Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Sep 1;310(Pt 2):673–679. doi: 10.1042/bj3100673

Evidence for an ethanolamine cycle: differential recycling of the ethanolamine moiety of phosphatidylethanolamine derived from phosphatidylserine and ethanolamine.

Y J Shiao 1, J E Vance 1
PMCID: PMC1135948  PMID: 7654210

Abstract

Evidence is presented for the operation of an ethanolamine-phosphatidylethanolamine (PtdEtn) cycle in Chinese hamster ovary cells. PtdEtn was labelled with [3H]ethanolamine and radioactivity was chased by incubation with 1 mM unlabelled ethanolamine. Radioactivity in [3H]PtdEtn gradually declined over a 23 h time period. In contrast, when the cells were incubated in medium lacking unlabelled ethanolamine, radioactivity in PtdEtn remained constant for at least 23 h. These observations suggest that the ethanolamine moiety is continuously released from PtdEtn and recycled back into PtdEtn. In cells incubated without unlabelled ethanolamine, labelled ethanolamine released from PtdEtn is re-incorporated into PtdEtn without significant dilution. In contrast, in cells incubated with unlabelled ethanolamine the specific radioactivity of the intracellular ethanolamine pool decreases as a result of dilution by the exogenous ethanolamine, hence radioactivity in PtdEtn gradually declines. Similar results were obtained for confluent and non-confluent cells. Our data also demonstrate that when PtdEtn is derived from phosphatidylserine decarboxylation, the ethanolamine cycle operates only in actively dividing, and not in confluent, cells, implying that PtdEtn derived from different biosynthetic origins [i.e. from decarboxylation of phosphatidylserine or from ethanolamine (most likely via the CDP-ethanolamine pathway)] is metabolized differently.

Full text

PDF
673

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell R. M., Coleman R. A. Enzymes of glycerolipid synthesis in eukaryotes. Annu Rev Biochem. 1980;49:459–487. doi: 10.1146/annurev.bi.49.070180.002331. [DOI] [PubMed] [Google Scholar]
  2. Bjerve K. S. The biosynthesis of phosphatidylserine and phosphatidylethanolamine from L-[3-14C]serine in isolated rat hepatocytes. Biochim Biophys Acta. 1985 Mar 6;833(3):396–405. doi: 10.1016/0005-2760(85)90096-7. [DOI] [PubMed] [Google Scholar]
  3. Dennis E. A., Kennedy E. P. Intracellular sites of lipid synthesis and the biogenesis of mitochondria. J Lipid Res. 1972 Mar;13(2):263–267. [PubMed] [Google Scholar]
  4. Englund P. T. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem. 1993;62:121–138. doi: 10.1146/annurev.bi.62.070193.001005. [DOI] [PubMed] [Google Scholar]
  5. George T. P., Morash S. C., Cook H. W., Byers D. M., Palmer F. B., Spence M. W. Phosphatidylcholine biosynthesis in cultured glioma cells: evidence for channeling of intermediates. Biochim Biophys Acta. 1989 Aug 22;1004(3):283–291. doi: 10.1016/0005-2760(89)90075-1. [DOI] [PubMed] [Google Scholar]
  6. Houweling M., Tijburg L. B., Vaartjes W. J., van Golde L. M. Phosphatidylethanolamine metabolism in rat liver after partial hepatectomy. Control of biosynthesis of phosphatidylethanolamine by the availability of ethanolamine. Biochem J. 1992 Apr 1;283(Pt 1):55–61. doi: 10.1042/bj2830055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KENNEDY E. P., WEISS S. B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem. 1956 Sep;222(1):193–214. [PubMed] [Google Scholar]
  8. Kano-Sueoka T., Errick J. E. Effects of phosphoethanolamine and ethanolamine on growth of mammary carcinoma cells in culture. Exp Cell Res. 1981 Nov;136(1):137–145. doi: 10.1016/0014-4827(81)90045-8. [DOI] [PubMed] [Google Scholar]
  9. Kano-Sueoka T., Errick J. E., King D., Walsh L. A. Phosphatidylethanolamine synthesis in ethanolamine-responsive and -nonresponsive cells in culture. J Cell Physiol. 1983 Oct;117(1):109–115. doi: 10.1002/jcp.1041170115. [DOI] [PubMed] [Google Scholar]
  10. Kawaguchi H., Shoki M., Iizuka K., Sano H., Sakata Y., Yasuda H. Phospholipid metabolism and prostacyclin synthesis in hypoxic myocytes. Biochim Biophys Acta. 1991 Sep 3;1094(2):161–167. doi: 10.1016/0167-4889(91)90004-h. [DOI] [PubMed] [Google Scholar]
  11. Kiss Z., Anderson W. B. Phorbol ester stimulates the hydrolysis of phosphatidylethanolamine in leukemic HL-60, NIH 3T3, and baby hamster kidney cells. J Biol Chem. 1989 Jan 25;264(3):1483–1487. [PubMed] [Google Scholar]
  12. Kuge O., Nishijima M., Akamatsu Y. A Chinese hamster cDNA encoding a protein essential for phosphatidylserine synthase I activity. J Biol Chem. 1991 Dec 15;266(35):24184–24189. [PubMed] [Google Scholar]
  13. Kuge O., Nishijima M., Akamatsu Y. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. II. Isolation and characterization of phosphatidylserine auxotrophs. J Biol Chem. 1986 May 5;261(13):5790–5794. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lipton B. A., Davidson E. P., Ginsberg B. H., Yorek M. A. Ethanolamine metabolism in cultured bovine aortic endothelial cells. J Biol Chem. 1990 May 5;265(13):7195–7201. [PubMed] [Google Scholar]
  16. Lu X., Badiani K., Arthur G. 3-Deazaadenosine and MDL29350 differentially affect the methylation of serine-and ethanolamine-derived phosphatidylethanolamine in Hep G2 cells. Metabolism. 1993 Dec;42(12):1506–1508. doi: 10.1016/0026-0495(93)90143-c. [DOI] [PubMed] [Google Scholar]
  17. Miller M. A., Kent C. Characterization of the pathways for phosphatidylethanolamine biosynthesis in Chinese hamster ovary mutant and parental cell lines. J Biol Chem. 1986 Jul 25;261(21):9753–9761. [PubMed] [Google Scholar]
  18. Murakami H., Masui H., Sato G. H., Sueoka N., Chow T. P., Kano-Sueoka T. Growth of hybridoma cells in serum-free medium: ethanolamine is an essential component. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1158–1162. doi: 10.1073/pnas.79.4.1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pu G. A., Anderson R. E. Ethanolamine accumulation by photoreceptor cells of the rabbit retina. J Neurochem. 1984 Jan;42(1):185–191. doi: 10.1111/j.1471-4159.1984.tb09715.x. [DOI] [PubMed] [Google Scholar]
  20. Samborski R. W., Vance D. E. Phosphatidylethanolamine derived from phosphatidylserine is deacylated and reacylated in rat hepatocytes. Biochim Biophys Acta. 1993 Mar 17;1167(1):15–21. doi: 10.1016/0005-2760(93)90211-q. [DOI] [PubMed] [Google Scholar]
  21. Shiao Y. J., Lupo G., Vance J. E. Evidence that phosphatidylserine is imported into mitochondria via a mitochondria-associated membrane and that the majority of mitochondrial phosphatidylethanolamine is derived from decarboxylation of phosphatidylserine. J Biol Chem. 1995 May 12;270(19):11190–11198. doi: 10.1074/jbc.270.19.11190. [DOI] [PubMed] [Google Scholar]
  22. Sundler R., Akesson B. Biosynthesis of phosphatidylethanolamines and phosphatidylcholines from ethanolamine and choline in rat liver. Biochem J. 1975 Feb;146(2):309–315. doi: 10.1042/bj1460309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sundler R., Akesson B., Nilsson A. Quantitative role of base exchange in phosphatidylethanolamine synthesis in isolated rat hepatocytes. FEBS Lett. 1974 Aug 1;43(3):303–307. doi: 10.1016/0014-5793(74)80667-8. [DOI] [PubMed] [Google Scholar]
  24. Sundler R., Akesson B. Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. J Biol Chem. 1975 May 10;250(9):3359–3367. [PubMed] [Google Scholar]
  25. Sundler R., Akesson B. Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. J Biol Chem. 1975 May 10;250(9):3359–3367. [PubMed] [Google Scholar]
  26. Tijburg L. B., Geelen M. J., Van Golde L. M. Biosynthesis of phosphatidylethanolamine via the CDP-ethanolamine route is an important pathway in isolated rat hepatocytes. Biochem Biophys Res Commun. 1989 May 15;160(3):1275–1280. doi: 10.1016/s0006-291x(89)80141-x. [DOI] [PubMed] [Google Scholar]
  27. Vance J. E. Newly made phosphatidylserine and phosphatidylethanolamine are preferentially translocated between rat liver mitochondria and endoplasmic reticulum. J Biol Chem. 1991 Jan 5;266(1):89–97. [PubMed] [Google Scholar]
  28. Vance J. E. Secretion of VLDL, but not HDL, by rat hepatocytes is inhibited by the ethanolamine analogue N-monomethylethanolamine. J Lipid Res. 1991 Dec;32(12):1971–1982. [PubMed] [Google Scholar]
  29. Vance J. E., Vance D. E. A deazaadenosine-insensitive methylation of phosphatidylethanolamine is involved in lipoprotein secretion. FEBS Lett. 1986 Aug 18;204(2):243–246. doi: 10.1016/0014-5793(86)80820-1. [DOI] [PubMed] [Google Scholar]
  30. Vance J. E., Vance D. E. Specific pools of phospholipids are used for lipoprotein secretion by cultured rat hepatocytes. J Biol Chem. 1986 Apr 5;261(10):4486–4491. [PubMed] [Google Scholar]
  31. Voelker D. R., Frazier J. L. Isolation and characterization of a Chinese hamster ovary cell line requiring ethanolamine or phosphatidylserine for growth and exhibiting defective phosphatidylserine synthase activity. J Biol Chem. 1986 Jan 25;261(3):1002–1008. [PubMed] [Google Scholar]
  32. Voelker D. R. Phosphatidylserine functions as the major precursor of phosphatidylethanolamine in cultured BHK-21 cells. Proc Natl Acad Sci U S A. 1984 May;81(9):2669–2673. doi: 10.1073/pnas.81.9.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yorek M. A., Rosario R. T., Dudley D. T., Spector A. A. The utilization of ethanolamine and serine for ethanolamine phosphoglyceride synthesis by human Y79 retinoblastoma cells. J Biol Chem. 1985 Mar 10;260(5):2930–2936. [PubMed] [Google Scholar]
  34. Zelinski T. A., Choy P. C. Phosphatidylethanolamine biosynthesis in isolated hamster heart. Can J Biochem. 1982 Aug;60(8):817–823. doi: 10.1139/o82-102. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES