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Acquisition parameters influence AI
recognition of race in chest x-rays and
mitigating these factors reduces
underdiagnosis bias

William Lotter 1,2,3

A core motivation for the use of artificial intelligence (AI) in medicine is to
reduce existing healthcare disparities. Yet, recent studies have demonstrated
two distinct findings: (1) AI models can show performance biases in under-
served populations, and (2) these same models can be directly trained to
recognize patient demographics, such as predicting self-reported race from
medical images alone. Here, we investigate how these findingsmay be related,
with an end goal of reducing a previously identified underdiagnosis bias. Using
two popular chest x-ray datasets, we first demonstrate that technical para-
meters related to image acquisition and processing influence AI models
trained to predict patient race, where these results partly reflect underlying
biases in the original clinical datasets. We then find that mitigating the
observed differences through a demographics-independent calibration strat-
egy reduces thepreviously identifiedbias.Whilemany factors likely contribute
toAI bias anddemographics prediction, these results highlight the importance
of carefully considering data acquisition and processing parameters in AI
development and healthcare equity more broadly.

As applications of artificial intelligence (AI) inmedicine extend beyond
initial research studies to widespread clinical use, ensuring equitable
performance across populations is essential. There remains much
room for improvement towards this goal, with several studies
demonstrating evidence of bias in underserved populations in
particular1–4. Adjacent recent work has also shown that these same
algorithms can be directly trained to recognize patient demographic
information5–7, such as predicting self-reported race from medical
images alone7. These results are significant because it is unclear how
these algorithms identify this information given it is not a task clin-
icians perform, and critically, it provides further means for the
potential for bias7.

Instead of creating additional risks of bias, a core motivation for
the use of AI in healthcare is to reduce disparities that are already

known to exist8–10. Disparities across different demographic subgroups
have been identified in many areas of medicine11,12, including medical
imaging13,14. These disparities span the full care continuum, from
access to imaging to patient outcomes and even the image acquisition
process itself14. For instance, in breast cancer screening where dis-
parities have been heavily studied, Black women have a higher breast
cancer mortality rate than white women and are less likely to undergo
screening mammography at centers with breast imaging
specialists15–17. Regarding image acquisition, several studies have
shown evidence of bias in image and positioning quality and in access
to newer breast imaging technology18–20.

Such disparities in technical data acquisition and processing fac-
tors may exist in many imaging domains14,21–23 and are of particular
concern from an AI perspective. AI algorithms have been shown to be
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sensitive to low-level statistics in images and can even learn ‘shortcut’
connections between irrelevant confounders and disease labels24–27,
thus risking the amplification of statistical biases that may be present
in the training data for medical applications. These risks are further
exacerbated by the common practice of adapting AI approaches from
natural image tasks, which may not fully take advantage of the acqui-
sition and processing parameters unique tomedical images. Thus, it is
paramount to study the influence of medical image acquisition factors
on AI behavior, especially in the context of bias.

Here, the aims of our study were twofold. First, we sought to
better understand the factors that influence AI-based prediction of
patient race in medical images, focusing specifically on technical
aspects related to image acquisition and processing. Second, we
aimed to use the knowledge gained to reduce bias in AI diagnostic
performance. As a domain which has been heavily studied in both AI
performance bias and patient race prediction, we focus on chest
X-ray interpretation using two popular public datasets. We first
show that AI models are indeed influenced by technical acquisition
and processing factors when learning to predict patient race, and
this at least partly reflects underlying biases in the original clinical
datasets. Based on these findings, we devise two strategies to reduce
a previously identified performance bias1. We find that a strategy
which calibrates the algorithm’s score threshold based on the view
position of the chest X-ray significantly reduces this bias by upwards
of 50%. While there are many sources of potential bias and this
strategy alone is not sufficient, these results emphasize the impor-
tance of carefully considering image acquisition and processing
parameters when developingmedical AI algorithms and in achieving
healthcare equity more broadly.

Results
Anoverviewof our approach is contained in Fig. 1.We train and analyze
two sets of AImodels. The first set ofmodels are trained to predict self-
reported race based on chest X-ray images (Fig. 1a). We then examine
how the predictions of these models change when varying several
technical parameters. We use the resulting knowledge to inform the
development of a second set of models. This second set is trained to
detect 12 types of pathological findings (e.g., pneumonia, fracture,
pneumothorax, etc.) and is then evaluated in a binary task of pre-
dicting whether or not there are any pathological findings present
(Fig. 1b). In this task, Seyyed-Kalantari et al. identified an under-
diagnosis bias for underserved populations, where, for instance, Black
patients were more likely to have a false negative result by the AI
algorithm compared to white patients1.

The technical factors that we investigate are illustrated in Fig. 1a,
whichwere chosenbasedon their relevance to chestX-ray imaging and
data availability. There are many parameters involved in chest X-ray
acquisition and processing, someofwhich dependon the technologist
performing the procedure, some that are automatically set by the
X-ray machine, and some that relate to image processing once the
radiograph has been acquired. One important set of parameters cen-
ters aroundX-ray exposure, dictating the energy andquantity of X-rays
emitted by themachine28,29. The appropriate level of exposure and the
effects of differing exposures on image statistics such as contrast and
noise are complex topics that depend on patient andmachine-specific
characteristics28–33. In modern digital radiography, additional image
processing takes place that can compensate for some of these effects,
suchas ‘windowing’ the image tohelpnormalize overall brightness and
contrast28,29. While it is not possible to retrospectively alter the X-ray
exposure in the images used here, we can still perform windowing
modifications to simulate changes in the image processing and, to
some extent, exposure. Here, we specifically explore modifying the
windowwidth used in processing the image (Fig. 1a). While subtle, this
effectively changes the overall contrast within the image, such as the
relative difference in intensity between lung and bone regions.

The other technical factors we explore relate to the positioning of
the patient. One important aspect of chest X-ray positioning is the area
of the X-ray field relative to the patient’s chest34,35. During acquisition,
this area may be ‘collimated’ in order to cover the relevant anatomy
while limiting unnecessary X-ray exposure to other regions34–36. After
acquisition, the image may also be ‘electronically collimated’ via
cropping37,38. As the image preprocessing used in AI algorithms typi-
cally consists of center-cropping and then resizing to a fixed size, it is
relatively straightforward to analogously simulate different X-ray field
sizes by adjusting these resizing and cropping steps (Fig. 1a, see
“Methods”). These adjustments effectively alter the field of view of the
image, and this parameter is the second factor we consider. For a third
factor, we consider the view position of the chest X-ray. The view
position indicates the position of the patient with respect to the X-ray
source. Typical view positions used in chest X-rays are anterior-
posterior (AP), posterior-anterior (PA), and lateral (Fig. 1a). In addition,
the X-ray equipment itself may be a standard, stationary machine or a
portable device that can be moved as necessary to image the patient.

In exploring the effects of these technical factors, we train and
evaluate AI algorithms using two popular public datasets: CheXpert39

and MIMIC-CXR40. CheXpert (CXP) consists of 224,316 chest X-ray
images from 65,240 patients collected from the Stanford Hospital.
MIMIC-CXR (MXR) consists of 377,110 chest X-ray images from 65,379
patients collected from the Beth Israel Deaconess Medical Center. We
split each dataset randomly at the patient level into training, valida-
tion, and testing splits with percentages of 70/10/20%, respectively. In
analysis by self-reported race, we consider subgroups of Asian, Black,
and white patients following Gichoya et al., who demonstrated that AI
models can be trained to recognize self-reported race in both CXP and
MXR7. We note that these subgroups were used because there is
inconsistent and incomplete information regarding ethnicity (e.g.,
Hispanic or non-Hispanic) in the datasets and insufficient numbers of
images from patients of other self-reported races to effectively
analyze7.

Effects of technical factors onAI-based racial identity prediction
We train the first set of AI models to predict self-reported race in each
of the CXP and MXR datasets. The models were trained and assessed
separately on each dataset to assess the consistency of results across
datasets. For model architecture, we use the high-performing con-
volutional neural network known as DenseNet12141. The model was
trained to output scores between 0 and 1 for each patient race, indi-
cating the model’s confidence that a given image came from a patient
of that self-reported race. Consistent with Gichoya et al.7, the Dense-
Net121model achieved high accuracy in predicting patient race in both
datasets, with an average area under the receiver operating char-
acteristic curve (AUROC) of 0.918 for CXP and 0.944 for MXR (see
Supplementary Table 1).

We next characterized the predictions of the AI-based racial
identity prediction models as a function of the described technical
factors. For window width and field of view, the AI models were eval-
uated on copies of the test set that were preprocessed using different
parameter values. Figure 2 illustrates how each model’s average score
per race varies according to these parameters. For CXP, decreasing the
window width and field of view increases the model’s average score
corresponding to white patients and decreases the average score
corresponding to Asian and Black patients. In other words, simulating
increases in image contrast (decreases in windowwidth) and increases
in collimation (decreases in field of view) caused the AI model to
predict the image was more likely to come from a white patient on
average than an Asian or Black patient. The factors are combinatorial,
with changes of −68.3 ± 0.6%, −58.0 ± 1.0%, +33.0 ± 0.5% in the average
Asian, Black, and white prediction scores, respectively, when changing
each parameter by 20%. These patterns are similar in the MXR dataset
for Asian and white prediction scores (Fig. 2b). However, the model’s
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score corresponding to Black patients shows a different pattern in
MXR, demonstrating much smaller variation by window width and
field of view. Thus, while there is some variation across datasets,
varying the window width and field of view parameters can generate
relatively large changes in the average predictions of the AI model by
patient race.

We next assessed the impact of the view position on AI-based race
prediction. We quantified effects by comparing the average scores per
view to the composite average score across views. Since the view
position is a discrete parameter that is available in each dataset, we can
additionally compare the per view scores to the empirical prevalence
of views for each race. Figure3 contains the results of this analysis,with

the raw view counts per patient race also provided in Supplementary
Table 2.We again observe variations in the AI predictions, where the AI
models output higher scores on average for certain patient race and
view position combinations than others. For instance, both the CXP
and MXR models show increased average Asian and Black prediction
scores on PA views and a decreased white prediction score. There are
also notable effects of the equipment type (standard or portable). In
the MXR dataset where this data is available, portable views show an
increased average white prediction score but lower average Asian and
Black prediction scores. In examining the empirical frequencies per
view,wealsoobservedifferences bypatient race (orangebars in Fig. 3).
For instance, Asian and Black patients had relatively higher

Fig. 1 | Overview of approach.Our study aims to (1) better understand the effects
of technical parameters on AI-based racial identity prediction, and (2) use the
resulting knowledge to implement strategies to reduce a previously identi-
fied AI performance bias. a We first train AI models to predict self-reported
race in chest X-rays. We then assess how the models’ predictions change as a
function of factors relating to image acquisition and processing. These

factors include the window width, field of view, and view position. b We next
train AI models to predict the presence of pathological findings, where an
underdiagnosis bias for underrepresented patients has been previously
identified1. Based on the results of the technical factor analysis, we devise
strategies with a goal of reducing this bias. PA posterior-anterior, AP
anterior-posterior.
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Fig. 2 | Effects of changes in image preprocessing on AI-based racial identity
prediction. The average scores of the racial identity prediction model were com-
puted for different window width and field of view values and compared to the
default preprocessing used to train the model. The average scores were computed
in aweighted fashion toequallyweight eachpatient raceacross the test dataset (see

“Methods”). The percent change in average score per race is plotted. A positive
change (red) indicates an increase in the average score for the corresponding race
and preprocessing combination across the entire test set. Results are shown
separately for the CXP and MXR datasets. Source data are provided as a Source
data file.

Fig. 3 | Effects of view position on AI-based racial identity prediction. The
average scores of the racial identity predictionmodelwere computed for each view
position and compared to the average scores across all views. The average scores
were computed in aweighted fashion to equallyweight eachpatient race across the
test dataset (see “Methods”). The percent change in average score per race is
plotted (blue bars) compared to the differences in the frequencies of views by race
(orange bars). The view frequencies are also plotted as percent changes compared
to the frequencyacross all views. Results are shown separately for theCXP andMXR

datasets. PA posterior-anterior, AP anterior-posterior, Lat lateral, Std standard, Port
portable. The results are derived from the following number of images for Asian,
Black, and white patients respectively: CXP-PA: 2376, 1202, 11399; CXP-AP: 11780,
5952, 64211; CXP-Lat: 2589, 1369, 12624; MXR-PA: 1904, 10867, 35855; MXR-AP:
3154, 13460, 65068; MXR-Lat: 2322, 14070, 45161; MXR-Std AP: 389, 3077, 9813;
MXR-Port AP: 2765, 10383, 55255. Error bars correspond to standard deviation
computed via bootstrapping. Source data are provided as a Source data file.
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percentages of PA views than white patients in both the CXP and MXR
datasets, which is also consistent with the behavior of the AI model for
this view. In other words, PA views were relatively more frequent in
Asian and Black patients, and the AI model trained to predict patient
race was relatively more likely to predict PA images as coming from
Asian and Black patients. Out of the 24 possible view-race combina-
tions, 17 (71%) showed patterns in the same direction (i.e., a higher
average score and a higher view frequency). Overall, the largest mag-
nitude of differences in both AI score and view frequencies occurred
for Black patients. For instance, the average Black prediction score
varied by upwards of 40% in the CXP dataset and the difference in view
frequencies varied by upwards of 20% in MXR.

Reducing underdiagnosis bias by mitigating bias in technical
factors
The technical factor analysis above suggests that certain parameters
related to image acquisition and processing significantly influence AI
models trained to predict self-reported race from chest X-rays in two
popular AI datasets. Given these findings, we next asked if mitigating
the observed differences could reduce a previously identified AI bias by
developing a second set of AImodels. Following Seyyed-Kalantari et al.1,
we trained models to predict the presence of 12 pathologies that are
labeled in the CXR andMXR datasets, and then evaluated themodels in
the binary task of predicting if any pathological findings are present
(“Findings Present”) or not (“No Findings”). Example findings include
pneumonia and pneumothorax, with a full list included in the “Meth-
ods”. In this task, Seyyed-Kalantari et al. discovered that underserved
populations tended to be underdiagnosed by AI algorithms, meaning a
lower sensitivity at a fixed operating point. In the context of race, this
bias was especially apparent for Black patients in the MXR dataset1.

We explored two approachesmotivated by the results above to
reduce the underdiagnosis bias. We specifically sought to develop
strategies that were relatively easy to implement, could be adapted
to other domains, and did not require knowledge of patient
demographics during training or testing. The first approach con-
sists of a data augmentation strategy based on varying the window
width and field of view parameters during model training. This
strategy aims to create a model that is robust to variations in these
factors, for which the race prediction model exhibited patterns
across different races. The second approach does not involve
changes to model training, but instead to score threshold selection
at model inference. As the AI model outputs a continuous score
from 0 to 1 for the “No Findings” vs. “Findings Present” task, a
threshold must be chosen to generate binary outputs. This
threshold is typically chosen based on a target metric and the
model’s predictions across a validation set. Given the view position
results above, we asked if separate thresholds for each view could
help mitigate the underdiagnosis bias. The thresholds would again
be calculated in the validation set, but separately for each view
instead of having one single threshold across all views.

As a baseline approach, we again use a DenseNet121 model
architecture that was trained separately on each of the CXP and MXR
datasets. The baselinemodelswere trainedwithout data augmentation
andused a single score threshold across all views for inference thatwas
chosen to achieve approximately equal sensitivity and specificity in the
validation split (see “Methods”). Consistent with Seyyed-Kalantari
et al., we find that this baseline approach exhibits an underdiagnosis
bias in theMXRdataset for Black andAsianpatients compared towhite
patients1. The sensitivity of the model was 80.5 ± 1.4%, 75.8 ± 0.8%,
83.5 ± 0.4% for Asian, Black, and white patients respectively, for a dif-
ference of −7.7% (95% CI: −6.2%, −9.3%) between Black and white
patients and −3.0% (95% CI: −0.4%, −5.8%) between Asian and white
patients. We find that this bias is not as pronounced in the CXP dataset
(Supplementary Table 3), which is also consistent with Seyyed-
Kalantari et al.1.

Having reproduced the previously identified underdiagnosis bias,
we next assessed the effects of altering the baseline approach with the
two methods proposed above. Figure 4 compares the results for all
three approaches on the MXR test split. We include results from a
model trained on MXR as well as one trained on CXP to assess
robustness. We find that the training-based data augmentation
approach does not reduce the underdiagnosis bias. However, the per-
view threshold approach reduces this disparity in both Black and Asian
patients. For the MXR-trained model, the sensitivity was 82.3 ± 1.3,
79.1 ± 0.7, 83.3 ± 0.4 for Asian, Black, and white patients respectively
when using the per-view thresholds, corresponding to an absolute
reduction in sensitivity disparity of 3.5% (95% CI: 2.4%, 4.6%; p < 0.001)
for Black patients and 2.0% (95% CI: −0.04%, 4.2%; p = 0.03) for Asian
patients. These values represent 46% and 67% relative reductions in
disparities for Black and Asian patients, respectively. The CXP model
with the per-view thresholds also showed reductions in bias for both
Black patients (28% decrease, p <0.001) and Asian patients (29%
decrease, p = 0.08) despite not being trained onMXR. Importantly, we
find that the reduced disparities in sensitivity do not come at the cost
of decreased fairness in specificity, as quantified by the variation in
specificity across races. For the MXR-trained model, the standard
deviation in specificity across races was 3.36 for the per-view threshold
approach compared to 3.81 for the baseline approach, for a difference
of −0.45 (95% CI: −1.0, 0.26). For the CXP-trained model, the standard
deviation was 4.83 for the per-view threshold approach compared to
4.89 for the baseline approach, for a difference of −0.06 (95% CI:
−0.71, 0.60).

Analysis of potential confounding factors
Our results above suggest that technical factors related to image
acquisition and processing can influence the subgroup behavior of AI
models trained on popular chest X-ray datasets. While biases in tech-
nical acquisition and image processing parameters have generally
been underexplored, recent work has called attention to other
potential sources for bias in the CXP and MXR datasets, including
differences in distributions of age and disease prevalence by
patient race42–44. In addition, the versions of the CXP andMXRdatasets

Fig. 4 | Comparison of underdiagnosis bias in MXR test split by AI approach.
The disparity in sensitivity of the AI diagnostic model was quantified as the sensi-
tivity of themodel forwhite patientsminus the sensitivity of themodel for patients
of other races. This disparity is plotted by AI approach and training dataset. Error
bars correspond to standarddeviationcomputed viabootstrapping and are plotted
with respect to thepoint estimate in theMXR test split. The results are derived from
1992, 10,335, and 38,282 images for Asian, Black, and white patients respectively.
Source data are provided as a Source data file.
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used by the AI community consist of JPEG images that were converted
and preprocessed from the original DICOM format used in medical
practice. While our primary goal is to better understand and mitigate
bias of standard AI approaches, it is useful to assess how these
potential confounders relate to our observed results. To do so, we
have pursued three strategies. For the first strategy, we follow Glocker
et al.42 in creating resampled test sets with approximately equal dis-
tributions of age, sex, and disease labels within each race subgroup
(see “Methods” and Supplementary Table 4). This strategy aims to
control for differences in distributions across these confounders
during model testing. For a second strategy, we additionally perform
this resampling duringmodel training. Finally, to explore the impact of
DICOM conversion and dataset-specific preprocessing, we evaluate on
the images extracted directly from the original DICOM files. We spe-
cifically perform this evaluation for MXR, as the original DICOM files
are publicly available for this dataset but not for CXP. For this strategy
and the test set resampling approach, we evaluate the originally
trained AI models without modification. The training set resampling
approach requires training newmodels, whichwe then evaluate on the
resampled test sets.

First analyzing the racial identity prediction task, we find that the
results for each of the confounder mitigation strategies are consistent
with the original findings. While there are slight decreases in the race
prediction performance, the performance remains high in all approa-
ches described above (see Supplementary Table 1), with average
AUROCs between 0.922–0.934 for MXR and 0.894–0.903 for CXP,
compared to 0.944 and 0.918 in the original evaluations for MXR and
CXP, respectively. We also find that the window width, field of view,
and view position parameters show similar patterns in all conditions,
as illustrated in Supplementary Figs. 1 and 2. For both CXP and MXR,
test set resampling alone has little effect on the observed results.
Combining training and test set resampling leads tomore quantitative
variation, but the overall trends across these technical parameters
remain similar. For instance, in both the original and the training & test
resampling results, decreases in the window width and field of view
parameters lead to lower Asian prediction scores in CXP and MXR,
lower Black predictions scores in CXP, and higher white prediction
scores in CXP and MXR. Similarly, there are some quantitative differ-
ences when performing the DICOM-based evaluation in MXR, but the
core trends are preserved with the models again showing changes in
behavior across the factors.

With respect to reducing the underdiagnosis bias, the results are
again consistent as the view-specific threshold approach reduces this
bias in MXR across all strategies (Supplementary Fig. 3). In the
resampled test set, we observe that the overall underdiagnosis bias is
lower at baseline, as recently demonstrated by Glocker et al.42.
Nonetheless, we find that the bias can be further reduced when using
the per-view thresholds, with similar results also observed when
performing training set resampling. For the DICOM-based evaluation,
both the baseline disparity magnitude and its decrease with view-
specific thresholds are similar to the original results. Thus, we observe
variations in the baseline underdiagnosis bias, but the view-specific
threshold approach reduces this bias for each confounder strategy,
patient race (Asian and Black), andmodel training set (CXP andMXR).

Finally, as body mass index (BMI) is a relevant factor in setting
X-ray acquisition parameters, we additionally perform the combined
training & testing set resampling strategy based on BMI. We perform
this experiment using MXR as BMI is available for 39% of this dataset
but is not available for CXP. In thisMXR subset, we generate resampled
training and testing sets to achieve approximately equal distributions
of BMI across patient race (see “Methods”). With a lower amount of
training data, the performance of the racial identity prediction model
decreases, but remains significantly higher than random chance
(Supplementary Table 1). Nonetheless, we find that the trends
observed across the technical parameters remain, where, for instance,

decreases in thewindowwidth and field of viewparameters still lead to
lower Asian prediction scores and higher white prediction scores
(Supplementary Figs. 1 and 2). For the diagnostic task, we again find
that the per-view threshold strategy reduces the underdiagnosis bias
(Supplementary Fig. 3). Thus,while there is somequantitative variation
whenperforming resamplingbasedonBMI, the corepatterns are again
preserved.

Discussion
Recent important work has demonstrated two distinct findings: (1)
AImodels trained formedical tasks can show biases in performance
for underrepresented populations, and (2) these same models can
be trained to directly predict patient demographics like self-
reported race. We investigated connections between these two
findings with an end goal of reducing a previously identified per-
formance bias. We find that AI models trained to predict self-
reported race in chest X-rays from two popular datasets are influ-
enced by several technical factors related to image acquisition and
processing. These factors include the view position of the chest X-
ray, where we identify disparities by patient race in the original
datasets themselves. Through a practical strategy of choosing
score thresholds per view, we find that a previously reported
underdiagnosis bias in underrepresented populations can be sig-
nificantly reduced. Altogether, we present a synergistic approach
of using AI to elucidate underlying biases in clinical AI datasets to
then reduce AI performance bias itself.

While many features may be involved in AI-based racial identity
prediction and performance bias7, including other demographic
confounders42,45, we focused on image acquisition and processing
factors for several reasons. First, it is known that biases related to such
factors already exist in several medical imaging domains14,19,20,22,23 and
may be more widespread. Therefore, AI models risk learning and
perpetuating these biases in the training data. Second, compared to
natural images,medical images aremore structured and controlled in
their acquisition and processing, resulting in rich yet complex meta-
data. As AI models and even preprocessing techniques are often
borrowed from natural image tasks, these technical parameters may
be underappreciated and underutilized in AI medical imaging appli-
cations. Lastly, we focus on such parameters from a goal-oriented
perspective—image preprocessing and the handling of readily avail-
able parameters can be adjusted during AI development and
deployment. Thus, these parameters offer ameans formitigating bias
from anAI standpoint. As such, our goal was not to elucidate all of the
features enabling AI-based race prediction, but instead focus on those
that could lead to straightforward AI strategies for reducing AI diag-
nostic performance bias. To this end, our analysis is not intended to
advocate for the removal of the ability to predict race from medical
images, rather to better understand potential technical dataset fac-
tors that influence this behavior and improve AI diagnostic fairness.

Through this approach, we identified that AI models trained to
recognize race in chest X-rays exhibit significant changes in predic-
tions by the view position of the X-ray and by image preprocessing
parameters related to contrast/exposure and the field of view. As the
view position is a discrete, interpretable parameter, it is straightfor-
ward to compare the behavior of the AI model by this parameter to its
empirical statistics in the dataset. We indeed find differences in the
relative frequencies of views across races in both the CXP and MXR
datasets. Overall, the largest discrepancies were observed for Black
patients in the MXR dataset, which also corresponds to where the
largest AI-based underdiagnosis bias was observed. These differences
in view proportions are problematic from an AI development per-
spective, in part because the AI model may learn shortcut connections
between the view type and the presence of pathological findings24,25.
Indeed, we do find that AI models trained to predict pathological
findings exhibit different score distributions for different views
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(Supplementary Fig. 4). This observation can help explain why
choosing score thresholds per view can help mitigate the under-
diagnosis bias.We note, however, that this strategy did not completely
eliminate the performance bias, leaving room for improvement in
future work. Furthermore, it is important to consider both sensitivity
and specificity when calibrating score distributions and assessing
overall performance and fairness42,46–48. Calibration and the general-
ization of fairness metrics across datasets is indeed an unsolved,
general challenge in AI regardless of how thresholds are chosen49 (see
also Supplementary Fig. 5).

In contrast to the score threshold strategy, we did not find that a
training-based data augmentation strategy reduced the under-
diagnosis bias. This strategy involved randomly applying different
windowwidth and field of view parameters to images during training,
designed to make the AI model more robust to these parameters.
Though the race prediction models exhibited changes in predicted
race over these parameters, this strategy did not translate to lower
underdiagnosis bias. There are several reasons why this may be the
case. The intra-race variation across these parametersmay already be
sufficiently larger than the inter-race variation, or perhaps the data
augmentation approach or its implementation were simply not
effective. It is also possible that these parameters influence the race
prediction models but are not the main drivers of bias in the diag-
nostic models. The fact that the data augmentation approach did not
help, and actually seemed to slightly increase the underdiagnosis
bias, does raise an important question of whether current standard
data augmentation techniques have any contribution to AI bias. We
also note that it is much more challenging to assess the “true”
underlying distribution of the factors represented by the window
width and field of view parameters. While altering the window width
was designed to mimic changes in contrast and exposure28,29,50,51, it is
an imperfect simulation such as not precisely capturing higher
signal-to-noise ratios that result from higher exposures and does not
cleanly map to a single physical value. The field of view parameter is
also an imperfect simulation of changing the collimation and relative
size of the X-ray field with respect to the patient. Nonetheless, the
fact that the race prediction model did show differences
in predictions over these parameters does suggest that it may have
learned intrinsic patterns in the underlying datasets (Supplemen-
tary Fig. 6).

Our work adds to the growing attention towards better under-
standing the underlying causes of AI bias and behavior across pro-
tected subgroups1,2,7,8,42,45,52. In the current context, it has been
suggested that factors ranging from demographic confounders to
label bias42–44 could contribute to the performance differences
observed by Seyyed-Kalantari et al.1. In fact, in important concurrent
work, Glocker et al.42 proposed several strategies for exploring this
behavior, including the use of test set resampling to better control for
demographic and prevalence shifts amongst racial subgroups. The
authors found that this resampling reduced racial performance dif-
ferences in CXP and MXR, suggesting that these factors (e.g., age,
disease prevalence) may at least partially underlie the previously
observed bias. We observe similar results when performing this
resampling, where, interestingly, we find that using view-specific
thresholds may be synergistic with this resampling to reduce the bias
even further. Importantly, our view-specific threshold approach
operates in a demographics and disease-independent fashion, pro-
viding a practical strategy for real-world use. Furthermore, we find that
the effects of the window width, field of view, and view position
parameters are present even when performing training and test set
resampling, suggesting that these effects are not simply the product of
age, sex, disease label, or BMI shifts alone. We also examined whether
the specific preprocessing used to create the “AI-ready” MXR dataset
can explain our findings by evaluating on the images extracted directly
from their original DICOM format. We again observe similar results

across the racial identity prediction and underdiagnosis analyses. This
perspective of AI-ready vs. source data does raise important con-
siderations, however, such as ensuring that commonly used image
preprocessing techniques (e.g., normalization) are optimized to per-
form consistently across populations and data characteristics. The
precise delineation of what is considered image (pre)processing is also
unclear when considering the full path from initial X-ray exposure
through to input to an AI model or even presentation on a viewing
workstation for clinician review. Beyond the imagepreprocessing used
to create AI-ready datasets, the optimal way to generate “ground-
truth” labels is an important open question in terms of both overall
diagnostic performance and fairness, where natural language proces-
sing (NLP)-based extraction of labels from clinical records as per-
formed for the studied datasets offers enhanced scalability but also
room for label noise and bias42. In addition to the use of NLP-based
labeling, the CXP and MXR datasets have several known and possibly
unknown limitations24,43,44, including limited overall diversity in patient
race/ethnicity and possible hidden differences in disease severity
across subgroups.

While we focused on studying differences in technical factors
from an AI perspective, understanding how these differences arise to
beginwith is a critical area of research. The differences in viewposition
utilization rates observed here are qualitatively similar to recent find-
ings of different utilization rates of thoracic imaging by patient
race21–23,53. As different viewsandmachine types (e.g.,fixedorportable)
may be used for different procedures and patient conditions, it is
important to understand if the observed differences underlie larger
disparities. The effects regarding the other preprocessing parameters
aremore challenging to directly compare to clinical practice given the
complexity of the X-ray acquisition process and its relationship to
statistical image properties. While controlling for age, sex, disease
prevalence, and BMI did not resolve these effects, there may be other
unmeasured population shifts or hidden biases in the studied datasets
that contribute to the findings. Thus, as our analysis and conclusions
focus on AI efforts using popular datasets, they should not be inter-
preted as directly informing how X-ray acquisition should be done in
the clinic. Nonetheless, as optimal patient positioning and X-ray
exposure parameters depend onmany patient-specific factors28–30,34,50,
where some of these parameters are set by the technologist and some
are set by the machine itself, it is important to consider which popu-
lations these settings areoptimized for and if the effects observedhere
have any relationship to image and/or positioning quality. Indeed, the
subject of X-ray dosage and race has a complex and controversial
history54.

We studied bias in the context of chest X-rays and certain racial
subgroups given important recent work in this domain and the
popularity of the studied AI tasks and datasets, but we envision that
similar analysis can fruitfully be applied to other domains and other
demographic subgroups. This analysis emphasizes the importance of
carefully considering technical acquisition andprocessing parameters,
but also the importance of carefully choosing score thresholds.
Threshold selection involves optimizing a tradeoff between sensitivity
and specificity, and it is critical to understand the factors that influence
score distributions and ultimately this tradeoff. Altogether, a detail-
oriented approach is necessary towards the effective and equitable
integration of AI systems in clinical practice.

Methods
Ethics statement
This study utilized two public chest X-ray datasets, CheXpert39 and
MIMIC-CXR40, which are de-identified in accordance with the US
Health Insurance Portability and Accountability Act of 1996 (HIPAA)
Safe Harbor requirements. The study is classified as not-human sub-
jects research as determined by the Dana-Farber/Harvard Cancer
Center Institutional Review Board.

Article https://doi.org/10.1038/s41467-024-52003-3

Nature Communications |         (2024) 15:7465 7

www.nature.com/naturecommunications


Dataset descriptions
CheXpert (CXP) consists of 224,316 chest X-ray images from 65,240
patients collected from Stanford Hospital. The exams were per-
formed between 2002-2017 in both inpatient and outpatient settings.
MIMIC-CXR (MXR) consists of 377,110 chest X-ray images from65,379
patients collected from the Beth Israel Deaconess Medical Center
(BIDMC). The MIMIC-CXR dataset was constructed by first querying
the BIDMC electronic health record (EHR) to obtain a list of patients
who received a chest radiograph in the emergency department from
2011 to 2016. All chest radiographs available in the BIDMC Radiology
Information System (RIS) for this set of patients from 2011 to 2016
were then retrieved.

Both the CXP andMXR datasets consist of chest X-ray images in a
JPEG format with accompanying de-identified patient metadata. The
metadata includes patient demographic information and labels for
each image corresponding to 14 different types of observations that
were automatically parsed from radiology reports. The observations
consist of 12 pathological findings (Enlarged Cardiomediastinum,
Cardiomegaly, Lung Opacity, Lung Lesion, Edema, Consolidation,
Pneumonia, Atelectasis, Pneumothorax, Pleural Effusion, Pleural
Other, Fracture) as well as “No Finding” and “Support Devices”. In the
CXPdataset, race and ethnicity are available as separate data elements,
whereas in the MXR dataset, they are combined together in one ele-
ment. ForAI-based racial identity prediction,we followGichoya et al. in
including self-reported Asian, Black, and white patients given this
inconsistency in handling ethnicity between the two datasets and the
insufficient number of studies from patients of other races to effec-
tively analyze7. The percentages of race by patient in CXP are 63.6%
white, 12.2% Asian, 5.4% Black, and 18.8% other race or unknown. At an
X-ray image level, the percentages are 63.8% white, 11.8% Asian, 6.1%
Black, and 18.3% other race or unknown. For MXR, the patient per-
centages are 67.2% white, 17.4% Black, 3.8% Asian, and 11.6% other or
unknown; with X-ray image percentages of 68.4% white, 17.4% Black,
3.5% Asian, and 10.6% other or unknown. Race was self-reported in
both datasets and is missing or unknown for 12% and 15% of X-rays in
the CXP and MXR datasets respectively. For the underdiagnosis ana-
lysis, we follow Seyyed-Kalantari et al. in training the AI models using
all available labels and then evaluating binary classification perfor-
mance based on the “No Finding” label1. For both datasets, each X-ray
image is assigned one of four possible values for each label class: 1
(positive for that class), 0 (negative for that class), −1 (uncertain for
that class), or nan (missing). To ensure robust training and testing, we
treated uncertain labels (−1) as missing. We additionally populated
missing values whenever possible based on the following rules: (a) if a
pathology finding was present and the “No Finding” label wasmissing,
the “No Finding” label was set to 0; (b) if the “No Finding” label was 1,
we set each of the labels corresponding to pathologies to 0. A break-
down of the view position counts for each dataset is contained in
Supplementary Table 2.We note that the distinction between standard
and portable views is only available in the MXR dataset. A view was
determined to have come from a portable machine if the text “port”
was present in the “Performed Procedure Step Description”. For por-
table views, the AP position is almost always used. In CXP, 94.1% of
X-ray images are labeled as having a support device present (93.9%,
94.3%, and 94.0% for Asian, Black, and white patients, respectively). In
MXR, 93.8% of X-ray images are labeled as having a support device
present (91.9%, 93.3%, and 94.2% for Asian, Black, and white patients,
respectively).

Each dataset was split randomly into training, validation, and
testing with percentages of 70/10/20%. The splits were created at the
patient level such that all X-rays from a given patient were included in
the same split. The training split was used for AI model training. The
validation split was used for model selection during training and for
the calculation of score thresholds. The testing split was only used for
model testing.

AI model development
ADenseNet12141 architecturewas used for both the raceprediction and
underdiagnosis analyses. For the diagnostic task, weights were initi-
alized from ImageNet55 pre-training, whereas the weights were ran-
domly initialized for the race prediction task to limit any implicit
assumptions about the features used for this task.Models were trained
separately on each dataset for each task in order to assess the con-
sistency of results across datasets. The Adam optimizer56 with a
learning rate of 1e−3 and a weight decay of 1e−5 was used for all model
training. Models were trained for 40 epochs with the final weights
selected based on AUROC performance in the validation set. Image
preprocessing consisted of the following steps in order: center crop-
ping to a square image, resizing to 224 × 224 pixels, and normalizing to
a range of −1024 to 1024. Data augmentation was not performed for
the race prediction task to again limit any implicit assumptions of the
features used for this task. For the diagnostic task, no data augmen-
tation was used for the baseline approach. For the data augmentation
approach, augmentation was used during training by varying the
windowwidth and field of viewparameters byup to 20%. These factors
are explained in more detail below.

Technical factor analysis
The technical factor analysis consisted of assessing the influence of
three parameters on the racial identity predictionmodels. Thewindow
width and field of view parameters involved changing the preproces-
sing of input images, whereas the view position involved subgroup
analysis by this parameterwithout changing the preprocessing. For the
window width and field of view parameters, the changes in pre-
processing were performed on the 8-bit JPEG images from the data-
sets, except for the DICOM confounder analysis (detailed below). A
linear mapping was used for windowing with a fixed window center of
128 and a varying window width. Explicitly, for a given original image
imo and a window width ofw, the resulting windowed image imw was
computed using the following function: imw = 225 × ðimo�128

w +0:5Þ. To
simulate changes in contrast and exposure, the window width was
decreasedby increments of 5%up to20%. Formodifications of thefield
of view parameter, an additional step was added to the default pre-
processing process. As described above, the default preprocessing
consisted of center cropping to a square image, resizing to 224 × 224,
followed by normalization. Changing the field of view by a scale k ∈ (1,
1.2] consisted of: center cropping to a square image, resizing to a size
of (224k) × (224k), center cropping to 224 × 224, followed by normal-
ization. Values of k<1 were not considered as doing so would involve
unnatural padding to the image.

The effects of altering the window width and field of view para-
meters were quantified in terms of the percent change in average
prediction score compared to the original images. For a given com-
bination of window width and field of view, the racial identity predic-
tion model was run on each image in the test set to produce three
scores per image (corresponding to Asian, Black, and white). An
average score across all images was then computed for each of the
three outputs, where this average was computed in an inverse weigh-
ted fashion by patient race based on the empirical proportions of each
patient race in the test set. This weighting was performed to balance
the contribution of images from each race in the results. The results
presented in Fig. 2 then represent the percent change in average
prediction scores per race for each preprocessing combination com-
pared to the original processing.

The effects of view position were quantified in a similar fashion by
comparing the average racial identity prediction scores for each view
position compared to the average scores across all views. Figure 3
additionally compares these values to differences in the empirical
frequencies of the view positions across patient race. Namely, for each
view position, the proportions of patient race across images with that
view position were compared to the patient race proportions across
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the entire dataset. This difference was then quantified as a percent
change, enabling a normalized comparison to the score changes per
view. As an example, if 10% of images in the dataset came from Black
patients, whereas 15% of Lateral views are from Black patients, this
would correspond to a 50% relative increase.

Underdiagnosis bias analysis
Following Seyyed-Kalantari et al., we evaluate the diagnostic AImodels
on the binary task of classifying if findings are present using the “No
Findings” label available in each dataset1. As the AI model outputs a
continuous 0–1 score, a threshold must be chosen to binarize the
model’s outputs, which is described further below. Once the model’s
outputs have been binarized, the underdiagnosis bias can be assessed
by quantifying differences in sensitivity between patient races. Sensi-
tivity is defined as the percentage of chest X-rays with findings that are
identified as such by the AI model, whereas specificity is defined as the
percentage of chest X-rays with no findings that are identified as such.
The underdiagnosis bias identified by Seyyed-Kalantari et al. and
reproduced here manifests in a higher sensitivity for white patients
than for Asian and Black patients1.

For score threshold selection, we targeted a ‘balanced’ threshold
computed to achieve approximately equal sensitivity and specificity in
the validation set. Such a selection strategy is invariant to the empirical
prevalence of findings in the dataset used to choose the threshold,
allowing more consistent comparisons across datasets and different
subgroups. For the baseline model, a single score threshold was used
per model. For the per-view threshold strategy, a separate threshold
was computed for each view position. To facilitate consistency in
selection criteria across views, the threshold for each view was chosen
to target the same sensitivity in the validation split, namely the sensi-
tivity of the balanced threshold across all views. At inference time, the
threshold used for a given image then corresponds to the threshold for
the view position of that image. In CXP, the view positions consisted of
PA, AP, and Lateral; whereas the AP view was treated separately for
portable and non-portable views in MXR as this information is avail-
able in MXR.

Confounder analysis
The confounder analysis included three strategies: test set resampling,
training set resampling, and DICOM-based evaluation. For the test set
resampling, we follow Glocker et al.42 by resampling the original test
sets with replacement to create more similar distributions of age, sex,
and disease labels across patient race. Specifically, we implement a
hierarchical sampling strategy that first samples a possible value
independently for each confounder, and then randomly samples an
image to be included in the test set with this combination of values. To
do so, we first compute the aggregate empirical distribution of each
factor in the dataset. For age, we create bins in increments of 10 years
from30 to 80 years. For eachdiagnosis class (including “NoFindings”),
we compute the percentage of images with a “1” label and consider all
other labels as “0” for these sampling purposes. We then sample an
image to be included in the resampled test set as follows: (1) sample a
patient race with equal probability, (2) sample a patient age bin based
on the aggregate probability distribution, (3) sample a patient sex
based on the aggregate probability distribution, (4) sample a diagnosis
class (out of the 14 included in the dataset) with equal probability, (5)
sample a 0 or 1 label for this diagnosis class using the aggregate
probability distribution for this class, and (6) sample an image from a
study where each of the sampled factors are met. This process is
performed until a resampled test set is created that is three times the
size of the original test set to help reduce sampling variation. Ulti-
mately, this process aims to create a test set that is balanced across
patient race where the distributions of age, sex, and disease labels are
approximately equivalent for each patient race. We note that the
described diagnosis sampling process was chosen in order to equally

consider all diagnosis classes in the sampling and because of the
challenging combinatorial problem of jointly considering multiple
diagnosis classes at once. For training set resampling, we perform a
similar process but perform the sampling ‘on-the-fly’ when creating
each training batch and sample patient race based on the empirical
proportions in each dataset, as the balanced sampling would lead to
severe overfitting in underrepresented patient races. We evaluate the
resulting models on the resampled test sets. For MXR, we additionally
perform the training & testing resampling procedure separately based
on BMI.We first query theMIMIC-IV database57 using the “chartevents”
table to obtain height andweight for the patients inMXR and use these
values to compute BMI, with values available for patients corre-
sponding to 39% of images. For resampling, we bin BMI values
according to the World Health Organization (WHO) classifications of
underweight (<18.5), normalweight (18.5–25), overweight (25–30), and
obese (≥30). As BMI is not available for CXP and missing for many
patients in MXR, we perform the BMI-based resampling analysis
separately from the analysis by age, sex, and disease prevalence.

For theDICOM-based evaluation, we use the same list of images as
the original MXR test set but extract the pixel data from the corre-
sponding DICOM files instead of using the preprocessed JPEG files.We
restrict this evaluation toMXRbecause theoriginal DICOMfiles are not
publicly available for CXP. When evaluating the AI models on the
DICOM images,we first extract and process the pixel data according to
the DICOM Standard58 using code based on the pydicom library59. This
processing includes using the default windowing parameters in the
DICOM header, as would be done by standard DICOM viewers. When
performing thewindowwidth experiments (i.e., Supplementary Fig. 1),
wemodify this process by changing the windowwidth from its default
value by increments of 5%. Ultimately, after the pixel data is processed
from the DICOM images using the described steps, the originally
trained AI models are evaluated in a similar fashion to the JPEG-based
images, including using the same AI preprocessing steps described in
the “AI model development” section above.

Statistical analysis
Confidence intervals and standard deviations for AUROC were com-
puted via the Delong method60. All other confidence intervals, stan-
dard deviations, and p-values were computed via bootstrapping with
2000 samples. The p-values for the underdiagnosis analysis are one-
sided. All analysiswas performedonaper-imagebasis. Throughout the
text, ‘95% CI’ was used when representing the 95% confidence interval
and ‘±’ was used when representing standard deviation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The two chest X-ray datasets used in this study are publicly available.
The CheXpert39 dataset can be obtained after signing a data use
agreement by following the instructions at https://stanfordmlgroup.
github.io/competitions/chexpert/. The MIMIC-CXR40 dataset can be
obtained after signing a data use agreement and completing a cre-
dentialing process by following the instructions at https://physionet.
org/content/mimic-cxr/2.0.0/. For the MIMIC-CXR dataset, the patient
race information canbeobtained via the admissions table in theMIMIC-
IV57 dataset: https://physionet.org/content/mimiciv/2.2/. Source data
are provided with this paper.

Code availability
All analyses were performed using the Python programming language
(version 3.9). The AI models were trained using Pytorch61 and a mod-
ified version of the TorchXRayVision library62. The model training and
analysis code is available at https://github.com/lotterlab/cxr_tech_bias.
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