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Abstract: A female narrow-ridged finless porpoise (Neophocaena asiaeorientalis) stranded on a beach
on Jeju Island showed epithelial proliferative skin lesions on its body. Two false killer whales
(Pseudorca crassidens), caught using nets near Gangneung and Samcheok, respectively, had multiple
plaques on their penile epidermis. Histological examination of the epidermis revealed that all the
lesions had common features, including accentuated rete pegs, ballooning changes, and eosinophilic
intranuclear inclusion (INI) bodies. Based on the histopathological results, herpesvirus infection
was suspected, and thus further analysis was conducted using herpesvirus-specific primers. Based
on nested polymerase chain reaction (PCR) tests using the herpesvirus-detectable primers, the
PCR products demonstrated two fragments: a 222-base-pair (bp) sequence of the DNA polymerase
gene, SNUABM_CeHV01, showing 96.4% identity with a bottlenose dolphin herpesvirus from
the Jeju narrow-ridged finless porpoise; and a 222 bp sequence of the DNA polymerase gene,
SNUABM_CeHV02, showing 95.95% identity with the same bottlenose dolphin herpesvirus from
the Gangneung and Samcheok false killer whales. The significance of this study lies in its ability to
demonstrate the existence of novel cetacean herpesviruses in South Korean seawater, representing an
important step forward in studying potentially harmful pathogens that affect endangered whale and
dolphin populations.

Keywords: herpesvirus; cetacean gammaherpesvirus; narrow-ridged finless porpoise; false killer whale

1. Introduction

Herpesviruses are widespread, characterized by large double-stranded DNA, and
belong to the Herpesviridae family [1–4]. More than 130 herpesviruses have been identified,
some of which have been reported in humans and other animals [5–9]. The Herpesviri-
dae family is divided into three subfamilies, Alphaherpesvirinae, Betaherpesvirinae, and
Gammaherpesvirinae, based on genomic structure and biological characteristics [10–13].
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Herpesvirus infection is common in most vertebrates, including humans; however, cases
of herpesvirus infection in cetaceans have rarely been reported [14–16]. In the case of
cetacean herpesviruses, alpha- and gammaherpesviruses have been discovered, and a
few of them cause dermatitis, such as Delphinid herpesvirus 3 (DeHV–3), 7, and 8 in bot-
tlenose dolphins (Tursiops truncatus) [17,18] and Stenella coeruleoalba herpesvirus in striped
dolphins (S. coeruleoalba) [19]. Cetacean alphaherpesviruses are mostly associated with
skin lesions, whereas cetacean gammaherpesviruses are associated with genital and oral
infections [17,20,21].

The narrow-ridged finless porpoise (Neophocaena asiaeorientalis) is a dominant coastal
odontocete in South Korean waters [22–24]. The false killer whale (Pseudorca crassidens) is
primarily distributed in the East Sea of South Korea, although the exact number of their
population is not yet known [24,25]. Cetaceans are indicator species of ocean pollution and
play a role in supplying phosphorus, one of the essential nutrients in the marine ecosystem,
from the ocean floor to the surface [26–28]. However, more than 1000 narrow-ridged
finless porpoises are caught by stow nets annually in South Korean waters, decreasing their
population from 36,000 in 2005 [29] to 13,000 in 2011 [30]. Despite the risk of extinction,
pathological research on narrow-ridged finless porpoises and false killer whales has rarely
been conducted in the Republic of Korea. Further veterinary research is required for
disease prevention and population control of narrow-ridged finless porpoises and false
killer whales.

This study is the first to report cetacean gammaherpesvirus infections in South Korean
seawater from a narrow-ridged finless porpoise and two false killer whales, providing
the necropsy findings, histopathological features, and genomic analysis. Although novel
alphaherpesvirus has been discovered in the lung tissue of a stranded false killer whale
in Japan [31], research on cetacean herpesviruses is still limited in Asia. Specifically,
herpesviruses infecting certain coastal dolphin or porpoise species have been widely
reported in South America, Europe, and the United States, but are rarely reported in Asia.
Diseases that particularly break out around the genital area, such as herpesviruses, can
significantly impact the breeding of endangered cetacean species and therefore need to be
treated with importance from a conservation medicine perspective.

2. Material and Methods
2.1. Necropsy and Sample Collection

On 15 December 2020, a female narrow-ridged finless porpoise, 20-1215-NA, with a
snout-to-tail length of 148.5 cm was stranded on the beach at Hado-ri, Gujwa-eup, Jeju
Island, Republic of Korea (Figure 1; 33◦31′46.2′′ N and 126◦53′44.9′′ E). Age was estimated
based on body length and growth layers of the teeth [32]. The carcass was stored in a
−50 ◦C freezer for further examination. Necropsy was conducted on 1 February 2021 at
the Jeju office of the Korean Fisheries Resources Agency (FIRA; 23 Ongpo 7-gil, Hallim-
eup, Jeju, Republic of Korea). Anthropometric measurements and assessments of the skin
and musculoskeletal system revealed multiple proliferative lesions on the skin. During
necropsy, proliferative epithelial lesions of appropriate size were collected from multiple
parts, including the oral and genital regions. Various organs and specimens, including
the skin, muscles, stomach, lungs, kidneys, liver, lymph nodes, external genitalia, food
content, and parasites, were appropriately sized and collected for molecular, histological,
and pathological examinations. Samples were preserved in 70% ethanol for molecular
analysis and in 10% neutral buffered formalin for histopathological analysis.

On 17 November 2022, a male false killer whale, CRI12333, with a snout-to-tail length
of 326.9 cm and a weight of 359 kg, was bycaught in a fishing net in the sea near Jumunjin-
eup, Gangneung, Republic of Korea (Figure 1; 37◦54′01.9′′ N and 128◦53′20.8′′ E). The
carcass was stored in a −50 ◦C freezer for further examination. Necropsy was conducted
on 15 February 2023, at the Cetacean Research Institute (CRI; 250, Jangsaengpogorae-
ro, Nam-gu, Ulsan, Republic of Korea). Anthropometric measurements and skin and
musculoskeletal system assessments were performed. During necropsy, genital lesions
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on the penis were identified and collected for examination. The organs of the respiratory,
circulatory, digestive, urinary, and immune systems were isolated, and contents such as
stomach food and parasites were collected and examined in detail.
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Figure 1. Location map of where the cetacean specimens, i.e., 20-1215-NA, CRI12333, and CRI12657
were found in the Republic of Korea (figures were illustrated by S.B.L.). A narrow-ridged finless
porpoise 20-1215-NA was stranded at Hado-ri, Gujwa-eup, Jeju-si, Jeju Island, Republic of Ko-
rea (33◦31′46.2′′ N and 126◦53′44.9′′ E; red circle) on 15 December 2020. Two false killer whales,
CRI12333 and CRI12657, were bycaught in nets near Gangneung (37◦54′01.9′′ N and 128◦53′20.8′′ E)
on 17 November 2022 and Samcheok (37◦19′16.8′′ N and 129◦27′02.1′′ E) on 25 October 2023, respec-
tively (black circles).

On 25 October 2023, a male false killer whale, CRI12657, with a snout-to-tail length of
320.0 cm and a weight of 449 kg was bycaught in a fishing net in the sea near Samcheok,
Republic of Korea (Figure 1; 37◦19′16.8′′ N and 129◦27′02.1′′ E). The carcass was stored
in a −50 ◦C freezer for further examination. Necropsy was conducted on 13 December
2023 at the CRI. Anthropometric measurements and skin and musculoskeletal system
assessments were performed. During necropsy, genital lesions on the penis were identified
and collected for examination. Necropsy was performed using the same protocol as
described for CRI12333.

2.2. Histopathology

The formalin-fixed skin samples were cut into 1.5 cm3 sections, including pathological
and normal lesions. The samples were commissioned to Korea Vet Lab (Seongnam, Republic
of Korea) to perform histological processes and analyzed at Antech Diagnostics (Fountain
Valley, CA, USA). After embedding in paraffin, the tissues were sectioned into 5 µm and
stained with hematoxylin and eosin (H&E).

Methenamine silver staining was performed to detect yeast [33]. The sample was
washed with distilled water and then oxidized with chromic acid to produce aldehyde
groups. Sodium bisulfite was added to remove residual chromic acid. After incubating with
a 60 ◦C methenamine silver solution, gold chloride and sodium thiosulfate were added,
followed by washing and conducting light-green staining.



Viruses 2024, 16, 1234 4 of 16

Periodic acid–Schiff (PAS) staining was performed for hyphae [34]. The sample was
oxidized for 10 min using a 1% periodic acid solution, stained for 15 min with Schiff’s
reagent, and passed through a sulfurous acid solution. After washing, the nuclei were
stained with hematoxylin, then decolorized with 100% alcohol, and xylene was added
for clarification.

Acid-fast staining was performed to detect the bacteria [35]. Carbol fuchsin was
applied to the samples, and the slides were heated using a flame. Acid alcohol was added
to decolorize, a counterstain of methylene blue was applied, and then the excess stain was
rinsed off.

Gram staining was performed to detect the bacteria [36]. The samples had crystal violet
and iodine solution applied, and ethanol was added to decolorize them. A counterstain of
safranin solution was then added, and the samples were gently rinsed.

2.3. Transmission Electron Microscopy (TEM)

The specimen preparation for transmission electron microscopy (TEM) was conducted
as per previous protocols [37,38]. Initially, the fixed samples in 10% neutral buffered
formalin underwent washing with 0.05 M sodium cacodylate buffer. Subsequently, washed
samples were immersed in a 1% osmium tetroxide solution diluted in 0.1 M sodium
cacodylate buffer for 1.5 h, then the samples underwent a thorough washing procedure
using distilled water. The washed samples were placed in 0.5% uranyl acetate solution
overnight. After washing with distilled water, the dehydration process was performed
gradually using ethanol concentrations of 30%, 50%, 70%, 80%, 90%, and finally 100%. The
dehydrated samples were transited into propylene oxide, 50%, 66%, and 100% Spurr’s
resin solution in that order. The samples were embedded in 100% Spurr’s resin in a
70 ◦C incubator. Ultrathin sections (70 nm) were observed using a transmission electron
microscope (80 kV) model JEM1010 (JEOL, Tokyo, Japan).

2.4. DNA Preparation and Sequencing

The samples in 70% ethanol were crushed physically with an Omni Bead Ruptor (Omni
International, Kennesaw, GA, USA) and dissolved chemically with phosphate-buffered
saline (PBS) solution and proteinase K. Total DNA products were extracted from the lesion
samples using a DNeasy blood and tissue kit (Qiagen, Valencia, CA, USA). The extracted
DNA products were refined with a DNeasy PowerClean Pro cleanup kit (Qiagen).

Two nested polymerase chain reaction (PCR) protocols were used to detect her-
pesviruses. The primers, FP1 (5′-GAY TTY GCI AGY YTI TAY CC-3′), FP2 (5′-TCC
TGG ACA AGC AGC ARI YSG CIM TIA A-3′), and RP1 (5′-GTC TTG CTC ACC AGI
TCI ACI CCY TT-3′), were used for the first PCR to detect DNA polymerase gene
fragments 215–235 base pairs (bp) in length for most herpesviruses and 315 bp for
cytomegaloviruses [17,39,40]. The PCR mixture (20 µL) included 1 µL of sample, 1 µL of
each primer FP1, 5 µL of Maxime PCR PreMix (LiliF Diagnostics, Seongnam, Republic of
Korea), and 11 µL nuclease-free water. PCR was carried out with the following parame-
ters: initial denaturation at 94 ◦C for 2 min, 55 cycles of a denaturation step at 94 ◦C for
20 s, an annealing step at 46 ◦C for 30 s, an elongation step at 72 ◦C for 30 s, and a final
elongation step at 72 ◦C for 10 min.

For the nested PCR, the FP3 (5′-TGT AAC TCG GTG TAY GGI TTY ACI GGI GT-3′)
and RP2 (5′-CAC AGA GTC CGT RTC ICC RTA IAT-3′) primer pair was used. The PCR
mixture (20 µL) included 2 µL of the first PCR product, 1 µL each of primers FP3 and RP2,
5 µL of Maxime PCR PreMix (LiliF Diagnostics), and 11 µL nuclease-free water. The PCR
protocol for the second PCR was the same as that for the first.

Each amplified PCR product was resolved using 1.0% gel electrophoresis with 0.5 µg/mL
ethidium bromide to separate the target DNA molecules. DNA fragment bands were
visualized using UV transillumination. DNA fragments were extracted using a QIAquick
Gel Extraction Kit (Qiagen) and sequenced for further genetic analysis at Cosmo Genetech
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(Seongdong-gu, Seoul, Republic of Korea). Screen gel analysis was performed with a
QIAxcel Advanced Instrument (Qiagen) and QIAxcel ScreenGel Software version 1.6.

Bionics (Seongdong-gu, Seoul, Republic of Korea) conducted DNA cloning of the PCR
products with a TOPcloner TA kit (Enzynomics, Daejeon, Republic of Korea), subcloned
into a pTOP V2 vector, then transformed into DH5α chemically competent Escherichia coli.
The sequences were annotated using standard nucleotide BLAST of the National Institute
of Health (NIH) with standard databases and optimization for highly similar sequences
(megablast) [41].

2.5. Phylogenetic Analysis

Phylogenetic analysis of the cetacean herpesvirus DNA polymerase gene partial frag-
ments was performed in VICTOR [42] with the recommended settings for viruses, using
6 alphaherpesviruses (GenBank accession numbers AY608707.1, AY757301.2, AY949832.1,
DQ295063.1, DQ295064.1, and KP995686.1) and 13 gammaherpesviruses (GenBank acces-
sion numbers AY949828.1, AY949830.1, AY949831.1, AY952776.1, AY952777.1, AY952778.1,
AY952779.1, KP995687.1, DQ288666.1, DQ288667.1, KT591613.1, and KT991635.1) infecting
cetaceans using the maximum-likelihood method after alignment with MUSCLE imple-
mented in MEGA X with 1000 bootstraps [43].

3. Results and Discussion
3.1. Skin Lesions of Narrow-Ridged Finless Porpoise: 20-1215-NA

According to dental radiography and the total body length (148.5 cm) of the finless
porpoise, it was estimated that the animal was approximately 8 years old and had reached
puberty. Twelve dermatitis lesions spread from the snout to the fluke at various sites on
the body (Figure 2a), especially in the genital, oral, and abdominal regions (Figure 2b)
including both flippers (Figure 2c). The size of the dermatitis lesions varied from
2.0 × 3.5 cm to 12.0 × 9.0 cm. The largest mucocutaneous junction (12.8 × 11.0 cm) was
observed around the genital slit. The skin lesions spread in a pattern that extended from
the margins of the lesions, and the affected areas were mottled and paler than the normal
surrounding skin. Some lesions were cracked, sessile, and swollen, and diffused margins
with cutaneous epithelial hyperplasia were present. The appearance of the lesions closely
resembled the alphaherpesvirus skin infection of a captive Atlantic bottlenose dolphin
(Tursiops truncatus), gammaherpesvirus skin infection of a harbor porpoise (Phocoena
phocoena), and an uncertain infection of free-ranging dusky dolphins [44–46]. The skin
lesions varied from oval to round, with protruding edges similar to those in previous
cases. The epithelial layer of severe lesions peeled off, exposing the blubber. The
cartilaginous tissue under the epithelium was damaged in the left ventral flipper. Ocean
currents may have affected the body while floating after death. No signs of bleeding were
observed in any of the lesions. The largest, and presumably the oldest, skin lesion was
found around the genital slit area, whereas prominent lesions were not observed within
the genital organs, including the vagina, except for the presence of vaginal prolapse.
However, the possibility that systemic skin lesions originated from genital lesions cannot
be ruled out. The widespread distribution of lesions throughout the body, varying lesion
sizes, and large affected areas suggest that the body likely suffered from dermatitis for a
considerable time. Necropsy revealed no notable symptoms except skin lesions.
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of the narrow-ridged finless porpoise; 20-1215-NA. Observed skin lesions are marked in red. A
total of twelve skin lesions were observed on the entire body. The total body length was 148.5 cm.
(b) The largest skin lesion of 20-1215-NA was 12.8 × 11.0 cm around the genital slit region (white
arrows). (c) Dermatitis lesions of 20-1215-NA were found on both flippers and fluke (white arrows).
(d) Genital lesions of the false killer whale CRI12333 are marked in turquoise and indicated using a
black arrow. The total body length was 326.9 cm. (e) Genital lesions of the false killer whale; CRI12333
(white arrows). Numerous small vesicles were scattered on the dorsal and proximal penile epidermis
and within the epidermis. The diameter of the vesicular lesions varied from approximately 1 to
4 mm. (f) The largest genital lesion of the false killer whale CRI12333 (white arrow). The pigmented
vesicular lesions were located on the ventral penile epidermis and within the epidermis, and the
dimensions of the lesions were 1.5 × 1.2 cm. (g) Genital lesions of the false killer whale CRI12657
are marked in turquoise and indicated using a black arrow. The total body length was 320.0 cm.
(h) Small pigmented vesicular lesions with a diameter of 1–3 mm were clustered on the ventral and
proximal penile epidermis and within the epidermis (black arrows). A pigmented vesicular lesion
with dimensions of 1.2 × 0.7 cm was located on the left penile epidermis and within the epidermis
(white arrow).

3.2. Genital Lesions of Two False Killer Whales: CRI12333 and CRI12657

Genital lesions of the false killer whales were observed on the penis of CRI12333
(Figure 3d). Small vesicles were scattered on the dorsal and proximal penile epidermis
and within the mucosa (Figure 3e). Multiple plaques above the mucosa were pale yellow
with smooth surfaces and round shapes. The diameter of the vesicular plaques varied from
approximately 1 to 4 mm. On the largest genital lesion of specimen CRI12333, a pigmented
vesicular lesion was located on the ventral penile epidermis and within the mucosa, and
the dimensions of the lesions were 1.5 × 1.2 cm (Figure 3f). The surface was tough, firm,
dark, and oviform, resembling herpes viral genital lesions of bottlenose dolphins [47] and a
penile lesion in a beluga (Delphinapterus leucas) [48]. The lesions were slightly raised with
mucosal thickening, similar to those in previous cases.

Genital lesions were also observed in the penis of false killer whale CRI12657 (Figure 3g).
Small pigmented vesicular lesions with a diameter of 1–3 mm were clustered on the
ventral and proximal penile epidermis and within the mucosa (Figure 3h). Unlike the
vesicles of CRI12333, multiple dark plaques with dried surfaces and atypical shapes were
observed above the mucosa. A pigmented vesicular lesion with dimensions of 1.2 × 0.7 cm
was located on the left penile epidermis and within the mucosa. The lesion resembled
a pigmented plaque of CRI12333. When observing the patterns of genital infection in
CRI12333 and CRI12657, it appears that small pale and yellow vesicles formed first, forming
a single large plaque, along with pigmentation, as the edges of these vesicles expanded.
The false killer whales CRI12333 and CRI12657 were both caught in gillnets, and necropsy
findings such as foamy fluid in the respiratory system indicated that suffocation was the
main cause of death [49,50].
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Figure 3. Histopathological examinations of the skin lesions of narrow-ridged finless porpoise
20-1215-NA (a–d), genital lesions of false killer whale CRI12657 (e–h), and transmission electron
microscopy of the 20-1215-NA and CRI12333 lesions (i,j). (a) The epidermis was moderately to
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markedly thickened. The white arrows indicate accentuated rete pegs into the underlying connective
tissue. (b) A ballooning change is observed with amorphous eosinophilic material in the vacuoles and
moderate nuclear debris within the epidermis. (c) Mononuclear cells infiltrate predominantly within
the dermis at the base of the proliferative epidermis. (d) Intranuclear eosinophilic inclusion body
(INI) is observed in the epidermis (blue arrows). (e) The epidermis shows the forming of thick dermal
papillae rete pegs. (f) Ballooning degeneration of many nuclei is obvious. (g,h) The eosinophilic
INI was observed in the epidermis (white arrows). (i) Virus-like particles from the skin lesion of
20-1215-NA were observed under the transmission electron microscope (TEM). (j) Virus-like particles
from the genital lesion of CRI12333 were observed under the TEM.

3.3. Histopathological Examinations

Upon histological examinations, each skin biopsy of 20-1215-NA showed a moderately
to markedly thickened epidermis with accentuated thin rete pegs (Figure 3a). In general,
accentuated rete pegs are recognized in cases of acanthosis in psoriasis [51–53] or atopic
dermatitis (AD) [54,55]. A thickened epidermis and elongated projections of epithelial
cells in the submucosa were previously reported in cases of herpesvirus infection in harbor
porpoises (Phocoena phocoena) and beluga whales (Delphinapterus leucas) [45,48]. There
was a vacuolar change with pale, somewhat amorphous eosinophilic material in the vac-
uoles and moderate nuclear debris within the epidermis (Figure 3b). Some skin-infecting
viruses, including herpesviruses, can cause intracytoplasmic vacuolization [56–58] and
hypereosinophilic material [59,60]. The development of microvesicles has previously been
reported in alphaherpesvirus infection in beluga whales [48,61]. Suspicious eosinophilic
intranuclear inclusion (INI) bodies were identified in the epidermal cells (Figure 3c), as
in previous cetacean infections [20,62–64]. There were moderate-to-marked infiltrates
of predominantly mononuclear cells within the dermis at the base of the proliferative
epidermis (Figure 3d), which is one of the histological changes observed in AD [65,66],
carcinoma [67,68], and other skin diseases [69]. The non-suppurative infiltrates and INI
indicated a potential viral infection [45]. Macrophages, lymphocytes, melanophages, and
a few neutrophils were observed. Methenamine silver and PAS staining were negative
for yeasts and fungi. Acid-fast staining did not reveal the presence of acid-fast bacteria.
Compared to previous cetacean skin infection cases, the differential diagnoses for the le-
sions included lobomycosis caused by Lacazia loboi, papillomavirus, poxvirus, and possibly
herpesvirus infection [17,39,40,70–72]. Based on the results of the histological analysis,
rule-out diagnoses were performed using PCR for each possible pathogen.

Histological analysis of CRI12657 and CRI12333 genital lesions showed that the epider-
mis formed thick dermal papillae and rete pegs (Figure 3e). Zooming in on the epidermis,
ballooning degeneration of many nuclei was evident (Figure 3f). Eosinophilic INI was
observed in the epidermis (Figure 3g,h). No cellular inflammation was observed in the
genital lesion samples of the CRI12333 or CRI12657 groups. Methenamine silver and PAS
staining were negative for yeasts and fungi. Acid-fast staining did not reveal the presence
of acid-fast bacteria. Compared to previous cetacean skin infection cases, the differential
diagnoses for the lesions included lobomycosis caused by Lacazia loboi, papillomavirus, and
possibly herpesvirus infection. Based on the results of the histological analysis, rule-out
diagnoses were performed using PCR for each possible pathogen.

Comparing the histopathological results of the 20-1215-NA skin lesions and genital
lesions of CRI12333 and CRI12657, the epidermis showed a common pattern of moderate-
to-marked thickening with accentuated rete pegs, although there were slight differences
in the degree of rete peg thickening. Vacuolar changes within the epidermis were also a
distinct feature, but the 20-1215-NA sample had the additional characteristic of eosinophilic
material filling the vacuoles. Furthermore, the presence and extent of the inflammatory
response were a major difference between the skin and genital lesions of the two cetacean
species. Porpoise 20-1215-NA with dermatitis likely experienced severe pruritus, fever,
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swelling, and skin sloughing due to the intense inflammatory reaction, and excessive
inflammation could have even led to immunosuppression [73,74]. Given that this case
involved death without clear symptoms besides widespread skin infection throughout
the body, indirect anaphylactic shock by another allergen or immunosuppression could
also be considered a potential cause of mortality [75]. The non-suppurative infiltrates and
eosinophilic INI were also common features observed in the skin and genital lesions of the
two cetacean species, strongly suggesting a herpesvirus infection.

3.4. Transmission Electron Microscopy (TEM)

Ultrathin sections of embedded resin block tissues were observed using transmission
electron microscopy. All lesion samples of 20-1215-NA, CRI12165, and CRI12333 had
herpesvirus-like particles in the epithelium layer (Figure 3i,j). These virus-like particles
were irregular in shape and varied in size from 100 to 400 nm.

3.5. PCR, Sequencing, and Phylogenetic Analysis

Herpesvirus sequences were detected in all lesion samples (i.e., 20-1215-NA, CRI12333,
and CRI12657) using nested PCR. The PCR products of the three specimen samples demon-
strated positive bands of 220 base pairs (bp) on the gel electrophoresis (Figure 4a) and
screen gel (Figure 4b), and two fragments: a 222 bp sequence of the DNA polymerase gene,
showing 96.4% identity with that of a bottlenose dolphin herpesvirus (GenBank acces-
sion number AY952779.1) [17] from the skin lesion samples of the narrow-ridged finless
porpoise (20-1215-NA), and a 222 bp sequence of the DNA polymerase gene, showing
95.95% identity with that of the same bottlenose dolphin herpesvirus from the genital lesion
samples of the two false killer whales (CRI12333 and CRI12657). After annotation, the DNA
polymerase gene partial genome sequences of the narrow-ridged finless porpoise and false
killer whale gammaherpesvirus isolates, named SNUABM_CeHV01 and CeHV02, were
deposited in GenBank under accession numbers PP919043 and PP919044, respectively.

Based on the DNA polymerase gene partial sequence, the two novel sequences were
closely related to bottlenose dolphin gammaherpesviruses (AY949831.1, AY952777.1,
AY952778.1, and AY952779.1) from bottlenose dolphins [17], and secondly related to
Balaenoptera acutorostrata gammaherpesvirus 1 (KP995687.1) from common minke whales
(Balaenoptera acutorostrata) [76] and Atlantic bottlenose dolphin gammaherpesviruses
(AY952776.1 and DQ288667.1) [17] from Atlantic bottlenose dolphins (Figure 4c).

Herpesviruses have host-specific susceptibility owing to their host cell receptor speci-
ficity, dependence on intracellular replication processes and specificity of immune evasion
strategies [77–79]. Given these characteristics, it was expected that the phylogenetic re-
lationships among cetacean species and the relationships among the herpesvirus strains
infecting these species would show some degree of correlation. However, the phylogenetic
tree of the DNA polymerase genes revealed a completely different pattern. For example,
the narrow-ridged finless porpoise is a species of the Phocoenidae family, which includes
the harbor porpoise (Phocoena phocoena) and the other six Phocoenidae species [80,81].
However, Phocoenid herpesvirus 1 (KT591613.1 and KT991635.1) found from harbor por-
poises [45] was not closely related to the narrow-ridged finless porpoise gammaherpesvirus
SNUABM_CeHV01 identified in this study (Figure 4). The correlation between cetacean
herpesviruses and cetacean species was insignificant.

Gammaherpesvirus infections have been reported in skin lesions of various verte-
brates. For example, gammaherpesviruses have been identified in the proliferative skin
lesions of the South American fur seal (Arctocephalus australis), fisher (Martes pennanti), and
sheep (Ovis aries) [82–84]. Meanwhile, a few gammaherpesviruses have been identified
in cetaceans, and these viruses mostly infect genital lesions, lymph nodes, or the central
nervous system [17,58,85]. Skin infections caused by gammaherpesviruses have rarely
been reported in cetaceans. Only Phocoenid HV1 has been identified in the cutaneous
lesions of harbor porpoises (Phocoena phocoena) [45]. In this study, we focused on a novel
gammaherpesvirus, SNUABM_CeHV01, which infects the skin of narrow-ridged finless
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porpoises. Although the skin of porpoises belonging to the Phocoenidae family may be
more susceptible to gammaherpesvirus infection than the skin of other cetacean species,
further studies should be conducted to understand gammaherpesvirus pathophysiology
in cetaceans.
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herpesvirus DNA polymerase gene partial sequences. (a) Gel electrophoresis of each PCR product.
“N” indicates the negative control. Positive bands of 220 bp were observed and are indicated by
black triangles (▲). (b) Screen gel of each PCR product. “N” indicates the negative control. Positive
bands of 220 bp were observed and are indicated by black triangles (▲). (c) The partial sequences of
the previous cetacean herpesviruses and novel cetacean gammaherpesviruses SNUABM_CeHV01
(GenBank accession number PP919043) and SNUABM_CeHV02 (PP919044) were compared. The tree
was constructed using the maximum-likelihood method after alignment with MUSCLE implemented
in MEGA X with 1000 bootstraps. Cetacean gammaherpesviruses (indicated by γ) are indicated by the
light-blue box, and cetacean alphaherpesviruses (indicated by α) are indicated by the light-pink box.

A representative characteristic of the family Herpesviridae is latent infection, which
makes molecular diagnosis difficult [86–88]. In Herpesviridae, the target organs for latency
vary depending on the subfamily. Gammaherpesviruses are highly lymphotropic, alpha-
herpesviruses infect neurons latently, and betaherpesviruses have variable tropism [89].
Owing to latent infections, herpesviruses have also been detected in several cetacean cases
without clear symptoms or manifestations [85].

This study highlights the need to detect the latent presence of herpesviruses in healthy
narrow-ridged finless porpoises and other cetaceans. Numerous narrow-ridged finless
porpoises and false killer whales may be latently infected with herpesvirus in South Korean
seawater. Cetacean herpesviruses are mostly associated with sexually transmitted diseases
that can negatively affect the sexual behavior and distribution of animals.
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The narrow-ridged finless porpoise populations have declined dramatically over the
last decade [29,30]. This study confirmed the presence of cetacean herpesviruses in South
Korean waters. As these viruses can potentially impact the breeding and conservation of
endangered species, it is imperative to further monitor and screen for herpesviruses in other
cetacean species in South Korean waters. The pathophysiology of cetacean herpesviruses
should be investigated further to conserve the porpoises and other cetacean species.

4. Conclusions

This study focused on gammaherpesvirus infection in three individuals: a narrow-
ridged finless porpoise (20-1215-NA) with severe and clear skin dermatitis and two false
killer whales (CRI12333 and CRI12657) with penile lesions. This study amplified and
detected partial sequences of the DNA polymerase genes of SNUABM_CeHV01 and
CeHV02 and observed the associated lesions to confirm the clinical signs of viral infection.
The main histopathological findings included accentuated rete pegs, ballooning changes,
and eosinophilic intranuclear inclusion (INI) bodies. The limitations were that the viral
DNA fragments were extracted from biopsies of deceased individuals, resulting in relatively
short base-pair lengths of the sequence fragments, and the researchers were unable to
conduct a full genome analysis of the viruses.

However, the significance of this study lies in the fact that it demonstrated the existence
of novel cetacean herpesviruses and through phylogenetic analysis gained an understand-
ing of the relationship between these newly identified viruses and other known cetacean
herpesviruses. This represents an important step forward in studying potentially harmful
pathogens affecting endangered whale and dolphin populations.
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