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Abstract: This paper explores the intricate relations between biomass polymeric composition, ther-
mochemical conversion routes, char yields and features in order to advance the knowledge on
biomass conversion processes and customize them to meet specific requirements. An exhaustive
characterization has been performed for three types of biomasses: (i) spruce bark, a woody primary
and secondary residue from forestry and wood processing; (ii) wheat straws—agricultural waste
harvest from arable and permanent cropland; and (iii) vine shoots, a woody biomass resulting from
vineyard waste. Chemical (proximate and ultimate analysis), biochemical, trace elements, and ther-
mal analyses were performed. Also, Fourier transform infrared spectroscopy, Scanning Electron
Microscopy, and thermogravimetric analysis were conducted to establish the compositional and struc-
tural characteristics of feedstock. The main polymeric components influence the amount and quality
of char. The high hemicellulose content recommends wheat straws as a good candidate especially for
hydrothermal carbonization. Cellulose is a primary contributor to char formation during pyrolysis,
suggesting that vine shoots may yield higher-quality char compared to that converted from wheat
straws. It was shown that the char yield can be predicted and is strongly dependent on the polymeric
composition. While in the case of spruce bark and wheat straws, lignin has a major contribution in
the char formation, cellulose and secondary lignin are main contributors for vine shoots char.

Keywords: biomass; polymeric components; thermochemical conversion; char; circular economy

1. Introduction

The sustainable utilization of biomass resources is a topic of utmost significance in the
dynamic frame of bioeconomy [1]. Biomass plays a pivotal role in the production of valuable
bio-based chemicals, materials, and products, shaping a greener circular economy [2].
Including plants, agricultural and forestry waste, wood industry by-products, and other
categories, biomass has gained substantial interest also for generating energy and various
other applications [3].

The production of lignocellulosic wastes is largely attributed to agricultural and
forestry practices among all human activities [4]. Globally, an estimated 140 Gt of biomass
waste is produced each year, leading to major environmental impacts and management
issues [5].

Around 39.1% of the entire land area in the European Union (EU) is dedicated to
agricultural purposes [6], and approximately 23 million tons of dry biomass are produced
annually as residual straw from cereals [7]. Moreover, 66% of biomasses are from cereal
straw, and more than 60% are generated in low-income countries from the Asian continent
and northern African countries [8]. Globally, major crops such as barley, maize, rice,
rapeseed, wheat, soybean, sugarcane, and sugar beet produce almost 3.3 Gt of waste (fresh
weight) annually [9].

Cellulose and hemicellulose-rich agricultural biomass wastes are valuable feedstocks
for producing a wide range of products from chemicals [10], bioactive compounds [11],
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biomaterials (composites, engineered bioplastics, thermoplastics elastomers, filters and
films) [12], supercapacitors [13], carriers for enzyme, bacterial and fungi immobiliza-
tion [14], amendments [15], and biosorbents [16] to biofuels [17].

Forests cover 38% of land in the EU and provide diverse ecosystem services such as
carbon storage and sequestration, habitat provision, air quality and water regulation (qual-
ity, quantity, flow), soil erosion control, recreation, and wood and non-wood products [6].
Approximately 70% of forests are composed of two or more tree species, leading to marked
variations in forest growth rates. Only a limited part of the biomass from felled trees is
removed during harvesting operations, while the main part remains on the ground as
primary logging residue [18]. Excessive removal of logging residues from forest sites leads
to the depletion of nutrients and organic matter, affecting the soil and, indirectly, altering
vegetation and the soil microclimate [19]. Based on Eurostat reports, it is estimated that
an average of 281 million tons of trees or tree parts fall each year, of which 224 million
tons are removed, while 57 million tons, representing 20%, are left in the forest as log-
ging residues [20]. Consequently, it is imperative to develop a sustainable valorization of
biomass waste in order to generate value-added products [21] that can lead to the circular
bioeconomy goal [22].

Thermochemical conversion represents a major way to convert biomass waste effi-
ciently using various paths (gasification, pyrolysis, liquefaction, and hydrothermal car-
bonization) in order to obtain carbon-rich materials with various uses [22].

Gasification is a thermal process where biomass is degraded to hydrogen (H2), carbon
monoxide (CO), carbon dioxide (CO2), and other gasses at high temperatures (600–1200 ◦C)
for a short residence time (10–20 s) [23]. This process demands high energy and also
involves high risks of pollution (CO2, NOx, SOx, and solid residues) [24].

Pyrolysis consists of the decomposition of biomass under anoxic conditions at elevated
values of temperature (300–650 ◦C) and pressure (10–80 MPa) [25]. The process leads
to biochar, bio-oil, and remnant gasses (CH4, CO, CO2, and H2) [26]. Low values of
temperature (slow pyrolysis) and heating rate (0.1–1 ◦C/s) favor high solid product yield.
By contrast, high values of temperature (500–700 ◦C) and heating rates (10–200 ◦C/s)
increase the carbon percentage and reduce product yield [24].

Hydrothermal liquefaction (HTL) is a process in which biomass macromolecules are
hydrolyzed at average temperatures (280–370 ◦C) and high pressures (5–40 MPa). Under
these conditions, water is still in a liquid state (subcritical water) [27]. HTL uses water as a
reaction medium [28], and a short retention time for the production of bio-oil [29]. Though
HTL is environmentally safe, it still has the drawback of a high energy demand [27]. On
the contrary, hydrothermal carbonization (HTC) is a cost-efficient and environmentally
friendly method. HTC has the advantage of operating at low temperatures (180–260 ◦C)
and converting biomass in hot liquid (subcritical or supercritical water) to obtain hydrochar
without prior drying [30].

An important indicator of biomass conversion efficiency is the char yield [31], which
represents the percentage of biomass that remains in the solid carbon phase once the
thermal degradation process has been completed [32]. The yield is closely related to
the composition and properties of the feedstock [33]. Biomass has a complex polymeric
composition (cellulose, hemicellulose, and lignin) and constituents such as extractables and
moisture, each with a unique chemical structure and thermal behavior [34]. As a result, the
variability in biomass composition plays a significant role in choosing the thermochemical
conversion path, as well as in determining the yield and characteristics of the resulting
char [35].

Understanding the complex correlation between biomass polymeric composition,
the suitable thermochemical process, and char yield and characteristics are crucial for
optimizing the conversion process in order to generate tailored materials for various ap-
plications [36]. Furthermore, the characteristics of char (porosity, surface area, surface
charge, functional groups, and chemical reactivity) can strongly impact its potential ap-
plications [37], ranging from energy production [35] and soil amendment [2], uses as
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biosorbents [38] and carbon sequestration material [39] to carriers for microorganisms [40]
and active ingredients [41].

This paper explores the intricate relations between biomass polymeric composi-
tion, thermochemical conversion routes, and char yield and features in order to ad-
vance the knowledge on biomass conversion processes and their customization to meet
specific requirements.

2. Materials and Methods
2.1. The Biomass Supplies

Three distinct types of biomass, specifically spruce bark (SB), wheat straws (WSs)
and vine shoots (VSs), were analyzed. Raw materials were collected from the northeast
region of Romania in the autumn season, and dried in an aerated dark room, grinded in
a Micro Powder Grinding Mill Retsch GmbH GM 200 (Retsch GmbH, Haan, Germany)
with 320 rpm for 20 min. Using a sieve shaker Retsch GmbH AS 200 (Retsch GmbH, Haan,
Germany), based on particle size, the feedstock was separated into large (1–2 cm), medium
(0.5–1 cm), and small fractions (<0.1 cm) and placed in a desiccator for further use.

2.2. Analytical Methods for Biomass Compositional Attributes

The ash content was determined using a calcination furnace (Nabertherm GmbH
L3/11/B180, Lilienthal, Germany) at a constant temperature of 550 ◦C ± 10 ◦C for 2 h. The
C, H, N, and S contents were measured by conducting elemental analysis by means of a
Vario Micro elemental analyzer (Elementar Analysensysteme GmbH, Lilienthal, Germany).
The oxygen content was then calculated as the residual of the sample following measure-
ment of the aforementioned components and ash content, relative to 100%. To identify,
isolate, and purify the major chemical constituents, the protocols outlined in the Technical
Association of the Pulp and Paper Industry (TAPPI) standard methods for analysis were
followed. These procedures were carried out to assess the chemical composition of SB,
WS, and VS [42,43]. The raw material was first extracted with ethanol–benzene (1:2) for
8 h at reflux, then with ethanol for 4 h at reflux, and finally with distilled water at boiling
temperature for 1 h (as in TAPPI T204: Solvent Extractives of Wood and Pulp; and TAPPI
T264: Preparation of Wood for Chemical Analysis). Samples of extractive-free material
were used to determine the lignin, cellulose, and α-cellulose (T203: Alpha-, Beta-, and
Gamma-Cellulose in Pulp) contents of the raw materials. The lignin content was deter-
mined as both the acid-insoluble (TAPPI T222: Acid-Insoluble Lignin in Wood and Pulp)
and acid-soluble lignin, the latter being measured spectrophotometrically at 205 nm using a
JASCO V550 spectrophotometer (Jasco International Co. Ltd, Tokyo, Japan). Following this,
the holocellulose was quantified by the Jayme–Wise method using ~1 g of raw material.
Sample contents of water, ash, and acid-insoluble ash were determined by following the
TAPPI standard methods: T211 (Ash in Wood, Pulp, Paper, and Paper-board Combustion
at 525 ◦C) and T244 (Acid-Insoluble Ash in Wood, Pulp, Paper, and Paperboard).

2.3. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

All samples were analyzed using a PerkinElmer Spectrum GX1 spectrometer (PerkinElmer
LAS GmbH, Rodgau, Germany), equipped with an attenuated total reflection (ATR) crystal
of ZnSe (45 degree) accessory for the analysis of solid samples in reflectance mode. For each
sample, IR spectra were acquired (64 scans, spectral resolution 4 cm−1) in the reflectance
mode in the 4000–500 cm−1 spectral range, and the average spectrum was reported. To
perform the analysis, the samples (of three sample doses: 0.1 g, 0.2 g, and 0.3 g) were pressed
onto the crystal. All raw IR spectra were converted into absorbance, baseline corrected,
and vector normalized in the same range (Spectrum 10.6.1 software, Perkin-Elmer LAS
GmbH, Rodgau, Germany). The above-described spectral parameters of each sample were
submitted to Hierarchical Component Analysis (HCA) and Principal Component Analysis
(PCA) to evaluate similarities among samples.
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2.4. Scanning Electron Microscopy (SEM)

In order to obtain morphological, structural, and specific information about the elemen-
tal composition (metals and rare elements), the surface was analyzed with a field-emission
SEM (Merlin VP Compact, Carl Zeiss, Oberkochen, Germany) in BSE mode coupled to an
EDX spectrometer (Bruker Quantax XFlash 5060F, Bruker Nano GmbH, Berlin, Germany),
respectively, at an electron acceleration voltage of 11.8 kV and a beam current of about
250 pA. Firstly, the surface was scanned using the in-lens electron detector negatively biased
at 958 V to allow for the detection of high-energy back-scattered electrons and completely
suppress secondary electrons.

2.5. Thermogravimetric Analysis (TGA)

The samples of SB, WS, and VS (~3 mg) were analyzed using a Mettler Toledo
TGA/DSC 2 (Mettler Toledo, Columbus, USA) having a heating rate of 20 ◦C/min, an air-
flow rate of 60 mL/min, and a temperature accuracy of ±0.2 K. TGA-DTG plots were used
to depict the thermal behavior of main polymeric components—hemicelluloses, cellulose,
and lignin—and the contents of water and volatile compounds. TGA-DTG curves were
plotted using the Origin software (OriginPro 2019b 9.6.5.169 Version).

3. Results and Discussion

Spruce bark (SB), wheat straws (WSs), and vine shoots (VSs) are available in large
quantities in central and eastern Europe. Spruce bark is a woody primary and secondary
residue from forestry and wood processing, wheat straws are an agricultural waste har-
vested from arable and permanent cropland, and vine shoots are a woody biomass that
is a result of waste from vineyards. Spruce bark (SB), a residual material from timber
harvesting or fallen trees, presents considerable promise as feedstock. Its fibrous nature
renders it well-suited for porous carriers and sequestration carbon materials. Being one of
the abundant categories of agricultural waste, wheat straws (WSs) are traditionally used for
low-value purposes [35]. One of most unresearched and unused wastes is represented by
vine shoots (VSs), a largely available agricultural waste improperly valorized in Europe [7].

3.1. Chemical (Proximate and Ultimate Analysis), Biochemical, and Trace Elements
Characterization of SB, WS, and VS

In order to propose an appropriate conversion path, and understand the char character-
istics and yields, an extensive characterization of the raw biomass in terms of com-position
and functions (proximate analysis and ultimate analysis) was carried out. Table 1 presents
chemical, biochemical, and trace elements characterization of SB, WS, and VS.

Table 1. Chemical (proximate and ultimate analysis), biochemical and trace elements characterization
of spruce bark, wheat straws, and vine shoots.

Type of Biomass Waste Spruce Bark Wheat Straws Vine Shoots

Proximate analysis Moisture, wt% 9.55 ± 0.33 7.4 ± 0.28 7.8 ± 0.30
Ash (600 ◦C), wt% 2.75 ± 0.29 4 ± 0.34 2.1 ± 0.27

Biochemical
components

Extractables, wt% 9.05 ± 0.74 5.1 ± 0.58 2.7 ± 0.45
Cellulose, wt% 48.10 ± 1.10 33.80 ± 0.92 49.30 ± 1.03

Hemicellulose, wt% 19.75 ± 0.53 38.20 ± 0.81 21.50 ± 0.57
Lignin, wt% 22.87 ± 0.48 18.90 ± 0.45 24.40 ± 0.55

Ultimate analysis
Carbon, wt% 52.07 51.56 52.72

Hydrogen, wt% 5.30 4.49 5.26
Oxygen, wt% 41.98 43.93 42.01

Trace elements
Copper, ppm 3.1 3.5 3.3

Cadmium, ppm 1.0 0.1 0.41
Lead, ppm 2.5 0.2 0.7
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It can be noted that SB had the highest moisture content at 9.55%, followed by vine
shoots at 7.8% and wheat straws at 7.4%. A higher moisture content can affect the efficiency
of thermal degradation processes due to the increased energy requirements for water
evaporation [44]. These results are in line with data reported by Bejenari et al. (8.35%
moisture of dried biomass) [45].

The ash content measured at 600 ◦C serves as a potential hint of biomass suitability
for thermal conversion processes. Ash content primarily consists of inorganic minerals
present in biomass, such as silica, potassium, calcium, and magnesium [46]. During thermal
conversion, these minerals can contribute to ash formation, which may lead to operational
challenges, such as slagging, fouling, and corrosion in combustion or gasification sys-
tems [47]. VS exhibited the lowest ash content at 2.1%, indicating a minimal content of
inorganics. Following closely, SB had an ash content of 2.75%, whereas WS had the highest
ash content at 4%. Geremew et al. [48] found a close value for WS (3.7% ash content). This
ranking suggests that among the three biomass sources, due to its low ash content, VSs
may constitute a feasible candidate of biomass for thermochemical conversion.

Variations in hemicellulose, cellulose, and lignin composition significantly influence
thermal degradation behavior. VS and SB presented the highest cellulose content, of 49.30%
and 48.10%, respectively, while WS had the lowest cellulose content (33.80%). Cellulose is
a primary contributor to char formation during pyrolysis, suggesting that VS may yield
higher-quality char compared to WS [49].

Carbon content plays a vital role in char formation and yield efficiency during thermal
degradation [50]. The carbon content across all biomass types considered in this study is
relatively consistent with ash content data, with VSs having the highest value (52.72%),
followed closely by SB (52.07%) and WSs (51.56%). Due to their relatively high carbon
content, VSs are more likely to yield a higher char amount during thermal conversion
processes compared to SB and WS. Therefore, enhancing the efficiency and effectiveness
of thermochemical conversion processes, VS represents the most suitable biomass among
the three.

Hemicellulose degrades above 125 ◦C [51]. Among the three types of biomass, WS
had the highest concentration of hemicellulose (38.2%), while SB and VS contained signifi-
cantly lower contents of hemicellulose: 19.7 and 21.5%, respectively. The relatively high
hemicellulose content recommends WS as a good candidate for thermochemical conversion
processes conducted at low values of temperature and residence time (HTC).

Kalderis et al. [52] reported that cellulose degradation requires temperatures above
200 ◦C. Following the degradation route, cellulose is hydrolyzed to glucose, and then
the dehydration of glucose leads to furfural. The end product is a carbonized structure.
Among the three feedstocks, VS had the highest content of cellulose (49.3%), closely
followed by SB (48.1%). Thermo-degradation processes conducted above 200 up to 350 ◦C
are expected to generate micro and nanoporous structures in HTC and slow pyrolysis
processes, respectively.

Lignin has a larger span of degradation temperatures, between 200 and 500 ◦C [53].
Such temperature values of biomass conversion and high contents of lignin (24% for VS,
and 22.87% for SB) result in the generation of bio-oil instead of biochar. Consequently, VS
and SB are both good candidates for HTC (above 250 ◦C) and fast pyrolysis.

Ligno-cellulosic content/structures are the major contributors to the porosity, adhesion
forces, and multi-layer surface areas of the achieved chars [54].

3.2. Fourier Transform Infrared Spectroscopy (FTIR) of Feedstock

The FTIR spectra recorded for all three samples (SB, WS, and VS) were overlapped
in order to point out the main different functional characteristics, as shown in Figure 1.
The functional groups of each source of biomass are mostly alike, though have several
differences, especially in the case of SB and VS.
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Figure 1. FTIR spectra of SB, WS, and VS, respectively.

The band at ≈3700 cm−1 is due to stretching vibrations in hydroxyl groups. The
position and shape of this band suggest that the hydroxyl groups are involved in hydrogen
bonding. The residual water of the raw material could take part in the formation of
hydrogen bonds [55]. According to the four types of hydrogen-bonded structures reported
previously by Coleman et al. [56], the most predominant are the self-associated -OH groups.
Suggesting an aliphatic passage, the presence of C-H and C-O bonds is indicated by the
adsorption peaks in the range 2398–3023 cm−1. Ascribed to ν (C=O) vibrations in carbonyl
groups, the band at 1860 cm−1 shows the presence of carbonyl, ester, or carboxyl groups
from cellulose and lignin [57].

The ν (C=C) absorptions occur between 1700 and 1400 cm−1 [58]. The band at
≈1695 cm−1, which is due to olefinic ν (C=C) vibrations, indicates that the olefinic bond is not
conjugated with phenyl groups. The aromatic C-C absorptions occur in the 1635–1060 cm−1

region. Regarding the bands between 1060 and 830 cm−1, the vibrations of C-O-C can be
related to asymmetric vibrations in a single graphitic sheet and between two such sheets;
oxygen can act as a cross-linking agent between aromatic sheets [55]. Also, some bands
are observed in the region >858 cm−1, which are band positions compatible with γ(C-H)
vibrations in olefinic or aromatic structures.

3.3. Scanning Electron Microscopy (SEM) Analysis of Biomass

The SEM images were recorded in order to investigate the surface morphology of
SB, WS, and VS. Figure 2 highlights the common porous structure of the lignocellulosic
biomass. Several macropores of various sizes were identified.

The SB (Figure 2a) and WS (Figure 2c) indicate having amorphous shapes with in-
consistent porous structures, while VSs (Figure 2b) reveal a scaffold-type structure with
long-line micro-fibrils. Another factor that can contribute to the material’s morphology is
the grinding process (mechanical deformation) [53].
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3.4. Thermal Behavior of Feedstock

Figure 3 shows the thermogravimetric analysis (TGA) profiles for the thermal behavior
of raw materials. During the thermal decomposition of SB, WS, and VS, three major stages
were noticed.
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The initial phase of mass loss can be attributed to moisture evaporation. This first
phase took place in a temperature range up to 114 ◦C, displaying a peak centered at 72 ◦C,
for SB; up to 95 ◦C for WS (peak at 62 ◦C); and up to 102 ◦C in the case of VS (peak at 74 ◦C).
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The initial weight of the raw materials decreased by 8.09% in the case of SB, 5.71% for WS,
and 6.07% for VS. These data support the proximate analysis.

At temperatures within the range of 255–350 ◦C, the mass loss is mainly ascribed to
the decomposition of the hemicellulose and cellulose components, while lignin is the main
polymer component degraded above 350 ◦C. These results are in line with those reported
in [23]. Above 200 ◦C, the polysaccharide molecules are degraded, resulting in compounds
like furans, ketones, carboxylic acids, aldehydes, and phenols [59].

Substantial degradation of SB (43.03%), WS (61%), and VS (48.08%) was observed in
the second stage, with temperature peaks at 346 ◦C, 291 ◦C, and 343 ◦C, respectively. The
highest degradation percentage was obtained in the case of WS, which had the highest
hemicellulose content (38.2%) compared to those of SB and VS (19.75 and 21.5%, respec-
tively). Haykiri-Acma et al. [60] reported that the decomposition of lignin is slow in a
wide temperature range due to its complex structure. Nevertheless, this phenomenon is
potentially linked to the joint chemical interaction among residual lignin, cellulose, and few
inorganic compounds, which partially aligns with the already discussed morphological
results [61].

In the third stage, decomposition reached 42.58 in the case of SB, 33.38% for WS, and
16.77% for VS. The third (last) step consisted of the maximum decomposition of the all
three materials. All three investigated materials provided degradation rates at certain
temperature values according to their chemical composition.

3.5. Predicted Yield of Feedstock Conversion

The physical and chemical biomass attributes provide valuable insights for the selec-
tion of the most appropriate thermochemical path in order to maximize conversion rates in
relation to solid products with high carbon content. To achieve these, a thermal degradation
path was developed considering the dataset available for SB, WS, and VS, respectively.

Theoretical char yields were calculated by leveraging the concentration of main poly-
meric components. Considering the specific composition of hemicelluloses, cellulose, and
lignin in each feedstock, the theoretical calculations serve as a predictive tool, guiding
the selection of biomass in order to maximize the char yield (Table 2). A computational
procedure based on the practical yields obtained from carbonization processes of pure
components was developed [62]. The theoretical yield, Y (in %), in the solid phase was
calculated using

Y(wt%) = C × yc,C + L × yc,L + H × yc,H (1)

where H, C, and L represent the percentages of hemicelluloses, cellulose, and lignin, respec-
tively, while yc,j denotes the carbonization yield of the main compounds.

Table 2. Predicted char yields for SB, WS, and VS.

Hemicellulose
(H),

g

Cellulose (C),
g

Lignin (L),
g

Predicted
Yield,

%

Predicted Char
Weight,

g
H C L

Feedstock 10 10 10 - -

Spruce bark 3.38 4.81 4.93 24.05
2.4

0.46 0.91 1.03

Wheat straws 1.89 2.30 2.44 25.42
2.5

0.5 0.93 1.07

Vine shoots 3.82 1.97 2.15 23.92
2.4

0.5 0.98 0.91

Furthermore, an assessment was conducted to determine the role of each polymeric
constituent in the generation of char.
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An initial raw amount of 10 g was considered in this study for each type of biomass
(SB, WS, and VS). Using Equation (1), the values of the final char amount were calculated,
as well as the predicted yield. The hemicellulose/lignin ratio has a significant impact on
the formation of water and organics during thermochemical conversion. The presence of
hemicellulose can limit the devolatilization of inorganics, increase char formation, and
reduce bio-oil yield and quality [63].

After thermochemical conversion, 10 g of SB generates 2.4 g of char, corresponding to
a predictive yield of 24.05%. Within the amount of 2.4 g of SB char, 0.46; 0.91; and 1.03 g
represent the contribution of main the polymers: H, C, and L, respectively. While in the case
of SB and WS, lignin has a major contribution in char formation, cellulose and secondary
lignin are main contributors for VS char.

4. Conclusions

In this work, an assessment of the main characteristics of three different feedstocks
was performed in order to explore the relations between biomass polymeric composition,
thermochemical conversion path, and char yield.

It was found that SB has the highest moisture content at 9.55% and therefore requires
higher energy input for water evaporation. VS ash content (2.1 wt%) reveals a minimal
presence of inorganics and a slow degradation process. Higher inorganic levels (4 wt%
in the case of WS) affect the char yield. The carbon content across all biomass types is
relatively consistent, with VS having the highest value (52.72 wt%), followed closely by
SB (52.07 wt%) and WS (51.56 wt%). Due to the relatively high carbon content, VSs are
more likely to yield a higher char amount during thermal conversion processes compared
to SB and WS. The relatively high hemicellulose content recommends WS as a good
candidate for hydrothermal conversion processes. VS and SB exhibit the highest cellulose
content, 49.30 wt% and 48.10 wt%, respectively, while WSs have the lowest cellulose content
(33.80 wt%). Due to the fact that cellulose is a primary contributor to char formation during
pyrolysis, VS and SB may yield higher-quality char compared to WS.

The FTIR spectra emphasize O-H; C-O-C; C-H; C=C as the main functional groups. The
TGA highlights three main degradation stages. This first phase takes place in a temperature
range up to 114 ◦C. The second stage ranges from 255 to 350 ◦C, where the mass loss is
mainly due to the decomposition of the hemicellulose and cellulose components, while
the lignin is degraded above 350 ◦C. The SEM images reveal a common ligno-cellulosic
structure: SB and WS have amorphous shapes with inconsistent porous structures, while
VS reveals a scaffold-type structure with long-line microfibrils.

It was shown that the char yield can be predicted and is strongly dependent on the
biomass polymeric composition.

This study shows that the composition of biomass determines the adequate thermo-
chemical path and can facilitate the large-scale utilization of agricultural (WS, VS) and
forestry residues (SB) for producing value-added materials.

The characteristics of char, including porosity, surface area, surface charge, functional
groups, and chemical reactivity can significantly influence its potential applications. These
applications encompass a diverse range of areas, including energy production and soil
amendment, and they can be used as biosorbents, carbon sequestration materials, and
carriers for microorganisms and active ingredients. Future research should continue to
explore these relationships, aiming to enhance the efficiency and applicability of biomass-
derived char.
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