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Abstract: The relaxation spectrum is a fundamental viscoelastic characteristic from which other
material functions used to describe the rheological properties of polymers can be determined. The
spectrum is recovered from relaxation stress or oscillatory shear data. Since the problem of the
relaxation spectrum identification is ill-posed, in the known methods, different mechanisms are
built-in to obtain a smooth enough and noise-robust relaxation spectrum model. The regularization
of the original problem and/or limit of the set of admissible solutions are the most commonly used
remedies. Here, the problem of determining an optimally smoothed continuous relaxation time
spectrum is directly stated and solved for the first time, assuming that discrete-time noise-corrupted
measurements of a relaxation modulus obtained in the stress relaxation experiment are available
for identification. The relaxation time spectrum model that reproduces the relaxation modulus
measurements and is the best smoothed in the class of continuous square-integrable functions is
sought. Based on the Hilbert projection theorem, the best-smoothed relaxation spectrum model is
found to be described by a finite sum of specific exponential-hyperbolic basis functions. For noise-
corrupted measurements, a quadratic with respect to the Lagrange multipliers term is introduced into
the Lagrangian functional of the model’s best smoothing problem. As a result, a small model error of
the relaxation modulus model is obtained, which increases the model’s robustness. The necessary and
sufficient optimality conditions are derived whose unique solution yields a direct analytical formula
of the best-smoothed relaxation spectrum model. The related model of the relaxation modulus is
given. A computational identification algorithm using the singular value decomposition is presented,
which can be easily implemented in any computing environment. The approximation error, model
smoothness, noise robustness, and identifiability of the polymer real spectrum are studied analytically.
It is demonstrated by numerical studies that the algorithm proposed can be successfully applied for
the identification of one- and two-mode Gaussian-like relaxation spectra. The applicability of this
approach to determining the Baumgaertel, Schausberger, and Winter spectrum is also examined, and
it is shown that it is well approximated for higher frequencies and, in particular, in the neighborhood
of the local maximum. However, the comparison of the asymptotic properties of the best-smoothed
spectrum model and the BSW model a priori excludes a good approximation of the spectrum in the
close neighborhood of zero-relaxation time.

Keywords: viscoelasticity; relaxation time spectrum; linear relaxation modulus; optimally smoothed
model; identification algorithm; model error; noise robustness

1. Introduction

The relaxation spectrum is vital for constitutive models and for providing insight
into the mechanical properties of polymers since, from the relaxation spectrum, other
material functions used to describe rheological properties can be uniquely derived [1-5].
It is applied for description, analysis, and to accomplish the pre-assumed mechanical
properties of different polymers [3,6-8].

The spectrum is not directly accessible via measurement and must be recovered from
relaxation stress or oscillatory shear data. Numerous different methods have been proposed
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during the last seven decades for relaxation spectrum identification using data both from
the stress relaxation experiment [6,9-20] and dynamic modulus tests [5,21-31]. The problem
of relaxation spectrum identification is the ill-posed inverse problem of solving a system
of Fredholm integral equations of the first kind obtained for discrete measurements of
the relaxation modulus or the storage and loss modulus data. Therefore, the solutions, if
any, are very sensitive to even small changes in the measurement data, which can lead to
arbitrarily large changes in the determined relaxation spectrum. In consequence, robustly
stable algorithms are required to solve it. The regularization of the original problem and/or
constraining the set of admissible solutions is often necessary to construct such algorithms.

In the first works concerning the relaxation spectrum determination, the sets of the
spectrum models were constrained to rather narrow classes of models. In 1948 Macey [9],
while examining the viscoelastic properties of ceramic material, described the spectrum
by the exponential-hyperbolic model, which corresponds to the modified Bessel function
of the second kind and zero-order modeling the relaxation modulus. To describe the
mechanical properties of polyisobutylene, Sips [10] introduced in 1950 a simple relaxation
spectrum model given by the difference between two exponential functions, which implied
a logarithmic model of the relaxation modulus. This model was next augmented to consider
a long-term modulus by Yamamoto [11] and applied to study the rheological properties of
the plant cell wall. The relaxation spectrum modeling in [9-11] is based on the known pairs
of Laplace transforms.

The relaxation spectrum identification based on the Post-Widder formula [12] for
the inverse Laplace transform was initiated by Alfrey and Doty [13], who proposed a
simple differential model based on the first-order Post-Widder formula. Ter Haar [14]
approximated the spectrum of relaxation frequencies using the modulus multiplied by
time, the inverse of the relaxation frequency, which is, in fact, the Post-Widder inversion
formula of the zero order. After many years, BaZant and Yunping [15] and Goangseup and
Bazant [16] introduced a two-stage approach of approximating the stress relaxation data
via multiple differentiable models of the relaxation modulus and, next, by applying the
Post-Widder formula to designate the related model of the spectrum. The effectiveness of
this approach depended, among other aspects, on the function applied to approximate the
relaxation modulus. In [15], a logarithmic—exponential model of the relaxation modulus
was proposed, for which the authors stated the third-order Post-Widder approximation to
be satisfactory.

Both the algorithms based on the Post-Widder formula [13-16], using the least-squares
approximation to guarantee the best fitting of the relaxation modulus measurement data,
and those using the pairs of Laplace transforms [9-11], did not take into account the
ill-posed nature of the relaxation spectrum determination problem.

Baumgaertel and Winter [21] used a nonlinear least-squares method for the recovery
of a discrete relaxation time spectrum based on storage and loss modulus data, in which the
number of discrete model modes was adjusted during the scheme iterations to avoid an ill-
posedness of the problem and to enhance the model fit. Regularization was not applied here,
as in several of the works discussed subsequently. Malkin [22] approximated a continuous
relaxation spectrum using three constants: the maximum relaxation time, the slope in the
logarithmic scale, and the form factor. Malkin et al. [23] derived a method of continuous
relaxation spectrum calculations using the Mellin integral transform. The algorithm for the
relaxation time spectrum approximation by power series was developed by Cho [24], which,
using the regression of the dynamic modulus, provided a relaxation time spectrum as stable
as the regularization method. The least squares identification without regularization was
also applied by Babaei et al. [17] to determine the discrete Maxwell relaxation spectrum
based on the stress relaxation data from the ramp test. Lv et al. [5] applied the extended
least squares method (without regularization) to dynamic experiment data. Lee et al. [25]
used the Chebyshev polynomials of the first kind to approximate dynamic moduli data
and next derived a spectrum equation using the complex decomposition method and the
Fuoss—Kirkwood relation without any regularization. Also, a derivative-based algorithm
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for continuous spectrum recovery, which is also appropriate for the experimental situation
where oscillatory shear data are only available for a finite range of frequencies, as proposed
by Anderssen et al. [26], does not use regularization.

Honerkamp and Weese [27,28] combined nonlinear regression with Tikhonov regular-
ization and proposed a specific viscoelastic model described by the two-mode log-normal
function. In turn, Davies and Goulding [29] approximated the relaxation spectrum by a
sum of scaling kernel functions located at appropriately chosen points. In the Mustapha
and Phillips algorithm [30], the sequence of nonlinear regularized least-squares problems,
solved with respect to both the discrete relaxation times and the elastic moduli, was per-
formed with an increasing number of discrete model modes. The approach proposed by
Stadler and Bailly [31] is based on the relaxation spectrum approximation using a piecewise
cubic Hermite spline with respective regularization. The regularized algorithms presented
in [27-31] were developed for dynamic rheological tests. A methodology to calculate the
relaxation spectrum of biopolymeric materials from stress relaxation data has been pro-
posed by Kontogiorgos [32], combining Hansen’s least-squares numerical algorithm and
Tikhonov regularization with the L-curve criterion chosen to select regularization parameter.
Stankiewicz [18,19] and Stankiewicz et al. [20] derived different identification algorithms
for the optimal regularized least-squares identification of relaxation time and frequency
spectra in the classes of models defined by a finite series of different basis functions.

All the known methods for the relaxation spectrum optimal identification are based on
the minimization of the quadratic model error defined directly for the measurements of the
relaxation modulus or storage and loss modules. For example, in [5,17,21], the least-squares
criterion was used directly, while in [18-21,27,28,30], regularized least-squares were used
with various rules applied for the choice of regularization parameters to ensure the stability
of the scheme and smoothness of the determined relaxation spectrum. In these papers,
the mathematical formula describing the relaxation spectrum model was also, in advance,
limited to the assumed class of admissible models.

In this paper, as a remedy for the ill-posed nature of the spectrum identification
problem, the relaxation time spectrum model that reproduces the relaxation modulus
measurements and which is the best smoothed in the class of continuous square-integrable
functions was sought. This problem was formulated and solved in this paper for the
first time for the spectrum of relaxation times. First, by applying the well-known Hilbert
projection theorem, a new model was derived in which the best smoothing was achieved
together with the simultaneous interpolation of relaxation modulus measurements. Next,
to achieve noise robustness, the problem of the optimal smoothness of the spectrum model
was augmented by introducing a quadratic term in the Lagrange functional of the original
optimal spectrum smoothing problem. The necessary and sufficient optimality condition
of the modified problem implied the best relaxation spectrum model as a finite sum of
the basis functions given by the quotient of the exponential function and relaxation time.
The components of the corresponding relaxation modulus model were given by simple
hyperbolic functions. The permitted in advance small error of the relaxation modulus
model combined with the specific modification of the Lagrange functional resulted in the
model’s noise robustness. The complete computational procedure for determining the
best-smoothed model was given. The singular value decomposition method was used for
algebraic computations. Analytical formulas describing the relaxation modulus model
error, the relaxation spectrum smoothness, and noise robustness indices were derived
as quadratic positive definite forms dependent on the sampling instants applied in the
experiment and the relaxation modulus measurements. The monotonicity of these indices
was analyzed. The applicability of the proposed model and algorithm to determining the
optimally smoothed models of polymers characterized by the short and middle relaxation
times of the Gauss-like relaxation spectra and the long relaxation times of the Baumgaertel,
Schausberger, and Winter spectrum was verified. The rough applicability analysis of the
proposed approach to modeling the relaxation time spectra of different types, such as the
Kohlrausch-Williams-Watts, fractional Maxwell, Scott-Blair, inverse power, and multiplied
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power—exponential laws, was also carried based on the compatibility of the boundary
conditions of the real spectra and the best-smoothed model. These studies have shown the
applicability of the new model and identification algorithm for the optimal recovery of the
smoothed relaxation spectrum of polymers with a very wide range of relaxation times.

In summary, this paper addresses the ill-posed problem of identifying the relaxation
time spectrum in a new, original way, previously unknown in the literature. In the known
methods, different mechanisms are built in to obtain a smooth enough and noise-robust re-
laxation spectrum model. Here, a new approach is proposed where the optimally smoothed
continuous square-integrable model of the relaxation spectrum, which reproduces relax-
ation modulus measurements with assumed acceptable small errors, is directly sought. This
problem is mathematically formulated and solved, resulting in a unique, best-smoothed
relaxation spectrum model and a complete identification algorithm. In the construction of
known relaxation spectrum identification methods, the primary idea was the best model
approximation, and the next one, implied by the ill-posed nature of the task, was the
concept of smoothing the model by regularizing the original problem of the model opti-
mal approximation. Here, the main measure of the model’s quality was the integral of
the square of the relaxation spectrum, being simultaneously the measure of the model’s
smoothness. The idea of the optimal model approximation is replaced here by the classical
interpolation of measurement points. In the basic problem, precise interpolation is applied
and is next modified to interpolation with a small error being allowed to ensure the noise
robustness of the model and algorithm. The idea of the Tikhonov regularization technique
results from the essence of the ill-posed problem—the lack of uniqueness for its solution
or its discontinuity with respect to the measurement data. The problem of smoothing
the relaxation spectrum posed here finds inspiration in the consequences of the ill-posed
problem and sometimes catastrophic fluctuations of the obtained solution, and it eliminates
these model-devastating effects.

In Appendix A, the proofs of the main results and derivations of some mathematical
formulas are given. Some tables of numerical results were moved to Appendix B to increase
the clarity of the article.

2. Materials and Methods
2.1. Relaxation Time Spectrum

The continuous relaxation time spectrum H(T) of a linear viscoelastic material is
defined by the following integral [1,26]:

G(t) = /0 ” @e’t”dn (1)

where G(t) is the linear relaxation modulus at time ¢. The spectrum H(7) is interpreted
as a generalization of the discrete Maxwell spectrum to a continuous function [1,26] and
characterizes the distributions of relaxation times 7.

2.2. Model of the Relaxation Spectrum

Assume that a model Hy(7) of the relaxation spectrum H(7) belongs to the space
L?(0, o0) of real-valued square-integrable functions on the interval (0, c0). Note that
L%(0, ) is the Hilbert space with the norm ||x|| = 1/(x, x) induced by the inner product
defined by the integral

() =[xy,
where the functions x(7),y(t) € L?(0, c0) [33].

2.3. Identification

A classical way of conducting the identification experiment studying viscoelasticity
is the stress-relaxation test, where time-dependent stress is studied for the step increase
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in the strain [1,34-36]. Suppose a certain stress relaxation experiment resulted in a set of
measurements of the relaxation modulus {G(t;) = G(t;) +z(t;) } at the sampling instants
t; >0,i=1,...,N, where z(t;) is the measurement noise. Identification, classically, consists
of the selection, within the chosen class of models, of such a model that ensures the best
fit to the measurement results. As a measure of the model’s accuracy, the quadratic index,
used in the least squares approach, is usually taken. However, in this paper, we look, in
the class of continuous square-integrable functions, for the best-smoothed model Hy(T)
that reproduces relaxation modulus measurements G(#;). This problem is formulated and
solved in the next section.

3. Results and Discussion

In this section, the problem of optimal smoothing of the relaxation spectrum model
is mathematically formulated and solved using the Hilbert projection theorem. As a
result, the best-smoothed relaxation spectrum model is derived in the form of a series of
specific basis functions given by the quotient of the exponential function and the relaxation
time. The respective model of the relaxation modulus was found to be described by a
series of hyperbolic functions. The properties of these basis functions were examined,
and the identifiable property of the best-smoothed model was demonstrated. For noise
measurement data, the modification of the problem for the spectrum model’s smoothness
was proposed by augmenting the Lagrange functional. A dual approach was applied to
solve the modified problem, resulting in the necessary and sufficient optimality condition
for the optimal relaxation spectrum model. Direct analytical formulas for the relaxation
spectrum and modulus models are given; their numerical realization by the singular value
decomposition of the basic matrix was proposed. The model smoothness, noise robustness
for noisy measurements of the relaxation modulus, and the error of the relaxation modulus
model were analyzed. A simple identification scheme was proposed. Finally, the results of
simulation studies for polymers described by Gaussian-like and BSW relaxation spectra
distributions are presented.

3.1. The Problem of Optimal Smoothing of the Relaxation Spectrum Model

Consider the following problem. Find function Hy;(7) € L?(0, co) that minimizes the
integral square index:

Hull2 = [ H2,(0)d i , 2
IHul? = | Wodro  omin @)

under the constraints

5(ti):/0 HMf(T)e*t"/TdT,izl,...,N. (3)

Note, that the set of functions Hy;(7) € L?(0, o) satisfying linear constraints (3) is
closed and convex. Since the Hilbert projection theorem [33] implies the existence of a
unique element with a minimal norm in the nonempty closed and convex subset of the
Hilbert space, the existence and uniqueness of the solution to the smoothing problem (2)
and (3) follows.

The Lagrange functional of the optimization problem defined by (2) and (3) is as follows:

L(HM, AN) = ./[;00 sz\/I(T)dT + 21111 A |:G(ti) — (/000 HMi(T)e—ti/TdT , (4)

where Ay = [Aq,...,A N]T is a vector of Lagrange multipliers A;. The necessary and suffi-
cient optimality conditions for the linear-quadratic optimization task (2) and (3) are given

by the equation
7t,'/T

Hum(t) = Zfil AieT/ ®)
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together with the constraints of (3). Substituting Hy(7), given by (5), into (3) yields the
following system of equations:

:/0“’

By applying the substitution v = 1/7 in the integrals of the right-hand side of (6)
we obtain:

]T
e T = YN ]/ 5/ T4 i =1, N, (6)

j=1

b = ” le_(tf“")/TdT = ooe_(tf“f)vdv - . (7)
l] 0 T2 0 ti + t]

Introducing the N x N dimensional symmetric matrix composed of the elements ®;;
in the i row and j column according to

1
DN = |D;i] . = , 8
N [ 1]]1:1,...,N ti+tili=1,...,N ®)
i=1,..., N ji=1,...,N
the system of Equation (6) can be rewritten in compact form as
Gy = PNAy, )
with the vector of the relaxation modulus measurements
— — — T
GN= [G(tl),...,G(tN)] , (10)

where superscript “T” indicates transpose. The main properties of the matrix &y are
summarized in the following proposition shown in Appendix A.1.

Proposition 1. For arbitrary sampling instants t; > 0,1 = 1,...,N, such that t; ;1 > t;,
a symmetric N x N matrix @y defined by (7) and (8) is a positive definite Gram matrix,
which can be expressed as Py = dﬁl/ 2@“ 2, where dﬁl/ 2 is the unique symmetric non-singular

positive definite square root of ®y. Then, the inverse matrix (bg,l = GDK[]/ zcbg,l/ 2 is a positive
definite too.

Since matrix @y is non-singular, the unique solution of (9) is given by
ANy = @y Gy. (11)
Therefore, by virtue of (5), the best-smoothed model is described by the finite series

=Y A7) (12)

of the basis functions (compare (5))

hi(T) = Li=1,2,.... (13)

The lower index ‘N’ is used in Hy(T) to express the dependence on the number
of measurements.
Introducing the notation

h(T) = [ (1), ..., hn(D)] = [" (14)
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and bearing in mind (11), model (12) can be expressed in compact vector-matrix form as
—= =T . _
Hn (1) = AGhn(T) = Gy @y BN (T). (15)

In view of (1) and (12), the related model of the relaxation modulus is as follows:

= HN(T) 1/ PN BTy
GN(t) :/0 f@ tTdT:/O 21:1 )\llTe TdT

and can be described by the finite series

00 7(ti+t)/'['
—= N e N
Gt = L A | v = T digi(t) (16)
of hyperbolic basis functions (compare (7))
1.
q)i(t):—tth.,z:l,...,N. (17)
1

Similarly, using the right equality in (16) and Equation (11), we obtain

— T
Gn(t) = Aken(t) = Gy Pylen(t),

where, in view of (17), the vector function @ (t) is as follows:

1 1 17
on(t) = lgr(0) s on O = | s
The index ~
Iy = [Hu(0)| = [ Hyy(r)ar (19)

minimized in (2), is a direct measure of smoothing the relaxation spectrum model. For the
optimal model Hy(7) (15), the smoothness index is as follows:

Iy = / Hay(1)dT = G @y / I (1)} (T)dT ' Gy (20)
0 0

Using (14), (7), and (8) we find

/Ooo I ()R (T)dT = Dy 1)

Thus, Equation (20) yields
Iy = Gy @y 'Gn, (22)

which means that the smoothness of the optimal model depends both on the time instants ¢;
selected for the stress relaxation experiment, affecting the matrix @y and on the experiment
results Gy .

As a result, the following result can be stated.

Theorem 1. For arbitrary sampling instants t; > 0,i = 1,..., N, such that ti 1 > t;, the
unique optimally smoothed model of the relaxation time spectrum defined by the optimization
task (2) and (3) is given by Hy(7) = EL@K]th(T), while the respective relaxation modulus
model Gy (t) = éIT\,¢1§1¢N(t) and the optimal smoothness index Ty = 61{]45](,1@1\1, where the
vector functions hy(T) and @ (t) are defined by (14) and (18), respectively, and matrix @y is
defined by (8) and (7).
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Basis functions h(7) [s'l]
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The relaxation spectrum Hy (7) that solves the optimization task (2) and (3), is the
most smoothed model in the class of square-integrable functions that, simultaneously,
guarantee the reconstruction of the measurements of the relaxation modulus. Some useful
algebraic identities concerning the matrix @y and vector ¢ (f) are given in Appendix A.2.

3.2. Properties of the Basis Functions

The basis functions h;(7) (13) and ¢;(t) (17) of the relaxation spectrum and modulus
models are positive definite and depend on the times t; applied in the stress relaxation
experiment. The greater the sampling instants ¢;, the faster the basic functions ¢; () decrease.
By (13), the first derivative is as follows:

dhi(1) _ Li—T _y/x
dr T3 '

Thus, the basis functions /;(7) for T = t; have a global maximum equal to h;(t) = 1/ (et;),
which decreases with increasing index i due to the assumed monotonicity of the sequence
{t;}. This means that increasing the number of measurements N, i.e., increasing the model
components, can allow for the good modeling of multimodal spectra, which is confirmed
by the second example presented in the final part of this paper.

Since for T — 07, using the L'Hospital’s rule, we have

1 1
) ) T ) 3z . 1
lim hi(t) = lim —— = lim ————— = lim t720+,
70+ =0+ eli/T 10+ —Leti/T 10t tie i/t
T

and for T — oo the functions are h;(7) — 0, the best model Hy () tends to zero both for
T — 0" and T — oo (zero boundary conditions). The basis functions ¢;(t) given by (17)
monotonically decrease to zero as t — co.

The five first basis functions #;(7) (13) are shown in Figure 1 for the sampling instants
t; =10, 30, 50, 70, 90 and t; = 0.1, 0.5, 1, 1.5, 2 s. Figure 2 shows the related functions
@i(t) (17). The logarithmic scale is applied for the time axes in these figures. The basis
functions %;(t) and g@;(t) are expressed in s~!. From Figure 2, it can be seen that the
monotonicity of basis functions ¢; (¢) is in good agreement with the courses of the relaxation
modulus obtained in an experiment for real polymers; for example, these include elastic
polyacrylamide hydrogels [35] (Figures 2a,b, 4a, A5, A7 and A8a), concrete [37] (Figure 13)
and rubber [38] (Figure 2).

4 r
35F
‘T‘& 3t
)
= 257
2
s 2
g
S 15
2
g 1
m
0.5
. ] 0
10 10 10 103 10 10" 10° 10!
Relaxation time 7[s] Relaxation time 7[s]
(a) (b)

Figure 1. Basis functions k;(7) (13),i = 1,...,5, of the relaxation spectrum model Hy/(7) (12) for
time sampling instants: (a) t; = 10, 30, 50, 70, 90s and (b) t; = 0.1, 0.5, 1, 1.5, 2s.
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Basis functions ¢ (t) [s'l]

10 F

0.1r
0.08 F < 8
2,
o)
0.06 f I 6t
v
=]
]
0.04 t:': 4+
&
(%]
0.02 a5
m
0 2 ‘ 1 Io ‘ 1 ‘ 2 0
10 10° 10 10 10 i
1073
Time t [s] Time t [s]
(a) (b)

Figure 2. Basis functions ¢;(t) (17),i = 1,...,5, of the relaxation modulus model Gy () (16) for time
sampling instants: (a) t; = 10, 30, 50, 70, 90 s and (b) t; = 0.1, 0.5, 1, 1.5, 2s.

3.3. Identifiability

The basic and obvious requirement for any identification method is that if the real
characteristic is described by a model from the considered class of models, and the mea-
surements are noise-free, then the method should guarantee the unique determination of
the real characteristic, i.e., ensure its identifiability [39,40].

Assume that the real spectrum is of the form

—ti/T
N e’
H(t) =) 04— (23)
where a; represents the real parameters. Introducing the vector a = [ay, .. .,aN]T and

bearing in mind (13) and (14), spectrum (23) can be expressed as
H(t) = ahy(7). (24)

Assume that the measurements of the relaxation modulus are noise-free. Thus, for
i=1,...,N,Dby virtue of (1), (7) and (23), we have

e*t]'/T

_ 0 N i N 1 N
G(t;) =G(t) = /0 ijl a e ti/Tdr — Z; — = Z ;).
1

=14

Therefore, using (8) and (10), the vector of the relaxation modulus measurements can
be expressed as o
GN = GN = <DNa,

whence, according to (15) and (24), the relaxation spectrum model is as follows:
Hy (1) = Gy @y iy (1) = a’ @@y hy = aThy = H(1),

i.e., the model smoothing identification results in the determination of the real relaxation
spectrum (23).

3.4. Modification

The value of the Lagrange multiplier A; is the dual price [41], which in problem (2)
and (3) is “paid” for satisfying the i-th constraint, i = 1, ..., N. The higher the value of A;
(precisely, the modulus of A;), the more difficult it is to meet this constraint and the stronger
the chains it imposes. The impact of the fluctuations in the measurements of the relaxation
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modulus G(t;), i.e., the impact of changes in the left side of each of Equation (3), on the
smoothness of the spectrum is then greater. Really, by (22) and (11), we have

07, — ~
ﬁ =20,'Gy = 2Ay.

Therefore, the vector of the optimal Lagrange multipliers is the measure of the model’s
smoothness index sensitivity with respect to the fluctuations of the relaxation modulus
measurements. To reduce it, the value of the multiplier A; should be reduced; precisely, the
values of the modulus of A; should be reduced.

The Lagrange functional of the optimization problem defined by (2) and (3) is described
in Equation (4). In order to decrease the values of |A;| and the functional (4), being
maximized with respect to A; according to the dual approach, is modified by introducing
the quadratic term YN | A? = Al;AN, which means that the modified Lagrange functional
is defined as follows:

Luw(Hat, An) = /0 Hy(v)dt+ YN | Ay [G(ti) - /O HMf(T)e*ff/de YN A2 (29)
where 7 is a small positive constant and the weight that represents the relative importance
of the square component AL Ay with respect to the original (non-modified) Lagrange func-
tional L(Hp, AN) (4). The parameter y has no physical interpretation as the regularization
parameter in the classical Tikhonov regularization.

In Appendix A.3, the unique saddle point of the modified Lagrange functional (25) is
found. The saddle point defines the modified best-smoothed model Hy, (), which depends
on the measurements {t;, G(t;) } and the parameter v introduced in (25).

Theorem 2. For arbitrary sampling instants t; > 0,i=1,..., N, such that t; 1 > t; and the
arbitrary non-negative parameter <y, the model of the relaxation time spectrum HY (1) defined by
the unique saddle point of the modified Lagrange functional (25) is given by

HL (1) = Gn(@n + 47Inn) hn(T), (26)

while the respective relaxation modulus model

Gli(t) = Gu(®n + 49Ty n) N (b), 27)

where the vector functions hy(T) and @ (t) are defined by (14) and (18), respectively, matrix @y
is defined by (7) and (8) and Iy N isthe N x N dimensional unit matrix.

The upper index 7y in the notations Hy () and Gy (t) indicates the dependence on the
parameter <y introduced in the modified Lagrange functional (25).

To achieve the dimensional homogeneity of the components of the Lagrange func-
tional (25), the multipliers A; are expressed in Pa-s, while the unit of the parameter -y is s 1.
The dimensional homogeneity of the matrix @y + 4l n is then achieved.

It is demonstrated in Appendix A.4 that for the optimal vectors of the Lagrange
multipliers, Ay in (11) for original optimization task (2) and (4) and the vector AK, (A13) of

the saddle point of the modified Lagrange functional (25), the following inequality holds:
T
(A%) AL < AJAN, (28)

which means that ||A}|| < [[An]|, i.e., the purpose of the modification introduced into the
Lagrange functional at the beginning of this section was achieved.
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3.5. Model Error

Let us introduce, by analogy to the measurements vector Gy (10), the vector of the
values of the relaxation modulus model (27) for all sampling instants ¢;:

. . . T
Gl= [GL(tl),...,GL(tN)} .
For any t = t;, by virtue of (27),

—T _ =
Gl(t) = Gn(Pn +47Inn) 'on(t) = @i (t)(Pn +47Inn) G,
whence, bearing in mind Equation (A4), we have
Gl = On(®y +49Inn) G

Therefore, for the model parameterized by y > 0, the relaxation modulus equations in
(3) are not satisfied and the error of these equations is as follows:

en = Gy — G = Gy — Oy (@n +47In,y) "Gy (29)
Through the identity (A6), the model error &x can be expressed as
en = 4y(@n +47Iyn) Gy, (30)

and, bearing in mind (A13), can be equivalently expressed as ey = 2'M17\,. Therefore, for
v = 0 the model error ey = Oy, which is clear since in the original task (2) and (3) the
constraints in Equation (3) are exactly satisfied; here, 0y denotes the N dimensional vector
of zero elements.

By (30), the square model error is given as follows:

—T _—
ehen = 1672Gy (P +41Inn) Gy (31)
In Appendix A.5, the following result is proved.

Proposition 2. For arbitrary sampling instants t; >0, i =1,...,N, such that t; 11 > t;, and
the arbitrary non-negative parameter vy, the square model error &l ey (31) of the relaxation modulus
equations monotonically increases as the function of the parameter <y , which is strictly convex for
v such that &y > 8yl N, and strictly concave in the case Py < 8yIn N.

3.6. Smoothness

For model HY,(T) (26), the smoothness index Zy (19) is as follows:
o0 [— 2
i = [, [H%(T)} dt =
—_T _ 0 —
GN (PN +47Inn) 7[5 By (DR (T)dT (Pn +47IN,n) ' Gy,
and, bearing in mind (21), can be expressed as
7T _ 11—
I} = Gn (PN +47InN) " DN (@n +47INN) TGN, (32)

or, by applying identity (A7), an equivalent form useful for further differential analysis can
be obtained o B
IK] = GNQP}\I/Z((I’N +4’Y]IN,N)_2(D]1\]/2GN- (33)
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Since, according to (22), the smoothness index for the original optimization task (2)
and (3) can be expresses as Iy = EIT\] dill\]/zdiglz dill\]/zéN, by inequality (A5), the next estima-
tion follows:

IX, <In

for any > 0 and arbitrary measurement data, i.e., the smoothness of the spectrum model
HY; (1) (26) is stronger that the smoothness of the original model Hy () (15); this was the
idea of the modification introduced in the Lagrange functional.

In Appendix A.6, the following formulas describing the first and second derivatives
of I, with respect to vy are derived:

d —T - =
EIX’ = —8G\ @/ (®N + 491y n) DY Gy, (34)
and )
0 —T - =
WIX] =96 Gy DL/ 2(Dy + 471y n) @1/ %G (35)

Thus, the smoothness index Z7; is the monotonically decreasing convex function of
the parameter v > 0. The following rule holds: the greater the parameter 7 is, the more
highly bounded the fluctuations of the spectrum model HY (1) (26) are.

3.7. Noise Robustness

Following [18,19], as a reference point for the model H?\, (7) described by Equation (26),
the model of the spectrum that can obtain for the same parameter -y, the same number of
measurements N and the same time instants ¢; on the basis of ideal measurements of the
relaxation modulus is considered, which is described as follows:

~Y _

Hy(T) = GR(@n +49InN) 'hn(T), (36)
where Gy is the vector of the noise-free relaxation modulus, i.e., Gy = [G(tl) e G(tN)} T
In view of (26) and (36), we find

Y oy N T -1
HN(T) HN(T) = ZN((DN +4')/HN,N) hN(T), (37)

where zy = [z(t1) -+ z(tn)] " is the vector of measurement noises.
Consider the square integral index
o0 ey 72
v T
QY = / [HN(T) - HN(’Z.')} dr. (38)
0
By (37), this index can be expressed as

QY = zh (@ + 49Ty n) ! /O Iy (1)L (T)dT (@ + 49l n) 2,
whence, by virtue of (21), we obtain

Q% = Z;\}((pN + 47]IN,N>71(DN(¢N + 4'YHN,N)712N/ (39)

which, using the Gram property of @y and using the identity (A7), can by rewritten
as follows:
QK] = z}\}QIl\]/z((DN + 4’)/]IN,N)_2‘D11\]/ZZN. (40)

Therefore, the noise robustness depends on the parameter -y, the measurement noises
and the sampling instants ¢; that uniquely determine the matrix @y. Since both models are
continuous with respect to the relaxation time 7, by virtue of (40), for any non-negative v,
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— ~
the spectrum Hy;(7) tends to the noise-free spectrum H y (7) for each time 7 linearly with
respect to the norm ||zy||, as ||zn]|| — 0, and the faster this is, the larger the parameter 7.
By (A5), we have
oY < ==y Pz, (41)

which means better noise robustness than for the original model Hy (1) (15) for any -y > 0.
Similarly, as for the smoothness index IKI (compare indices (33) and (40)), the following
formulas describing derivatives of Q}; with respect to v were derived:

d _
EQ?\, = —8z[ @/ 2(Dn +47InN) DN 22N,

and
P’ T +1/2 412
32 QN =96 zy @y “(On +47INnN) TPy ZN,

which means that Q}; is the monotonically decreasing convex function of the parameter
v > 0 that takes the maximal value equal to Q%, (41) for v = 0.

3.8. Algebraic Background of the Computational Algorithm

The singular value decomposition (SVD, [42]) technique can be used in numerical
computations in order to determine the inverse matrix (@ + 4vIn n) ~1in (26). Let SVD
of the N x N dimensional matrix @y (8) take the following form [42]:

@y = UnNInUL, (42)

where Ly = diag(cy, ..., on)eRNN is the diagonal matrix containing the singular values
0; of the matrix @y [42], and the matrix Uy € RNV is orthogonal. Thus,

(DN +4yInn) " = Un(En +49Inn) U, (43)
where the N x N diagonal matrix (Zy + 47}IN,N)_1 is as follows:
(EN +47Inn) " =diag(1/ (o1 +47),...,1/ (on +47)).
Therefore, the optimal spectrum model (26) can be described by
=5 _ (s7\T
Hy(7) = (%) hn(7), (44)
while the respective model (27) of the relaxation modulus is as follows:
— T
G (1) = (3%) on(t),
where the vector of model parameters is
gl = Un(Zn + 490y N) 'ULGN. (45)
Using (42) and (43), the smoothness index IK] (32) is expressed as
I} = GyUyONUL Gy, (46)
where the N x N diagonal matrix Qy = (Zy +4’)/HN,N)_1ZN(ZN +47]IN,N)_1 takes

the form
QN = diag(al/(al +49),...,0n/ (0N + 47)2>.
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Similarly, using (42) and (43), the noise robustness index QK] (39) can be rewritten as
QK] = Z{]UNQNUK]ZN.
Combining (31) and (43), we obtain the formula describing the square model error
7’1" _ —
ehen = 1672GyUn(Zy + 471N N) “ULGy. (47)

3.9. Algorithm

The determination of the best-smoothed model of the relaxation time spectrum in-
volves the following steps:
1. Choose the parameter v > 0.
2. Perform the experiment (stress relaxation test [1,34-36]) and record the measurements
G(t;),i=1,...,N, of the relaxation modulus at times ¢; > 0, such that t; | 1 > t;.
Compute the matrix @y and next determine SVD (42).
Compute the vector of model parameters gJ; (45).
Determine the spectrum of relaxation times H (1) according to (44).

Determine the square model error ] ey according to (47) and the smoothness index

A

IK] using Formula (46).

7. Check if the smoothness of the spectrum model HY,(7) measured by 7}, and the
error of the relaxation modulus model G() measured by el ey are, simultaneously,
satisfactory. If not, increase the parameter 7y and repeat the computations starting
from step 4. If yes, accept the current HY (1) as the best-smoothed relaxation spec-
trum model.

Only the SVD of the matrix @y of computational complexity O (N?) [42] is a space-
and time-consuming task in the scheme. However, for given sampling points, the SVD
must be computed only once in step 3. The matrix @ does not depend on the relaxation
modulus measurements G(#;). Therefore, when the identification scheme is applied for
successive samples of the same material, step 3 should not be repeated whenever the same
time instants ¢; are kept in the experiment. This is because, using (44) and (45), we have

—T
HY (1) = Gy oY (7).
where the vector function
3(7) = Un(En +49Inn) ' ULBN(T),

depends only on the sampling points t; and does not depend on the relaxation modulus
measurements G(t;). Therefore, the function 8}, (7) must be computed only once and used

to determine the model Hy, () for many samples whenever the same ¢; is kept.

3.10. Numerical Studies

For numerical studies, it is assumed that the viscoelastic properties are described by
the Gaussian-like distribution of the relaxation spectrum, which is used to represent the
rheological properties of numerous polymers, e.g., polyacrylamide gels [35], poly(methyl
methacrylate) [43], polyethylene [44] and carboxymethylcellulose (CMC) [45]. Also, the
spectra of many biopolymers have a Gaussian nature, for example, cold gel-like emul-
sions stabilized with bovine gelatin [46], fresh egg-white-hydrocolloids [45], some (wheat,
potato, corn, and banana) native starch gels [47], the xanthan gum water solution [45] and
wood [48,49]. The Baumgaertel, Schausberger, and Winter (BSW) spectrum [50,51] used to
describe the viscoelasticity of polydisperse polymer melts [24,25], polybutadiene (PBD) [52],
polymethylmethacrylate (PMMA) [52] and polymer pelts [53] is also considered.
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The best-smoothed spectra models, the values of the square model error el;en (31),

_ 2
where the error ey is defined by (29), the smoothness index Z;, = fooo [H%(T)] dt given

by Formula (32), and the square noise robustness index QVN (38) expressed by Equation (39)
are examined for different number of the measurements N and different values of the
parameter 7.

The “real” materials and the best-smoothed models were simulated in Matlab R2023b,
The Mathworks, Inc., Natick, MA, USA. For the singular value decomposition procedure
sud was applied. A normal distribution with zero mean value and variance ¢ as well as
the uniform distribution were applied for the random independent generation of additive
measurement noises.

3.11. Example 1
Considering the polymer whose relaxation spectrum is described by the uni-modal
Gaussian-like distribution as follows:

H(r) = 9~ ="/, (48)

and where the parameters are as follows [54,55]: ¢ = 31,520 Pas, m = 0.0912 s~ 1 and
q=325x 103 s72. The related relaxation modulus is desribed by the function [55]:

leg
G(1) = @ﬁqu<2m\/ﬁm> »

where the complementary error function er fc(x) is given by [56]:

erfe(x) = \/ZF/XOO e Zdz.

In the experiment, N sampling instants t; were generated with the constant pe-
riod in the time interval of 7 = [0, 200] seconds, selected on the basis of the modulus
G(t) (49) course.

3.11.1. Noise-Free Measurements

For noise-free measurements of the modulus G(t) the best-smoothed model solving
the original task (2) and (3) was determined for N = 20, 100, 150, 200, 500, 1000 measure-
ments. Two optimal models Hy (7) (15) and the ‘real’ spectrum H(T) (48) are plotted in
Figure 3. Small subfigures confirm the excellent model fit; real spectra described by the
red lines practically coincide with the blue models both for the small and large number
of measurements. This shows that in the case of noise-free measurements, the practically
ideal approximation of the real relaxation spectrum was obtained even for a small number
of measurements (N = 20). In Figure 4, the related models of the relaxation modulus
Gn(t) (16) are plotted; the measurements G(#;) of the ‘real’ modulus G(t) (49) are also
marked. The values of the smoothness index Zy (19) are given in Table 1.

Table 1. The smoothness index Zy (19) for noise-free N measurements of the relaxation modulus
from Example I described by the relaxation spectrum H(T) (48).

N

20

50 100 150 200 500 1000

IN [kPa2 ~s]

70.937064

70.937063 70.937025 70.9370341 70.937296 70.9378314 70.937012
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real relaxation spectrum
best smoothed model N=1000

Relaxation spectrum [kPa]

0 .

10° 10! 102

Relaxation time 7[s]
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Figure 3. Relaxation time spectrum H(T) (48) (solid red line) from Example I and the corresponding
best-smoothed models Hy (T) (15) for N noise-free relaxation modulus measurements: (a) N = 20;

(b)

N = 1000.

o

real modulus measurements
optimal model N=20

0 50

100 150

Time t[s]

(a)

200

Relaxation modulus [kPa]

35T

°

real modulus measurements
optimal model N=1000

0 50 100 150 200

Time t|[s]

(b)

Figure 4. The measurements G(t;) of the ‘real’ relaxation modulus G(t) (49) (red circles) from

Example I and the optimal model Gy(t) (16) for N noise-free relaxation modulus measurements:

()

N = 20; (b) N = 1000.

3.11.2. Noise-Corrupted Measurements

Additive independent measurement noises are generated by a normal distribution
with zero mean value and variance o2. For the noise robustness analysis, the standard
deviations o = 2,4, 6 Pa were used. The parameters y = 5 x 10=7,107%, 5% 107°, 107> s~1
were applied.
In Table 2, the values of the square model error eIT\,eN (31), the smoothness index
I;\Y, (32), and the square noise robustness index QX, (38) are given for noises of o = 2Pa,
while for the stronger noises, the same data are given in Tables A1 and A2 in Appendix B.
As previously, the exemplary courses of the spectrum models HY(7) (26) for N = 20 and
N = 500 measurements are illustrated in Figure 5 for noises of o = 2, 4, 6 Pa, while the

respective relaxation modulus models G (t) (27) are depicted in Figure 6.
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Table 2. For Example I, the square model error e{,sN (31), the smoothness index

2
ZX] = O°° [ﬁYN(T)] dt, Equation (32), and the noise robustness index QZ, (38) for N measurements
of the relaxation modulus corrupted by normally distributed additive independent noises with zero
mean value and standard deviation o = 2 Pa; parameter v is introduced in the modified Lagrange

Functional (25).
yls™1 Index N=20 N=50 N =100 N =500 N = 1000
elen [kpa?— 1.39645 x 107* 252753 x 107%  4.62907 x 107*  1.92494 x 1073  3.88455 x 1073
5x 1077 I}, |kPa’-s 72.99045 67.737749 68.723774 69.975844 73.348805
Q7 |kPa*s 1.596146 1.662047 1.457413 1.371245 3.277104
elen [kpaZ 149648 x 107* 257649 x 107*  4.65545 x 10* 192724 x 1073  3.88936 x 1073
1x10°° I}, [kPa?-s 69.48318 65.994479 67.80256 69.162430 71.604073
Q7 |kPa*s 0.891089 0.829375 0.757987 0.655363 1.298411
elen [kpa2 2.08947 x 107*  2.78699 x 10°*  4.85586 x 10*  1.94192 x 1073  3.90908 x 1073
5x 1076 7}, |[kPa?-s 63.29753 63.719666 65.798822 67.689507 69.559083
QY |kpPa-s 0.212948 0.293031 0.228734 0.103584 0.188545
elen [kpa2 268258 x 107*  3.03442 x 10~*  5.14355 x 107%  1.96206 x 1073 3.93448 x 1073
1x10°° 7}, |[kPa?-s 61.213971 62.869605 64.812065 66.994669 68.681175
Q7 |kPa*s 0.102555 0.1849723 0.149022 5.95577 x 1072 9.49178 x 1072
3 real spectrum 3 real spectrum
= —=5-10" — —=1.10°
g —5=1.10"° § —9=5.10"°
E ——=5.10"° g ) 7=1.10"
I 3 .
10° 10! 10? 10° 10 10?
Relaxation time 7 [s] Relaxation time 7 [s]
(@ (b)
3 real spectrum 3 real spectrum
= —=5.10" _ —=1-10"°
; —4=1.10° éx ——=5.10°
g 2 —=5-10° ; 5 —=1-10"°
£
= 2
0
10° 10! 1(‘)2 10° 10! 10?

Relaxation time 7 [s]

()

Figure 5. Cont.

Relaxation time 7 [s]

(d)
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Figure 5. Relaxation time spectrum H(T) (48) (solid red line) from Example I and the corresponding
models HY, () (26) for N measurements of the relaxation modulus corrupted by normally distributed
additive independent noises with zero mean value and standard deviation ¢: (a) ¢ = 2 Pa and
N =20; (b) e =2Paand N = 500; (c¢) c =4 Paand N = 20; (d) o = 4 Paand N = 500; (e) o = 6 Pa

and N = 20; and (f) 0 = 6 Pa and N = 500.
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Figure 6. The measurements G(t;) of the ‘real’ relaxation modulus G(t) (49) (red circles) from
Example I and the model Gy (t) (27) for N measurements of the relaxation modulus corrupted by
normally distributed additive independent noises with zero mean value and standard deviation ¢
(@0 =2Paand N = 20; (b) c = 2 Paand N = 500; (c) o = 4 Paand N = 20; (d) ¢ = 4 Pa and
N =500; (e) c = 6 Paand N = 20; and (f) c = 6 Pa and N = 500.
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An inspection of Figure 5a,c,e shows that for each noise case, the number of N = 20
measurements was not enough to obtain the satisfactory smoothness of the model Hy ()
even for the weakest noises. So, N = 20, which is jood for noise-free case, fails here.
However, for N = 500 measurements, the model Hy (7) is smoothed enough, and the
influence of the regularization parameter 7 is much weaker; see Figure 5b,d f. Figure 6
and the values of the model errors eIT\,s ~ from Tables 2, A1 and A2 confirm the excellent
approximation of the relaxation modulus model, even though model imbalance is allowed.

The analytically shown monotonicity of the smoothness Z;; and noise robustness
QJ; indices, being the monotonically decreasing convex functions of the parameter 7, is
reflected in the numerical studies. An inspection of the numerical results indicates that for
N > 50 and any fixed parameter 7, the smoothness index Z}; is a monotonically increasing
function of the number of measurements; the slower this is, the larger the number N. An
analysis of the asymptotic properties of the algorithm and optimal model H (1) (26) as
the number of measurements grows to infinity will be the subject of future studies.

3.12. Example 11

Consider the double-mode
spectrum [19,20,44]

Gaussian-like distribution of the relaxation

2/q

2/q ?—m2) /T, (50)

H(t) = [pre” (e 4 e
where the parameters are as follows: 31 = 467 Pa-s, m; = 0.0037 s q1 = 1.124261 x 1070572,
B2 =39 Pa-s, my = 0.045 s land go = 1.173 x 103 s~2. The double-Gaussian relaxation
spectra are examined while developing new identification methods in [31] (Figure 2), [29]
(Figures 9, 11 and 17), and [26] (Figures 2, 3, 6, 7-11 and 14). Such spectra describe
the rheological properties of various polymers [44] (Figures 4b and 8b), polyacrylamide
gels [35] (Figure A4), and wood [38]. The corresponding ‘real” relaxation modulus is
composed of two summands described by formulas like that of (49). In the experiment,
N =50, 100, 200, 500, 1000, 5000 sampling instants t; were generated with the constant
period in the time interval 7 = [0, 1550] seconds, selected in view of the course of the mod-
ulus. Following [19,20], additive measurement noises z(t;) were selected independently by
random choice with uniform distribution on the interval [—0.005, 0.005] Pa.

In Table 3, the values of the square model error eIT\,eN (31), the smoothness index
ZX, (32), and the square noise robustness index QVN (38) are given. The spectrum models
HY (1) (26) are illustrated in Figure 7 along with the real spectrum (50). Since, similar to
the one-mode Gaussian relaxation spectrum, the relaxation modulus models [ (t) (27) for
different N and <y values practically coincide, the respective figures are omitted here.

Table 3. For the relaxation spectrum (50) from Example II described by double-mode Gaussian distri-
bution: the square model error sIT\]s N (31), the smoothness index Ilr\y, (32), and the noise robustness
index QX] (38) for N measurements of the relaxation modulus corrupted by additive independent
noises uniformly distributed on the interval [—0.005, 0.005] Pa; parameter vy introduced in the modi-
fied Lagrange functional (25).

yIs™1 Index N =50 N =100 N =200 N =500 N =1000 N = 5000
elen [pa 422629 x 107*  8.08789x 10~%  1.62982 x 10°%  3.87154 x 1073  7.89202 x 103  4.11897 x 1072
1x 1077 s [{pa s 2.97202 x 10? 2.90993 x 107 2.90362 x 102 2.82977 x 10? 3.04036 x 107 3.36177 x 10?
QJ, [PaZs 11.911735 10.130120 13.23408 15.429651 21.957947 19.365373
elen [pa 449498 x 107% 823669 x 10™*  1.64435 x 1073  3.87762 x 10~3  7.91074 x 1072  4.12242 x 1072
5x 1077 ; 2.70677 x 102 2.74519 x 10? 2.75150 x 102 2.75893 x 107 2.81813 x 102 2.96481 x 10?

/0

Pa%s
Pa’s

2.360449

1.926742

2.624791

2.092844

2.495385

2.836702
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Table 3. Cont.
yIs711 Index N =50 N =100 N =500 N = 1000 N = 5000
elen [paZ 490577 x 1074 843919 x 107*  1.66358 x 103  3.88467 x 103  7.92263 x 10~2  4.12478 x 102
1x10°° I}, |Pa*s 2.56575 x 10? 2.67642 x 10? 2.68545 x 102 2.73497 x 10? 2.77623 x 10? 2.88112 x 10?
07 [Pa2s 1.251268 0.969347 0.880198 1.097522 1.369153
N
elen [paZ 8.80287 x 107%  1.16953 x 1073 1.90025 x 1073  4.02082 x 1073  8.03088 x 102  4.13474 x 102
5x 10~ 7, |Pa2s 2.17932 x 10% 2.37719 x 10? 2.46356 x 102 2.61489 x 10? 2.67451 x 10? 2.77109 x 10?
o7 [Pa2s 0.244248 0.220253 0.169113 0.215385 0.248797
N
elen [paz 1.37477 x 1073 1.68512 x 1073 2.29245 x 1073  4.31822 x 103 8.23885 x 1072  4.14497 x 1072
1x 1075 I}, |Pa2:s 2.00761 x 102 2.19869 x 102 2.32877 x 102 2.51385 x 102 2.60383 x 102 2.73583 x 102
Ql, |Pa2s 0.114042 0.113907 0.090753 0.114361 0.119821
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Figure 7. Relaxation time spectrum H(7) (50) (solid red line) from Example II and the corresponding
models H;YV (7) (26) determined for N measurements of the relaxation modulus corrupted by additive
independent noises uniformly distributed on the interval [—0.005, 0.005] Pa: (a) N = 50; (b) N = 100;
(c) N =200; (d) N = 500; (e) N = 1000; and (f) N = 5000; the values of the parameter - introduced
in the modified Lagrange functional (25) are given in the figures.



Polymers 2024, 16, 2300

21 0of 33

3.13. Example 111

Consider the spectrum of relaxation times introduced by Baumgaertel, Schausberger,

and Winter [50,51] 0 o
H(t) = {,Bl <;> + B2 (;) }3_”’:’”/ 1)

which is known to be effective in describing polydisperse polymer melts [24,25] with the
parameters [25] B1 = 6.276 X 10~2 MPa, B2 = 0.127 MPa, 1, = 2.481 s, Tyax = 2.564 X 10% s,
p1 = 0.25,and p, = —0.5. As in [54], in the experiment, N time instants ¢; were sampled
with the constant period in the time interval of 7 = [O, 105] seconds, where, following [18],
the interval was selected in view of the course of the ‘real’ modulus G(f) defined by (1).
Additive measurement noises z(t;) were selected independently by random choice with
uniform distribution on the interval [—0.005, 0.005] MPa. The results of the numerical
experiment are given in Table 4 and illustrated in Figure 8.

Table 4. For the polymer described by the BSW spectrum (51): the square model error SKJSN (31),
the smoothness index IX, (32), and the noise robustness index Q% (38) for N measurements of
the relaxation modulus corrupted by additive independent noises selected according to uniform
distribution from the interval [—0.005, 0.005] MPa and parameters < introduced in the modified
Lagrange functional (25).

yIs™1] Index N =50 N =100 N =200 N =500 N = 1000

elen [Mpaz 450707 x 10~% 819820 x 10~%  1.65574 x 10~3  3.89542 x 1073  7.93196 x 1073

1x 1077 77, |MPa?s 3.21654 x 103 3.24851 x 103 3.24718 x 103 3.23537 x 103 3.24043 x 103
Q7 [MPa2.s 11.891956 11.219052 10.864104 8.652512 10.942303

N [MPaZ 516852 x 107 857969 x 107*  1.67497 x 103 3.90799 x 10~  7.94415 x 1073

5x 1077 7}, |MPa?-s 3.15685 x 10° 3.21397 x 103 3.22838 x 10° 3.22318 x 10° 3.22606 x 103
Q7 [MPa’s 2.175434 2.067436 2.0363525 2.006206 2.710421

elen [Mpa2 6.72858 x 107*  9.49036 x 10~*  1.71894 x 10>  3.93047 x 1073 7.95659 x 103

1x107° I, |MPa2-s 3.10426 x 103 3.18335 x 103 3.213648 x 10° 3.21555 x 103 3.22182 x 10°
Q7 [MPa%s 1.076912 0.975302 0.944682 0.997097 1.417322

elen [MpaZ 3.81118 x 1073 2.95039 x 1073  2.87847 x 1073 4.44269 x 1073 8.24008 x 1073

5x 10 Z% |MPa2-s 2.82672 x 103 3.00764 x 103 3.11432 x 103 3.17172 x 103 3.19764 x 103
Q7 [MPa?.s 0.169205 0.230928 0.230358 0.204836 0.308728

elen [Mpaz 1.08157 x 1072 7.46682 x 10~ 5.81259 x 107> 5.84646 x 1073  9.03681 x 1072

1x107° 7}, [MPa?-s 2.58939 x 103 2.85463 x 103 3.01535 x 103 3.12462 x 103 3.17095 x 103
Q7 [MPa%s 0.078727 0.114988 0.140981 0.118423 0.169938

Since the real spectrum H(7) (51) tends to infinity for T — 0 whenever at least one
of the parameters p; and p; is negative, the best-smoothed model Hy (7) (26) cannot
adequately approximate this spectrum for small relaxation times 7; in the example for
0 < T < 10° s. This is well illustrated in Figure 8. However, this figure also shows that for
a sufficiently large <y, the spectrum H(7) for higher frequencies and its local maximum are
well approximated.
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Figure 8. The relaxation time BSW spectrum (51) (solid red line) from Example III and the corre-
sponding models HY,(7) (26) for N measurements of the relaxation modulus corrupted by additive
independent noises selected according to uniform distribution from the interval [—0.005, 0.005] MPa
and parameters <y introduced in the modified Lagrange functional (25): (a) N = 50; (b) N = 100;
(c) N =200; (d) N = 500; (e) N = 1000; and (f) N = 5000.

3.14. Applicability for Identification of Relaxation Spectra of Different Types

The natural condition of this approach’s successful applicability follows from the
properties of the best-smoothed model Hy(T) (26) yielded by the properties of the basis
functions h;() (13), which compose the vector hy(T) according to (14). Since for T — 0
and T — oo, the basis functions are /;(7) — 0 (c.f., Section 3.2), the best model Hy(7) also
tends to zero as the relaxation time T tends to zero and to infinity. Therefore, zero boundary
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conditions limit the scope of applicability of the model and method to the real relaxation
time spectra that satisfy these conditions. The example of the BSW spectrum demonstrates
that the properties of the spectrum for T — 0™ are essential here since the real relaxation
time spectra and the known spectra models tend to zero as the relaxation time 7 tends
to infinity.

The Kohlrausch-Williams-Watts (KWW) model of the stretched exponential relaxation
described by [57]
)‘B

G(t) = Goe (52)

where the stretching exponential 0 < B < 1, gxww is the characteristic relaxation time
and Gy denotes the initial shear modulus, has been found by many researchers to be more
appropriate than standard exponentials [57-62]. In spite of the simple, compact form of
(52), the related unimodal [58] relaxation spectrum is described by the following infinite
series [57,58]:

k1 Bk
H(t) = % Y o (%sin(nﬁk) [(Bk+1) (TK;/W> , (53)

which is based on Pollard’s representation of the stretched exponential as a Laplace inte-
gral [63], where T'(n) is Euler’s gamma function [64] (Equation (A.1.1)). However, for some
specific stretching exponentials, namely § = %, B = % and = %, the KWW spectrum has a
compact form described by some special functions [58]. For (53), both zero boundary condi-
tions are satisfied; compare [57] (Figure 1a). Therefore, the proposed approach can be used
to identify the spectrum of materials whose relaxation processes are described by the KWW
model, e.g., polymer melts [59], the local segmental dynamics of poly(vinylacetate) [60],
the segmental dynamics and the glass transition behavior of poly(2-vinylpyridine) [61], the
relaxation of bone and bone collagen [62], alginate films while considering glycerol con-
centration [65], and even the relaxation processes of the onion structure in sine-oscillatory
shear [66]. The best-smoothed model Hy(T) (26) given by finite series may prove to be
more useful than the original KWW spectrum (53).

In recent decades, non-integer order differential equations have increased interest in
the modeling of time-dependent relaxation processes; the fractional Maxwell model (FMM)
and the elementary Scott-Blair model are probably the most known rheological non-integer
order models. The applicability of the FMM relaxation time spectrum, which is described
by the compact analytical formula [54] (Equation (12)), to modeling the unimodal relax-
ation spectra of polymers was recently examined in [54]. However, it was demonstrated
in [54] that the FMM relaxation spectrum tends to infinity as T — 0" [54] (Proposition 2,
Equation (19)); therefore, the exact fitting of the FMM-type spectrum by the proposed
best-smoothed model in the whole relaxation time domain is excluded, which is similar for
the BSW spectrum. The relaxation time spectrum of the Scott-Blair model described by the
inverse power of the relaxation time with the non-integer exponent, see [54] (Equation (15)),
also loses the zero boundary condition at zero relaxation time.

Similarly, real relaxation spectra which are well characterized by simple inverse power
laws with various exponents [67]; for example, the power-type spectrum of cross-linking
polymers at their gel point described by Winter and Chambon model with an exponent of
—1/2 [68] and the spectrum of solution-polymerized styrene butadiene rubber described
by a combined four-interval power model with fractional exponents [69] could not be
successfully identified by the proposed method in the whole relaxation times domain.
In turn, Winter’s power law relaxation time spectrum with a positive exponent [70,71]
(Equation (2)), which was proposed to describe relaxation in many molecular and col-
loidal glasses, although satisfies the zero initial condition, could not be determined by the
proposed algorithm due to its confined domain.
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However, the proposed approach can be successfully applied to identify the relaxation
spectra of materials such as bitumen, being characterized by the broadened power law
model [71] (Equation (8)):

t\"™ (1P

H(T) = nyGe | — e \w’, (54)
T

which multiplicative form combines the power law with an exponential of stretching

parameter f. In the above model, the exponent 0 < 1, < 1, 7, is the longest relaxation time

and G, is the plateau modulus. The unimodal spectrum (54) satisfies both zero boundary

conditions; compare [71] (Figure 11a).

4. Conclusions

The objective of this paper was to develop a relaxation time spectrum model that could
reproduce the relaxation modulus measurements and which is the best-smoothed in the
class of continuous square-integrable functions. The unique optimal relaxation spectrum
model was found to be described by a finite series of specific exponential-hyperbolic
functions. A new identification algorithm was proposed in which the best smoothing of the
model was achieved together with the simultaneous reconstruction of relaxation modulus
measurements with small model errors. The analytical and numerical studies proved
that using a developed model and algorithm, it is possible to determine the relaxation
spectrum model for a wide class of polymers with zero boundary conditions, in particular,
Gaussian-like distributed relaxation spectra. The model is smoothed and noise robust;
small relaxation modulus model errors are obtained. The applicability of this approach
to determining the Baumgaertel, Schausberger, and Winter spectrum was also examined,
and it was proved that, due to the asymptotic properties of this spectrum, it can be well
approximated for higher frequencies and, in particular, in the neighborhood of the local
maximum. The rough applicability analysis, based on the consistency of the zero boundary
conditions of the real spectra and the best-smoothed model, shows the possibility of using
the proposed method and model to describe the relaxation spectra of different types that
are characteristic of many polymers. However, the search for such a modification of
the proposed approach so that it can also be applicable to the identification of spectra
with non-zero boundary conditions for relaxation times approaching zero, like the BSW
spectrum, will be the subject of future research. Generally, the properties of the method,
including the smoothness of the relaxation spectrum, depend both on the experiment plan,
i.e., on the sampling instants used in the relaxation test, and on the relaxation modulus
measurements. The results of numerical studies confirm the analytically proved monotonic
dependence on the gamma parameter: monotonically increasing for the square model error
and monotonically decreasing for the noise robustness and spectrum model smoothness
indices. However, the dependence of these indices on the number of measurements is not
so clear and must be the subject of further studies.

Summarizing the numerical studies implies the following directions for future research:

e  The asymptotic analysis of the model and identification algorithm properties as the
number of measurements tends to infinity;

e  The modification of the proposed approach for smoothing the spectrum model with a
non-zero boundary condition for zero relaxation time;
The modification for non-zero equilibrium modulus;
The recurrent realization of the algorithm.

This method can be applied for any deformation process described by definitional
Equation (1), i.e., both for uniaxial deformation, uniaxial stress, and uniaxial stretching,
assuming that the relaxation modulus of the respective process is experimentally accessible.
The relaxation time spectrum in the respective state (uniaxial deformation, stress, or stretch-
ing) is then determined. An appropriate modification of the algorithm can be developed to
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apply the concept of optimal relaxation spectrum model smoothing for oscillatory shear
measurements of the storage and loss moduli. This will be the subject of further research.
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Appendix A
Appendix A.1. Proof of Proposition 1

Let us define the functions %;(v) = e %%, i =1, 2,... and consider the function

N
fu(o) =} i, 8ii(v), (A1)
where the real parameters g; compose the vector gy = [¢1 -+ gN] T By (A1), for any
vector gy, we have
) 2 00 N 2
| Un@Pdo= [[5Y, siti(0)] do, (A2)

which can be rewritten as
| o = S Y s [ i) (000,

and next, bearing in mind the right equality in (7), is expressed as

./0'0o [fn(0))do = Zil Z]I\Ll 8i8jPij. (A3)

Bearing in mind (8) and (A2), Equation (A3) is the quadratic form

/000 [fN(v)]zdv = /Ooo [Zf\il glﬁi(v)rdv = gI{I‘DNgN-

Thus, gl ®@ngy > 0 for an arbitrary vector gy, and gl ®ngy = 0, if and only
if YN, ¢i%4;(v) = 0 for almost all v > 0. Since the exponential functions %1(v) =
e ho L hN(v) = e~ IN? je., the kernel of the Laplace transformation, are linearly in-
dependent, the last equality holds if and only if g; = O foralli =1,..., N, i.e., only if the
vector g, = 0, which yields the positive definiteness of ®@y. The Gram property of @y
follows directly from the definitional Formulas (7) and (8); its positive definiteness yields
the existence of a unique symmetric positive definite square root matrix @}\{2 in view of
Theorem 7.2.6 in [72] concerning the positive semidefinite k-th roots of the Hermitian posi-

T
tive semidefinite matrices by lying k = 2. Thus, @y = <D11\]/ 2<D11\,/ 2, and <D11\]/ Z= (tbll\l/z) . By
Theorem 4.2.1 in [42], the inverse matrix @K]l is a positive definite, too. The non-singularity

of the square root 4511\,/2 implies the inverse matrix formula @&1 = d>l?]1/ 2@&” 2, thus, this
proposition is proved.

Appendix A.2. Some Matrix Identities

In this appendix, some useful vector-matrix identities are given.

Property Al. For arbitrary sampling instants t; > 0,i =1,..., N, such that t; 1 > t;, the
matrix @ (8) and vector function @ (t), defined by (18), satisfy the equation

[on(t), .. on(t)]" = lpn(t), ... on(tn)] = @y (A4)
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Proof. Equation (A4) follows directly from (8) and (18). J

Property A2. Forany v > 0 and any positive definite symmetric matrix @y, the following
inequality

(O +47InN) 7 < B2, (A5)

and equations
Inn — On (DN +47Inn) ' = 49(Dn +49Inn) (A6)
(@N +49INN) PN = B (DN + 49Ty n) ! (A7)

hold.
Proof. Inequality (A5) results directly from the following inequality:
D} < D3, 487Dy + 16721y n = (PN + 471N N)*
The equality

Inn — DN (PN +47Inn) ' = [(On +49In ) — ON](Pn +49InN) !

implies identity (A6).
For the Gram matrix @y = 4511\,/ 2 4511\,/ 2 we have
@2 (@ +47INN) = (DN +47Inn) @Y (A8)
whence
Oy = 120/ = (D +4vIN N) PN (DN +4vInN) T @2,
and finally

(@N +49InN) " On = Y2 (@N +49InN) PN (A9)

From (A8), after multiplying by (@y -+ 47Iy ) ' on the right and on the left, we
obtain identity (A7). O

Appendix A.3. Proof of Theorem 2

A dual approach will be used to find the saddle point of the modified Lagrange
Functional (25). First, the function Hy;(7) minimizing the Functional (25) is found, i.e., the
primary optimization task

i Lu(Hy, AN) = Ly (Hp, Ay, A10
1,00 ) (Hm, AN) (Hm, AN) (A10)

is solved. Next, the dual function is maximized, and the vector of optimal Lagrange
multipliers is found.

The necessary and sufficient optimality condition for the primary problem (A10) takes
the form

—t/T
— N e ti
2Hm(T) =), /\iT =0,
from which we obtain
. 1 N e—i'l'/T
Hu(t) = 50 A (A1)

which, substituted into the modified Lagrange functional (25), yields the dual function

Lpm(AN) = L (Hym, An),
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given by

t/T

ooe]'
Z]l //

By definition (7) and (8) of the matrix @y, the structure of the vectors Gy (10) and Ay,
the dual function (A12) can be expressed in compact form as

LDm /\N Zz 1A

] YN AL (A1)

— 1
Lpm(An) = ARGy — JANPNAN — TANAN,

which, in view of Proposition 1, means that for any parameter y > 0 the dual function is
strictly the concave function of A with the gradient

dLD,m(AN)

_ 1
=GN — ~®ONAN — 294N,
dAN NZNN YAN

Therefore, the unique solution of the dual problem is given by the formula
Al =2(@y +49Inn) G (A13)

By (A11), and bearing in mind the notations (13) and (14), the corresponding relaxation
spectrum model is expressed as follows:

1N eftl-/T 1 T
H{ (1) = 50 A —— = 5 (A}) (7). (A14)

The pair <H7 , /\L) is a unique saddle point of the Lagrange functional (25). The

substitution of A;(] (A13) into (A14) yields Formula (26).
By (1) and the left equality in (A11), bearing in mind (16), for any ¢ > 0 we have

7(t,'+t)/'f 1

— « H] () _ 1N ®© e N
Y0 — N t/ _ 14 - Y.
with the functions ¢; () given by (17), which, through (18), can be expressed as
_ 1 T
G () =5 (A%) en(t),
and, when combined with (A13), implies Formula (27). The result is proved.

Appendix A.4. Derivation of the Inequality (28)
By (A13), we have

T —T o
(AL) AL = 4G (PN +49Inn) G, (A15)

while for the Lagrange multiplier Ay (11) the respective value is
AK]AN = ég¢ﬁ261\] (A16)

Therefore, by virtue of (A15), (A16), and property (A5), for the optimal vectors of the
Lagrange multipliers Ay (11) and AK, (A13), the inequality (28) holds.
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Appendix A.5. Proof of Proposition 2

The following differential properties which hold for the arbitrary differentiable matrix
functions A(x) and B(x) [42] (Equations (P2.1.2a) and (P2.1.2b)):

) A B
2 1ABE)] = 2 () 4 A B, (A17)

9 _ 49 _
2[00 = A gix)A(x) L (A18)

assuming that matrix A(x) is invertible, will be used.
By (A17), we obtain
d 5 0 _ 41 AT, _10A(x) !

SAx) P = o [A(x) TA(x) 1] :%A(x) LA™ (a? . (A19)

from which, including (A18), we immediately obtain the next useful differential formula:

A2 = A

-1 aA(x)
dx

-2 E)A(x)
dx

A(x) 72— A(x) A(x)~ L (A20)

From (31), it follows that

-2

d —T o= —T 0 —
geﬁsz\] = 329Gy (PN + 471N N) 2Gy + 1672GN$(<DN +49IyN) Gn.  (A21)

Since, by virtue of (A20),

-2

d _
E(QSN +49Inn) = -8(@n +47InN) >,

Equation (A21) takes the form

7T —2=
elen = 329Gy (O +49Inn) Gy

—16:8-92G N (@ + 471N N) Gy,

and can be rewritten as follows

0 _T _ _
ﬂsﬁel\] = 329Gy (P +47Inn) (DN +47Inn) — 49InN]G,

from which the next formula is directly obtained

2 _ -~ _
5y heN = 321G (@ + 491 N) NG (A22)

Therefore, using (A9), we obtain
(@N +49InN) Oy = (On + 49InN) 2PN (DN +47In ) T @2,

whence, through the double use of identity (A7), we find

(@n +4yIny) Py =
(O +47Inn) (P + 47N n) T BN (DN + 4yl ) BN =
(@N +49InN) T N2 (DN + 491N N) TR =
d’zle/z(@N + 47HN,N)73¢11\]/2'

(A23)
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Combining (A22) and (A23) yields

d — _ _
ﬂsﬁi‘EN = 327GL¢11\]/2((DN +4yIyN) @) Gy, (A24)

from which the positive definiteness of the first derivative follows in view of the positive

definiteness of the matrix (®y + 4vIn N) -3,

From (A24), the second derivative is obtained

2 =T - G
srenen = 326Ny D\ 2 (@n +4yInn) By Gy

7 - N (A25)
+329GN @ & (Dy +47Iny) @Y G-

Applying (A17) again to the second term in (A25) gives

2 —T - G
srenen = 326y @\ *(@n +47Inn) By Gy
+327GN N2 2 (P + 47T ) (@n + 47Inn) 20N Gy

7T _ _ —
+329GN @\ (@ +47InN) T (DN +47Inn) @Y PG,
whence, using differential Formulas (A18) and (A20), we obtain

2 —T — el

aaTzeﬁSN =32GN P % (Pn +47InN) S PN ZGN
7'1" — — =l

—32'4")/GN‘D11\]/2(‘DN + 491N N) 2Dy + 4vINN) 24)}\]/2GN

7’1" _ _ _
~32:89Gy @ (@ + 49l n) T (@y +47Inn) @G,
and next , . B
srenen = 326y B\ *(@n +47Inn) By *Cy
—3212:9GN DY (Dy + 47y )t 201Gy,
which can be finally expressed as the quadratic form

? T
WSNEN—

7’1" _ - B
32GN(D11\’/2((DN + 49Ty N) 2 (@n — 87T, N) (P + 47T N) szzl\;/zGN.

The matrix (®y + 4'y]IN,N)_2 is a positive definite. The conditions concerning convexity

and concativity of the square model error e} ey result directly from the conditions of

positive or negative definiteness of the matrix (®y — 8yIy ). The proposition is proved.

Appendix A.6. Derivation of Formulas (34) and (35)
By (33) and differential Formulas (A19) and (A18), for any v > 0, we have
7’1" _ _ —
2T = ;4GN<1>11V/2(<1>N + 49l N) 2 (@N +49INN) PN G-
GNP (@y +4yInN) (DN +47Ivn) C DY,
which yields (34).
Therefore, using (A17), we obtain
2 —T — — -
2Tl = —8GN B\ 2 (O +4yIn ) 2 (DN +47Inn) T BN PG -
7'1" _ _ B
8GN @2 (@n +47Inn) L (PN +47In ) @Y PG
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Next, applying Formulas (A18) and (A19), we find:

2 —T _ _ —
LT = 84GN D 2 (DN + 47Iny) (DN +47Iny) 20N *Grt
8-46N¢i/2<<1>z¥ +4yInn) " (Pn + 4yInn) (P + 4vInn) T @Y PG+
84GN @y * (P +47Inn) (P +47InN) @Y *GN,

whence
2
072

i.e., Formula (35) follows.

I} = 812G\ @Y (®n + 49Inn) 2@l *Cy,

Appendix B

Table Al. For Example I, the square model error sIT\feN (31), the smoothness index

2
IX] = fo°° [ﬁly\,(r)] dt, Equation (32), and the noise robustness index QK] (38) for N measurements
of the relaxation modulus corrupted by normally distributed additive independent noises with
zero mean value and the standard deviation o = 4[Pa]; parameter v is introduced in the modified
Lagrange Functional (25).

yIs™11 Index N=20 N =50 N =100 N =500 N =1000
elen [kpa2 5.43595 x 107*  1.00519 x 1073  1.84977 x 1073 7.70001 x 1073 1.55419 x 1072
5x 1077 I}, |kPa’ss 83.336529 70.77716 71.747521 73.185807 83.497189
Q1 |kPa®s 6.384582 6.648187 5.829650 5.484982 13.108415
elen [kPaz 5.63927 x 107*  1.01733 x 1073 1.85720 x 1073 7.707668 x 1073 1.556163 x 102
1x10°° 77 [kpPa’s 76.168804 66.385898 69.099367 70.438599 76.296796
QY [kpPa-s 3.564357 3.317502 3.031949 2.621451 5.193645
elen [kpaZ 6.61796 x 107 1.04504 x 1073 1.887541 x 10~%  7.733015 x 1073 1.56079 x 10~2
5x107° 7, |kPa’-s 65.608941 63.014540 65.816002 67.562022 70.882789
Q1 |kPa*s 0.851793 1.172124 0.914936 0.414335 0.754181
elen [kpa2 748551 x 107%  1.06649 x 1073 1.92315 x 1073 7.75582 x 1073 1.56467 x 1072
1x107° 7}, |kPa?-s 62.549842 62.274208 64.589149 66.768457 69.528702
Q1 |kPa*-s 0.410221 0.739890 0.596089 0.238231 0.379671
Table A2. For Example I, the square model error SIT\IeN (31), the smoothness index
2
IX] = [ 0°° [ﬁly\,(r)] dt, Equation (32), and the noise robustness index QK] (38) for N measurements
of the relaxation modulus corrupted by normally distributed additive independent noises with
zero mean value and the standard deviation ¢ = 6[Pa]; parameter v is introduced in the modified
Lagrange Functional (25).
yIs™1 Index N=20 N =50 N =100 N =500 N =1000
elen [kpa2 1.21470 x 1073 2.25864 x 1073 4.16166 x 1073 1.73258 x 1072 3.49726 x 102
5x 1077 I}, |kPa’-s 96.874904 77.140666 77.6860944 79.138260 100.199781
QY. |kPaZ:s 14.365310 14.958420 13.116713 12.341209 29.493933
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Table A2. Cont.

ls™1] Index N=20 N=50 N =100 N =500 N =1000
elen [kPa2 1.24932 x 1073 2.28259 x 1073 4.17777 x 1073 173428 x 10°2  3.50181 x 102
1x 10~ I;\Y] kPa2-s 84.636611 68.436067 71.912153 73.025494 83.586342
QXI kPaZ-s 8.019804 7.464379 6.821885 5.898264 11.685702
elen [kPaz 1.39704 x 1073 232565 x 1073 4.22678 x 10~3  1.73873 x 102 3.51075 x 1072
5% 10~© Izzr kPaZ-s 68.346247 62.895476 66.290649 67.641705 72.583587
QKI kPaZ-s 1.916535 2.637279 2.058606 0.932255 1.696907
elen [kpaZ 151741 x 1073 2.34999 x 103 427376 x 10~ 174152 x 1072 3.516484 x 102
1x107° IX] kPaZ-s 64.090823 62.048757 64.664280 66.661361 70.566065
QK] kPaZ-s 0.922997 1.664754 1.341202 0.536019 0.854259
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