacin 250mg/mL 122.51

Gentamicin 40mg/mL 41.83

Hyaluronic acid 22.18

Tap water 23.59

Milli-Q water 19.94

Water for injection 18.01

Engerix B 19.58

Flucelvax Tetra 26.90

Ixiaro 22.75

Nimenrix 43.65

Quality control 28.75

The percentage relative standard deviation (RSD) values calculated from the total ion intensities of
all 12 sample replicates and 24 quality control replicates are given.
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measurement over time. Finally, in order to establishwhether the variability
observed in replicates of intensity measurements (indicated by the RSD
values) was influenced by the laser power or the number of times the laser
was fired, we plotted the laser power of the last 50 shots acquired (in the
analysis of each sample spot) against the corresponding TICs and the total
number of accumulated shots for each replicate in run order for the QC
samples for the Bruker Sirius analysis (Fig. 4c). No correlationwas observed
suggesting total signal intensity was not biased by any variation in the laser
power or in the number of laser firings that may occur between the analysis
of different spots.

Developing a data processing and analysis workflow using
MALDIquant
After establishing that multiple authentic and falsified vaccine constituents
could be reproducibly differentiated by the identification of unique mass
spectral peaks, and having established reproducibility of peak intensities
across replicate samples, we next developed a spectral data processing
workflow using the MALDIquant R package. Figure 5a illustrates the main
steps in the workflow developed. This includes combining the full spectrum
data from all samples into a table for each replicate across all samples,
baseline correction, peak intensity normalisation and peak identification.
These steps were performed to reduce experimental and analytical varia-
bility in the dataset, and to align peaks and their intensities between samples.
To do this, we evaluated each step using our vaccine and falsified vaccine
sample dataset. The data processing was performed using data from both
MALDI platforms. Spectra files were imported into R in mzXML format,
with quality control by visual inspection.

Baseline drift across the mass range is a common feature of
MALDI-mass spectra, and this can interfere with peak intensity
comparisons between samples. For example, in Fig. 5b the upper
spectrum without correction shows the baseline drifts with increasing
m/z. MALDIquant provides either a statistics-sensitive non-linear
iterative peak-clipping (SNIP) algorithm developed by Ryan et al.54, a
TopHat approach derived from mathematical morphology55, Con-
vexHull or median algorithm to correct for this, based on user selec-
tion. We applied the TopHat baseline correction to each acquired
spectrum which mimicked the default algorithm set in Bruker flex-
Control software. The lower mass spectrum in Fig. 5b shows the result
of applying the baseline correction with the beneficial effect of lowering
the baseline, especially towards the higher end of the mass range.

Intensity shifts from one replicate spectrum to another were identified
in the analysis of the vaccine and falsified constituent samples (see sample
RSD variation in Fig. 6a, b and QC sample analysis in Fig. 5c). Post-
acquisition data normalisation can be used tominimise these variations and
reduce the influence of experimental or analytical variability. There are
various statistical approaches (used extensively in metabolomics, for
example) where large datasets are compared, and here a probabilistic
quotient normalisation (PQN) was applied56. This was found to have a
positive effect by lowering the RSD values in almost all cases (Fig. 5c).

After data normalisation, variations in m/z were evaluated and cor-
rected to ensure effective comparisons could be made across multiple
samples in the experiment. Figure 5d shows a representativemass spectrum
of the QC sample with five peaks labelled (A− E). Peaks A to E in Fig. 5d
show a variation inm/z across the 24 QC replicates which are illustrated by
the box plots in Fig. 5e. The mean average range inm/z value per peak was
0.231 Dawith a standard deviation of 0.06 Da. This variability is largely due
to differences in peak shape where flat top peaks lead to fluctuation in the
centroided m/z value (Exemplar peak shapes shown in Supplementary
Fig. 6). Peaks were aligned to correct for this using non-linear warping of
peaks with the locally weighted scatterplot smoothing (LOWESS)
method57,58with tolerance, SNRandhalf-windowsize parameters selected to
optimise the spectral alignment of the dataset.

To evaluate how mass spectral peaks are 'picked', (e.g. auto-
matically recognised as an individual mass spectral peak) and accu-
rately assigned across samples, we tested various signal-to-noise ratio
threshold settings. MALDIquant can identify local maxima and
minima across the mass spectrum and then compare which peaks are
above a set SNR threshold to identify the signal as a spectral peak for
inclusion in the dataset. Figure 5f illustrates the effect of different
signal-to-noise ratios using an averaged mass spectrum of all the
genuine and falsified vaccine samples. Peak binning (with a user-
defined threshold) was also used at this stage to ensure individualm/z
features were correctly assigned across all the mass spectra. This
increases mass spectral precision to ensure a more effective data
comparison. The threshold for peak binning was chosen based on an
evaluation of the spectral resolution across the dataset.

Fig. 4 |Method validation usingmass spectrometry data. aThe percentage relative
standard deviation (RSD) values for each vial per sample are plotted showing the
range and mean. b The total ion count (TIC) for each quality control (QC) sample
replicate plotted in consecutive run order shows no particular bias (replicates
spotted on different target plates are alternately shaded/white). c TIC, laser power,
and number of shots of the laser for replicates plotted consecutively for each QC
sample.
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Fig. 5 | Data processing steps using MALDIquant (Bruker Biotyper Sirius data).
aMALDIquant workflow. b Baseline drift correction using TopHat algorithm,
spectra for hyaluronic acid. c Comparing the effect of pre and post probabilistic
quotient normalisation (PQN) on the percentage relative standard deviation (RSD)
for the vaccine, falsified constituent, and quality control (QC) sample replicates.
d QC spectrum showing peaks labelled A–E used to illustrate m/z variation. e Box

plots illustrating variation in m/z across 24 QC samples for peaks labelled A–E in
part D. The line in the grey box indicates the median value, with the box limits
showing the interquartile range. Whiskers extend to max and min values.
f Comparing different signal-to-noise ratio (SNR) thresholds using an averaged
mass spectrum incorporating authentic and falsified vaccines/constituents.
Coloured coded numbering representing SNR thresholds.
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Fig. 6 | Multivariate statistical analysis discriminates the authentic vaccines Engerix B, Flucelvax Tetra, Ixiaro and Nimenrix from falsified vaccine constituents.
a Biotyper Sirius dendrogram. bVITEKMS dendrogram. Hierarchical clustering dendrogram of all samples sorts almost all sample replicates (n = 12 for each sample type)
into their respective groups.
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Vaccine authentication using machine learning (ML)
Having developed and validated a combined sample analysis and data
processing workflow we applied this to analyse and compare authentic and
falsified vaccine constituents using both MALDI platforms in parallel. We
analysed samples from three replicate vials of each of the four authentic
vaccines and eight falsified vaccine surrogates. Four analytical replicates
were also analysed for eachvial replicate to investigate analytical and vaccine
vial-to-vial reproducibility. The samples were spotted and then analysed
using the 0–900m/z range. The resulting data were processed using the
MALDIquant workflow developed, and a data table representing all the
results was produced (example given in Supplementary Table 2). The
heatmap in Supplementary Fig. 7 provides a visual overview of the dataset
and was used to confirm that no individual or experimental class outliers
were present (equivalent figure for theVITEKMS in Supplementary Fig. 8).
To explore whether the vaccines and falsified constituents could be dis-
tinguished from each other using amultivariate statistical machine learning
approach, we first performed hierarchical clustering (based on a Euclidean
distance measure and aWard clustering algorithm). We found that each of
the samples replicates clustered together (Fig. 6) in almost all cases for the
data collected on bothMALDI platforms, which showed that both datasets
contained m/z features that could differentiate authentic and falsified vac-
cines. To statisticallymodel howwell the data could distinguish the different
sample groups, we compared each individual authentic vaccine with all the
falsified vaccine samples using partial least squares-discriminant analysis
(PLS-DA), commonly used in untargeted data modelling59,60. PLS-DA is a
supervised dimensionality reduction method that builds models based on
input variables and identifies which of these variables maximise separation
between the groups. Validated models can be used to make future predic-
tions on new data presented to themodel.We first created a PLS-DAmodel
using theBiotyper Sirius data for the authentic EngerixB vaccinewith all the
falsified vaccines. To illustrate the results, the PLS-DA scores plot (Fig. 7a)
shows sample replicates cluster by sample type, and themodel distinguished
the authentic vaccine from the falsified vaccine constituents (and also the
falsified constituents from each other) and was shown to create a strong
model that was not overfitting the data (Fig. 7b, c).We subsequently created
models for each authentic vaccine using both the Sirius andVITEKdatasets.
To demonstrate that the PLS-DA models were reliable and not overfitting
the datasets, we performed cross-validation, permutation testing and a
modified external validation for eachmodel61. For the Engerix B Sirius data
model R-squared (R2) andQ-squared (Q2) were between 0.8 and 1 and the
permutation test statistic was P < 0.01 (Fig. 7b, c)62. Tabulated values for
the PLS-DA cross-validation are displayed in Supplementary Table 3 (and
the equivalent PLS-DA plots for the VITEK Engerix B data are shown in
Supplementary Fig. 9). Similar results were obtained when comparing the
other three genuine vaccineswith all falsified vaccine surrogates across both
MALDI platforms (Supplementary Figs. 10–15). We also performed an
independent external validation where each dataset was randomly split into
a training set (80%of the data) and an external test set (20%of the data). The
models were created using the training set, and then the classifications were
confirmed using the test set (which had not been seen by the model pre-
viously). Confusion matrices (see Supplementary Tables 4–27, with the
genuine vaccine highlighted in yellow) were created for the external vali-
dation datasets, and in each case (for both Sirius and VITEK results), the
authentic vaccines were predicted correctly63. In some cases, the different
types of water and saline falsified constituents were not fully resolved, but
this was not unexpected considering their compositional similarity and this
did not compromise the identification of the authentic vaccines. In sum-
mary, our PLS-DA modelling demonstrated that the MALDI-MS data
could be used to reliably predict each genuine vaccine from falsified
constituents.

Next, we identified the most discriminatory mass spectral peaks in the
models by examining the top 15m/z features in the Variable Importance in
the Projection (VIP) plot. Figure 8a shows the ranking of each of the top

Fig. 7 | Biotyper Sirius partial least squares-discriminant analysis (PLS-DA) of
authentic vaccine Engerix B and all falsified vaccine constituents, m/z 0–900.
a PLS-DA two-dimensional scores plot shows sample group clustering. b Cross-
validation shows aminimumof four components (mass spectral peaks) are required to
differentiate the experimental groups for the best Q-squared (Q2) value (shown by *).
Supplementary Table 3 gives the numerical values for the performance of accuracy,
R-squared (R2) and Q2 in the cross-validation. The performance axis indicates the
predictive ability of themodel. c Permutation testing showed themodel was significant
with P < 0.01.
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15m/z values from the Sirius data by way of example. The mass spectral
abundance differences for the top 15VIPswere statistically significant for at
least one or more of the falsified constituents individually compared to
Engerix B (two-way ANOVA with Dunnett multiple comparison test,
Fig. 8b). Supplementary Figs. 16–22 further illustrate Sirius and VITEKMS
VIP plots and ANOVA summaries for the falsified surrogates compared to
the genuine vaccines. The PLS-DA results demonstrated that the MALDI
data modelling, based on the full MALDI-mass spectrum, could be used to
discriminate between authentic vaccines and falsified vaccine constituents
in addition to the four genuine vaccines themselves (SupplementaryFig. 23).

One way to implement the MALDI-MS method as a tool for vaccine
supply chain screening, would be to automate matching and scoring mul-
tiple spectral peaks identified in experimental samples with an online
database containing multiple discriminatory m/z features previously col-
lected and validated using samples of authentic vaccines. For example, a
real-time score or percentage match for the mass spectral profile could be
used to indicate the likelihood of vaccine authenticity. This approach is
analogous to that currently used for bacterial strain identification by
MALDI-MS in clinical laboratories worldwide. A complex profile of mul-
tiple m/z features would, therefore, be required to make a positive match
with a falsified product and creating such a falsified product with the
necessary specificity would likely be impractical and uneconomic.

Finally, we manually validated the multivariate model’s ability to
predict important biomarker m/z values and identify candidate peaks. To
do this, we interrogated the processed dataset independently from the PLS-
DAmodel, comparing each individualm/z value’s peak intensity in the list
of all identified peaks measured across all samples to look for statistically
significant differences inmean abundance. For example, we compared each
mass spectral peak from the Engerix B analysis with each peak from the

analysis of the falsified vaccine constituents using ANOVA with the
Dunnett multiple comparison test. In total 3699m/z values were compared
statistically, of these 143 showed statistically significant difference between
Engerix B and at least one of the falsified vaccine constituents. Of the
143 significant peaks, 63peakswerepresent in a falsifiedvaccine sample and
not present at all in the genuine Engerix B, or vice versa. 63 peaks were,
therefore, found to be unique differentiators of authenticity or falsification.
It was, therefore, straightforward to unambiguously differentiate Engerix B
from all other falsified vaccine surrogate samples using these peaks. The
result of this analysis showed that there weremanymass spectral peaks that
could be used to discriminate the falsified from authentic vaccine samples.
This provided strong redundancy and, therefore, demonstrated the
potential for developing a database of distinguishing mass spectral peaks
that could beused for vaccine authenticity testing.Wehave purposefully, on
public health security grounds, not provided the full list of these features so
as not to reveal specific features thatmay be used in any future databases for
authenticity testing. However, Fig. 9 summarises the numbers of m/z fea-
tures and those found to be significant and Fig. 10 presents two peaks from
the group of 63 to illustrate. All of the Top 15VIPm/z values from the PLS-
DA modelling in Fig. 8a were also found in the 143 peaks identified by
univariate statistical analysis for Engerix B, illustrating the overlap between
the machine learning and manual inspection approaches for the identifi-
cation of potential “biomarker” peaks suitable for differentiating genuine
from fake vaccine samples.

Discussion
Reports of substandard and falsified vaccines are increasingworldwide.
In response, we have developed and validated a MALDI-MS sample
analysis and data processing method and demonstrated its successful

Fig. 8 | Biotyper Sirius analyses of compound feature significance. a Variable
importance in the projection (VIP) of the peaks at m/z 0–900 for the Engerix B
vaccine compared to the eight falsified constituents. The top 15m/z values are
plotted based on their VIP score. The heatmaps to the right of the plot represent the
relative intensities of them/z values for each sample group averaged over the group.

b Two-way analysis of variance (ANOVA) with Dunnett multiple comparison test
results for the top 15m/z values from the VIP analysis. m/z values with at least one
statistically significant comparison (P < 0.05) for a falsified constituent compared to
Engerix B are marked with a check.
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implementation in the context of vaccine authentication using four
different authentic vaccines and known falsified vaccine surrogates.
We chose two different MALDI systems that are distributed globally
for the routine identification of pathological microorganisms in clin-
ical laboratories. This pre-existing network of instrumentation,
therefore, provides potential as a resource for future global supply
chain monitoring. Combined with open-source machine learning and
statistical analysis, we demonstrated our workflow could distinguish
genuine from falsified vaccine surrogates accurately. To the best of our
knowledge, this is the first time MALDI-MS has been used to suc-
cessfully identify and discriminate vaccines and falsified surrogates
using a machine-learning approach to data analysis.

A challenge in using MALDI-MS, compared to the other mass spec-
trometry platforms such as LC-MS andGC-MS, is its potential variability in
the mass spectral peak intensities. We rigorously tested analytical, experi-
mental and vaccine vial reproducibility and demonstrated that post-
acquisition data processing was effective at minimising these effects. Our
findings are commensurate with other studies in this regard; for example, in
metabolomics applications where MALDI-MS has been applied success-
fully, in conjunction with machine learning, to identify metabolic differ-
ences in sera from lung cancer patients compared to healthy controls53. PLS-
DA analysis demonstrated that a machine learning approach could be used
to model MALDI-mass spectral peaks and their intensities for dis-
criminating authentic and falsified vaccines. We also performed multi-
variate modelling on multiple authentic vaccines and in all cases, we were
able to distinguish genuine from falsified vaccines using the validated PLS-
DA model. In some cases, the different types of water and saline used in
place of authentic vaccines were not fully resolved from each other, pre-
sumably due to their compositional similarity, but this did not detract from
thePLS-DAmodel being able to reliably distinguish authentic vaccines from
vaccine surrogates. The results of the PLS-DAmodelling provided proof of
principle that an unbiased, machine learning approach can successfully
identify genuine vaccines from falsified constituents usingMALDI-MS data
and that this couldbeperformedwith very similar results using twodifferent
analytical instruments (Bruker Biotyper Sirius and bioMérieuxVITEKMS)
established and run at different laboratories by different people. Using
univariate analysis, we also showed that 63 mass spectral peaks could be
identified as uniquely present or absent in the Engerix B spectrum when
compared to the falsified vaccine constituents. This illustrated strong
potential for developing a database approach for vaccine authentication.
The principle behind the identification of microorganisms with MALDI
'Biotyping' instruments is the comparison of the mass spectrum of an
unknown organism against a library of referencemass spectra64. Our results
show this principle can also be applied to vaccine authentication given the
large number of potentially diagnostic (discriminatory) peaks identified
through data modelling. In summary, the benefit of MALDI analysis for
vaccine authentication is two-fold: first, the method involves globally dis-
tributedMALDI technology, already deployed in ahealth context,making it
potentially feasible to develop a global vaccine screening system. Second,
using open-source machine learning with the full MALDI-mass spectrum

Fig. 9 | Bar graph of the numbers ofm/z values and spectral peaks following two-
way analysis of variance withDunnettmultiple comparison test between Engerix
B and the falsified vaccine surrogates forBiotyper Sirius data.BarA represents the
3699 total m/z values identified by MALDIquant peak detection and binning. B
represents the 143 peaks in the raw spectra that yielded a statistically significant P
value (P ≤ 0.05) for at least one falsified constituent compared to Engerix B. Bar C
represents the 63 significant peaks in the raw spectra that have a clear presence in
Engerix B and absence in at least one falsified constituent (or vice versa).

Fig. 10 | Exemplar peaks in raw spectra that could be targeted to confirm genuine
Engerix B (Biotyper Sirius spectra). a Peaks present atm/z 148.661 in 0.9% (m/V)
sodium chloride, 5% (m/V) glucose, tap water, Milli-Q and water for injection but

not the genuine vaccine Engerix B. b A peak at m/z 656.246 unique to Engerix B
against the falsified vaccine constituents 5% (m/V) glucose, Amikacin, Gentamicin,
Milli-Q and water for injection.
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would make it very difficult, if not impossible, to falsify vaccine surrogates
that could pass through such a screening approach effectively. A careful
assessment of how best to deploy the method in a real-world setting is
required, andwill be context-dependent. One approach could be to do so in
combination with hand-held spectroscopic devices (e.g. as described in
Mosca et al., 2023), deployed for rapid ‘on-site’ analysis. Suspicious samples
could, in this way, be selected for confirmatory analysis using the MALDI-
MSmethod developed here, potentially at a regional centre whereMALDI-
MS is already established for clinical testing applications.

Them/z values that provedmost discriminatory in our study tended to
be the compounds in the m/z 0–900 range and this demonstrated that
diagnostic spectra were present for low-mass excipients of the vaccines
themselves thatwe studied. This shows that selectivity is found across awide
range of adjuvants, the vaccine-specific profile of which would be more
complex to falsify65. This molecular multiplexity can be seen as a benefit for
vaccine authenticity testing as it does not rely on the presence or absence of a
specific, or even a small number of, 'biomarker' compounds that have the
potential to be relatively easily introduced into falsified products.Whilst this
study has focussed on developing a validated method and associated
workflow using four genuine vaccines and eight vaccine surrogates known
to have been used as falsified vaccines in real-world settings, we see no
reasons why this approach could not be extended to other vaccines and
liquid medicines such as insulin and biologics and associated falsified
products.

This research demonstrates that a MALDI-MS method has the
potential to be deployed in an international supply chain setting given that
the instrumentation used is currently globally distributed for healthcare
applications. The next steps the the porcess would be to develop and test a
comprehensive online database for automated vaccine testing based on the
methodology and workflow outlined here. Our research was aimed at the
detection of vaccine falsification, however, evaluating the utility ofMALDI-
MS to detect a wider range of substandard vaccines, potentially brought
about through inadvertent manufacturing errors or chemical degradation
within supply chains (excursions in cold chain management, for example),
would also be of interest in future work. We have provided a validated
MALDI-MSmethodandproof of principle that it couldbeused in a rangeof
vaccine quality control scenarios in the future.

Methods
Sample information
All samples were stored at 4 °C prior to analyses in accordance with man-
ufacturers' storage recommendations and were in date (following labelled
shelf-life) at the time of sample preparation and data acquisition. Table 3
provides details of the genuine vaccines used in this study, and the con-
stituents that have been reported to be found in falsified vaccines, also tested
in this study. Hyaluronic acid was obtained from Amazon (London, UK),
Milli-Q water from a Milli-Q® Direct 8 water purification system (Merck
Millipore, Darmstadt, Germany), and tap water from the Chemistry
Research Laboratory, Oxford University. All other samples were procured
through a local pharmacy in Oxford, UK.

Sample preparation
Samples were spotted onto MALDI target plates (Bruker, Billerica, MA,
USA; part number (P/N) 1840375) and MS-DS target slides (bioMérieux,
Basingstoke, UK), and prepared for analysis using an ASSIST PLUS
pipetting robot equipped with an eight channel 12.5 μL VOYAGER
adjustable tip spacing pipette and 12.5 μL GripTip pipette tips, all by
INTEGRA Biosciences (Zizers, Switzerland; P/N 4505, 4721 and 6453
respectively). A dual reservoir adaptor fitted with a 25mL divided reservoir
(INTEGRABiosciences; P/N 4547 and 4358 respectively) held the prepared
α-cyano-4-hydroxycinnamic acid (HCCA/CHCA) matrix (bioMérieux
CHCAmatrix purchased frombioMérieux, (Basingstoke,UK;P/N411071),
Bruker standard solvent purchased from Sigma-Aldrich (Dorset, UK; P/N
900666), andBruker portionedHCCA fromBruker (P/N 8255344)) in deck
positionA of the robot. Sampleswere pipettedmanually into a 96-well plate
(Sarstedt, Nümbrecht, Germany; P/N 72.1980.010) and placed in deck
position B and the MALDI target plates were placed into a custom-built
holder in positionC. A pipetting programmewas designed and uploaded to
the VOYAGER pipette using the INTEGRA VIALAB software (version
2.1.1.0). For all sample preparations, thematrix and samplesweremixed in a
1:1 (V/V) ratio and four replicates of 2 μL spots of themixturewere pipetted
onto the MALDI target plates. The target plates were air-dried prior to
MALDI-MS analysis. Although a pipetting robot was used for the pre-
paration of samples, it should be noted that this is not mandatory and was
used for efficiency rather than necessity.

MALDI-MS data acquisition
Raw MS spectra were acquired via MALDI-mass spectrometry using a
BrukerMALDIBiotyper Sirius (BrukerDaltonics, Bremen,Germany) and a
bioMérieux VITEKMS (bioMérieux, Craponne, France). Each sample spot
on the MALDI target plate was measured over three overlapping mass
ranges: m/z 0–900, m/z 700–2,500 and m/z 2,000–20,000. Prior to sample
analysis both MALDI-MS instruments were calibrated with Bruker anti-
biotic calibration standard (ACS), MBT Star-ACS, and Bruker bacterial test
standard (BTS), both acquired from Bruker (product references 1818702
and 8255343, respectively).

For the Bruker MALDI Biotyper Sirius, custom AutoXecute methods
weredesigned inBrukerflexControl software (version3.4,BrukerDaltonics,
Bremen, Germany) for the 'MSP MALDI Biotarget 96 plate' geometry.
Parameters for the three AutoXecute methods were as follows. Laser: MS/
parent mode on and weight 2.00; initial laser power of 20% and maximal
laser power set to 100%. Evaluation: 'use masses from'was defined for each
of the three specified mass ranges; 'use background list' none; 'ignore the 1
largest peak in the defined mass range' was not selected; MBT_Process
processingmethod; smoothing and baseline subtraction off; peak resolution
must be higher than 400; and digest/peptides with signal intensity 'high'.
Accumulation: MS/parent mode on; sum up 250 satisfactory shots in
50 shot steps; and dynamic termination off.Movement: randomwalk raster
pattern with four shots at raster spot selected and quit sample after
60 subsequently failed judgments. Processing: flexAnalysis and Bio Tools
MSmethods set to none. Randomised acquisition sequenceswere generated
for each plate of samples (using the 'RAND()' function in Microsoft Excel

Table 3 | The four genuine vaccines and eight vaccine
surrogates reported to be found in falsified vaccines used for
analysis along with each manufacturer and batch number/
part number

Vaccine/vaccine
surrogate

Manufacturer Batch/part number

Engerix B GlaxoSmithKline AHBVC999AL

Flucelvax Tetra Seqirus 3079661A

Ixiaro Valneva JEV19F11A

Nimenrix Pfizer FE7696

0.9% m/V sodium
chloride injection

Demo S.A Pharmaceutical
Industry

24598/0002

5.0% m/V D-glucose B/Braun 03551/0059

Amikacin 250mg/mL Hospira 05015997122159

Gentamicin 40mg/mL Demo S.A. 05208063001339

Hyaluronic acid Guangzhou Ailian Cosmetic
Co Ltd.

QB/T 2660

Tap water Chemistry Research
Laboratory, Oxford

N/A

Milli-Q water Merck Millipore N/A

Water for injection Ph. Eur Demo S.A
Pharmaceutical Industry

24598/001

N/A not applicable.
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which generates random numbers), and implemented in the automatic run
design within flexControl.

For the bioMérieux VITEK MS, data were acquired using the Shi-
madzu Biotech Launchpad software version 2.9.5.6 (Kratos Analytical,
Manchester, UK). Parameters were as follows: laser power, 48; profiles, 100
per sample; shots, five accumulated per profile; maximum laser rep rate,
50.0. Pulsed extraction was optimised at 450 Da form/z 0–900, 1600Da for
m/z 700–2500 and 13 kDa for m/z 2000–20,000. The regular circle bio-
Mérieux CHCA raster was used with a diameter of 2mm, 180 µm spacing
and 109 points per target. Parent Data Export in theMethod Editor was set
as mzXML for the raw data file. SARAMIS Target Manager was used to
create a list of samples with corresponding spot locations that was exported
to Experiment Genie as a *.txt file. The *.txt file was opened in Microsoft
Excel and the acquisition sequencewas randomised. In auto experiment, the
4 × 48 FleximassDS plate configurationwas chosen and the *.txtfile was set
as a standard file in Import Experiment Genie before running the rando-
mised acquisition sequence.

Data processing
Spectra were exported from Bruker flexAnalysis (version 3.4, Bruker
Daltonics) and Shimadzu Biotech Launchpad software (version 2.9.5.6).
Raw spectra (.fid data files) from the Bruker Biotyper® Sirius were con-
verted to .mzXML format with the CompassXport data export tool
(BrukerDaltonics; version 4.0.0.8). ThemzXMLfiles fromboth Sirius and
VITEK were imported into R studio and processed in R v4.1.2 using the
MALDI Quant package. Baseline correction was performed using a
'TopHat' algorithm and intensity calibration was performed with prob-
abilistic quotient normalisation (PQN). Spectral alignment was per-
formed using a half window size, signal-to-noise ratio (SNR) and
tolerance of 7, 1 and 0.2, respectively. A locally weighted scatterplot
smoothing (LOWESS)warpingmethodwas used. Peak detection used the
same SNR, and half-window size parameters as previously defined and
peak binning used a tolerance of 0.1. The resulting peak intensitymatrices
were exported as a .csv file for further analysis.

Data analysis
Manual inspection of the rawmass spectra was performed by uploading the
data files into Bruker flexAnalysis software (version 3.4) and Shimadzu
Biotech Launchpad software (version 2.9.5.6) from the Sirius and VITEK
instruments, respectively.

Statistical analysis and data visualisation
Statistical analysis of the processed peak intensity matrices and
visualisation of the data were performed using MetaboAnalyst (ver-
sion 5.0, https://metaboanalyst.ca) and Workflow4metabolomics
(https://workflow4metabolomics.org/). No data filtering was per-
formed. Metaboanalyst was used to generate 'heatmaps', 'hierarchical
clustering dendrogram', 'principal component analysis (PCA)' and
'partial least squares-discriminant analysis (PLS-DA)'. MetaboAna-
lyst data normalisation was performed by 'sum' and Pareto scaled.
Workflow4metabolomics was used for external validation of the
multivariate models and the generation of confusion matrices. Two-
way analysis of variance (ANOVA) with Dunnett multiple compar-
ison test was performed in GraphPad Prism (GraphPad Software,
Boston, MA, USA; version 9.4.1). Statistical analysis figures and
graphical representations were created using both MetaboAnalyst
and GraphPad Prism.

Method validation
To ensure the MALDI-MS workflow was reproducible and reliable, having
developed the method, both MALDI instruments were systematically
validated for: (1) intra- and inter-day precision; repeatability and stability.
Quality control (QC) samples were prepared as equimolar mixtures of all
samples and spotted onto multiple positions on the MALDI plate in the
same way as for experimental samples. With each spot representing a QC

sample, 24 QC samples were each analysed on two different days, and the
intra-day and inter-day precision was calculated as the percentage relative
standard deviation (RSD) of the total ion count (TIC) across themass range
for each instrument. Intra-day reproducibility ranged from 28.75% to
41.96% and the combined inter-day precision was 34.85% and 39.89% for
the Sirius andVITEK instruments, respectively.QCsamplesweremeasured
under the same conditions for each instrument to estimate repeatability.

Data availability
The datasets from this study are available from the corresponding author on
reasonable request.

Code availability
The code used in this study is available from the corresponding author on
reasonable request.
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