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Abstract: Speech disorders are significant barriers to the balanced development of a child. Many
children in Poland are affected by lisps (sigmatism)—the incorrect articulation of sibilants. Since
speech therapy diagnostics is complex and multifaceted, developing computer-assisted methods is
crucial. This paper presents the results of assessing the usefulness of hybrid feature vectors extracted
based on multimodal (video and audio) data for the place of articulation assessment in sibilants /s/
and /ù/. We used acoustic features and, new in this field, visual parameters describing selected
articulators’ texture and shape. Analysis using statistical tests indicated the differences between
various sibilant realizations in the context of the articulation pattern assessment using hybrid feature
vectors. In sound /s/, 35 variables differentiated dental and interdental pronunciation, and 24 were
visual (textural and shape). For sibilant /ù/, we found 49 statistically significant variables whose
distributions differed between speaker groups (alveolar, dental, and postalveolar articulation), and
the dominant feature type was noise-band acoustic. Our study suggests hybridizing the acoustic
description with video processing provides richer diagnostic information.

Keywords: computer-assisted speech diagnosis; visual–audio features; sibilants; speech disorders;
child speech; hybridization

1. Introduction

Speech disorders are significant barriers to the balanced development of a child. They
cause difficulties in learning to read and write and become a source of social withdrawal.
Neglecting speech defects that appear in childhood may further deepen them and, as a
result, affect adult life. Studies conducted in the 1980s among Polish children reported the
occurrence of disorders in approximately 20–30% of six-year-olds [1], while at the beginning
of the second decade of the 21st century, this number was estimated at 48% [1,2]. Among
speech pathologies, specialists talk about the predominance of one of its types—dyslalia.
These are deviations from the norm in the articulation of sounds. The most common type
of dyslalia among children is lisping (sigmatism). Sigmatism is the incorrect articulation of
dental sounds (sibilants). In Polish, there are 12 sibilants, denoted using the International
Phonetic Alphabet (IPA) as /s/, /z/, /ţ/, /dz/, /ù/, /ü/, /tù/, /dü/, /C/, /ý/, /tC/, /dý/.
However, in this study, we analyze only two sibilants: /s/ and /ù/, regarding their place
of articulation.

1.1. Background and State of the Art

Speech diagnosis is a complex process. Specialists assess not only free speech (incl.
vocabulary, correctness of sentence construction, fluency, and prosody) but also selected
anatomical and physiological aspects [2,3]. Features related to motor skills and the structure
of articulators (i.e., organs involved in speech generation) include, for example, the degree
of shortening of the lingual frenulum, teeth condition, bite, temporomandibular joint
efficiency, and the structure of the palate and nasal cavity. Characteristics related to the
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subject’s physiology include assessment of phonemic and physical hearing and breathing
and swallowing functions. The last group describes features associated with the production
of individual sounds, mainly regarding the manner and places of articulation and the
position of articulators. The place of articulation we analyze in this study is crucial in
terms of sibilant formation [2,3]. Not only do the sounds differ in their place of articulation,
but slight deviations from the regular position of the articulators may be identified as
sigmatism [4]. The literature distinguishes multiple pronunciation patterns (Figure 1), incl.
dental articulation (tip of the tongue touches the upper front teeth), interdental articulation
(tongue is between upper and bottom teeth), alveolar articulation (tongue apex contacts
the alveolar ridge), labiodental articulation (bottom lip raises towards the upper front
teeth), or postalveolar articulation (the tip or blade of the tongue approaches or touches
the back of the alveolar ridge) [5]. Thus, the multi-layered nature of the diagnosis and its
reliance on observation of the articulators’ functioning requires a specialist’s services and
can be time-consuming. A properly selected therapeutic path increases the effectiveness of
treatment and shortens its duration. Therefore, developing computer methods supporting
speech therapy diagnostics is crucial for many reasons mentioned above.

(a) dental (b) postdental (c) interdental (d) postalveolar

Figure 1. Illustration of various places of articulation (prepared based on [6]).

Computer pronunciation analysis is a broad issue regarding the purpose of such
solutions, the data, and the methods used. Most solutions to date have focused on analyz-
ing normative pronunciation, including learning foreign languages, speech recognition,
and speaker identification, as well as recognizing and classifying individual sounds. The
recent AI-driven models for automated speech recognition (ASR) involve audio and video
data and are mostly trained on adult speech, reaching considerable performance [7–10].
Solutions strictly supporting diagnostics and speech therapy form a much narrower subset.
Some available concepts feature high spatial and temporal accuracy yet are invasive and
require significant experimental resources or costs. They include, among others, electromag-
netic articulography [11,12], used to observe articulators in an alternating magnetic field, or
electropalatography [13], which monitors the tongue–palate contact during pronunciation.
Both are not entirely contactless and interfere with the oral cavity of the subject. Many
researchers use the acoustic signal recorded with one or more microphones in various
configurations [14–17]. The literature on linguistics and phonetics offers much information
on the acoustics of sibilant sounds. Based on this knowledge, researchers have analyzed the
possibilities of using the acoustic signal, e.g., in automatic recognition of sounds (although
mainly in normal pronunciation so far). Numerous studies focus on searching for acoustic
parameters that distinguish individual fricative sibilants [18–21]. Due to the specific nature
of sibilants, research usually concerns a limited subset of sounds occurring in a given lan-
guage. Moreover, a relatively small number of works describing acoustic analysis concern
child speech [15,21–25].

The analysis of dental sounds in the literature often employs the processing of the
signal spectrum. The use of spectral moments appears in many works [19,20]. Researchers
have reported that the center of gravity of the spectrum shifts in sibilants depending on the
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place of articulation [18]. Another group of acoustic parameters describing dental sounds
are features related to frication noise. Some works focused on searching for differences
between sounds in the frequencies and amplitudes of noise formants that appear in the
spectrum above 2 or 3 kHz [22,26,27]. Others used width and lower limit of the noise band,
energy differences in individual frequency bands, frication duration or cepstral coefficients
in the noise band, and noise formant ratios [22,26,27].

According to our knowledge, no studies have used the potential of image data to
represent child pronunciation. Some pathological patterns related to the motion or po-
sitioning of organs may be visible in video recordings. There are aids in speech therapy
that show similarities to this approach. Specialists use sets of photographs (or drawings)
presenting subsequent stages of pronouncing individual sounds, called labiograms [2]. The
boards help practice the correct arrangement of organs. Using such materials suggests the
usefulness of building computer methods based on this modality. However, developing
computerized solutions often requires finding numerical features describing various as-
pects of objects. It might be reasonable to extract parameters similar to radiomic features
based on pictures presenting articulators. Radiomics uses the extraction of quantitative
parameters from medical images. The literature divides radiomic features into statistical
(including those dependent on histogram and texture), mathematical-model-based, spectral,
and shape parameters [28].

1.2. Contribution of the Paper

In this paper, we propose hybridizing acoustic and visual features to assess articulation.
Such combining may indicate patterns in various aspects (e.g., not seen in one modality
but supplemented by the other) and expand diagnostic information. Changes in the
place of articulation often yield an abnormal realization of sounds. We analyzed the
articulation of two fricative Polish sibilants: /s/ and /ù/ produced by children aged 5–
8 (183 and 178 speakers, respectively). Apart from employing well-known features for
sibilant analysis, like parameters based on the entire band (MFCCs, spectral moments) or
noise band (cepstral coefficients, fricative formants), we proposed a set of visual features
describing the texture and shape of selected articulators. We calculated image parameters
based on the visual segmentation of lips, mouth, and tongue reported in [29]. To our
knowledge, none of the solutions described in the literature reported a similar approach.
Finally, the results of the statistical analysis, including the Mann–Whitney U test and the
Kruskal–Wallis test, followed by post hoc analysis, provided the basis for assessing the
potential of our hybrid concept.

1.3. Structure of the Paper

The remainder of the paper is structured as follows: Section 2 describes the materials
and methods, covering the data recording protocol, speech corpus structure, image and
acoustic data preprocessing workflow, feature extraction, and statistical analysis procedures.
Section 3 presents the results of the Mann–Whitney U and the Kruskal–Wallis tests, followed
by post hoc analysis. Section 4 discusses our results, and Section 5 concludes the paper.

2. Materials and Methods
2.1. Materials

We collected a multimodal database of child pronunciation in cooperation with speech
therapy specialists [30]. Our team performed speech therapy examinations and data recording
sessions in six kindergarten and school facilities. The examination had three stages [31]: (1) reg-
istering the child’s speech while naming pictures visible on the screen with a dedicated
multimodal data acquisition device (MDAD, Figure 2) [30,32]; (2) recording the speaker
while repeating given words and logatomes following the speech therapist and during a
set of speech therapy exercises (incl. tongue movements, smiling, swallowing); (3) speech
therapy examination performed by a speech–language pathologist (SLP) according to
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the dedicated diagnostic protocol for sigmatism-related pronunciation assessment (no
recording in this stage).

(a) ver. 1, closed construction (b) ver. 2, open construction

(c) inside view (ver. 2) (d) sample dual-camera frame

Figure 2. Multimodal data acquisition device (MDAD) construction and operation [30]: (a) closed
construction [32]; (b) open construction, recent version; (c) inside view to the measuring part; red
numbers represent the microphone (audio channel) numbers, “LC” and “RC” indicate the left and
right camera; (d) sample dual-camera view.

The multimodal recording device was designed for the project [30,32]. It records the
audio signal from a semicylindrical microphone array (15 channels, spatially distributed)
and captures the video of the lower part of the speaker’s face using a double-camera
module. We started with a closed mask construction (Figure 2a). The recent version of
the tool has a lighter open construction (Figure 2b). The recording session began with the
device placed safely and comfortably on the child’s head. The speech corpus included
Polish sibilant-related material consisting of 51 words and 12 logatomes, including all
12 Polish sibilant sounds in various configurations, environments, and word positions. As
a result, we collected an extensive multimodal database including 201 children aged 4–8,
along with the corresponding speech therapy diagnoses from two independent experts [30].
However, our speech corpus was narrower in this study as we focused on two selected
sibilants (/s/, /ù/). It included seven words, one logatome containing /s/ and 12 words
and a single logatome with /ù/ (Table 1).
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Table 1. Set of words containing /s/ and /ù/ used in the study.

Word (PL) IPA Sibilant Word (EN) Word (PL) IPA Sibilant Word (EN)

pies /pjEs/ /s/ dog szafa /’ùafa/ /ù/ wardrobe
strażak /’straüak/ /s/ firefighter szufelka /ùu’fElka/ /ù/ dustpan
samolot /sa’mOlOt/ /s/ airplane nóż /’nuù/ /ù/ knife
sałata /sa’wata/ /s/ lettuce wąż /’vOw̃ù/ /ù/ snake

parasol /pa’rasOl/ /s/ umbrella książka /’kCOw̃ùka/ /ù/ book
las /’las/ /s/ forest lekarz /’lEkaù/ /ù/ physician

ciastka /’tCastka/ /s/ cookies sznurek /’ùnurEk/ /ù/ cord
sadzawka /sa’dzafka/ /s/ pond kucharz /’kuxaù/ /ù/ cook

sa /sa/ /s/ — szalik /’ùalik/ /ù/ scarf
kasza /’kaùa/ /ù/ groats

koszyk /’kOùIk/ /ù/ basket
kalosze /ka’lOùE/ /ù/ rain boots

sza /ùa/ /ù/ —

2.2. Methods

Our workflow included data preprocessing, feature extraction, and statistical analysis
(Figure 3). In the first two stages, we proposed separate paths for image and audio data. In
the last stage, the methods employed combined (audio–visual) vectors.

Figure 3. Schematic overview of the workflow.

2.2.1. Data Preprocessing

Before preprocessing, we synchronized the visual and acoustic data in time. Thus,
the methods operated on video frames and acoustic data representing the exact sibilant-
articulation segment. Before data processing, an expert indicated the beginning and end
of the sibilant articulation period in the audio files (acoustic segmentation process). We
performed a two-stage visual segmentation to delineate lips, mouth, tongue, and teeth:
(1) object detection using YOLOv6 (you only look once) to crop images to bounding-box
covering mouth area, and (2) segmentation with DeepLabv3+ model on mouth-restricted
frames [29,33,34]. We reviewed and rejected low-quality delineations (incl. segmentations
leaked on other objects and insufficiently segmented organs). This procedure strengthened
the credibility of the method and statistical analysis. The sample segmentation results are
given in Figure 4.
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Figure 4. Examples of segmentation results for sample frames during sibilant articulation. The lips
are marked in blue, the teeth in green, and the tongue in red. The teeth region was not used in
this work.

The second path preprocessed the acoustic signal of the corresponding segments. This
study uses a single-channel signal processing approach (the central microphone, #8 in
Figure 2c). We started with data normalization within the sibilant segment to obtain values
in the 0–1 range according to the following equation:

x(n) =
xo(n)

xmax − xmin
, (1)

where xo(n) is the input, and xmax, xmin are the maximum and minimum samples in the
given segment, respectively. The normalized signal was partitioned into 33-ms frames with
no overlap and windowed with a Hamming window. To hybridize multimodal features,
we set the frame duration to match the video frame rate. The sampling frequency was
44.1 kHz.

2.2.2. Feature Extraction

In this study, we proposed using audio and image features to search for potential
differences in their distribution between various articulation patterns in /s/ and /ù/. We
extracted 87 visual features for a single view based on the delineations of the articulators.
It included two-dimensional textural parameters of the mouth region of interest (ROI)
and features related to lips, mouth, and tongue geometry. Our segmentation method also
indicated the area of teeth. However, based on the suggestions of our SLPs, we discarded
the teeth from further analysis as potentially problematic in preliminary studies. Missing
teeth are a developmental standard and do not necessarily indicate speech problems. The
textural parameters included intensity-related and histogram-related global features, gray
level co-occurrence matrix (GLCM) features, gray level size zone (GLSZM) features, gray
level run length matrix (GLRLM) features, and neighboring gray-tone difference matrix
(NGTDM) features. The number of gray levels was 32, as the aim was to find general
patterns. We gathered all the image parameters in Table 2. As mentioned, our recording
tool had two cameras, so all visual parameters appeared twice for the left and right cameras
(i.e., 174 variables in total).

Simultaneously, we extracted parameters from the audio signal. The feature extraction
involved three types of acoustic cues: time-domain features (4), full-band spectral acoustic
features (24), and noise-band spectral acoustic features (48). Table 3 presents all the acoustic
parameters employed in this study.

Video and audio segments embracing articulated dental sounds consisted of few
frames, but their length varied between speakers. We calculated vectors of audio–visual
features for each frame. Therefore, a single sound produced a matrix of parameters, and
each speaker made a given sound several times. According to the procedure presented
in Figure 5, the parameters for individual sibilants resulted from averaging within each
speaker. This way, we obtained one feature vector for each speaker to ensure data inde-
pendence in statistical analysis. Finally, the individual vectors were reduced by cropping
25% of all frames at the beginning and 25% at the end to remove possible occurrences of
preceding or following sounds, silence, or background noise.
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Table 2. Visual features used in the study: GLE stands here for gray level emphasis , and GLI means
gray level intensity.

Textural Features

Global: histogram [35–38] Global: intensity [35–38] GLCM [36,39–41]

Eh Energy IE Energy ASMGLCM Angular second moment
Hh Entropy Iσ2 Variance ConGLCM Contrast
σ2

h Variance Iσ Standard deviation EntGLCM Entropy
σh Standard deviation Imin Minimum GLI MeanGLCM Mean
Sh Skewness Imax Maximum GLI VarGLCM Variance
Kh Kurtosis Iµ Mean GLI CorGLCM Correlation

Imed Median GLI HomGLCM Homogeneity
IR Range of GLI DisGLCM Dissimilarity

IMAD Mean absolute deviation ACGLCM Autocorrelation
IrMAD Robust MAD SAGLCM Sum average

IRMS Root mean square
Ip10 10th percentile of GLI
Ip90 90th percentile of GLI

IIQR Interquartile range
IS Skewness
IK Kurtosis

GLRLM [28,41–43] GLSZM [41,43,44] NGTDM [41,45]

SREGLRLM Short run emphasis SZEGLSZM Short zone emphasis CoarNGTDM Coarseness
LREGLRLM Long run emphasis LZEGLSZM Large zone emphasis ConNGTDM Contrast

GLNGLRLM Gray-level non-uniformity GLNGLSZM Gray-level uniformity BusNGTDM Busyness
RLNGLRLM Run length non-uniformity ZSNGLSZM Zone size non-uniformity ComNGTDM Complexity

RPGLRLM Run percentage ZPGLSZM Zone percentage TSNGTDM Texture strength
LGLREGLRLM Low gray-level run emphasis LGZEGLSZM Low gray-level zone emphasis
HGREGLRLM High gray-level run emphasis HGZEGLSZM High gray-level zone emphasis

SRLGLEGLRLM Short run low GLE SZLGEGLSZM Small zone low GLE
SRHGLEGLRLM Short run high GLE SZHGEGLSZM Small zone high GLE

LRLGLREGLRLM Long run low GLE LZLGEGLSZM Large zone low GLE
LRHGLREGLRLM Long run high GLE LZHGEGLSZM Large zone high GLE

GLVGLRLM Gray-level variance GLVGLSZM Gray level variance
RVGLRLM Run variance RLVGLSZM Zone size variance

Shape features [38,41,46,47]

Ap Pixel surface
P Perimeter
S Sphericity

SD Spherical disproportion
Axmajor Major axis length
Axminor Minor axis length

E Elongation
DFeret Maximum Feret diameter

Table 3. Acoustic features used in the study.

Acoustic Features

Time domain [48–50] Spectral: full band [51–53] Spectral: noise band [22,54,55]

ZCRt Zero-cross rate SCen f Spectral centroid NFF1−4 Fricative formant frequencies
STEt Short-term energy SSpr f Spectral spread NFFL1−4 Fricative formant levels

Pt Pitch SSk f Spectral skewness NFFR12, ..., NFFR34 Fricative formant frequency ratio
HRt Harmonic ratio SCr f Spectral crest NFLR12, ..., NFLR34 Fricative formant level ratio

SD f Spectral decrease NCC0−12 Noise cepstral coefficients
SE f Spectral entropy NE0−9 Noise energy

SFla f Spectral flatness NFFD12,23,34 Fricative formant distances
SFlx f Spectral flux NPA Peak amplitude
SRPf Spectral rolloff-point NPF Peak frequency

SKurt f Spectral kurtosis
SSl f Spectral slope

MFCC0−12 MFCC coefficients
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Figure 5. Feature aggregation for a single speaker and one sibilant. MS—mouth shape features,
LS—lips shape features, TS—tongue shape features, Tex—texture features of mouth area, TA—time-
domain acoustic features, FA—full-band spectral acoustic features, NA—noise-band spectral acous-
tic features.

2.2.3. Statistical Analysis

The analysis consisted of two stages. First, we performed data mining to determine the
distributions of the variables. Then, we verified the hypotheses using statistical tests. The
significance level α was 0.05 in all experiments. In addition to the statistical significance,
we provided the effect size to measure the magnitude of differences between group means
or medians. We assumed the following interpretation of the effect size [56,57]:

• The biserial correlation coefficient rb for the Mann–Whitney U test: low—below 0.39,
medium—0.40–0.59, high—above 0.60 (absolute value).

• η2 for the Kruskal–Wallis test: low—0.01–0.05, medium—0.06–0.13, high—above 0.14.

This study focused on the sounds /s/ and /ù/ regarding place of articulation analysis.
During the examinations in preschool facilities, we recorded the speech of 200 children.
SLPs observed six various patterns of articulation for sibilant /s/ (dental, alveolar, in-
terdental, addental, labiodental, other) and seven for /ù/ (dental, postalveolar, alveolar,
interdental, labiodental, addental, and other). However, we rejected observations with in-
sufficiently accurate visual segmentation. Thus, sound /s/ was produced by 183 speakers,
and /ù/ by 178. Before statistical analysis, we also assessed disparities between the number
of observations in different articulation patterns. After eliminating small groups, further
steps addressed two types of articulation in /s/ (dental and interdental) and three in /ù/
(dental, alveolar, and postalveolar). The data summary is given in Table 4.

Table 4. Description of articulation patterns [5] with the number of observations in each group.

Class Description Observations
/s/ /ù/

dental tip of the tongue touches the upper front teeth 113 27
alveolar tongue apex contacts the alveolar ridge — 106
interdental tongue is between upper and bottom teeth 31 —

postalveolar the tip or blade of the tongue approaches or touches
the back of the alveolar ridge

— 29
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For each considered variable, the Shapiro–Wilk (SW) test [58] was performed to
determine the normality of distribution. We tested all variables in both sounds and all
articulation patterns. In most cases, the SW test required the rejection of the null hypothesis
of normality of distribution. In the case of features with high skewness, further analysis
used the logarithm of their values. Due to the dominance of asymmetric distributions,
we considered only non-parametric tests in the following steps. Therefore, to analyze the
homogeneity of variance, we used a non-parametric Brown–Forsythe test [59]. Although
p values above 0.05 prevailed, which provided the basis for accepting the null hypothesis,
the result suggested heterogeneity of this measure in some features. For those variables,
we calculated the ratio of variances between each group of observations to indicate the
diversity of scales. A variance ratio above 10.0 or less than 0.1 excluded the feature from
further analysis. The same was true for multigroup analyses, even if the rule was broken
only between one pair.

The final stage included a set of statistical tests to assess the discrimination capability
of individual features. Due to the predominance of asymmetric distributions, we did not
use the analysis of means. Instead, we employed a non-parametric analysis to assess the
equality of medians. In the binary case, it was the Mann–Whitney U test (U MW) [58,60],
and in multi-class problems, the Kruskal–Wallis test (KW) [58,61]. Since the KW test only
provides information that at least one tested group is different from another, we performed
the post hoc Bonferroni test to determine which groups differ [62].

3. Results

The presentation of the results includes general findings concerning differences be-
tween pronunciation patterns indicated by the assessment of median equality. As men-
tioned, most variables had asymmetric distributions. Therefore, the analysis employed
non-parametric tests. We used the Mann–Whitney U test for sibilant /s/ to search for
inter-class differences (dental and interdental articulation) in visual and acoustic features.
In sound /ù/ with three realizations (alveolar, dental, postalveolar), the analysis employed
the Kruskal–Wallis test. We discuss further only the parameters with a p-value below 0.05 (sta-
tistically significant differences in feature distributions between given articulation patterns).

Thirty-four features proved to significantly differentiate dental and interdental pro-
nunciation patterns in the /s/ sound (Table 5). Among them, 24 were image-based, 7 of
which concerned the shape of the tongue, and 17 were related to the texture of the mouth.
Ten parameters considered acoustics of frication noise. Six visual features appeared for both
the left and right cameras. However, the largest effect size (medium level, according to the
approach presented in Section 2.2.3) was obtained in visual features describing the tongue
shape. The distribution of features proved the differences between pronunciation patterns
(see Figure 6). Medians of three visual features with the highest size effect (tongue’s DFeret
from the left and right camera and Ap from the right camera) observably distinguished
dental and interdental speech. Interdental articulation showed higher medians in all cases.
It was likely related to the more frequent occurrence of a tongue and its larger area.

(a) DFeret (tongue, right camera) (b) Ap (tongue, right camera) (c) DFeret (tongue, left camera)

Figure 6. Box plots for two features with the highest effect size in sibilant /s/: tongue’s DFeret

and Ap.
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Table 5. The results of the Mann–Whitney U test in sibilant /s/ and the point of articulation
assessment of dental and interdental pronunciation. V and A in the Data column denote video and
audio, respectively. Column Type indicates the category of features.

No. Feature Data Type Camera p H rb No. Feature Data Type Camera p H rb
1 DFeret V tongue right 0.003 611.5 0.439 18 ConGLCM V texture left 0.017 7283.0 0.209
2 Ap V tongue right 0.004 614.5 0.429 19 NE1 A noise 0.013 7680.0 0.208
3 DFeret V tongue left 0.003 580.0 0.426 20 DisGLCM V texture right 0.024 7260.0 0.198
4 Axmajor V tongue right 0.004 616.0 0.424 21 CoarNGTDM V texture right 0.026 6473.0 0.195
5 Axminor V tongue left 0.004 583.5 0.416 22 CoarNGTDM V texture left 0.027 6475.0 0.194
6 Axmajor V tongue left 0.014 604.0 0.355 23 ConNGTDM V texture right 0.028 7251.0 0.193
7 SD V tongue right 0.017 637.0 0.354 24 ConGLCM V texture right 0.030 7246.0 0.191
8 FFRL14 A noise 0.001 8906.0 0.290 25 HomGLCM V texture left 0.030 6483.0 0.190
9 FFRL13 A noise 0.001 8866.0 0.274 26 ZPGLSZM V texture left 0.037 7232.0 0.184
10 NE0 A noise 0.004 7598.0 0.242 27 SZEGLSZM V texture left 0.038 7230.0 0.183
11 FFL1 A noise 0.005 7617.0 0.234 28 NE9 A noise 0.030 8640.0 0.182
12 NE7 A noise 0.005 8765.0 0.233 29 ZSNGLSZM V texture left 0.040 7225.0 0.180
13 NE8 A noise 0.006 8762.0 0.231 30 GLVGLSZM V texture left 0.040 7225.0 0.180
14 FFRL12 A noise 0.009 8731.0 0.219 31 LZEGLSZM V texture left 0.044 6509.0 0.177
15 DisGLCM V texture left 0.015 7291.0 0.213 32 ComNGTDM V texture left 0.048 7212.0 0.174
16 FFL4 A noise 0.012 8709.0 0.210 33 SZEGLSZM V texture right 0.048 7212.0 0.174
17 ConNGTDM V texture left 0.017 7284.0 0.210 34 LRHGEGLRLM V texture left 0.049 7210.0 0.173

In the second experiment, 49 variables significantly differentiated at least one pronun-
ciation pattern in sibilant /ù/ (Table 6). Forty-three were acoustic (27 noise-band, 14 full-
band, and 2 time-domain) and six described image texture. The Bonferroni test indicated
43 variables showing differences between at least one pair of groups (1–2: alveolar–dental,
1–3: alveolar–postalveolar, 2–3: dental–postalveolar). Nine features varied between all
articulation patterns. However, we found most differences between alveolar vs. postalveo-
lar (35 features) and dental vs. postalveolar pronunciation (33 variables). The alveolar vs.
dental pair indicated 15 parameters. Figure 7 presents the distribution of three variables
with the highest effect size and three with the lowest. We observed that medians of NPF,
NFFR23, and NNFD23 (Figure 7a–c) were noticeably different between at least one pair of
articulation patterns. Considering the parameters of smaller effect size (Figure 7d–f), the
dissimilarities are relatively subtle.

(a) NPF (b) NFFR23 (c) NFFD23

(d) LZEGLSZM (e) NCC2 (f) Sh

Figure 7. Box plots for selected statistically significant features in sibilant /ù/: (a–c) present distribu-
tions of three variables with the highest effect size η2, and (d–f) with the lowest.
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Table 6. The results of the Kruskal–Wallis test and the Bonferroni post hoc analysis in sibilant /ù/
and the articulation pattern assessment in (1) alveolar, (2) dental, and (3) postalveolar pronunciation.
V and A in Data column denote video and audio, respectively. Column Type indicates the category
of features.

Post HocNo. Feature Data Type Camera p H η2
1–2 1–3 2–3

1 NPF A noise <0.001 35.575 0.211 0.339 1.000 0.062
2 NFFR23 A noise <0.001 34.603 0.205 1.000 0.198 0.044
3 NFFD23 A noise <0.001 28.196 0.165 0.228 1.000 0.127
4 NFFRL14 A noise <0.001 27.991 0.163 0.220 1.000 0.124
5 ZCRt A time-domain <0.001 27.628 0.161 0.044 <0.001 0.013
6 NFFRL13 A noise <0.001 27.571 0.161 1.000 <0.001 <0.001
7 Skurt f A full-band <0.001 25.331 0.147 0.859 0.004 <0.001
8 NNE1 A noise <0.001 24.294 0.140 0.064 1.000 0.129
9 NFFD12 A noise <0.001 23.844 0.137 0.038 0.104 1.000
10 SFlx f A full-band <0.001 22.688 0.130 0.047 0.002 0.213
11 MFFC10 A full-band <0.001 21.496 0.123 0.112 0.004 0.149
12 NNE2 A noise <0.001 21.445 0.122 0.035 <0.001 0.016
13 NFFR12 A noise <0.001 21.426 0.122 0.900 0.010 0.027
14 NFFR24 A noise <0.001 20.940 0.119 0.477 0.003 0.020
15 NFFL3 A noise <0.001 20.116 0.114 0.542 0.011 0.062
16 NFFL1 A noise <0.001 19.272 0.109 0.459 0.002 0.012
17 NFFL4 A noise <0.001 18.764 0.105 0.178 <0.001 0.001
18 NFF2 A noise <0.001 17.904 0.100 1.000 0.006 <0.001
19 MFFC2 A full-band <0.001 17.856 0.100 0.038 <0.001 <0.001
20 SFla f A full-band <0.001 17.835 0.100 1.000 0.258 0.027
21 NNE0 A noise <0.001 16.313 0.090 0.014 <0.001 <0.001
22 MFFC11 A full-band 0.001 15.033 0.082 0.104 1.000 0.120
23 NNE6 A noise 0.001 14.523 0.079 1.000 0.002 <0.001
24 NFFRL23 A noise 0.001 14.148 0.076 0.313 <0.001 0.001
25 NNE5 A noise 0.001 14.124 0.076 0.040 <0.001 0.005
26 NNE3 A noise 0.001 13.477 0.072 0.014 <0.001 0.026
27 MFFC8 A full-band 0.002 12.644 0.067 0.346 0.041 0.000
28 MFFC5 A full-band 0.003 11.474 0.060 0.033 1.000 0.102
29 SSpr f A full-band 0.003 11.410 0.059 1.000 <0.001 <0.001
30 MFFC0 A full-band 0.006 10.350 0.053 0.617 <0.001 <0.001
31 MFFC3 A full-band 0.009 9.464 0.047 0.120 0.011 0.317
32 NFFR14 A noise 0.010 9.127 0.045 0.036 <0.001 <0.001
33 NNE7 A noise 0.011 9.011 0.044 0.012 <0.001 0.001
34 MFFC6 A full-band 0.012 8.835 0.043 1.000 0.007 0.001
35 NFFRL12 A noise 0.014 8.591 0.041 1.000 0.031 0.041
36 NCC0 A noise 0.017 8.100 0.038 0.619 0.010 0.000
37 SRPf A full-band 0.020 7.789 0.036 1.000 <0.001 <0.001
38 NFFRL24 A noise 0.021 7.732 0.036 0.024 <0.001 0.047
39 LRHGEGLRLM V texture left 0.036 6.663 0.033 1.000 <0.001 <0.001
40 LRHGEGLRLM V texture right 0.036 6.662 0.033 1.000 0.004 <0.001
41 NFF1 A noise 0.028 7.182 0.033 0.147 0.654 0.002
42 GLVGLSZM V texture right 0.040 6.423 0.031 0.091 0.001 0.032
43 STEt A time-domain 0.033 6.848 0.030 0.025 <0.001 0.097
44 NNE9 A noise 0.033 6.795 0.030 0.041 0.012 0.735
45 SSl f A full-band 0.034 6.761 0.030 0.034 0.126 1.000
46 IS V texture left 0.046 6.163 0.029 0.591 0.683 0.018
47 LZEGLSZM V texture left 0.047 6.107 0.029 0.111 0.041 0.915
48 NCC2 A noise 0.037 6.587 0.029 0.420 1.000 0.054
49 Sh V texture left 0.048 6.082 0.029 0.651 1.000 0.047

4. Discussion

For each speaker and sibilant, we extracted 87 visual parameters and 76 acoustic
features. According to the state-of-the-art and literature review, we found several studies
regarding contact (e.g., electropalatography) and non-contact (e.g., audio signal) data reg-
istering protocols for sibilant articulation analysis. None of them, however, used image
data. According to the idea of labiograms, some pronunciation patterns should be visible
in the motion and placement of speech organs, and their analysis can contribute to the diag-
nostic process. Thus, in previous studies, we proposed a segmentation tool to extract lips,
tongue, and mouth (lips and the area in between). In this study, we employed automated
delineations and investigated hybrid visual–acoustic features for CASD purposes.
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We expected an incorrect motor pattern to be most noticeable in lips and mouth
movement, also resulting from disordered activity of other organs, e.g., the tongue or
jaw. Both are constantly visible in video recordings and easy to segment, which is not the
case with the tongue, often hidden behind lips or teeth. Our study shows that greater
visibility of the tongue or its unusual positioning may be related to incorrect pronunciation.
This observation is valid when assessing the place of articulation in sound /s/, where we
examined the differences between dental and interdental realization. The highest size effect
was indicated in features describing the tongue shape. The tongue object featured increased
area, diameters, or axes in interdental productions compared to dental. Texture features
are another large group significantly differentiating dental and interdental articulation in
/s/, although with relatively small effect sizes. We calculated the texture metrics using
32 gray levels. The idea behind such a selection was to search for general, coarse textural
relations. Inter-speaker differences and external conditions (mainly lighting) could decrease
the repeatability of patterns distinguishing articulation. The Mann–Whitney U test results
also indicated 11 audio features (all noise-band related), lower in the effect size than in
tongue-shape features but mostly higher than in texture parameters. Considering /s/
analysis only, the hybridization of visual and audio features is valuable as both appear
statistically significant, with the predominance of the former. Finding differences between
dental and interdental articulation is essential, as the latter is not a developmental norm in
Polish, and its early detection can make the therapy more efficient.

On the other hand, the analysis of sibilant /ù/ showed the dominance of acoustic
features among all that were statistically significant. Only six were visual (textural) and
had a relatively small effect size. The post hoc analysis indicated most differences between
the alveolar and dental and between postalveolar and dental articulation. Substantial
representation of noise-band features might result from shifts of the noise band in each
articulation pattern. In this experiment, we did not include the interdental realization of
/ù/ possibly higher and more frequent tongue appearance. The articulations considered in
the assessment of /ù/ place of articulation (alveolar, dental, and postalveolar) embraced
the contact of the frontal part of the tongue with the upper teeth or gums. Thus, the tongue
shape features might not have been efficient in distinguishing pronunciation patterns. We
expected that distortions in the motion pattern should be reflected in lips or mouth shape
features. However, our analysis did not prove that assumption.

Even though the analysis proved that adding image-based parameters broadens
diagnostic information, the results also indicate that combining visual and acoustic features
is beneficial only in selected sibilants and articulations. While both types of features appear
in sound /s/, the acoustic ones dominate in /ù/. The ways of articulating these sounds
differ, so the differences may concern different aspects, e.g., incorrect positioning of the lips
or tongue. They may also be imperceptible in video recordings yet noticeable in acoustics.

The extensive research conducted in several preschool institutions showed that dis-
torted production of sibilants is frequent, of various intensities, and often results from
different causes. Considering the scale of the problem and the fact that children at this
stage can do much work supervised by a specialist, the development of CASD methods
is necessary. The preliminary results presented in this paper indicate the potential of
hybridization of visual and audio features in searching for differences in the place of articu-
lation between various realizations of sibilants. That concept benefits in richer diagnostic
information. Nevertheless, this study had some limitations, and the proposed idea still
has many possibilities for development. We want to extend our research by adding other
sounds and articulation features. This preliminary study is a good starting point for con-
structing expert systems supporting the speech therapy diagnosis of sigmatism. Finding
the most relevant parameters opens perspectives for developing classification tools for
CASD. This work focused on sibilants. However, the audio–visual approach may also be
the basis for analyzing pronunciation in other groups of Polish sounds. The dependence
on the segmentation and aggregation procedures preceding statistical analysis remains
challenging in such a study, as possible outliers might impact the aggregation outcomes.
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Regardless of the development direction, expanding the available solutions with further
tests is valuable for improving speech therapy diagnosis and therapy.

5. Conclusions

In this paper, we addressed combining acoustic and visual features to analyze the place
of articulation in Polish sibilants /s/ and /ù/. The results justify searching for relevant
features in different representations of articulation. The Mann–Whitney U tests indicated
variables (both visual and acoustic) that significantly differentiate dental and interdental
articulation patterns in /s/. The predominating parameters were visual, including tongue
shape and mouth texture features. The Kruskal–Wallis test also showed statistically signifi-
cant differences between alveolar, dental, and postalveolar pronunciations in /ù/, yet with
the predominance of acoustic noise-band features.
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4. Jastrzębowska, G. Basics of Speech Therapy Theory and Diagnosis, (PL) Podstawy Teorii i Diagnozy Logopedycznej; Wydawnictwo

Uniwersytetu Opolskiego: Warsaw, Poland, 1998.
5. Carr, P. Revision of Phonetics. In Phonology; Macmillan Education UK: London, UK, 1993; pp. 1–12.
6. Adami, A.G. Automatic speech recognition: From the beginning to the Portuguese language. In Proceedings of the 9th

International Conference on Computacional Processing of the Portuguese Language, Porto Alegre, Brazil, 27–30 April 2010.
7. Petridis, S.; Stafylakis, T.; Ma, P.; Cai, F.; Tzimiropoulos, G.; Pantic, M. End-to-End Audiovisual Speech Recognition. In Proceed-

ings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20
April 2018; pp. 6548–6552. [CrossRef]

8. Ma, P.; Petridis, S.; Pantic, M. End-To-End Audio-Visual Speech Recognition with Conformers. In Proceedings of the ICASSP
2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June
2021; pp. 7613–7617. [CrossRef]

9. Ryumin, D.; Ivanko, D.; Ryumina, E. Audio-Visual Speech and Gesture Recognition by Sensors of Mobile Devices. Sensors 2023,
23, 2284. [CrossRef]

10. Ryumin, D.; Axyonov, A.; Ryumina, E.; Ivanko, D.; Kashevnik, A.; Karpov, A. Audio-visual speech recognition based on regulated
transformer and spatio-temporal fusion strategy for driver assistive systems. Expert Syst. Appl. 2024, 252, 124159. [CrossRef]

11. Katz, W.; Mehta, S.; Wood, M.; Wang, J. Using Electromagnetic Articulography with a Tongue Lateral Sensor to Discriminate
Manner of Articulation. J. Acoust. Soc. Am. 2017, 141, 57–63. [CrossRef] [PubMed]

http://doi.org/10.1109/ICASSP.2018.8461326
http://dx.doi.org/10.1109/ICASSP39728.2021.9414567
http://dx.doi.org/10.3390/s23042284
http://dx.doi.org/10.1016/j.eswa.2024.124159
http://dx.doi.org/10.1121/1.4973907
http://www.ncbi.nlm.nih.gov/pubmed/28147568


Sensors 2024, 24, 5360 14 of 15
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