
Citation: Sharma, E.; Deo, R.C.;

Davey, C.P.; Carter, B.D. Artificial

Intelligence-Empowered Doppler

Weather Profile for Low-Earth-Orbit

Satellites. Sensors 2024, 24, 5271.

https://doi.org/10.3390/s24165271

Academic Editor: Aboelmagd

Noureldin

Received: 28 June 2024

Revised: 31 July 2024

Accepted: 7 August 2024

Published: 14 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Artificial Intelligence-Empowered Doppler Weather Profile for
Low-Earth-Orbit Satellites
Ekta Sharma 1 , Ravinesh C. Deo 1,* , Christopher P. Davey 1 and Brad D. Carter 2

1 Artificial Intelligence Applications Laboratory, School of Mathematics, Physics and Computing, University of
Southern Queensland, Springfield, QLD 4300, Australia; ekta.sharma@unisq.edu.au (E.S.);
christopher.davey@unisq.edu.au (C.P.D.)

2 Centre for Astrophysics, University of Southern Queensland, Springfield, QLD 4300, Australia;
brad.carter@unisq.edu.au

* Correspondence: ravinesh.deo@unisq.edu.au

Abstract: Low-Earth-orbit (LEO) satellites are widely acknowledged as a promising infrastructure
solution for global Internet of Things (IoT) services. However, the Doppler effect presents a significant
challenge in the context of long-range (LoRa) modulation uplink connectivity. This study comprehen-
sively examines the operational efficiency of LEO satellites concerning the Doppler weather effect,
with state-of-the-art artificial intelligence techniques. Two LEO satellite constellations—Globalstar
and the International Space Station (ISS)—were detected and tracked using ground radars in Perth
and Brisbane, Australia, for 24 h starting 1 January 2024. The study involves modelling the constella-
tion, calculating latency, and frequency offset and designing a hybrid Iterative Input Selection–Long
Short-Term Memory Network (IIS-LSTM) integrated model to predict the Doppler weather profile
for LEO satellites. The IIS algorithm selects relevant input variables for the model, while the LSTM
algorithm learns and predicts patterns. This model is compared with Convolutional Neural Network
and Extreme Gradient Boosting (XGBoost) models. The results show that the packet delivery rate
is above 91% for the sensitive spread factor 12 with a bandwidth of 11.5 MHz for Globalstar and
145.8 MHz for ISS NAUKA. The carrier frequency for ISS orbiting at 402.3 km is 631 MHz and
500 MHz for Globalstar at 1414 km altitude, aiding in combating packet losses. The ISS-LSTM model
achieved an accuracy of 97.51% and a loss of 1.17% with signal-to-noise ratios (SNRs) ranging from
0–30 dB. The XGB model has the fastest testing time, attaining ≈0.0997 s for higher SNRs and an
accuracy of 87%. However, in lower SNR, it proves to be computationally expensive. IIS-LSTM
attains a better computation time for lower SNRs at ≈0.4651 s, followed by XGB at ≈0.5990 and CNN
at ≈0.6120 s. The study calls for further research on LoRa Doppler analysis, considering atmospheric
attenuation, and relevant space parameters for future work.

Keywords: Doppler rate; Doppler dhift; LEO; satellite; artificial intelligence; power efficiency; LoRa

1. Introduction

It is estimated that 24% of catalogued items in space are satellites, with less than
one-third being operational [1]. Furthermore, roughly 18% of items are expended in
upper stages and components associated with missions. The increasing proliferation of
objects in Earth’s orbit poses a considerable obstacle to space missions and infrastructure.
There is a growing interest in existing radio signals for bi-static or multi-static radar
applications to improve monitoring capabilities. Radiofrequency systems, specifically
radar technology, are effective solutions for monitoring space objects, particularly those in
LEO. RF sensors can function regardless of lighting or weather conditions, making them
reliable tools for observing and tracking objects in space. Researchers in [2] have designed
an in-depth analysis of the Multibistatic Radar architecture. They focused on the system
design, and signal processing considerations associated with a radar used in tracking and
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space monitoring applications. The compact tracking RADAR system used to monitor
celestial bodies in Low Earth Orbit was developed individually [3].

LEO satellites have shown great promise as a foundational infrastructure for advanced
global wireless networks, offering increased data rates and improved connectivity. Given
their reduced transmission delay and adaptable service options, LEO satellites are typically
favoured for enhancing and expanding the capabilities of future terrestrial communication
networks [4]. Nevertheless, the obstacles presented by prompt transmission rates, negligible
latency, and widespread connectivity persist [5]. Furthermore, as a result of advancements
in diverse applications, these criteria must be upheld even in challenging conditions, such as
environments with high levels of mobility. There are often substantial channel fluctuations
in these settings, which result in decreased communication efficiency [6]. LEO satellites
maintain a velocity significantly higher than the rotation speed of the Earth to prevent
reentry into its atmosphere due to gravitational forces. The observed phenomenon leads
to a significant change in the frequency offset of the signal being transmitted, commonly
referred to as the Doppler shift, which varies periodically within the satellite’s timeframe.
The Doppler rate symbolises the velocity at which these fluctuations take place, determined
by the rate of Doppler shift changes over a specified period of time. Regrettably, this
presents significant obstacles to the functionality of LoRa receivers at the physical layer [7].
LoRa modulation is a modulation scheme derived from the chirp-spread-spectrum (CSS)
modulation technique [8].

Traditional methods for Doppler shift estimation have been proposed in previous liter-
ature, such as the channel autocorrelation coefficient function (ACF) [9], phase difference
tracking [10], cyclic prefix [11], and maximum-likelihood estimation [12]. In [13], a linear
frequency modulation (LFM) preamble-based Doppler estimation method was introduced.
While these methods are effective, they require extensive sampling and can be challenging
to implement packet-by-packet. Additionally, they are sensitive to additive white Gaussian
noise (AWGN), reducing accuracy in low SNR environments. Authors in [14] have pre-
sented a novel Doppler detection framework designed for blind opportunistic navigation
with the utilisation of signals from LEO satellites.

Artificial intelligence (AI) offers us strategies to address these challenges, thanks to
its advancements and use in communications. There has been a growing interest in deep
learning (DL) algorithms for addressing intricate challenges across various communication
sectors. However, limited research has been conducted on the estimation of Doppler effects
for LEO satellites using deep learning techniques. The use of deep learning algorithms for
predictive channel modelling and advanced multibeam precoding techniques in complex
satellite communication (SatCom) environments was performed by [15]. The analysis of
channel forecasting and the hybrid beamforming in an LEO satellite’s massive Multiple-
Input Multiple-Output (MIMO) system was researched by [16]. Authors in [17] used
advanced deep learning techniques to detect overlaid control signals in LEO Multiple-
Input Multiple-Output (LEO-MIMO) systems.

In artificial intelligence technology, the deep neural network (DNN) stands out for
processing vast amounts of data and tackling intricate nonlinear challenges, thanks to
its data-driven nature. Specifically in the time-series issues, the gated recurrent unit
(GRU), or recurrent neural network (RNN), demonstrates impressive predictive abilities.
The study [18] focuses on using CNN-assisted techniques for enhancing channel and carrier
frequency offset estimation in high-altitude platform station (HAPS)–LEO communication
links. Initially, efforts are directed towards alleviating channel distortion and carrier
frequency offset, including residual Doppler effects, through a novel estimator based on
Convolutional Neural Networks. Subsequently, the data transmission rate is improved
by enhancing the spectral efficiency with multiple access methods. The heightened focus
on the DL benefit is attributed to their superior capability to extract several features that
conventional methods struggle to achieve. This paper [19] introduces a CNN-based model
for estimating Doppler shifts in LEO SatCom systems. The model uses deep learning to
extract channel features and reduce errors in predicting Doppler shifts. Numerical results
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demonstrate the model’s accurate estimation capabilities. The authors’ [20] architecture
proposed a deep neural network to estimate timing deviation and frequency offset in
high-mobility multicarrier transmission using CNN for extracting hidden signal features.

To leverage the benefits of deep learning technology, we have developed a sophisti-
cated model for low-Earth-orbit (LEO) constellation satellites. Our model evaluates the
connectivity between satellites and ground stations, calculates latency, and incorporates
a hybrid and computationally efficient model integrating Iterative Input Selection and
Long Short-Term Memory Network (IIS-LSTM). This innovative model aims to forecast
the Doppler profile for LEO satellites. Our comprehensive examination takes into account
the Doppler shift and Doppler rate to evaluate their effect on packet loss. Doppler shift,
otherwise referred to as static Doppler, adversely impacts communication effectiveness
when at shallow elevation angles and the furthest reach of the link.

The Doppler rate, or dynamic Doppler, can cause loss of packets at high angles
of elevation, especially in the close proximity of the satellite to ground devices, which
ultimately leads to a reduction in the link distance. Additionally, the involvement of deep
learning (DL) is a rapidly evolving area of study. There has been a noticeable increase
in interest and dedication toward exploring low-power and long-range communication
networks, such as LoRa, for sensor networks and the Internet of Things. LoRa provides
an economical and energy-conserving solution for communication. It forms the basis for
terrestrial Low-Power Wide-Area Network (LPWAN) technology, LoRaWAN.

The study conducted by authors [21] explores detecting LoRa signals from a LEO
satellite, posing challenges due to Doppler effects and interference. Research by [22]
showed the promising results of LoRa technology for satellite IoT, particularly in LEO.
Testing demonstrated significant resistance to the Doppler effect, allowing for the utilisation
of LoRa technology in orbits exceeding 550 km without any limitations. Below 550 km,
the Doppler rate may disrupt communication sessions, with a minute reduction in LEO
at 200 km. Therefore, we believe it is imperative to consider the impact of performance
communication constraints. These can be the signal-to-noise ratio, bandwidth allocation,
and the carrier frequency of utilising LoRa modulation within the framework of the Doppler
effect. This can lead to potential sway over the frequency variations, packet loss, and the
subsequent disruption of communication pathways. This will play a role in determining
the receiver’s susceptibility to this phenomenon. LoRa technology and LEO satellites have
also been examined in previous studies, particularly in terms of link budget examination
and scalability within networks for enabling uplink connectivity. Studies such as [23]
find that link budget calculations suggest that communication up to 2302 km is possible.
To ensure a reliable satellite-to-ground 471 MHz link for LEO small satellites, the authors
in [24] calculated a link budget for the LoRa satellite with a transmission power of 17 dBm
and reception sensitivity of −123 dBm. It is important to address the performance due
to Doppler, which presents a significant challenge for LoRa uplink connectivity. Our
approach aims to address gaps in the literature, aiming for novelty by accomplishing the
following tasks:

• The study examines a space surveillance radar system for tracking and monitoring
the trajectories of low-Earth-orbit (LEO) satellites, specifically targeting the Globalstar
and International Space Station (ISS) satellites. The analysis utilises two strategically
chosen locations, Perth and Brisbane, to ensure comprehensive East–West coverage.

• The study creates models for LEO constellation satellites, assessing satellite–ground-
station connectivity, determining latency, and developing a hybrid and computation-
ally efficient model integrating Iterative Input Selection and Long Short-Term Memory
Network (IIS-LSTM). This model seeks to accurately predict the Doppler profile for
the weather data of LEO satellites with the highest level of precision. We consider
both the Doppler rate and Doppler shift to gauge the influence of each on packet loss.

• The IIS algorithm acts as a feature selector to minimise the dimensionality of the input
space by selecting the relevant input variables or features that contribute to the model’s
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performance. The LSTM algorithm acts as the learning model for understanding and
predicting patterns.

• The research aims to examine the impact of the capacity constraints of LoRa modula-
tion in response to a significant effect of the Doppler effect caused by the movement
of LEO satellites. The investigation involves an evaluation of various communi-
cation parameters, such as the spreading factor, altitude of the satellite orbit, fre-
quency offset, and bandwidth of the signal, which affect the receiver’s susceptibility
to this occurrence.

• Benchmarking is conducted using the machine and deep learning models—Convolutional
Neural Network (CNN) and Extreme Gradient Boosting (XGBoost)—to enhance efficiency
and performance.

Based on our current understanding, this study represents a pioneering analysis of the
effects of deep learning involving IIS-LSTM on a comprehensive set of parameters about the
resilience of LoRa technology to the Doppler effect within a low-Earth-orbit (LEO) environment.

The structure of this paper is as follows: Section 2 provides a vast overview of the
Methodology, including the study area and LEO satellite tracking radar system, carrier
frequency offset estimation, AI model framework for doppler weather profile analysis,
impact of doppler on LoRa satellite and satellite link budget perspective. Following that,
the results and discussion are examined in Section 3. Finally, Sections 4 and 5 present the
concluding remarks and suggestions for future research.

2. Methodology
2.1. Study Area

Two carefully selected Australian locations, Perth and Brisbane, as described in Table 1,
were identified for this research study. These stations were chosen due to their advanta-
geous position along an East–West axis. A timeframe of 24 h, starting on 1 January 2024,
as illustrated in Figure 1, was considered. This timeframe proved to be instrumental in
conducting radar detection simulations and monitoring trajectories, which was an initial
essential component of the study. A thorough assessment was carried out to evaluate the
connectivity between LEO satellites and the Australian ground stations. This evaluation
aimed to determine the visibility of the ground stations from the satellites’ perspective.
This analysis aids in pinpointing the satellites that are within the line of sight of the ground
stations at any given moment.

Figure 1. One-month projection for Globalstar satellite with orbit data including altitude (km),
eccentricity, right ascension (deg), inclination (deg), argument of perigee (deg), and Date/Time on
X-axis. Source: CelesTrak.
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Table 1. The geographic description of the study sites.

City, State Longitude (°E) Latitude (°S) Elevation (m)

Perth, Western Australia 115.86 31.95 32
Brisbane, Queensland 153.02 27.47 31.5

2.2. LEO Satellite Tracking Radar System

In the initial task, the study examines a space surveillance radar tracking system that
employs a low-fidelity model to forecast the projected orbit of each satellite. The satellite
scenario object imports a satellite orbit constellation defined within a Two Line Element
(TLE) file, a widely used format for storing satellite orbital information [25]. The TLE file
containing orbital data for two satellite constellations, Globalstar and International Space
Station NAUKA (ISS NAUKA), has been chosen to examine their detection and tracking
capabilities. The imported satellite orbits undergo propagation using the Simplified General
Perturbations-4 (SGP4) orbit propagation algorithm [26], which is renowned for its accuracy
with objects in low Earth orbit. These orbits are used as a reference point for evaluating the
radar’s capability of tracking to find the latest satellites. Subsequently, synthetic detection
and tracking scenarios are generated through a space surveillance radar simulation. This
simulation involves configuring two radar stations with strategically placed fan-shaped
radar beams to enhance detection rates by overlapping satellite orbits. Following this,
radar detection simulations and trajectory monitoring were carried out for two designated
Australian stations, specifically Perth and Brisbane, positioned strategically in an East–
West orientation, spanning 24 h commencing on 1 January 2024, as shown in Figure 1.
An evaluation of the accessibility between LEO satellites and the Australian ground station
was conducted to determine the visibility of the ground station to the satellites. This
analysis helps to identify satellites in the line of sight of the ground station at any given
moment. Each station is equipped with a radar system tailored to find the LEO satellites,
with the following specifications:

• Is capable of detecting a 10 dBsm object at a range of 2000 km.
• Effectively and accurately aligns objects in directions within a 100 m margin of error

at a distance of 2000 km.
• Provides 30 degrees in elevation and a range of 120 degrees in the azimuth.
• Is positioned to observe the sky and monitor space activities.

The radar models yielded detections which were used to estimate satellite orbits.
A Joint Probabilistic Data Association (JPDA) tracker [27] was chosen for its efficient
tracking capabilities and optimal use of computational resources. A tracking filter was
established for the tracker, employing a simplified model, like Keplerian integration, rather
than SGP4, to track satellite movements. Any inaccuracies in the target’s motion model
were addressed through measurement updates and the integration of process noise within
the filter.

Subsequently, radar detections were simulated to track satellites, ensuring accurate
tracking of each satellite’s position. We generated a comprehensive record of the constella-
tion’s states over 12 h, followed by a simulation of radar detections and track generation.
After five hours of diligent tracking efforts, approximately half of the constellation was
successfully tracked. It presents a significant challenge to uphold pathways with incom-
plete orbit coverage, as satellites can remain unnoticed for an extended duration in this
arrangement. It is anticipated that if we add further stations for tracking, it will enhance
the overall detection ability. The assignment metrics, which evaluate tracking performance
by comparing objects, are outlined in Figure 2. We used orbit data from Two Line Element
(TLE) files to calculate and visually represent satellite trajectories within our simulation
software tool. The study uses the unscented Kalman filter [28] with a Keplerian motion
model, setting Alpha to 1, Beta to 0, and Kappa to 0 to ensure robustness for longer forecast-
ing periods. Latency has been attributed to the considerable distance between satellites and
the Earth. Furthermore, LEO satellites have been observed to reduce latency as opposed to
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geostationary (GEO) and medium-Earth-orbit (MEO) constellations, owing to the shorter
proximity between the terminal and the satellite.

Figure 2. Radar detection of Australian study sites and the anticipated paths of the GlobalstarM087
and ISS NAUKA satellites’ movements on the ground within 12 h. The previous trajectories are
shown through continuous yellow lines, and dotted yellow lines distinguish upcoming trajectories.

To effectively analyze the performance of the LoRa Uplink, it is essential to possess a
deep understanding of the satellite-to-end-device positioning, as illustrated in Figure 3. Let
E symbolise the elevation angle caused by the sudden oscillations of the LEO satellite, let
S denote the slant distance impacting the total distance travelled, and let β stands for the
elevation angle of satellites. Then, by applying the geometric principles, individuals can
ascertain the slant distance (d) through a designated elevation angle (E), and vice versa (as
shown in Equation (1)).

S =
√

Er sin2 β + 2H ∗ Er ∗ sin β + H2 − Er sin β (1)

Figure 3. Satellite-to-end-device positioning. E symbolises the elevation angle caused by the sudden
oscillations of the LEO satellite, S denotes the slant distance impacting the total distance travelled,
and β stands for the elevation angle of satellites.
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The key factors considered in this study for the satellites include bandwidth, ap-
plication payload, low-data-rate optimisation, spreading factor, elevation angle, average
inter-arrival time, loss due to static Doppler shift, loss due to dynamic Doppler shift,
and LEO pass duration. Additionally, Figure 1 showcases the names and orbital paths of
the satellites. Figure 2 illustrates the anticipated path of the satellite’s movement on the
ground within 12 h. It distinguishes between the previous and upcoming trajectories by
utilising dotted yellow lines for the latter and continuous yellow lines for the former.

2.3. Carrier Frequency Offset Estimation (CFO)

We estimated the CFO and calculated the degradation of signal-to-noise ratio (SNR)
resulting from frequency offset in Orthogonal Frequency Division Multiplexing (OFDM)
modulation. The data rate per OFDM symbol corresponds to the number of subcarriers
for Binary Phase Shift Keying (BPSK). The signal-to-noise ratio (SNR) spans from 0 to
30 dB, with frequency increments occurring at intervals of 10 MHz within the range of
−200 to 200 MHz. Figure 4 illustrates the relation between CFO on the X-axis and the
error magnitude in decibels on the Y-axis. The red trajectory shows theoretical values, and
simulated values are represented in green.

Figure 4. Carrier frequency offset on the X-axis with the error in decibels on the Y-axis. The red
trajectory shows theoretical values, and simulated values are represented in green.

2.4. AI Model Framework for Doppler Weather Profile Analysis

Selecting the radar mode (which can be selected as either “uniform” or “staggered”)
and radar wavelength for both satellites, as discussed earlier, synthetic weather data were
generated to evaluate the impact of Doppler as outlined by the authors [29]. The inputs
required for the data include power levels, spectrum widths, mean Doppler velocity, noise
power, number of samples within a coherent processing interval (CPI), sequence length,
pulse repetition frequency, list for the staggered sequence (default setting is (2 or 3), samples
factor required for window effects (default setting is 10), and the number of realisations.

Without specific guidelines, the data were initially split into a training set comprising
75%, a validation set comprising 15%, and a testing set containing 10%. The models
were programmed using Python version 3.7 and MATLAB version R2023a for Windows.
We have used MATLAB’s SatCom Toolbox programming languages and utilised freely
available open-source libraries such as numpy, pandas, matplotlib, sci-kit-learn, TensorFlow,
and optuna. We conducted model training across various architectures, utilising both the
Graphics Processing Unit (GPU) and Central Processing Unit (CPU) to assess and compare
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the efficiency of training and prediction times. The models were constructed using the
Windows 10 operating system on an Intel i7 Generation 9 processing unit clocked at
3.7 gigahertz, with 16 gigabytes of memory and an Nvidia 1050 Ti GPU, 4.

Our research involves an in-depth analysis of three unique machine and deep learning
architectures through training and assessment using a simulated dataset. We are specif-
ically investigating the effects of different training factors, such as signal-to-noise ratios,
quantisation levels, and sequence lengths, on the precision of estimation. Furthermore, we
are assessing the ability of each architecture to handle potential receiver scenarios in terms
of scalability.

The research entails the creation of intricate models for LEO constellation satellites,
analyzing the connectivity between satellites and ground stations, assessing latency, and de-
veloping a hybrid and computationally efficient model integrating Iterative Input Selection–
Long Short-Term Memory Network (IIS-LSTM). The primary goal of this model is to
accurately forecast the Doppler profile for the weather data of LEO satellites with a high
degree of accuracy and calculate the time delay, Doppler and frequency shift between the
satellites and the ground stations. Our thorough evaluation takes into account both the
Doppler rate and the Doppler shift to assess the influence of each on packet loss.

The satellite timeframe for this analysis spans from 1 January 2024, starting precisely at
12:00:00 AM Australian Eastern Standard Time (AEST), for 24 h. The simulation operates at
a real-time sampling frequency of 1 min. In this analysis, a C band frequency of 5 GHz has
been utilised for measurement purposes. The Globalstar terrestrial band offers a bandwidth
of 11.5 MHz, while the ISS NAUKA satellite operates at a frequency of 145.8 MHz.

2.4.1. Globalstar and ISS Satcom Arrangement

Globalstar and ISS have standardised arrays comprising uniform elements such as A
antennas, with Ay antennas on the Y-axis and Ax antennas on the X-axis.

Each antenna is strategically placed equidistantly with half a wavelength for optimal
signal reception and transmission. With one antenna, both satellites provide communication
services to a user. Further to the models outlined [30]. If t is the time from the satellite, O is
the altitude of the orbit, and O(t) ϵ wA is the channel with obstructions or no obstructions
between two transceivers.

Mathematically,

O(t) =
√

RF
RF + 1

Ō(t) +
√

RF
RF + 1

Õ(t) (2)

Ō(t) = ek2π( ¯fds−CFµ̄)ν(ē, φ̄) (3)

Õ(t) =

√
1
L

L

∑
l=1

gl·e
k2π( ˜fds−CFµ̃)ν(ẽ, φ̃) (4)

Below, we mathematically express the equations in the context of our current discus-
sion. Within this framework, we define the following variables for the line-of-sight path:

φ̄ = azimuth angle,
µ̄ = propagation delay,
ē = elevation, and
¯fds = Doppler shift.

For the non-line-of-sight path:

φ̃l = azimuth angle,
µ̃l = propagation delay,
ẽl = elevation, and

˜fdsl = Doppler shift.
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Moreover, we introduce the symbols CF, L, and RF to signify the frequency offset,
NLOS paths, and Rician factor. Lastly, the array response vector ν(θ, φ) is characterised as
such for our analysis.

ν(θ, φ) = νx(θ, φ)⊗ νy(θ, φ) (5)

νx(θ, φ) =

[
1, e−

k2πas f
c cos θ sin φ, . . . , e−

k2πas f
c (Ax − 1) cos θ sin φ

]T
(6)

νy(θ, φ) =

[
1, e−

k2πas f
c cos θ sin φ, . . . , e−

k2πas f
c (Ay − 1) cos θ sin φ

]T
(7)

ν ∈ ∆AxSx2 (8)

where ⊗ is the Kronecker product, antenna spacing is ‘as’, and c is the speed of light.

2.4.2. The Proposed IIS-LSTM Modelling Approach

The model consists of a hybrid involving an IIS algorithm that functions as a feature
selector and LSTM as a deep learning algorithm. IIS streamlines the input space dimensions
by identifying the most important input variables (features) that enhance the model’s
performance. It identifies the most advantageous attributes within the innovative hybrid
integrated model. The channel matrix is transformed into a three-dimensional tensor β
with dimensions of

Fn = β(Wm·(LHn−1, NIn) + Vm) (9)

β is the input tensor that takes on the appearance of a dual channel. After feature
extraction, a component of Recurrent Neural Networks (RNNs), LSTM, was utilised, which
possesses the capability to capture long-term dependencies. These models have recently
attracted increasing interest. The chief advantage of LSTM networks lies in their ability to
consider the sequential progression of events in a forecasting period, rendering them well
suited for sequential AI methodologies. In Long Short-Term Memory networks, there are
input, output, and forget gates within memory blocks that effectively update and regulate
the flow of information in distinct blocks. This unique feature of LSTM is beneficial as it
facilitates the continual updating of future predictions.

If LHn−1 = last hidden state, NIn = new input, FGn = forget gate, Wm = weight
matrices, Vm= bias vector, ign = input gate, θ(..) = logistic sigmoid activation functions,
tanh(..) = hyperbolic tangent. Further to Sn−1 and NIn, LSTM can determine the informa-
tion that is to be excluded or thrown away from the cell state represented by

CSn = tanh(Wc·(LHn−1, NIn)) (10)

Deciding what information will be stored in the cell state, we need another candidate
cell state CSn that is generated and scaled by

ign = (Wi·(LHn−1, NIn) + Vi) (11)

CSn = (Fn ∗ Cn−1 + NIn ∗ Cn) (12)

CSn, which is the latest state of a cell, is updated by merging the earlier state of the
cell CSn−1 and the latest state of the cell CSn. The earlier cell is affected by the ‘forget gate’
FGn and the latter by ‘input gate’ ign:

∂n = σ(W∂·(LHn−1, NIn) + b∂) (13)

The output process is conducted sequentially, comprising two distinct steps. A newly
introduced gate, referred to as the ‘output gate’ ∂n, is employed to determine the specific
elements of the cell state (the Cn that is to be outputted). The activation of the cell state
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through the tanh function is refined by the application of the ‘output gate’ ∂n. The resultant
product of this multiplication operation yields the anticipated output, denoted as Sn.

LHn = ∂n tanh(Cn) (14)

Benchmarking is performed with two other machine and deep learning models
(Table 2), Extreme Gradient Boosting (XGBoost), and Convolutional Neural Network (CNN)
which have been covered in our earlier studies [31,32]. With precise calculations for Doppler
shift and additional data extracted related to Doppler, we also took care of the trajectory of
its variation. The data output for Doppler includes relative velocity and Doppler rate.

Table 2. Optimal architecture (in RED for IIS-LSTM).

Model Hyper-Parameters Optimal Set Grid Search

IIS-LSTM

Epochs
Activation function

Batch size
Optimiser, Drop rate

IIS-LSTM filter
Dropout

SNR
Platform

[5, 10, 50, 100, 200]
[SoftMax, Tanh, ReLU,

Leaky ReLU, sig]
[100, 500, 700, 1000, 2000]

[Adam], [0.1, 0.2]
[50, 60, 100, 200, 500]

Yes
[0–30]

Python (version 3.9)

CNN

Epochs
Activation function

Batch Size
Optmiser, Drop rate

CNN filter
Pooling, Padding
Number of Dense

layers used
Dropout

SNR
Platform

[5, 10, 50, 100, 200]
[SoftMax, tanh, ReLU,

Leaky_ReLU, sig]
[100, 500, 700, 1000, 2000]

[Adam ], [0.1, 0.2]
[50, 60, 100, 200, 500]

[same]
[3 for Input and 1 for Output]

Yes
[0–30]

Python (version 3.9)

XGBoost

Gamma
Maximum Delta

Step
Lambda
Alpha
Weight

Seed
max depth
Platform

[Tuned with loss function]
[No]

[0.5–1]
[used for reducing overfitting]
[used for high dimensionality]

[>0]
[0]

[3–10]
MATLAB R2023b

See Figures 5–12. Figures 5 and 9 illustrate the Doppler shift, Figures 6 and 10 show
the Doppler rate, Figures 7 and 11 describe latency, and Figures 8 and 12 discuss the latency
rate corresponding to the Globalstar and ISS with initial satellite data. The original Doppler
shift possesses a dynamic range deemed too vast for effective training with Mean Squared
Error (MSE) loss. By converting the values to a normalised scale, our proposed model
achieved improved training precision and accuracy. We have optimised the training process
to minimise the error for enhanced performance.

Loss =
1
N

N

∑
g=1

∣∣DSg − D̃Sg
∣∣2 (15)
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In the context of our work, DSg represents the normalised ground truth Doppler shift,
while −D̃Sg denotes the estimated normalised Doppler shift for sample g within the total
N training samples.

Figure 5. Doppler shift of the Globalstar satellite with initial satellite data.

Figure 6. Doppler rate of the Globalstar satellite with initial satellite data.

In contrast, the LSTM algorithm serves as the learning model, demonstrating profi-
ciency in comprehending and forecasting patterns. Figure 13 shows the effects of varying
spreading factors (SFs) on LoRa performance. Simulation started on 1 January 2024 for 24 h,
with simulation steps executed every second. The bandwidth is set at 500 MHz, the carrier
frequency range is between 5091 to 5250 MHz, and the application payload is set to 55.
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Figure 7. Latency of the Globalstar satellite with initial satellite data.

Figure 8. Latency Rate of Globalstar satellite with initial satellite data.

Figure 9. Doppler shift of the ISS NAUKA satellite with initial satellite data.
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Figure 10. Doppler rate of the ISS NAUKA satellite with initial satellite data.

Figure 11. Latency of the ISS NAUKA satellite with initial satellite data.

Figure 12. Latency rate of the ISS NAUKA satellite with initial satellite data.
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Figure 13. Effects of varying spreading factors (SFs) on LoRa performance of the Globalstar satellite.
Simulation started on 1 January 2024 for 24 h, with simulation steps executed every second. Band-
width is set at 500 MHz, Carrier frequency range is between 5091 to 5250 MHz, Application payload
is set at 55.

2.5. Impact of Doppler on LoRa Satellite

The study continues to comprehensively analyse the impact of the Doppler effect
on the dependability of LoRa satellite connections and determine the latency and latency
alteration calculation. We evaluated the occurrences of packet losses by differentiating
between Doppler rate and shift. The Doppler rate is due to fluctuations in the velocity of
satellites in LEO about an Internet of Things (IoT) device situated on the ground [33].

The study also determines the propagation delay from the LEO satellites to the Aus-
tralian ground stations and assesses the propagation delay rate of change. After that, we
graph the propagation delay linked to the initial satellite. While it is possible to graph
the propagation delay for all satellites, Figures 10 and 12 showcase the initial satellite to
provide clarity and streamline the visualisation. Furthermore, it involves evaluating the
rate of change of the propagation delay for both satellites also shown in Figures 10 and 12.
Subsequently, we plot the propagation to enhance clarity and simplify visualisation.

Our comprehensive analysis encompasses a range of communication variables and
configurations, such as bandwidth and carrier frequency and has successfully pinpointed
the necessary parameters for establishing direct connections to low-Earth-orbit (LEO)
satellites utilising LoRa technology. These results can be leveraged to guide the selection of
ideal parameters for upcoming system designs.

Specifically, our study demonstrates that the packet delivery rate for the most sensi-
tive spreading factor (SF12) exceeds 91% with 11.5 MHz bandwidth for Globalstar and
145.8 MHz for ISS NAUKA, a carrier frequency of 631 MHz for the ISS located at an altitude
of 402.3 km and 500 MHz for Globalstar at an altitude of 1414 km.

2.6. Satellite Link Budget Perspective

We used the Satellite Link Budget Analyser application of MATLAB to comprehen-
sively analyse link budgets for SatCom systems as shown in Table 3. A few key features
included were:

• Conducting a comprehensive analysis of link budgets by inputting precise parameters
related to the geographical location, characteristics of LEO satellites and ground sta-
tions in Australia, as well as atmospheric conditions such as rain attenuation(dB), total
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atmospheric losses (dB), and total propagation losses (dB) that may affect the connec-
tion. Figure 14 shows the loss and accuracy in red and blue for the ISS LSTM model.

• Creating a Globalstar and ISS communication link that satisfies a predetermined
minimum link margin threshold.

• Utilising detailed calculations for interim link budget assessments.
• Performing evaluations, computations, and visual representations of results while

considering various design constraints.

Figure 14. Mean square error loss is shown in red and accuracy in blue for the estimated Doppler
shift MHz of the proposed ISS-LSTM.

Table 3. Link budget analysis for assessing the availability of the Geostar LEO satellite using the
Earth–Space Propagation atmospheric loss model.

Tag Name L1 L2 L3

N1 Distance (km) 1.2426 × 104 4.0215 × 104 3.6138 × 104

N2 Elevation (deg) −75.6539 13.5231 41.5653
N3 Tx EIRP (dBW) 32 46 47
N4 Polarisation loss (dB) 3.0103 3.0103 3.0103
N5 FSPL (dB) 181.9385 205.3634 206.5296
N6 Rain attenuation (dB) - 13.0271 0
N7 Total atmospheric losses (dB) - 15.2073 0
N8 Total propagation losses (dB) 181.9385 220.5707 206.5296
N9 Received isotropic power (dBW) −155.9488 −180.5810 −165.5399

N10 C/N0 (dB-Hz) 95.6503 71.0181 86.0592
N11 C/N (dB) 25.0433 3.2366 18.2777
N12 Received Eb/N0 (dB) 25.6503 1.0181 16.0592
N13 Margin (dB) 13.6503 −10.9819 4.0592

An exhaustive examination and simulation of ground stations to ascertain the Signal-
to-Noise-and-Interference-ratio (SINR) and Coverage probability was performed for both
downlink and uplink scenarios. The Globalstar satellite features a complex communications
infrastructure, including S- and L-band antennas, a trapezoidal body, and two solar arrays.
Each satellite operates at an altitude of 1414 km, equivalent to approximately 876 miles
above sea level. Figure 15 shows the Coverage probability of uplink with the SINR threshold
in decibels on the X-axis. Figure 16 shows the power of the flat faded signal and frequency
selected faded signal on the Y-axis in Figure 17.



Sensors 2024, 24, 5271 16 of 24

Figure 15. Coverage probability of uplink with signal-to-noise-and-interference-ratio (SINR) thresh-
old in decibels on the X-axis. The different color lines show the Coverage probability of uplink with
the SINR threshold in decibels.

Figure 16. Power of the flat faded signal corresponding to the number of samples taken.

Figure 17. Power of the frequency and selected faded signal corresponding to the number of
samples taken.
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The following chart displays the outcomes of the calculated link budget analysis for as-
sessing the availability of the SatCom link using the Earth–Space Propagation atmospheric
loss model as outlined in Recommendation ITU-R P.618-13 [34].

3. Results and Discussion

Our study involved conducting thorough simulations to analyse the computational
complexity, scalability, and mean squared error performance of deep learning architectures
in comparison to traditional signal processing techniques. The findings show that training
with quantised data obtained from signals with signal-to-noise ratios (SNRs) between
0 and 30 dB significantly boosts the performance of deep learning estimators across the
entire range of SNRs examined.

We effectively detected and tracked the trajectories of two LEO satellite constellations
using ground-based radar systems and conducted calculations for latency and Doppler in
a satellite setting utilising LoRa modulation and analyzing suitable resolutions. Our initial
assignment entailed the creation and upkeep of a comprehensive inventory of celestial
bodies circling Earth, a vital component in space surveillance. The process involved the
detection and categorisation of newly discovered objects, the inclusion in the inventory, the
maintenance of accurate orbital information for existing objects, the continuous monitoring
of orbit alterations over time, and the forecasting of potential reentries into the Earth’s
atmosphere. These tasks are essential to ensuring the safety of operations in outer space
and mitigating the risk of collisions with other satellites or established debris.

In investigating the LoRa ground SatCom link budget and scalability, while consider-
ing several channel conditions and user densities that mirror realistic application scenarios,
it has been determined that LoRa modulation can establish a connection with an LEO.
This can happen with a huge percentage of success of more than 97% at a distance of
roughly 2300 km. Additionally, it has been found that the network can accommodate
extensive connectivity. The mid-850 MHz band is less preferable than the 500 MHz band
due to increased susceptibility to the Doppler effect. The significance of the lower band
lies in its widespread coverage in various global regions and its proximity to less than
930 MHz band, which are crucial for coverage in countries of the northern hemisphere.
This underscores the importance of the study conducted as ISS NAUKA has a downlink
frequency of 631 MHz and Globalstar 500 MHz. The analysis also suggests that higher
Spreading Factors, such as SF12, are more susceptible to a Doppler shift when compared
to lower spreading factors in a mobile environment. As the bandwidth B decreases in
Figure 10, the LoRa modulation becomes increasingly susceptible to static Doppler effects.
This susceptibility is illustrated in Figure 10. The legend’s colour coding effectively dif-
ferentiates between correct reception with the black dots and red, green, and yellow dots
indicating Doppler rate, shift, or a combination. Upon observation, it is noted that there
is a loss of data packets when the elevation angle (E) is equal to or less than 40 degrees,
regardless of the spreading factor (SF) utilised. Unlike SF8, which functions effectively
for E angles greater than 40 degrees, dynamic Doppler affects both SF 12 and 10, which
are characterised by fluctuations in frequency during the reception of data packets due
to the changing Doppler shift rate. Our findings suggest that static Doppler interference
poses challenges at lower altitudes, whereas dynamic Doppler interference proves more
effective as the satellite approaches the target at higher altitudes. This phenomenon is
linked to a reduction in the satellite’s coverage range, leading to a gap in communication.
As a result, the window of reliable Doppler connection decreases, potentially impeding the
establishment of device communication. Our analysis includes assessments for modulation
techniques commonly used in Internet of Things (IoT) standards, such as long-range (LoRa)
modulation. It is worth mentioning that higher elevation angles result in a higher Doppler
rate (absolute value). Specifically, SF10 is susceptible to the dynamic Doppler effect for
E angles greater than 40 degrees, while SF12 begins to experience difficulties at E angles
exceeding 13 degrees.
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In comparison to ground objects, LEO satellites induce a considerably greater Doppler
shift as they navigate around the Earth at an average velocity of thousands of kilometres
per hour. Given the substantial dynamics inherent in an LEO satellite, Doppler position-
ing algorithms are poised to reap significant advantages from this heightened dynamic
attribute. Through our innovative approach, we have successfully demonstrated the effi-
cacy of accurately estimating carrier frequencies from 1-bit quantised data with reduced
reliance on pilot signals and lower SNRs when compared to conventional signal process-
ing methodologies. We rigorously analyze and simulate ground stations to ascertain the
signal-to-noise-and-interference ratio (SINR) and coverage probability for downlink and
uplink scenarios.

The Globalstar satellite is equipped with a sophisticated communications infrastruc-
ture including S- and L-band antennas, a trapezoidal body, and two solar arrays. Each
satellite operates at an altitude of 1414 km, approximately 876 miles above sea level. The
ISS maintains an orbital altitude range of 370–460 km (200–250 nautical miles) above the
Earth’s surface. The ISS orbital inclination is set at 51.6 degrees, enabling the station to
traverse over 90% of the populated regions on Earth. Figure 18 illustrates the configuration
for the Satellite Link Budget configuration for the Globalstar satellite and the Perth ground
station as follows:

• Link L1 acts as an uplink, enabling the establishment of a connection between ground
station G1 and satellite S1.

• Link L3 operates as a critical intermediary, facilitating communication between satellite
S3 and satellite S4.

• Link L2 functions as a downlink, enabling the flow of communication between satellite
S2 and ground station G2.

Figure 18. Configuration for the Satellite Link Budget for the Globalstar satellite and the Perth ground
station. Link L1 acts as an uplink enabling a connection between ground station G1 and satellite S1.
Link L3 operates as a critical intermediary, facilitating communication between satellites S3 and S4.
Link L2 functions as a downlink, enabling communication between satellite S2 and ground station G2.

Summarising the above discussion, the classification challenges outlined in this study
are critical for optimising throughput and reducing bit error rates. The machine learning
and deep learning algorithms examined in this context are specifically designed to address
classification tasks and aim to improve the operational efficiency of low Earth orbit (LEO)
satellites in the context of the Doppler effect. A thorough analysis has been performed
regarding the performance of LoRa and ground satellite connectivity utilising machine
learning and deep learning techniques, with particular attention given to the substantial
impact of the Doppler weather effect.

The hybrid artificial intelligence model that has been developed demonstrates a high
degree of effectiveness in classifying extended transmission distances, albeit with a consid-
eration of bandwidth limitations. Additionally, the AI framework is capable of predicting
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the Doppler profile for low-Earth-orbit (LEO) satellites, while also incorporating factors
related to weather attenuation. This integrated approach serves to optimise the project
for both uplink and downlink transmission processes. As a result, there is a significant
enhancement in computational efficiency and overall system performance. Furthermore,
this methodology allows for comparative analyses against other prominent modulation
schemes that are relevant within the Internet of Things (IoT) standards, including the
Doppler effect associated with long-range modulation.

The classification analysis has focused on several key factors that differentiate the
impacts of static Doppler from those of dynamic Doppler. Furthermore, the challenges
presented by the Doppler effect in establishing LoRa ground satellite connectivity have
been comprehensively investigated. This classification framework provides valuable in-
sights into identifying the most suitable parameters for satellite communication, thereby
enhancing our understanding of packet loss dynamics.

Furthermore, it is important to note that the computational demands and simulation
duration are largely influenced by the parameters being studied. For example, using
MATLAB R2023a requires around 20 s to generate the outcomes shown in Figures 19 and 20.
Additionally, it should be emphasised that resistance to the Doppler impact greatly depends
on the decisions made by the designer, and the overall efficiency has a better chance to
increase with design advancements.

Figure 19. Margin and operating point of Globalstar satellite and Perth ground station.

Figure 20. Free space path loss in Decibels for the Globalstar satellite and the Perth ground station.
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4. Conclusions

Efficient protocols are essential for ensuring reliability, smooth communication, and en-
ergy efficiency. Through cutting-edge AI architectures and emerging technologies, robust
satellite communication networks are feasible.

This study comprehensively examines the operational efficiency of low-Earth-orbit
satellites concerning the Doppler effect, utilising state-of-the-art artificial intelligence tech-
niques. The performance of LoRa and ground satellite connectivity has been thoroughly
investigated, particularly under the influence of a significant Doppler weather effect.
The hybrid AI model developed prioritises extended transmission distances, even at the
cost of bandwidth.

This study estimates frequency offset, uses AI to project the Doppler profile for the
LEO satellite and weather attenuation, coordinates the project collectively for the uplink
and downlink, enhances computational efficiency and overall performance, and assesses
against other prominent modulation schemes found in prevalent Internet of Things (IoT)
standards such as Doppler effect in long-range modulation. In LEO satellite commu-
nications, the implementation of effective frequency Doppler shift (FDS) compensation
techniques is vital to ensure optimal data transmission rates and minimal error occurrences.
The analysis has focused on several key factors that differentiate the impact of the static
Doppler from the dynamic Doppler. The challenges posed by the Doppler effect when
establishing LoRa ground satellite connectivity have also been addressed.

The meticulous evaluation of the traditional systems with the current industry bench-
marks helps us to refine modulation schemes, especially in the long range (LoRa), leading
to a significantly improved and more effectively operated AI model. With training and
optimisation of the model developed in conjunction with SNR values, we can enhance esti-
mation accuracy and reduce computational complexity. It has been observed that various
factors, such as spread factor, frequency offset, and bandwidth have a significant effect
on the uplink. Furthermore, the satellite’s height of orbit and packet payload also have
a moderate effect on performance. These conclusions can help in determining the most
suitable parameters for SatCom to understand the loss of packets.

Our study highlights the benefits, challenges, and delicate equilibrium in adjusting
key parameters related to communication. The presence of both Doppler rate and shift
effects could interfere with the SatCom link, potentially resulting in the loss of packets.
Static Doppler is challenging at elevation angles that are lower. However, dynamic Doppler
has a more significant effect at elevation angles that are higher, especially near the end
device. These effects can result in coverage gaps within the impression of the satellite,
decreasing the area of coverage, where it is impactful and reduces the available time for
a stable connection. As a result, even if a satellite is within sight, other systems may
encounter difficulties establishing communication due to the influence of the Doppler
effect. The integrated AI model, known as the Iterative Input Selection–Long Short-Term
Memory Network (IIS-LSTM), forecasts Doppler weather profiles for LEO satellites. The IIS
algorithm is utilised for selecting pertinent input variables within the model, whereas the
LSTM algorithm is responsible for acquiring knowledge and making predictive assess-
ments of patterns. The feature extractor is trained using the normalised mean squared
error criterion to accommodate the wide range of Doppler shift values present in LEO
communication channels.

The feature extractor has been trained utilising the normalised mean squared error
criterion in order to adapt to the diverse range of values of Doppler shift encountered
within LEO. The machine learning model utilising XG Boost attains an impressive accuracy
rate of 87%, with the 55th trial emerging as the most optimal out of a total of 100 trials.
Additionally, the learning rate employed in this analysis is 0.102. It is observable that
the XGB model demonstrates efficiency in the testing duration, achieving approximately
0.0997 s for elevated signal-to-noise ratios and delivering an accuracy of 87%. Nonetheless,
it is noteworthy that this model incurs significant computational costs.
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In comparison, the IIS-LSTM model showcases a commendable accuracy of 87% while
offering improved computational efficiency for lower SNRs at around 0.4651 s. Following
closely are the XGB and CNN models, with respective testing times of approximately
0.5990 and 0.6120 s. Additionally, as the number of channel epochs increases, the estimation
performance improves. However, it is important to consider that increasing the number
of epochs may not always be beneficial, particularly in low-SNR conditions where the
estimation error may converge.

Specifically, our study demonstrates that the delivery rate of the packet for the spread-
ing factor (SF12) is more than 91% with 11.5 MHz bandwidth for Globalstar and 145.8 MHz
for ISS NAUKA, and the carrier frequency of 631 MHz for ISS located at an altitude of
402.3 km and 500 MHz for Globalstar at an altitude of 1414 km. The technique developed
has the potential to address high orbital signal fluctuations. Our innovative model enhances
the channel for capturing features that are high-dimensional and accurately measuring
the Doppler shift. This approach shows promising results and has the potential to sig-
nificantly enhance the estimation of the Doppler shift in LEO satellites. By leveraging
sophisticated hardware architectures and cutting-edge platforms, the establishment of
expansive networks can be facilitated through the deployment of efficient transmission
technologies such as LoRa. Central to this process are protocols and network manage-
ment strategies that prioritise reliability, transmission range, and energy efficiency. These
methodologies all aim to improve robustness and increase transmission distances, albeit at
the expense of certain satellite operational factors. Furthermore, it is imperative to carefully
consider the integration of network management solutions and seamless incorporation
into existing IoT frameworks to address the complexities and opportunities in designing,
developing, implementing, and deploying wireless low-power and long-range sensors and
networks comprehensively.

5. Limitations and Future Research Work

Despite progress in the field, there are several obstacles and outstanding concerns
regarding the effective deployment of these technologies on a widespread basis. In circum-
stances involving vast areas, remote or inaccessible locations, or hazardous environments,
the capability to enable reliable communication without depending on current infrastruc-
ture offers a substantial benefit of low-power and long-range technologies.

It is imperative to develop a comprehensive strategy for future LEO connectivity that
provides a detailed outline of both the system and technology components involved in
space networking and communications. Additional enhancements may be incorporated
into the existing study analysis outlined within this document. Implementing AI tech-
niques for satellite communication parameters optimisation is key to developing efficient
low-power, long-range network infrastructures for the future. It is also important to con-
sider comprehensive network management strategies and the seamless integration of these
networks into existing IoT ecosystems in this rapidly changing environment. By taking
advantage of the robust signal reception of LEO satellite signals and leveraging the ra-
dio environment-reshaping capability of RISs, the integration of these two cutting-edge
technologies paints a compelling picture of a future where localisation services exceed the
current limitations. Given the intricate computational demands associated with beamform-
ing designs for reconfigurable intelligent surface (RIS) units, it is prudent to explore future
studies about energy-efficient methodologies that incorporate artificial intelligence (AI)
augmentation. Analyzing LoRa Doppler with noise and sensitivity presents a promising
opportunity for future exploration. It is essential to recognise the lack of a specific approach
for addressing the Doppler shift and rate, requiring additional research. A noteworthy
consideration in the deployment of micro Doppler radar systems is the implementation of
a federated learning strategy. Current research efforts, including those conducted by the
authors [35,36], are actively exploring this area. It is proposed that a unified convolutional
neural network (CNN) model could be employed across all distributed radar units (re-
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ferred to as clients). This model would be trained utilizing a federated learning approach,
leveraging a wireless backhaul connection to the central server in future investigations.

Another future direction can be developing solutions for a challenging situation
when satellites are moving in opposite trajectories, resulting in the highest achievable
Doppler shift. This scenario has the potential to create difficulties in sustaining consistent
satellite communication, potentially resulting in data loss or system malfunction. Therefore,
future research needs to focus on developing strategies to mitigate this Doppler shift and
guarantee reliable communication.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
SatCom Satellite Communication
LEO Low-Earth orbit
IoT Internet of Things
ISS International Space Station

IIS-LSTM
Iterative Input Selection—Long Short-Term Memory
Network

CNN Convolutional Neural Network
XGBoost Extreme Gradient Boosting
LoRa Long Range
CSS Chirp spread spectrum
ACF Autocorrelation coefficient function
LFM Linear frequency modulation
AWGN Additive white Gaussian noise
MIMO Multiple-Input Multiple-Output
DNN Deep neural network
GRU Gated recurrent unit
RNN Recurrent neural network
HAPS high altitude platform station
DL Deep learning
LPWAN Low-Power Wide-Area Network
SGP4 Simplified General Perturbations-4
JPDA Joint Probabilistic Data Association
TLE Two Line Element File
MEO medium Earth orbit
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GEO geostationary
SNR signal-to-noise ratio
OFDM Orthogonal Frequency Division Multiplexing
BPSK Binary Phase Shift Keying
CPI coherent processing interval
GPU Graphics Processing Unit
CPU Central Processing Unit
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