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Abstract: Background: This study explored neutralizing IgG antibody levels against COVID-19
decline over time post-vaccination. We conducted this prospective cohort study to investigate the
function of gut microbiota in the host immune response following three doses of BNT162b2. Methods:
Subjects who received three doses of BNT162b2 were recruited from three centers in Hong Kong.
Blood samples were obtained before the first dose and at the one-year timepoint for IgG ELISA
to determine the level of neutralizing antibody (NAb). The primary outcome was a high immune
response (NAb > 600 AU/mL). We performed shotgun DNA metagenomic sequencing on baseline
fecal samples to identify bacterial species and metabolic pathways associated with high immune
response using linear discriminant analysis effect size analysis. Results: A total of 125 subjects were
recruited (median age: 52 years [IQR: 46.2–59.0]; male: 43 [34.4%]), and 20 were regarded as low
responders at the one-year timepoint. Streptococcus parasanguinis (log10LDA score = 2.38, p = 0.003;
relative abundance of 2.97 × 10−5 vs. 0.03%, p = 0.001), Bacteroides stercoris (log10LDA score = 4.29,
p = 0.024; relative abundance of 0.14% vs. 2.40%, p = 0.014) and Haemophilus parainfluenzae (log10LDA
score = 2.15, p = 0.022; relative abundance of 0.01% vs. 0, p = 0.010) were enriched in low responders.
Bifidobacterium pseudocatenulatum (log10LDA score = 2.99, p = 0.048; relative abundance of 0.09% vs.
0.36%, p = 0.049) and Clostridium leptum (log10LDA score = 2.38, p = 0.014; relative abundance of
1.2 × 10−5% vs. 0, p = 0.044) were enriched in high responders. S. parasanguinis was negatively
correlated with the superpathway of pyrimidine ribonucleotides de novo biosynthesis (log10LDA
score = 2.63), which contributes to inflammation and antibody production. H. parainfluenzae was
positively correlated with pathways related to anti-inflammatory processes, including the superpath-
way of histidine, purine, and pyrimidine biosynthesis (log10LDA score = 2.14). Conclusion: Among
three-dose BNT162b2 recipients, S. parasanguinis, B. stercoris and H. parainfluenzae were associated
with poorer immunogenicity at one year, while B. pseudocatenulatum and C. leptum was associated
with a better response.

Keywords: gastrointestinal microbiome; immunogenicity; vaccine; COVID-19

1. Introduction

Since it started spreading in early 2020, the coronavirus disease 2019 (COVID-19) has
infected over 7 billion people and caused a huge mortality, exceeding 7 million [1]. As one of
the most effective methods against severe infection, vaccines have been administered to 67%
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of the global population with at least one dose [1]. However, recent studies have revealed
that the antibodies induced by vaccination have declined over time [2,3]. Therefore, booster
doses of vaccines have been employed to enhance the durability of antibodies [4]. In the
latest recommendation, for BNT162b2, a third dose of 0.3 mL was advised, with a minimum
interval of five months from the previous dose [5].

The immune responses induced by vaccines vary greatly among individuals due to
various factors, including age, vaccination history, comorbidities (e.g., diabetes mellitus
[DM]) and microbiota composition [6,7]. The association between microbiota and immunity
has been continuously reported, and its role in vaccine immunogenicity has gradually been
revealed [8–10]. Commensal microbiota can interact with pattern-recognition receptors
(PRRs) [11] to influence the activities of antigen-presenting cells (APCs) and produce
immunoregulatory metabolites, including flagellin [12], lipopolysaccharides (LPS) [13],
peptidoglycans [14], short-chain fatty acids (SCFAs) [15] and secondary bile acids [16].
These bioactive substances can further act as natural immune adjuvants and interact
with Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-containing
protein 2(NOD2) to regulate the function of various immune cells, including dendritic
cells, macrophages and neutrophils [6,17]. A randomized clinical trial found that the
oral administration of Lactobacillus fermentum (CECT5716) was positively associated with
increased immunogenicity to the Influenza H1N1 vaccine, likely due to the enhanced
population of T helper cells and increased levels of neutralizing immunoglobulin A (IgA)
antibodies [18]. Similarly, the treatment of BALB/c mice with Lactobacillus rhamnosus
(CRL1505) can enhance the immune response to respiratory syncytial virus infection by
increasing the secretion of interferon-γ and interleukin [19]. One study demonstrated that
the pre-use of broad-spectrum antibiotics dampened gut bacteria diversity and dramatically
reduced neutralizing immunoglobulin G (IgG) and IgA levels against the Influenza H1N1
virus after vaccination in certain groups of subjects [16].

An increasing amount of evidence suggests a potential correlation between microbiota
composition and the immune response against COVID-19 vaccines [10]. One study found
that a high abundance of the genus Parasutterella at baseline was associated with high anti-
body levels in ChAdOx1 recipients [20]. Further research on subjects receiving two doses of
vaccination suggested that Bifidobacterium adolescentis was correlated with a high immune
response in the CoronaVac group [21]. Similar analyses have reported a positive correlation
between the abundance of Collinsella aerofaciens, Fusicatenibacter saccharivorans, Eubacterium
ramulus, and Veillonella dispar and a high immune response, as well as between the enrich-
ment of Lawsonibacter asaccharolyticus and a low immune response. An elevated level of
SCFAs was demonstrated to be associated with high vaccine response [22].

Current studies are limited to only two doses of vaccination and have relatively
short follow-up periods. One study investigated the correlation between the baseline
microbiota composition and vaccine response towards two-dose vaccination with one-
month follow-up [21]. Another study included two doses of BBIBP-CorV subjects with
42-day follow-up [22]. However, boosters are commonly administered nowadays due to the
known decline in antibody levels. In light of this, our study aims to explore the association
between baseline microbiota composition and long-term vaccine immunogenicity following
three doses of BNT162b2 over a one-year follow-up period.

2. Methods
2.1. Study Design and Subjects

This was a prospective cohort study. Subjects who had received a total of three doses of
the BNT162b2 [23] (COMIRNATYTM COVID-19 mRNA Vaccine, Pfizer-BioNTech, Mainz,
Germany) vaccination were recruited from three different centers in Hong Kong: Sun Yat
Sen Memorial Park Sports Centre, Ap Lei Chau HKU Vaccination Centre, and Queen Mary
Hospital. Subjects received their first two intramuscular doses (0.3 mL per dose) three
weeks apart, followed by a booster administered at least six months after the second dose.
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Subjects were excluded based on the following criteria: (i) under 18 years of age; (ii) in-
flammatory bowel diseases (IBD); (iii) immunocompromised status (including those using
immunosuppressives/chemotherapy, post-transplantation status, and medical conditions
such as cancer, hematological, rheumatological, and autoimmune diseases); (iv) prior use
of probiotics, symbiotics and postbiotics within 12 months; (v) prior history of COVID-19;
(vi) COVID-19 during the course of this study; (vii) subjects receiving the third dose within
84 days of the one-year timepoint. Subjects who received the booster less than 84 days
before the one-year timepoint were excluded because antibody levels typically peak at
approximately 84 days after vaccination [24,25]. Subjects with previous COVID-19 or with
existing neutralizing antibodies against severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) were identified as having infection history.

2.2. Collection of Demographics, Anthropometrics and Blood Samples

Baseline demographic data, including age and sex, DM or pre-DM, were gathered.
Additionally, information on medication use, including proton pump inhibitor (PPI), an-
tibiotics, probiotics, symbiotics and postbiotics for 14 days or more within the past year
was collected. Blood samples were obtained before the first vaccination and at the one-year
timepoint after the first dose.

Vaccine immunogenicity was determined by neutralizing antibody (NAb) levels
against the SARS-CoV-2 receptor-binding domain (RBD) based on IgG Enzyme-linked
immunosorbent assay (ELISA) using a new version of the iFlash-2019-nCoV NAb kit
(chemiluminescent microparticle immunoassay; Shenzhen YHLO Biotech Co., Ltd., Shen-
zhen, China) in this study. The NAb test served as a surrogate marker of vaccination
effectiveness, indicating the protective power of antibodies against COVID-19 infection [26].
In brief, the serum sample and the reagent pack were placed according to the manufac-
turer’s instruction. The reagent pack contained RBD antigen (30KD)-coated paramagnetic
microparticles and an acridinium ester-labeled ACE2 conjugate of the virus. Then, the
iFlash system was activated, and a calibration curve was produced based on the signals
of the chemiluminescent reaction. An NAb result of 15 AU/mL or more was considered
seropositive, while the maximum measurable result was 800 AU/mL [27].

2.3. Shotgun Metagenomic Sequencing of Stool Samples

Baseline stool samples were collected from 125 subjects within one week before the
first dose of vaccination. Sixty-six (52.8%) of these subjects also had stool samples collected
at one year after first dose. The stool samples were delivered to the laboratory (kept at
−80 ◦C) within 48 h. Subjects conducted the collection process in accordance with the
manufacturer’s instruction (OMNIgene·GUT|OM-200, DNA Genotek Inc., Ottawa, ON,
Canada) [28]. In summary, subjects were required to place a small amount of fresh stool
into a yellow tube, level the sample with the provided spatula, and then vigorously shake
the tube for over 30 s until the stool was mostly dissolved in the liquid, leaving only a small
number of particles undissolved.

Genomic DNA was extracted using the Qiagen QIAamp DNA Stool Mini Kit (Qia-
gen, Hilden, Germany). The extracted DNA then underwent library construction with a
Nextera DNA Library Prep Kit (Illumina, San Diego, CA, USA), a process that included
fragmentation, adapter sequence addition, PCR amplification, and purification. After the
library preparation was completed, its quality was evaluated using a Qubit fluorometer
(Thermo Fisher Scientific, Waltham, MA, USA) and a bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). Once the quality was confirmed, high-throughput sequencing was
carried out on the Illumina NovaSeq 6000 platform, producing paired-end reads of 150 bp.
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2.4. Primary Outcome of Interest

The primary outcome of interest was high immune response at the one-year timepoint.
We defined subjects with neutralizing antibody (NAb) levels exceeding 600 AU/mL at one
year as high responders, because NAb levels below 600 AU/mL have been reported to
correlate with mortality due to breakthrough infection [29].

2.5. Bioinformatics Analysis

Raw reads from next-generation sequencing were processed using fastp v0.20.12 [30]
to remove adapters and perform quality control. Subsequently, host sequences were elimi-
nated using Bowtie2 [31] by aligning the reads to the human reference genome GRCh38.p13.
Bacterial species identification for each sample was conducted using MetaPhlAn (v3.0) [32],
and the abundance of bacterial metabolic pathways was determined using HUMAnN
(v3.0) based on the gene ontology (GO) database [33]. Statistical analysis in this study
was carried out with R statistical software (version 4.3.2). Alpha-diversity, measured by
species richness, Shannon, and Simpson indices, was calculated with the “vegan” package.
The difference between groups was compared using the Wilcoxon signed-rank test. Beta-
diversity was presented by Bray–Curtis compositional dissimilarity and the non-metric
multidimensional scaling (NMDS) method. Permutational multivariate analysis of variance
(PERMANOVA) was used to calculate the difference of beta diversity between groups. Pu-
tative bacterial species and metabolic pathways were identified by the linear discriminant
analysis effect size (LefSe, version 1.1.2) method. Species and metabolic pathways with an
absolute value of linear discriminant analysis (LDA) score greater than or equal to 2 were
selected [34]. Bacterial species with a median relative abundance of zero in either the low
responders’ or high responders’ group were considered zero-inflated and excluded from
subsequent analysis.

2.6. Statistical Analysis

Continuous variables were described by median and interquartile range (IQR), while
categorical variables were presented in the form of count and ratio. Kolmogorov–Smirnov
test was used to assess the normality of the data distribution. A p-value less than 0.05
indicated the data were not normally distributed. The Mann–Whitney U test was used to
compare continuous variables between groups. For categorical variables in demographic
data, either the Chi-square test or Fisher’s exact test was utilized. The dynamic change of
microbiota composition between baseline and one year after the vaccination was measured
by Jensen–Shannon distance (JSD) metrics [35]. A JSD value ≥ 0.4 indicates large variation,
0.15 ≤ JSD value < 0.4 indicates moderate variation, and JSD value < 0.15 indicates minimal
variation. The correlation between bacterial species and metabolic pathways was calculated
using Spearman’s correlation analysis and visualized with a heatmap. p-value was adjust by
the false discovery rate (FDR) method [36]. Univariate and multivariable logistic regression
models were used to identify clinical factors and bacterial species related to high immune
response, as well as to calculate the odds ratios (OR), adjusted odds ratios (aOR) and
p-values. We divided individuals having a relative abundance of a species in the top 50%
of the population (i.e., above the median) into a high-abundance group.

Sensitivity analysis was performed by excluding subjects with prior use of antibiotics.
A two-sided p-value of less than 0.05 was deemed to indicate statistical significance.

3. Results
3.1. Baseline Characteristics

A total of 125 eligible subjects who received the complete course of three doses of
BNT162b2 vaccination were enrolled in this study. As shown in Table 1, the cohort had a
median age of 52 years (IQR: 46.2–59.0), including 43 (34.4%) males and 82 (65.6%) females.
Among the subjects, 50 (40.0%) had DM or pre-DM, 18 (17.1%) had taken PPIs, and 5 (4.0%)
had taken antibiotics for 14 days or more within the past year.
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Table 1. Baseline characteristics comparison between subjects with low and high immune response at
one year following three doses of BNT162b2.

Whole Cohort
N = 125

Low Reponse Group
N = 20

High Response Group
N = 105 p-Value

Age, years,
(median (IQR))

52.0
(46.2–59.0)

53.1
(47.5–61.5)

52.0
(46.0–58.3) 0.449

Male (n, %) 43 (34.4%) 11 (55.0%) 32 (30.5%) 0.042

DM or pre-DM (n, %) 50 (40.0%) 10 (50.0%) 40 (38.1%) 0.331

PPI use (n, %) * 18 (17.1%) 2 (10.0%) 16 (15.2%) 0.735

Abbreviation: DM or pre-DM, diabetes mellitus or pre-diabetes mellitus; PPI, proton pump inhibitor; * Usage of
≥14 days within 12 months before first vaccination.

A total of 20 (16%) subjects with an NAb level less than 600 AU/mL (range:
53.80–594.47 AU/mL) were categorized into the low immune response group, while 105
(84%) participants with an NAb level over 600 AU/mL (range: 605.38–800.00 AU/mL)
were categorized into the high immune-response group. There were more male subjects
in the low immune-response group than in the high immune-response group (55.0% vs.
30.5%, p = 0.042) (Table 1).

Five subjects with prior use of antibiotics were excluded, and the baseline characteris-
tics remained similar (Table S1).

3.2. Baseline Microbiota Composition Was Correlated with Vaccine Immunogenicity at One Year
Following Three Doses of BNT162b2

There was no significant difference in alpha diversity (including Shannon index,
Simpson index, and richness; all p > 0.05, Figure S2) and beta diversity (p = 0.174, Figure S2)
between the low and high immune response groups. In the low responders, eight species
were enriched based on LefSe analysis (Figure 1). Three of the species were not zero-inflated,
namely Streptococcus parasanguinis (log10LDA score = 2.38, p = 0.003; relative abundance
of 2.97 × 10−5 vs. 0.03%, p = 0.001), Bacteroides stercoris (log10LDA score = 4.29, p = 0.024;
relative abundance of 0.14% vs. 2.40%, p = 0.014) and Haemophilus parainfluenzae (log10LDA
score = 2.15, p = 0.022; relative abundance of 0.01% vs. 0, p = 0.010). Three bacterial
species were found to be abundant in high responders, and among them, Bifidobacterium
pseudocatenulatum (log10LDA score = 2.99, p = 0.048; relative abundance of 0.09% vs. 0.36%,
p = 0.049) and Clostridium leptum (log10LDA score = 2.38, p = 0.014; relative abundance of
1.2 × 10−5% vs. 0, p = 0.044) were not zero-inflated. In the sensitivity analysis excluding the
five subjects with prior antibiotic use, four bacterial species (Clostridium leptum, Bacteroides
stercoris, Streptococcus parasanguinis, and Haemophilus parainfluenzae) remained significant
(Figure S3A).

Seventy-eight species with a median relative abundance greater than 0 were identified
at baseline, and 79 species were identified at the one-year timepoint (Figure S4). The
JSD value for microbiota composition between baseline and one year was 0.11, indicating
minimal variation. There were no significant differences in alpha diversity (including
Shannon index, Simpson index, and richness; all p > 0.05, Figure S5A) or beta diversity
(p = 0.982, Figure S5B) between the two timepoints. There was also no significant difference
in the distribution of the putative species between the two timepoints (Figure S6).

In the multivariable analysis, high abundance of Streptococcus parasanguinis was asso-
ciated with a lower odds of high vaccine immune response (aOR:0.14, 95% CI: 0.03–0.60),
while high abundance of Clostridium leptum was associated with higher odds of high vaccine
immune response (aOR:12.2, 95% CI: 1.73–273) (Table 2).
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Figure 1. Baseline gut microbiota composition in low and high immune response group one year
following three doses of BNT162b2. (A) Bacterial species enriched in low and high immune response
groups identified by LEfSe analysis. (B) Relative abundance comparison of putative species (not
zero-inflated) in low- and high-response groups.
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Table 2. Univariate and multivariable logistic regression analysis for identifying factors associated
with high immune response.

Univariate Analysis Multivariable Analysis

OR 95% CI p Value aOR 95% CI p Value

Age ≥ 65 years 1.15 0.18–22.4 0.899 3.43 0.31–107 0.376

Male sex 0.36 0.13–0.95 0.039 0.25 0.06–0.90 0.037

DM or pre-DM 0.62 0.23–1.62 0.322 0.77 0.20–2.90 0.691

PPI use * 1.62 0.41–10.8 0.544 5.08 0.75–64.3 0.142

Smoking history 1.05 0.25–7.18 0.949 4.69 0.67–57.9 0.160

Alcohol history 0.64 0.14–4.55 0.600 0.43 0.05–4.78 0.458

Bifidobacterium pseudocatenulatum # 0.53 0.18–1.43 0.226 0.81 0.20–3.17 0.758

Streptococcus parasanguinis # 0.35 0.13–0.92 0.035 0.14 0.03–0.60 0.012

Bacteroides stercoris # 0.45 0.15–1.22 0.133 0.44 0.11–1.53 0.206

Clostridium leptum # 6.91 1.33–127 0.066 12.2 1.73–273 0.036

Haemophilus parainfluenzae # 0.38 0.14–1.02 0.053 1.28 0.30–6.39 0.751

* Usage of ≥14 days within 12 months before first vaccination. Unable to generate coefficient and 95% CI for
“antibiotic use” due to small number of antibiotic users (n = 5). # High abundance was defined as the top 50% (i.e.,
above the median). Abbreviations: OR, odds ratio; aOR, adjusted odds ratio; 95% CI, 95% confidence interval;
DM or pre-DM, diabetes mellitus or pre-diabetes mellitus; PPI, proton pump inhibitors.

3.3. The Correlation between Putative Bacterial Species and Metabolic Pathways

Sixteen metabolic pathways were enriched in low responders (Figure S7), which
mainly correlated to amnio acid and bioactive substance synthesis, including histidine,
L-methionine, butyrate synthesis, etc. Three metabolic pathways were enriched in high
responders, including folate transformation II pathway (log10LDA score = 2.43, p = 0.039),
thiamine diphosphate salvage II pathway (log10LDA score = 2.44, p = 0.022) and superpath-
way of pyrimidine ribonucleotides de novo biosynthesis (log10LDA score = 2.63, p = 0.001).
These pathways belonged to superclasses (Table S2) including ‘Biosynthesis’, ‘Generation
of Precursor Metabolites and Energy’, ‘Degradation/Utilization/Assimilation’ and ‘Super-
pathways’ according to the MetaCyc database. In the sensitivity analysis excluding the
five subjects with prior antibiotic use, all these pathways identified above continued to be
significant (Figure S3B).

We found that the abundance of Haemophilus parainfluenzae was positively correlated
with pathways related to anti-inflammatory processes, including the superpathway of
histidine, purine, and pyrimidine biosynthesis (r = 0.29; p = 0.001) and the superpathway
of purine nucleotides de novo biosynthesis II (r = 0.30; p < 0.001) (Figure 2). Its abundance
was negatively correlated with folate transformation II pathway (r = −0.35; p < 0.001).
The abundance of Bifidobacterium pseudocatenulatum was positively correlated with pentose
phosphate pathway (r = 0.25; p = 0.004) and negatively correlated with folate transformation
II pathway (r = −0.24, p = 0.006). The abundance of Streptococcus parasanguinis was nega-
tively correlated with superpathway of pyrimidine ribonucleotides de novo biosynthesis
(r = −0.25; p = 0.005). This pathway exerts pro-inflammatory function on various im-
mune cells.
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4. Discussion

This study represents the first prospective investigation into the association between
baseline gut microbiota composition and vaccine immunogenicity following three doses of
BNT162b2 with a one-year follow-up. We observed that the high relative abundance of Bifi-
dobacterium pseudocatenulatum and Clostridium leptum was positively correlated with a high
immune response, while the high relative abundance of Bacteroides stercoris, Streptococcus
parasanguinis and Haemophilus parainfluenzae was positively associated with a low immune
response. We identified sixteen metabolic pathways enriched in low immune responders,
primarily associated with amino acid and bioactive substance synthesis, including histi-
dine, L-methionine, and butyrate, among others. In contrast, three metabolic pathways
were abundant in high responders and were related to vitamin synthesis. Most of these
pathways exhibited significant correlations with Streptococcus parasanguinis, Haemophilus
parainfluenzae and Bifidobacterium pseudocatenulatum.

Although the dominant bacterial species are critical to the host’s internal environment,
species of low abundance may also exert important influences on the host. The distribution
of these species of low abundance can influence the bioactivities of the dominant species,
and their metabolites can also affect the immunity of the host. Several studies demonstrated
the association between species of low abundance and diseases, such as Methanobrevibacter
smithii (relative abundance ranging between 0.1% and 1%) and periodontitis, and Fusobac-
terium nucleatum (relative abundance of <1%) and colon cancer [37].

Bifidobacterium pseudocatenulatum belongs to the Bifidobacterium genus, which is well
known for its probiotic properties. The administration of Bifidobacterium pseudocatenulatum
has been shown to reverse immune suppression induced by a high-fat diet [38]. It facilitates
the production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α)
and interleukin 4 (IL-4), while downregulating anti-inflammatory factors including inter-
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leukin 10 (IL-10), interleukin 6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1).
This modulation occurs through its influence on macrophages, dendritic cells (DCs), and
T cells [38–40]. Furthermore, Bifidobacterium pseudocatenulatum is capable of producing
acetate [41], which has been shown to activate B cells and enhance the production of IgA
via G-Protein Coupled Receptor 43 (GPR43) [42]. Additionally, acetate is known to enhance
the function of CD8+ T cells by supporting their glycolytic activities [43] and to bolster
the function of CD4+ T cells through Toll-like receptor 2 (TLR2) signaling [44]. Clostrid-
ium leptum was previously reported to be positively correlated with IgG production [45],
and with neutrophil and natural killer cell counts [46]. Clostridium leptum can convert
primary bile acids to secondary bile acids in the gut [47,48], which facilitates the innate
immune response by interacting with G protein-coupled bile acid receptor 1 (GPBAR1) and
Farnesoid-X-Receptor (FXR) [49].

On the other hand, Streptococcus parasanguinis may exhibit anti-inflammatory proper-
ties by regulating innate immune cells to produce a range of anti-inflammatory cytokines,
notably IL-10, which has been reported to facilitate the differentiation of induced T regu-
latory (iTreg) cells [50,51]. As for Bacteroides stercoris, its abundance has been reported to
positively correlate with the expression of the V-domain Ig suppressor of T cell activation
(VISTA) gene, leading to the activation of Treg cells. Additionally, Bacteroides stercoris
was reported to produce butyrate to inhibit histone deacetylase (HDAC) and maintain
the function of Treg cells [52]. Bacteroides stercoris has also been found to be negatively
associated with ulcerative colitis activity [53,54]. These functions of the species may explain
their correlation with immune response. Haemophilus parainfluenzae is an opportunistic
bacterium that is abundant in cases of severe infection [55].

It was reported that the decreased relative abundance of Bacteroides was positively cor-
related with a higher immune response to the rotavirus vaccine, which might be correlated
with the variation in LPS component in the bacteria and results in immune inhibition in the
host [56]. As a well-known kind of probiotics, Bifidobacterium pseudocatenulatum was found
to be positively associated with response to vaccines including bacille Calmette–Guérin
and hepatitis B virus vaccines [57].

Upregulation of the superpathway of histidine, purine, and pyrimidine biosynthesis
enhanced the production of histidine, purine, and pyrimidine. Histidine has been reported
to alleviate the increase in pro-inflammatory factors such as TNF-α and IL-6, induced
by a high-fat diet by inhibiting NF-κB signaling and activating the PPARγ pathway [58].
Similar anti-inflammatory mechanisms involving the inhibition of NF-κB signaling on
macrophages have been observed in Crohn’s disease models [59]. The acetyl-CoA fermen-
tation to butanoate II pathway produced butyrate, which was consistently reported to exert
anti-inflammatory effects [60–62]. Butyrate can inhibit the production of pro-inflammatory
factors such as interleukin-2 (IL-2) and interferon-γ (IFN-γ), while also accelerating the
secretion of anti-inflammatory cytokines like IL-10 and IL-4 in monocytes [63]. Moreover,
its classical anti-inflammatory role as an HDAC inhibitor is well recognized for downregu-
lating the function of NF-κB signaling in various immune cells and epithelial cells [64–66].

The superpathway of menaquinol-6 biosynthesis, the superpathway of menaquinol-9
biosynthesis and the superpathway of menaquinol-10 biosynthesis produce Vitamin K2,
which inhibits the production of pro-inflammatory factors [67] such as inducible nitric
oxide synthase (iNOS) and hinders the expression of major histocompatibility complex
class II (MHC II) [68]. The superpathway of sulfur amino acid biosynthesis (Saccharomyces
cerevisiae), assimilatory sulfate reduction I pathway, and the superpathway of sulfate
assimilation and cysteine biosynthesis increase the amount of L-cysteine. This elevation
in L-cysteine levels helps alleviate intestinal inflammation induced by LPS. It also down-
regulates the expression of TNF-α, IL-6, and interleukin 8 (IL-8) by inhibiting p65 nuclear
translocation in the NF-κB signaling pathway and increasing NF erythroid 2-related factor
2 (Nrf2) translocation [69].

The upregulation of the thiamine diphosphate salvage II pathway leads to the accumu-
lation of thiamine diphosphate (Vitamin B1), which has been reported to promote humoral
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immunity and antibody production. Vitamin B1 is essential for T cell-dependent antibody
production, primarily involved in anti-viral antibody production, as demonstrated in a lake
trout model [70]. Additionally, Vitamin B1 contributes to the maintenance and differentia-
tion of naïve B cell clusters. It aids in the transformation of B cells from producing weak
antibody immunoglobulin M (IgM) to generating potent antibody IgA by maintaining
the metabolic flux of the TCA cycle. This process is critical for gut IgA responses against
orally administered vaccines [71,72]. The superpathway of pyrimidine ribonucleotides de
novo biosynthesis can produce cytidine triphosphate (CTP) and uridine 5–triphosphate
(UTP). UTP stimulates immune cell migration through purinergic P2Y receptors [73]. The
abundance of CTP and UTP may facilitate the translation process of mRNA vaccines and
provide enzymes or proteins necessary for antibody generation.

There is a negative correlation between Streptococcus parasanguinis and the superpath-
way of pyrimidine ribonucleotides in de novo biosynthesis. Haemophilus parainfluenzae was
positively correlated with anti-inflammatory pathways, including the superpathway of
histidine, purine, and pyrimidine biosynthesis and the superpathway of purine nucleotides
de novo biosynthesis II, while it was negatively correlated with folate transformations II.
Bifidobacterium pseudocatenulatum was positively correlated with pentose phosphate path-
way and negatively correlated with folate transformations II (Figure 3). This correlation
suggests a possible mechanism underlying the association between baseline gut microbiota
composition and vaccine immunogenicity.
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pseudocatenulatum can produce acetate to activate B cells as well as increase the proportion of activated
T cells. Bacteroides stercoris secretes butyrate as HDAC inhibitor and promotes the expression of
VISTA gene to prompt Treg cell function. Streptococcus parasanguinis enhances the production of IL-10
by facilitating the function of innate immune cells, which activates Treg cells. Clostridium leptum
can convert primary bile acids to secondary bile acids and facilitate the innate immune response.
Haemophilus parainfluenzae was positively correlated with the superpathway of histidine, purine,
and pyrimidine biosynthesis. Histidine, produced by the superpathway of histidine, purine, and
pyrimidine biosynthesis, decreases the secretion of pro-inflammatory factors such as TNF-α, IFN-γ,
and IL-6, and inhibits NF-κB signaling. NF-κB signaling plays a key role in the immune reaction
to vaccines by mediating the maturation and activation of T cells and B cells. The superpathway
of pyrimidine ribonucleotides in de novo biosynthesis can produce CTP and UTP to stimulate
immune cell migration and translate mRNA vaccines and enzymes. Abbreviations: HDAC, histone
deacetylase; VISTA, V-domain immunoglobulin suppressor of T cell activation; IL-10, interleukin 10;
Treg cells, T regulator cells; TNF-α, tumor necrosis factor-α; IFN-γ, Interferon-γ; IL-6, Interleukin 6;
CTP, cytidine triphosphate; UTP, uridine 5–triphosphate.

However, there are still several limitations in this study. First, the sample size was
relatively small. Second, we did not investigate factors influencing vaccine immunogenicity
in terms of metabolomics and proteomics. Demonstrating the correlated variation between
bacterial species and metabolites might support the hypothesis that bacteria modulate
vaccine immunogenicity by regulating the production of specific metabolites. Therefore,
supplementing or depleting specific metabolites, such as SCFAs and tryptophan metabo-
lites, could provide an additional method to enhance vaccine immunogenicity. Moreover,
our future studies will require more detailed information, including conditions of anti-
inflammatory mediators, additional follow-up intervals, and the vaccination status of
other vaccines.

5. Conclusions

Bifidobacterium pseudocatenulatum and Clostridium leptum were associated with a high
immune response, while Bacteroides stercoris, Streptococcus parasanguinis and Haemophilus
parainfluenzae were associated with a low immune response at one year following three
doses of BNT162b2. Metabolic pathways correlated with amnio acid and butyrate synthesis
were associated with a high immune response, while pathways related to anti-inflammatory
process were associated with a low immune response. These results could establish a basis
for future studies to develop innovative strategies that utilize gut microbiota to improve
the sustainability of BNT162b2 immunogenicity.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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diversity between baseline and one year following three doses of BNT162b2; Figure S6. Comparison
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