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A systematic review and Bayesian meta-
analysis provide evidence for an effect of
acute physical activity on cognition In

young adults

% Check for updates

Jordan Garrett® '

, Carly Chak'?, Tom Bullock'? & Barry Giesbrecht® '

Physical exercise is a potential intervention for enhancing cognitive function across the lifespan.

However, while studies employing long-term exercise interventions consistently show positive effects
on cognition, studies using single acute bouts have produced mixed results. Here, a systematic review
and meta-analysis was conducted to determine the impact of acute exercise on cognitive task
performance in healthy young adults. A Bayesian hierarchical model quantified probabilistic evidence
for a modulatory relationship by synthesizing 651 effect sizes from 113 studies from PsychInfo and
Google Scholar representing 4,390 participants. Publication bias was mitigated using the trim-and-fill
method. Acute exercise was found to have a small beneficial effect on cognition (g =0.13 = 0.04;

BF = 3.67) and decrease reaction time. A meta-analysis restricted to executive function tasks revealed
improvements in working memory and inhibition. Meta-analytic estimates were consistent across
multiple priors and likelihood functions. Physical activities were categorized based on exercise type
(e.g., cycling) because many activities have aerobic and anaerobic components, but this approach
may limit comparison to studies that categorize activities based on metabolic demands. The current
study provides an updated synthesis of the existing literature and insights into the robustness of acute
exercise-induced effects on cognition. Funding provided by the United States Army Research Office.

A single bout of exercise induces a cascade of neuromodulatory changes that
influence multiple brain systems'”. This includes an increase in the synthesis
of neurotransmitters (e.g., acetylcholine, dopamine, GABA, glutamate) and
neurotrophic factors (e.g., BDNF), which can occur in a brain-region-
specific manner (see ref. 1 for review). Given these impacts on the brain, it
would be reasonable to hypothesize that single brief bouts of exercise are
associated with changes in performance across a range of cognitive domains.
Consistent with this hypothesis, there is abundant evidence that attention’™®,
working memory’™", decision making'*"”, and cognitive control*" are
facilitated by brief bouts of physical exercise. However, there is also evidence
suggesting that exercise has little or no effect on cognitive task performance.
For instance, Komiyama et al.'’ observed no difference in accuracy on a
spatial delayed response task between exercise and rest conditions. Further,
working memory performance has been shown to remain unchanged either
during or after a single bout of exercise’. The discrepant pattern of results in
the literature investigating the link between exercise and performance on

cognitive tasks is surprising given the consistent and robust physiological
effects of even brief bouts of physical activity. However, it is unclear whether
this limited impact of exercise on performance reflects the true state of
affairs or whether the apparent lack of robust influence is due to vast
empirical discrepancies across studies in the literature. Studying the impact
of single exercise sessions on cognition can provide insight into how changes
in our body’s physiological state impact behavior. This understanding can
then guide the creation of more effective longer-term exercise interventions,
which essentially involve regularly repeating brief exercise sessions over an
extended period.

Meta-analytic techniques are a set of powerful tools that can expose
dominant trends within a methodologically heterogeneous literature. There
is a consensus amongst narrative reviews and previous meta-analyses that
an acute bout of exercise has a small positive influence on behavioral
performance”” . The nature of this effect is moderated by exercise pro-
tocol, cognitive tasks, and participant characteristics. For instance,
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Lambourne & Tomporowski” observed that task performance during
exercise was dependent on exercise modality, the type of cognitive task, and
when it was completed relative to exercise onset. Similarly, post-exercise
performance was moderated by exercise modality and the type of cognitive
task. Chang et al." reported that post-exercise cognitive performance was
influenced by exercise intensity, duration, and the time of cognitive test
relative to exercise cessation. Interestingly, the authors found that study
sample age was a significant moderator, where larger positive effects were
found for high school (14-17 years), adult (31-60 years), and older adult
(>60 years) samples compared to elementary (6-13 years) and young adult
(18-30 years) samples. Multiple meta-analyses have observed that the effect
of exercise is dependent on cognitive domain, with measures of executive
function, attention, crystallized intelligence, and information processing
speed showing the largest gains'®'**"*. Further, there is evidence that
exercise has a differential influence on the speed and accuracy of cognitive
processes. McMorris et al*' observed that acute, intermediate exercise
facilitated response times on working memory tasks, while accuracy was
compromised. In contrast, exercise has been shown to boost both the
accuracy and speed of cognitive control”. Altogether, it is important to
consider cognitive task, participant, and physical activity characteristics to
develop a holistic model of the relationship between exercise and cognition.

While these earlier meta-analyses have provided unique insights into
understanding the relationship between acute exercise and cognition, they
have two major limitations. First, the most recent holistic quantitative
synthesis of the extant literature was published over a decade ago'.
Meanwhile, the exercise and cognition literature has grown drastically.
According to the electronic database Web of Science, almost 6,000 articles
associated with the search term “exercise and cognition” have been pub-
lished since this last holistic meta-analysis. In addition, more recent meta-
analyses have primarily focused on executive processes'>****””. Thus, pre-
vious models may provide an outdated and limited account of exercise-
induced influences on other aspects of cognition, such as perception, long-
term memory, and learning. Second, previous meta-analytic approaches
employed frequentist statistical methods, which are based on a decision
threshold rather than a characterization of the relevant evidence. As a result,
it is possible that acute exercise and moderator variables are deemed to have
a significant influence on task performance despite the fact that there may
only be a small degree of probabilistic evidence in favor of this notion. In
addition, relying on a decision threshold prevents these models from con-
veying the likelihood that an exercise protocol elicits a change in cognitive
task performance. Past frequentist meta-analytic models also treated het-
erogeneity parameters as a fixed quantity and utilize only a point estimate,
which can lead to an underestimation of the variability either between or
within studies”". This is especially true when the number of modeled
studies is low” ™. When considered together, there is a clear need for an
updated meta-analysis using an approach that addresses these limitations.

The current study addressed these limitations in two ways. First, a
comprehensive literature search was conducted spanning the years
1995-2023. To quantify the influence of exercise on cognition in young
healthy adults, the search was limited to non-clinical studies whose subjects
were between 18-45 years old. The analysis focused on subjects within this
age range since exercise research has predominantly been dedicated toward
studying the effects in children and older adults™*. Studies were required to
be experimental in nature, and consist of both an acute exercise manip-
ulation and cognitive task measurements. A broad range of cognitive
domains encompassing tasks probing perception to executive function were
included in the meta-analysis. Similarly, a wide range of exercise types and
testing contexts were included. For example, traditional laboratory expo-
sures to exercise (e.g., cycling, running) and sport activities in real-world
settings were viable candidates for analysis. By casting a wide net, the current
study provides a large scope and updated summary of the current state of the
exercise and cognition literature.

Second, the current study uses a Bayesian meta-analytic approach to
synthesize studies across the acute exercise and cognition literature. The
Bayesian approach affords a flexible modeling framework that uses reported

effect sizes to characterize the relative evidence in favor of a modulatory
account. Inherently, a random effects meta-analytic model is hierarchical in
nature, making it well suited for Bayesian methods. When utilized within
this statistical framework, priors are placed on parameters at the highest
level of the model such as the estimated pooled effect size and measures of
heterogeneity. This approach has several advantages compared to its fre-
quentist counterpart. First, the use of priors on heterogeneity parameters
can attenuate the underestimation of variation both between and within
studies””", leading to a clearer understanding of sources of heterogeneity
and an increased precision when estimating the pooled effect size”. Fur-
thermore, priors provide additional constraints on low-level parameter
estimates and a greater degree of “shrinkage” of outliers towards the overall
pooled effect size or mode(s) of grouping variables™*. Therefore, a Bayesian
meta-analysis is more robust to outliers and can be more conservative when
proper priors are employed. Second, the method yields a posterior dis-
tribution for all parameter estimates. This grants the capability of directly
modeling the degree of uncertainty in heterogeneity estimates”. Posterior
distributions can be used to compute the probability that an exercise pro-
tocol elicits a change in task performance of a given magnitude (e.g., large
effect size). Compared to the approximation of p-values and confidence
intervals, which require additional assumptions for hierarchical models,
calculating the high-density interval (HDI), which indicates the most
credible outcomes in the posterior distribution, for complex hierarchical
models is seamless”. Third, it is possible to incorporate knowledge from
previous meta-analyses when constructing prior distributions. This affords
the ability to quantitatively compare the observed data to the predictions of
previous models.

Considering the results of past meta-analyses, exercise was expected to
have a small positive influence on cognition. Cognitive task and exercise
characteristics were anticipated to moderate this relationship, as evidenced
by nonzero parameter estimates, reflecting the selective nature of exercise-
induced effects. Model comparisons were conducted to evaluate how
moderator inclusion improved predictive performance, and robustness of
parameter estimates were determined by employing multiple priors and
likelihood functions.

Methods

Literature search

Studies investigating the impact of an acute bout of exercise on cognition
were obtained through searches of the electronic databases PsychInfo and
Google Scholar according to the PRISMA guidelines*'. On 09 September
2023, databases were queried using a search string that combined the
following physical activity and cognitive domain keywords: [“exercise”
OR “physical activity” OR “physical exertion” OR “physical fatigue”]
AND [“perception” OR “attention” OR “working memory” OR “executive
function” OR “memory” OR “decision making” OR “motor skill” OR
“skill acquisition” OR “language” OR “reasoning”]. For the PsychInfo
search, the filters “journal article”, “English”, “empirical study”, “human”,
and “peer reviewed” were applied. Search results were limited to studies
published between 1995 and 2023 and whose subjects were between 18
and 45 years of age. Note, this literature search and analysis were not
preregistered, nor was a review protocol prepared prior to the literature
search.

Eligibility criteria

Studies were deemed eligible for inclusion in the meta-analysis if they met all
of the following criteria: assessed the influence of an acute bout of exercise on
cognition, compared the effects of exercise with an active and/or passive
control group(s), utilized cognitive tasks that measured reaction time (RT)
and/or accuracy, tested cognition either during, pre-, or post-exercise and
consisted of cognitively normal subjects. Note, an acute bout was defined as
an instance of physical activity that occurred within a single 24-hour
period'®. Two researchers independently screened records based on their
title, abstract, and full text. In the case of discrepancies, a third researcher
resolved them by reading the full-text.
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Data extraction and coding

Information concerning experimental design and procedures, exercise
details (i.e., type, intensity, duration), and sample characteristics were
extracted from the final list of studies by a single researcher. Means and
standard deviations of accuracy and/or RT measures on all cognitive tasks
were inserted into an electronic spreadsheet for the calculation of effect sizes.
The primary outcome measures for each domain were inserted separately if
a task assessed multiple cognitive domains. Regarding studies that probed
cognition at multiple time points during or post-exercise, measures for each
time point were also recorded separately. If the statistics necessary for cal-
culating effect sizes were not reported in the full-text of the article, the
authors were contacted and asked to provide them.

All effect sizes were categorized into one of seven cognitive domains
that were generally based on the DSM-5": executive function, information
processing, perception, attention, learning, motor skills, and memory. The
classification criteria used for categorizing a cognitive task into a domain is
provided in the Supplementary Table 1. To account for variability in the
metric used to measure exercise intensity across studies (e.g., ventilatory
threshold, heart rate), each intensity was labeled as either light, moderate, or
vigorous according to the American College of Sports Medicine guidelines™.
Exercise durations were grouped into one of five time bins: <16 minutes,
20-27 minutes, 30-35 minutes, 40-45 minutes, =60 minutes. In the event
that a study did not provide the exercise duration, its time bin was labeled as
“not provided”. Exercise types were based on the modality reported in each
study, yielding the following categorizations: cycling, high intensity interval
training (HIIT), running, walking, circuit training, resistance exercise, and
sports activity. The latter category encompassed studies that used sports-
related exercises that did not fit into the other labels, such as rock climbing or
soccer. The time at which cognitive task performance was evaluated relative
to exercise was categorized as either during exercise or 0, 15, 20-75, and
=180 minutes after cessation. Lastly, effect sizes were also coded according
to task performance dependent measures (i.e., RT vs accuracy). Note, the
levels of each categorical moderator were chosen with the intention of
achieving a balance between specificity and statistical power to yield reliable
estimates that can inform the design of future exercise studies.

Calculating effect sizes

Cohen’s d effect sizes were calculated for studies that tested cognition pre-/
post-exercise without a control condition by dividing the mean change in
performance by the standard deviation of the pre-test. If the study included a
control group (e.g., rest), the mean change of the control condition was
subtracted from the mean change of the exercise condition and divided by
the pooled standard deviation of pretest scores™*. For studies that tested
cognition during, or only after exercise, the mean of the control condition
was subtracted from the mean of the exercise condition and divided by the
standard deviation of the control condition'. All effect sizes were converted
into the bias-corrected standardized mean difference, Hedge’s g, by multi-
plying them by the correction factor] = 1 — ﬁ where dfis the degrees of
freedom™. The sign of effect sizes for RT and error were reversed to reflect a
positive influence of exercise on cognitive task performance. Once effect
sizes were extracted from each study, inspection of a funnel plot and Egger’s
regression test were conducted to assess the risk of publication bias.

Bayesian hierarchical modeling

The overall effect of exercise on cognition was assessed using a Bayesian
hierarchical model**”’, which was implemented through the R package
brms". In the first level of the model, a study’s observed effect size(s) 6, was
assumed to be an estimate of the true effect size 6. The observed effect(s) 6,
were modeled as being sampled from a normally distributed population
underlying study k with a mean equivalent to the true effect and a variance of
Gi. In the second level of the model, the true effect size 8) was assumed to
have been drawn from an overarching distribution whose mean represented
the overall pooled effect u, and whose variance depicted the degree of
between-study heterogeneity 72. The final level of the model contained
weakly informative priors. A standard normal prior was used for the pooled

effect, while the prior for 72 was a Half-Cauchy distribution with location
and scale parameters set to 0 and 0.5, respectively.

Following the main meta-analysis, subgroup analyses were conducted
to determine potential moderators of the relationship between exercise and
cognitive task performance. More specifically, we analyzed the influence of
the following primary moderators: cognitive domain, time of cognitive test
relative to exercise, task outcome measure, exercise intensity, duration, and
type. The following secondary moderators were also analyzed to determine
the influence of study and participant characteristics on the overall pooled
effect size: average sample age, body mass index (BMI kg/m?), height (cm),
weight (kg), VO2 max (ml/kg/min), percentage of female participants,
within- vs between-study design, and publication year. With the exception
of publication year and the percentage of female participants, all secondary
moderators were mean centered for interpretability. A standard normal
distribution was used as a weakly informative prior for the difference in
effect sizes between subgroups. When reporting model parameter estimates,
we use the [mode + standard deviation] and the 89% HDI of posterior
distribution.

Statistical inference

For all estimated effect sizes, Bayes Factors (BFs) were used to determine
the degree of evidence in favor of a difference from zero. BFs were
approximated using the reciprocal of the Savage-Dickey density ratio,
which was implemented using the function bayesfactor_parameters
from the bayestestR package®. This method involves dividing the height
of the prior distribution for the null value by the height of the posterior
distribution at the same value, and represents the credibility of the null
value for a parameter once the data has been taken into consideration.
BFs were also used to ascertain the predictive performance of subgroup
models. After each model was compared to a null counterpart (i.e.,
moderator excluded) using the function bayesfactor_models, an inclu-
sion BF (bayesfactor_inclusion) was estimated to determine if including
a moderator improved predictive power™. To estimate stable BFs, a large
number of sampling iterations (10,000) and warmup samples (2000)
were used for each of four chains when estimating model parameters®'.
BFs were interpreted following the guidelines proposed by Jeffreys . A
BF between 1 and 3 indicates “anecdotal” evidence for the alternative
hypothesis, between 3 and 10 indicates “moderate” evidence, between 10
and 30 indicates “strong” evidence, and greater than 30 indicates “very
strong” evidence™ . The reciprocal of these ranges signifies evidence
in favor of the null hypothesis (e.g., 0.33-1 = anecdotal evidence). When
conducting subgroup analyses with more than two factors, orthonormal
coding was employed to ensure that an identical prior was used for each
factor level and that estimated BFs were accurate™. Parameter estimates
were extracted from all models using the R package emmeans.

Sensitivity analysis
A popular criticism of the Bayesian approach is that priors are chosen
subjectively, which in turn can bias parameter estimates and their corre-
sponding BFs**”. Although utilizing weakly informative priors mitigates
bias, a sensitivity analysis that evaluates the contribution of both priors and
the likelihood function must be conducted to determine if the model results
are robust’***. Thus, we replicated the previously described modeling
approach with the exception of using two different priors for the overall
pooled effect size. The first was a normal distribution with a mean of zero
and standard deviation of ¥%. Since this prior adds greater weight to the
probability that exercise has no influence on task performance, we denoted it
as the no effect (NE) prior. The second prior was constructed by synthe-
sizing estimates from previous meta-analyses on acute exercise and
cognition'***’, resulting in a normal distribution with a mean of 0.24 and
standard deviation of 0.57. This prior was denoted as the positive effect
(PE) prior.

The influence of the likelihood function was assessed by modeling
study effect sizes as being sampled from a t-distribution. An advantage of
using this likelihood function, compared to a normal distribution, is that
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Fig. 1 | PRISMA flow diagram of literature search
results. A total of 113 studies were deemed eligible
for meta-analytic modeling.
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model parameter estimates are influenced less by outliers”. The Half-
Cauchy prior was used for the scale of the distribution, while a standard
normal prior was used for its mean. For its shape (i.e., degree of freedom) an
exponential distribution with a rate equal to 1/29 served as a prior. To
determine if meta-analytic estimates were robust across the alternative
priors and likelihood function, we visually compared the posterior dis-
tributions across models for large deviations™.

Results

Description of studies

The literature search yielded 15,900 peer reviewed journal articles, and after
removing duplicates 8295 remained. Subsequent an initial screening based
off the titles and abstracts, 805 studies were identified as potential candidates
for modeling. 113 of these studies were deemed eligible for inclusion in the
meta-analysis according to their full-text contents (Fig. 1). In total, 642 effect
sizes were extracted from these studies, representing data from 4390 sub-
jects. A majority of the effects measured the influence of exercise on
executive function (k=434) and attention (k=109). Fewer effects were
measured during exercise (k = 82) relative to after the cessation of exercise
(k= 560). Visual inspection of a funnel plot suggested that the effect sizes
were distributed symmetrically (Fig. 2a), however there was very strong
evidence for asymmetry according to Egger’s regression intercept
(B =1.18 +0.25; HDI = [0.78, 1.58]; BF = 253.24) suggesting the presence of
publication bias. This was addressed by employing the trim and fill

approach, which imputes low-precision effect sizes until the funnel plot is
symmetrical®’.

Overall effect

The meta-analysis indicated that there was moderate evidence for an acute
bout of exercise to have a small positive influence on overall performance
across cognitive domains (g=0.13 + 0.04; HDI = [0.06, 0.20]; BF = 3.67)
(Fig. 2b, d). According to the posterior distribution, there was a low prob-
ability that the estimated pooled effect was less than or equal to zero
(p=0.01) and an 80% chance that the effect size fell between the range of 0 to
0.2 (Fig. 2c). There was a large amount of heterogeneity within
(Tpithin = 0.65 £ 0.03; HDI = [0.60, 0.70]; I2,,,,, =81.19%) and moderate
amount between (Tjyp,pe, = 0.29 % 0.05; HDI = [0.20, 0.38]; IZ,,,,0n = 15.9%)
studies (Fig. 2e). Effect size estimates for each individual study are presented

in Table 1.

Subgroup analyses

Primary subgroup analyses revealed that acute exercise reduced RT on
cognitive tasks (g =0.27; HDI = [0.18, 0.36]; BF= 6.71 X 10%), but had no
impact on accuracy (g=0.04; HDI=[-0.04, 0.12]; BF = 6.15x1072)
(Table 2) (Fig. 3a). Engaging in either cycling (g =0.21; HDI = [0.11, 0.32];
BF =14.74) or HIIT (g = 0.73; HDI = [0.40, 1.09]; BF = 26.05) was found to
have an enhancing effect on performance in cognitive tasks (Fig. 3b). In
regard to cognitive domain, there was evidence that acute exercise has
a positive influence on executive processes (g=0.18; HDI =[0.10, 0.27];
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Fig. 2 | Meta-analysis of the effect of acute exercise on general cognitive task
performance. a Funnel plot of 642 study effect sizes (black circles). Imputed effect
sizes after using the trim and fill method are represented by the unfilled circles

(n =9). Vertical blue line indicates the estimated pooled effect sizes, while dashed
black lines represent a pseudo 95% confidence limits. b Posterior distribution of
estimated pooled effect. Horizontal black line indicates bounds of 89% HDI derived

using n = 651 effect sizes. ¢ Empirical cumulative density function of distribution in
b, where the dashed black line indicates the pooled effect. d Representation of using
the Savage-Dickey ratio to calculate BFs. The density of the null value in the prior
distribution (red) is divided by its density in the posterior distribution (blue) to yield
probabilistic evidence in favor of the alternative hypothesis. e Posterior distributions
of between and within study heterogeneity.

BF = 36.97). Furthermore, behavioral performance was found to
improve immediately after exercise cessation (g=0.16; HDI = [0.11, 0.30];
BF =4.03) and in response to vigorous intensity exercises (g=0.19;
HDI = [0.09, 0.28]; BF = 5.03). Lastly, at least moderate evidence in favor of
non-zero parameter estimates were observed for the secondary moderators
publication year, within-subjects design, age, percentage of female partici-
pants, and weight (Table 3).

To test for the possible contribution of a learning effect to the estimated
overall pooled effect size, a separate meta-analysis was conducted on effects
from studies employing a pre-/post-test design (N effect sizes=298).
Despite the estimated pooled effect size for this subset of data being nom-
inally similar to the estimate for the entire dataset, there was anecdotal
evidence in favor of the null hypothesis (g = 0.15 + 0.06; HDI = [0.04, 0.24];
BF = 0.95). Moderator analyses indicated that there was no credible evi-
dence for a difference in this estimated pooled effect size as a function
of whether or not a control group was included in the study (BF 400 =
0.12; w/control : g = 0.18 + 0.10; HDI = [0.03, 0.33]; BF = 0.51;w/o
control : g = 0.11+0.13; HDI = [—0.03, 0.26]; BF = 0.18), suggesting
that the estimated influence of exercise on general cognitive performance is
not driven by a learning effect.

Model comparisons

Model comparisons were performed to determine if including a mod-
erator improved predictive performance. Only a model that included task
performance measure as a moderator was more likely when compared toa
null counterpart (BF,qusion = 357.10) (Table 4). This is likely due to a
number of factors. First, acute exercise had a negligible impact on a
majority of the levels in each subgroup. Second, there was a high degree of
uncertainty in estimated model coefficients, as evidenced by their wide
HDI intervals. Third, Bayesian inference automatically penalizes model
complexity and favors more parsimonious models. If a model has many
parameters, but a majority of them are nonzero, then a simpler coun-
terpart will be favored.

Interactions between moderators

An exploratory analysis was conducted to determine if the influence of
moderator variables was contingent on one another. Due to the com-
putationally intensive nature of Bayesian modeling, analyses were
limited to the following pairs of moderators: (1) exercise intensity and
type, (2) exercise intensity and duration, (3) exercise type and duration,
(4) cognitive domain and exercise type, (5) cognitive domain and
exercise intensity, (6) cognitive domain and task performance measure,
(7) exercise type and task performance measure. Although none of
the pairs of interaction models had more predictive power compared
to a null counterpart (BFy,juon: Model 1=3.86%10"% Model
2 =1.66 % 107% Model 3 = 1.84x 1073; Model 4 = 1.31 x 10™* Model
5=3.91%107% Model 6=7.1x10"3; Model 7=7.05%10"%), there
were two that had nonzero parameter estimates.

The first model included an interaction between cognitive domain and
exercise type. There was evidence in favor of cycling improving performance
on tasks that probed attention (g = 0.34; HDI = [0.14, 0.56]; BF = 3.05) and
executive function (g = 0.28; HDI = [0.14, 0.40]; BF = 17.83). HIIT exercises
were found to bolster executive function (g=1.01; HDI=[0.61, 1.43];
BF = 155.33), while resistance exercises had an aversive impact on atten-
tional performance (g=—0.76; HDI=[-1.20, —0.38]; BF = 18.07)
(Fig. 4a). The second model included an interaction between cognitive
domain and task performance measure and indicated that time-dependent
measures of executive function are improved (g =0.30; HDI = [0.19, 0.39];
BF = 1.10 x 10%) (Fig. 4b).

Sensitivity analyses

The estimated overall effect of acute exercise on cognition was consistent
across the NE prior (g = 0.13 + 0.04; HDI = [0.06, 0.20]; BF = 6.52), PE prior
(g=0.12 £0.04; HDI = [0.06, 0.19]; BF = 6.51), and ¢ likelihood function
(g=0.12 +0.04; HDI = [0.06, 0.18]; BF = 8.77) (Fig. 5a). Interestingly, there
was anecdotal-to-moderate evidence in favor of the synthesized estimate
from previous meta-analyses (i.e., g = 0.24) across the PE (BF = 3.19), NE
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(BF =2.78), and standard normal (BF = 5.27) priors. Estimates of
between-study heterogeneity were also robust across the NE prior
(Tpetmween =029 £0.05;  HDI=[0.20, 0.37]), the PE  prior
(Tpeneen = 029 £0.05; HDI=[0.21, 0.37]), and ¢t likelihood function
(Thetseen = 0-31 £ 0.03; HDI = [0.26, 0.38]) (Fig. 5b). In contrast, within study
heterogeneity was estimated to be lower when using the ¢ likelihood function
(Tyitnin =0.17£0.02; HDI=[0.13, 0.19]) relative to the NE
(T,yigni = 0.65£0.03; HDI=[0.61, 0.70]) and PE (T, = 0.65+0.02;
HDI =[0.60, 0.70]) priors (Fig. 5c). Note, this reduction reflects the
diminished influence of outliers on variance estimates by the inclusion of the
shape parameter for the ¢ distribution (v=1.52 £ 0.14; HDI = [1.30; 1.73]).
In addition to testing the robustness of parameter estimates, a model
comparison was conducted to determine if either the null or positive effect
prior was more probable given the data. The t-likelihood function was not
included in this comparison since it would only indicate if effect sizes were
more likely to have been drawn from either a normal or t-distribution.
‘When compared to a standard normal prior, there was anecdotal evidence
in favor of both the PE (BF = 2.56) and NE (BF = 1.48) priors. Relative to
the PE prior, there was anecdotal evidence against the NE prior (BF = 0.73).
Altogether, parameter estimates were not biased by the prior or likelihood
function.

Executive function meta-analysis

Considering that the majority of the effect sizes were from tasks that probed
executive function, and that this cognitive domain encompasses multiple
sub-domains, a separate meta- analysis and set of meta-regressions were
conducted on this subset of data. Categorization criteria from previous
meta-analyses and systematic reviews'”*** were used to classify effect sizes
into the following sub-domains of executive function: working memory,
cognitive control, decision making, planning, and inhibition. For com-
pleteness, the primary moderators used in the main meta-analysis were also
tested.

The results were similar to the main meta-analysis. There was very
strong evidence in favor of exercise having a small positive influence on
overall task performance (g = 0.20 £ 0.06; HDI = [0.12, 0.30]; BF = 29.57),
and a moderate degree of heterogeneity both within (t,,;4,, =0.51 £ 0.03;
HDI = [0.47, 0.57]) and between studies (T;,,,ee, = 040 £ 0.06; HDI = [0.30,
0.48]). Subgroup analyses indicated that a model including the moderator
task outcome measure had more predictive power relative to a null coun-
terpart (BFy,qusion = 48.43). Paralleling the main meta-analysis, there was
very strong evidence that acute exercise improved RT on executive function
tasks (g=0.32; HDI = [0.21, 0.42]; BF = 748.18), but no credible evidence
was observed for an effect on accuracy (g=0.13; HDI = [0.04, 0.23]; BF
= 0.63) (Table 5). Furthermore, there was moderate evidence in favor of a
positive impact of exercise on inhibition (g =0.21; HDI = [0.09, 0.33]; BF
= 3.14) and working memory (g=0.22; HDI=[0.11, 0.34]; BF = 6.89)
(Fig. 6). Yet, a model including executive function sub-domain as a mod-
erator did not improve model performance (BFyusion = 7-52 X 10™%), nor
did models including interactions between moderators.

Discussion

A large corpus of empirical work has examined how a single bout of acute
exercise modulates activity within multiple brain systems that underly
cognition. Despite inconsistencies in results across empirical studies, there is
consensus amongst previous reviews and meta-analyses that acute exercise
impacts behavioral performance'**** and that this relationship is moder-
ated by both exercise protocol and behavioral task characteristics. The goal
of the present work was to address two key limitations of previous meta-
analyses. First, recent meta-analyses have a narrower focus, often limited to
a single cognitive domain or a specific subset of domains. In contrast, the
current meta-analysis presents an updated synthesis of the literature
spanning a much wider range of cognitive domains. Second, in contrast to
previous frequentist approaches, a Bayesian framework was adopted
allowing for the quantification of the degree of evidence in favor of the
hypothesis that acute exercise influences cognition in young healthy adults.
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Table 2 | Primary moderator estimates

Exercise moderator variable N g 89% HDI BF4o Cognitive moderator variable N g 89% HDI BF4o
Intensity Domain
Light 167 0.10 —0.02,0.22 0.13 Attention 109 0.06 —0.08,0.17 0.08
Moderate 222 0.07 —0.03,0.18 0.09 Executive function 434 0.18 0.10, 0.27 36.97
Vigorous 253 0.19 0.09, 0.28 5.03 Information processing 15 0.12 —0.17,0.41 0.14
Learning 12 0.24 —-0.11,0.59 0.25
Duration (minutes) Memory 44 —0.06 —0.25,0.13 0.08
<16 161 0.14 0.02, 0.26 0.30 Motor skills 6 —0.03 —0.51,0.49 0.20
20-27 152 0.15 0.02, 0.26 0.32 Perception 22 0.13 —0.17,0.44 0.15
30-35 93 0.08 —0.08, 0.22 0.09
40-45 113 0.04 —0.13,0.21 0.09
>60 48 —0.03 —-0.21,0.15 0.08 Task outcome
Not provided 75 0.37 0.17,0.57 6.21 Accuracy 377 0.04 —0.04,0.12 6.15e-2
Reaction time 265 0.27 0.18,0.36 6.71e3
Type circuit 8 0.08 —0.33,0.53 0.26
Cycling 204 0.21 0.11,0.32 14.74 Task completion time (relative to exercise)
HIT 18 0.73 0.40, 1.09 26.05 During 82 0.02 —0.18,0.13 0.09
Resistance 97 —0.06 —0.29,0.14 0.11 Immediately after 315 0.16 0.11,0.30 4.03
Running 172 0.05 —0.10,0.19 0.08 20-75 min post 94 0.22 0.13,0.44 0.76
Sport activity 26 0.04 —0.23,0.29 0.11 >180 min post 151 0.08 —0.03,0.28 0.10
Walking 117 0.04 —0.10,0.19 0.07
a Task Completion Time Domain Task Performance Measure
uring _/\ Perception ~=Is>_ |
1 Motor Skills  — ————— 1
Post :/_._\ Memory /—olt—\ RT : —_—
I
Post l/\ InfoLrergggggg —é}h
(20-75 min) : A Processing g :
Post /\ Executive Function M,_\ Accuracy ——
{5 a0 ol 1l . Attention /_1._\ :
1
-04 -0.2 00 0.2 04 0.6 -0.8-0.4 0.0 0.4 0.8 1.2 0.00 0.25
Hedge's g Hedge's g Hedge's g
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Walking /‘..“‘\ /\ <16 .//\
Sport Activity = =g Light ——— ﬁ
Running /_J._\ [ 20-27 /—.i
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Fig. 3 | Subgroup analyses. Posterior distributions of a cognitive and b exercise moderators. Horizontal black line indicates the 89% HDI interval, while the black dot
represents the mode of the posterior distribution. Intervals derived using n = 651 effect sizes.

The current meta-analysis observed that acute exercise has a small positive
influence on overall cognitive task performance, and sensitivity analyses
indicated that the alternative hypothesis was 6.51-8.77 times more likely
than the null across multiple priors and likelihood functions. The magnitude
and directionality of this effect were consistent with the results of previous

meta-analyses on acute exercise and cognition'*****. Subgroup analyses

suggested that this relationship is moderated by task performance measure,
cognitive domain, exercise type and intensity, and the time of task com-
pletion relative to exercise cessation. Model comparison results indicated
that accounting for variations amongst moderator levels did not improve
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Table 3 | Secondary moderator estimates

Moderator variable N g 89% HDI BFo
Publication year 642 0.13 0.06, 0.20 3.25
Exp. design
Between 193 0.03 —0.11,0.16 0.07
Within 449 0.17 0.08, 0.24 12.18
Age (years) (u = 22.49) 599 0.14 0.06, 0.21 3.13
% Female 577 0.12 0.05, 0.20 4.23
BMI (kg/m?) (u = 24.02) 378 0.20 0.08,0.30 1.28
VO2 max (ml/kg/min) (4 = 43.22) 299 0.19 0.05, 0.34 1.08
Height (cm) (1 = 158.55) 275 0.21 0.09, 0.33 2.90
Weight (kg) (4 = 65.02) 283 0.21 0.08, 0.33 4.28
Table 4 | Subgroup model comparisons
Model BF,
No moderators 1
Exercise intensity 2.16e-4
Exercise duration 9.35e-4
Exercise type 2.00e-2
Cognitive domain 4.97e-3
Task outcome 357.10
Task completion time 5.52e-4
Publication date 9.05e-4
Experimental design 0.04
Age 0
% Female 4.53e-3
BMI 0.04
V02 8.40e-3
Height 2.89e-3
Weight 0.01

predictive performance. Given our eligibility criteria, these results are lim-
ited to healthy individuals between the ages of 18-45 years old.

Similar to McMorris et al.”, acute exercise was found to improve RT
but no credible evidence was observed for an influence on accuracy. A
possible explanation for this differential impact on task outcome measures is
that exercise modulates primary motor cortex (M1) excitability®’. There is
accumulating evidence that acute exercise increases M1 intracortical
facilitation®™ and inhibition””’. Yamazaki et al® observed that the
intracortical circuits of both exercised (i.e., legs) and non-exercised (ie.,
hand) effectors are modulated by an acute bout of low intensity pedaling.
Thus, alterations in the activity of excitatory or inhibitory circuits of non-
exercised cortical representations may promote faster RT on cognitive tasks.
However, the lack of concurrent changes in corticospinal excitability or
motor-evoked potentials suggests that this explanation is not a viable
account of a mechanism that engenders faster RTs. An alternative expla-
nation is that exercise increases peripheral and central concentrations of
catecholamines, such as norepinephrine, epinephrine, and dopamine,
which in turn improves the speed of cognition"”"”*. Indeed, acute exercise
has been found to improve response time on choice RT, decision-making,
and interference tasks'®*”. Yet, it is unclear as to why changes in neuro-
chemical levels would facilitate RT but have no impact on accuracy. Con-
sidering that physical activity modulates population-level tuning in the
sensory areas of nonhuman animals and invertebrates” !, along with
sensory responses in humans*™, it stands to reason that the fidelity of
stimulus representations would also be impacted, resulting in changes in

accuracy. Changes in the fidelity of feature selective stimulus representations
can be determined by applying encoding models to recorded neural
activity”**. For instance, Garrett et al.”" applied an inverted encoding
model to topographical patterns of alpha band activity, recorded at the scalp,
while subjects completed a spatial working memory task both at rest and
during a bout of moderate intensity cycling. Notably, it was possible to
reconstruct spatially selective responses during exercise, and the selectivity
of these responses decreased during exercise relative to rest. Therefore,
encoding models can be a powerful tool for future research to demystify how
the precision of task-relevant representations is influenced by exercise. It is
also important to keep in mind that many psychological tasks are relatively
simple to do, which can lead to ceiling effects that may mask the influence of
exercise on accuracy measures. Lastly, the differential impact of exercise on
accuracy and RT may be due to the relative sensitivities of these dependent
measures to modulations of different stages of information processing. For
example, there is evidence that in near-threshold tasks accuracy is sensitive
to perceptual manipulations, whereas in supra-threshold (i.e., perceptually
easy tasks, including many of those used in the studies in this meta-analysis)
RT is sensitive to modulations in both perceptual and post-perceptual
processes’””. Indeed, Davranche et al.” utilized a drift diffusion model to
determine which aspects of decision-making are modulated by HIIT.
Importantly, drift rate and decision response boundary size increased sig-
nificantly after exercise relative to before, while non-decision time
decreased. This suggests there was an improvement in perceptual dis-
crimination, the efficiency of non-decisional processes (e.g., motor execu-
tion), and the adoption of a more conservative criterion. Future research
employing computational models of response time and representational
fidelity is needed to develop a comprehensive understanding of the selective
influence exercise on information processing speed and accuracy.

Parameter estimates of a model including exercise modality as a
moderator suggested that engaging in cycling or HIIT may beneficially
impact cognition, especially on attentional and executive processes. Cycling
is a commonly used modality in exercise and cognition research. Numerous
empirical studies have found that a bout of cycling benefits inhibition, as
measured using either the Stroop or Eriksen Flanker task'***. Improve-
ments in planning”™'”, task-switching””'**'>, and the speed of decision
making'” have also been reported. In contrast to the ubiquity of cycling, the
use of HIIT workouts in exercise and cognition research is a relatively recent
practice, hence the small number of effect sizes from studies using this
modality compared to other types of exercise. The number of effect sizes is
important because low-level parameters in a hierarchical model are influ-
enced both by the subset of data directly dependent on the low-level para-
meter, and by high-level parameter estimates that rely on all of the data. This
makes low-level parameter estimates indirectly dependent on the entire
dataset, and causes shrinkage in estimates at all levels of the model. In other
words, the estimated relationship between HIIT and behavioral perfor-
mance is derived directly from the few representative effect sizes and
indirectly from the rest of the data. The observed positive effect of HIIT on
cognition corroborates previous findings. For example, Alves et al.” observed
that the time to complete a Stroop Task decreased after ten 1-minute bouts
of exercising at 80% heart rate reserve relative to a control condition.
Improvements in time-dependent measures on interference tasks (ie.,
Stroop and flanker) have been correlated with an increase in left dorsolateral
prefrontal cortex activity, as measured with functional near infrared spec-
troscopy (fNIRS), and a decrease in P3 latency measured with EEG'*.
Furthermore, enhancements have also been shown to coincide with an
increase in peripheral levels of neural growth factors and lactate'”. Lastly, a
recent meta-analysis on elite athletes observed that HIIT team-based sports
had a positive impact on cognitive task performance™. Interestingly, because
of the small number of published studies in the literature, it is currently
unclear if the type of exercise modality used for HIIT workouts (e.g., cycling,
sprinting, resistance) differentially impacts cognition.

Behavioral task performance was found to be improved by engaging in
vigorous intensity exercise. These results are surprising, considering that
exercise intensity is believed to have an inverted-U relationship with
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performance; where moderate intensity exercise elicits the greatest
enhancements while more intense, fatiguing exercise imposes
decrements'****7"'%'77 This effect could be driven by HIIT workouts, but
may also depend on multiple cognitive task and exercise protocol char-
acteristics. For instance, Chang et al."® observed that exercise intensity was
only a significant moderator when cognition was tested post-exercise.
Similarly, Oberste et al.”’ found that exercise intensity influenced time-
dependent measures of interference control but not accuracy. When con-
sidering these results, one must also consider that both aforementioned
meta-analyses included studies whose subjects were children, adolescents,
and older adults. In contrast, the current study was limited to young adults,
and there is evidence that the effect of exercise on cognition is comparatively
smaller in this age group'®”. Thus, a model containing an interaction
between cognitive domain, task outcome measure, and age groups across
the lifespan may be required to observe evidence for an effect of intensity. In
addition, there was evidence for the enhancing effects of exercise post-
cessation, corroborating previous research"'*"". Interestingly, in the current
meta-analysis cognition was not found to be impacted during exercise. Prior
meta-analytic findings on cognition during exercise are mixed, with some
reporting that it is exacerbated”’, while others that find evidence for an
enhancement'’.

Given that the majority of the effect sizes were from tasks that probed
executive function, a separate meta-analysis was conducted on this subset of
data. This analysis revealed that exercise has a small positive impact on RT

measures of executive processes. When looking at model parameters, there
was evidence in favor of exercise-enhancing inhibition and working
memory. Behavioral research has shown that both the accuracy’ and speed
of working memory'*'”” are facilitated by an instance of physical activity.
What remains to be determined is the neural mechanisms that engender
these behavioral effects. Kao et al.'” observed that a reduction in RT on the
Sternberg task post-HIIT corresponded to an increase in frontal alpha
desynchronization during encoding, maintenance, and retrieval periods
when working memory load is high. Neuroimaging studies have also found
evidence for changes in the activation levels of frontal areas'’ and their
connectivity with the intraparietal sulcus post-exercise'''. These changes in
neural activity were not accompanied by a change in behavior, suggesting
that more research is needed to demystify the neuromodulatory effect of
acute exercise on working memory.

Engaging in repeated bouts of acute exercise over a long period of time
can have lasting changes on baseline neurochemical levels, cortical volume,
and structural/functional connectivity, which can alter cognitive task
performance"' "', Research investigating the influence of these long-term
interventions on cognition has primarily focused on children or older adults.
Systematic reviews and meta-analyses suggest that exercise has a small to
moderate beneficial impact on general task performance for both of these
age groups, with the largest effect sizes observed for measures of executive
function, attention, and academic performance”. Despite the relative pau-
city of meta-analyses on how exercise interventions impact cognition in
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Table 5 | Executive function moderator estimates

Exercise moderator variable N g 89% HDI BF4o Cognitive moderator variable N g 89% HDI BF;o
Intensity Sub-domain
Light 107 0.23 0.08, 0.37 1.71 Cognitive control 55 0.23 0.06, 0.39 0.73
Moderate 151 0.15 0.01,0.28 0.30 Decision making 28 0.10 —0.16, 0.39 0.14
Vigorous 175 0.24 0.12, 0.36 13.49 Inhibition 153 0.21 0.09, 0.33 3.14
Planning 18 0.14 —0.12,0.38 0.15
Duration (minutes) Working memory 179 0.22 0.11,0.34 6.89
<16 93 0.25 0.09, 0.40 1.76
20-27 99 0.13 —0.02, 0.27 0.19 Task outcome
30-35 68 0.19 0.03, 0.36 0.44 Accuracy 253 0.13 0.04,0.23 0.63
40-45 100 0.13 —0.06, 0.32 0.16 Reaction time 180 0.32 0.21,0.42 749.18
>60 25 0.11 —-0.12,0.32 0.13
Not provided 48 0.53 0.29, 0.83 24.40 Type
Circuit 8 0.15 —0.31, 0.65 0.31
Task completion time (relative to exercise) Cycling 133 0.28 0.15,0.42 19.58
During 39 0.23 0.004, 0.44 0.45 HIT 12 0.96 0.56, 1.38 71.23
Immediately after 197 0.21 0.10, 0.31 417 Resistance 90 -0.07 —-0.33,0.17 0.12
20-75 min post 72 0.31 0.13,0.47 4.11 Running 116 0.06 —-0.12,0.25 0.10
>180 min post 125 0.13 —0.08,0.29 0.17 Sport activity 11 0.30 —0.07, 0.68 0.35
Walking 63 0.14 —0.05, 0.34 0.18
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Fig. 6 | Subgroup analyses of effects from tasks testing executive function. Pos-
terior distributions for executive function sub-domain. Horizontal black line indi-
cates the 89% HDI interval, while the black dot represents the mode of the posterior
distribution, which was derived using n = 433 effect sizes.

healthy young adults, recent work suggests that it may have a similar ben-
eficial effect. Indeed, a recent meta-analysis, conducted by Ludyga et al.'",
indicated that long-term exercise interventions have a small positive
influence on general cognition regardless of age. The magnitude of this effect
was dependent on the interaction between intervention length and exercise
duration, with longer interventions and sessions producing greater benefits.
Integrating these findings with the current meta-analysis, there is support
for the notion that the beneficial impact of long-term interventions on
cognition may be a product of repeated exposure to acute exercise induced
effects.

There are a number of possible explanations as to why exercise induced
effects are small. One possibility is that cognitive function is at its peak
during young adulthood, leaving little room for improvements in task
performance. Indeed, previous reviews and meta-analyses have observed
that the effect of exercise is moderated by age™, with the greatest benefits
observed for preadolescent children and older adults'***’. Contrary to this

account, though, the largest exercise induced effects were observed for
executive processes, which are believed to be at peak efficiency during this
period in the lifespan'”""*, Furthermore, there was moderate evidence that
the impact of exercise increased as the average age of sampled young adults
also increased. Another explanation may be that cognition is resilient to
slight or modest perturbations in overall global state. For example, Bullock
et al."? demonstrated there was no change in accuracy or RT on a target
detection task during experimentally induced hypoxia, hypercapnia,
hypocapnia, and normoxia. Meta-analytic modeling of the influence of
acute stress on executive function revealed that stress has a small negative
impact on working memory and cognitive flexibility, but no impact on
inhibition'”’. This suggests that cognition is able to selectively adapt to
changes in physiological state caused by various types of stressors, including
exercise. A final more intriguing and functional explanation for exercise
having a small impact on cognition is that experimental protocols do not
typically require the engagement of the body to execute the cognitive task,
but rather have people engage in a cognitive task while exercising (or shortly
thereafter). This experimental design contrasts real-world tasks that require
engagement of the body in the service of the cognitive task. When com-
ponents of the exercise are incorporated into task goals, then larger changes
in performance may be observed. Empirical research investigating how
exercise influences task performance in embodied settings versus classic
laboratory settings (see'” for review) is necessary to test the plausibility of
this explanation. In addition, the notion that the integrated action of the
body and the mind are required to produce the largest effects of exercise on
cognition is consistent with a recent evolutionary account of the link
between cognition and exercise'”.

The discrepancy in moderator results between the current meta-
analysis and previous meta-analyses could be due to differences in the
statistical approach. Frequentist methods typically conduct an omnibus test
to determine if levels of a moderator are significantly different from one
another and as a measure of a model’s goodness of fit. In contrast, the
Bayesian approach determines how likely the observed effect sizes are under
a model that includes a moderator and if predictive power is increased.
There are a few key advantages to using the Bayesian approach compared to
classical frequentist methods. First, it models the uncertainty involved in
estimates of between- and within-study heterogeneity and returns a full
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posterior distribution for both parameters'”. With these posterior dis-

tributions, one can simulate possible pooled effect sizes across credible levels
of heterogeneity and develop an informed hypothesis for a subsequent
meta-analysis. Similarly, the posterior distributions of effect size estimates
can be used as well-informed prior distributions for new data. Importantly,
this facilitates the updating of meta-analyses as new research is published. It
should be mentioned that the degree of between-study heterogeneity was
numerically similar to previous meta-analyses'*”, implying that they did
not suffer from an issue of underestimation by assuming heterogeneity to be
a fixed quantity. Second, the Bayesian approach permits the inclusion of
prior knowledge. Across all tested priors, there was evidence in favor of a
pooled effect derived from averaging the reported estimates of previous
meta-analyses. When comparing a prior distribution based on this
knowledge to a null effect prior, the former was found to be more probable.
Lastly, the posterior distribution of parameter estimates can be used to
ascertain the likelihood that one will observe an effect size of a given mag-
nitude for an exercise protocol and cognitive task combination. For
example, a researcher could compute the probability that the influence of a
bout of cycling on cognitive control will fall within the range of large effect
sizes, even if that range does not encompass the maximum a posteriori
probability estimate. In contrast, the frequentist approach only produces the
maximum likelihood estimate and an interval around it based on fictitious
repeats of the meta-analysis. Therefore, the Bayesian approach provides
more information for designing future exercise and cognition studies.

Limitations

A potential limitation in the current meta-analysis is the categorization of
exercise type using the activity reported in each study. An alternative
approach is to categorize exercise based on the theoretical and physiolo-
gical distinctions between aerobic and anaerobic exercise. We did not
adopt this approach here because many activities used in the literature
typically include aerobic and anaerobic components, and basing their
classification on what authors reported provides insights into the exercise
modalities that have been predominantly used in the literature. Another
limitation is the schema used to categorize exercise duration. In the event
that a study did not report how long participants engaged in exercise, these
effects were classified as “not provided”, rendering them as unin-
terpretable. Lastly, sensitivity analyses were not conducted for moderator
parameter estimates due to the high degree of computational demands.
However, considering that the pooled effect size estimate was robust across
multiple priors and likelihood functions, it is likely that moderator para-
meter estimates are also consistent.

Conclusions

In summary, the current meta-analytic examination has shown that there is
moderate evidence for an acute bout of aerobic exercise inducing a small
enhancement in overall performance on cognitive tasks, especially on those
that probe executive function and measure response time. Incorporating
computational models of decision-making processes, such as drift-diffusion
or signal detection models, into exercise research may provide useful
insights into the nature of speeded executive processes. Furthermore, testing
performance in a real-world setting where individuals typically engage in
physical activity may amplify exercise-induced effects.
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