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Abstract: (1) Background: Fibromyalgia syndrome (FMS) is a chronic pain condition with widespread
pain and multiple comorbidities, for which conventional therapies offer limited benefits. The reserpine-
induced myalgia (RIM) model is an efficient animal model of FMS in rodents. This study aimed to
develop a pharmacokinetic–pharmacodynamic (PK–PD) model of reserpine in rats, linking to its
impact on monoamines (MAs). (2) Methods: Reserpine was administered daily for three consec-
utive days at dose levels of 0.1, 0.5, and 1 mg/kg. A total of 120 rats were included, and 120 PK
and 828 PD observations were collected from 48 to 96 h after the first dose of reserpine. Non-
linear mixed-effect data analysis was applied for structural PK–PD model definition, variability
characterization, and covariate analysis. (3) Results: A one-compartment model best described
reserpine in rats (V = 1.3 mL/kg and CL = 4.5 × 10−1 mL/h/kg). A precursor-pool PK–PD model
(kin = 6.1 × 10−3 mg/h, kp = 8.6 × 10−4 h−1 and kout = 2.7 × 10−2 h−1) with a parallel transit chain
(k0 = 1.9 × 10−1 h−1) characterized the longitudinal levels of MA in the prefrontal cortex, spinal
cord, and amygdala in rats. Reserpine stimulates the degradation of MA from the pool compart-
ment (Slope1 = 1.1 × 10−1 h) and the elimination of MA (Slope2 = 1.25 h) through the transit chain.
Regarding the reference dose (1 mg/kg) of the RIM model, the administration of 4 mg/kg would
lead to a mean reduction of 65% (Cmax), 80% (Cmin), and 70% (AUC) of MA across the brain regions
tested. (4) Conclusions: Regional brain variations in neurotransmitter depletion were identified,
particularly in the amygdala, offering insights for therapeutic strategies and biomarker identification
in FMS research.

Keywords: reserpine; pharmacokinetic; pharmacodynamic; fibromyalgia

1. Introduction

Fibromyalgia syndrome (FMS) is a chronic pain condition characterized by widespread
musculoskeletal pain and a broad spectrum of comorbidities, which include chronic fatigue,
sleep disturbances, mood alterations, cognitive impairment, and other functional symp-
toms [1,2]. Traditionally, pain has been the main focus of FMS treatments. Nevertheless,
depressive-like symptoms, sleep disturbances, and cognitive alterations also seriously
affect the individual’s quality of life, sometimes even disturbing not only for patients but
also for their surroundings [2]. However, conventional therapies produce limited benefits.
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Even today, there is a lack of consensus regarding FMS diagnostic and classification criteria
and etiopathogenesis. Various hypotheses have suggested that this syndrome involves
genetic predisposition, immune system involvement, neurotransmitter dysregulation, and
central sensitization [1–4]. However, the lack of knowledge of the etiopathogenesis and the
mechanisms underlying FMS hinders their preclinical evaluation. Despite this, numerous
animal models of FMS have been developed in recent years, and the reserpine-induced
myalgia model (RIM) is the one that has managed to reproduce fibromyalgia-like symptoms
better [5]. RIM was developed by Nagakura et al. in 2009 [6] since monoamines (MAs),
specifically serotonin (5-HT), norepinephrine (NE), and dopamine (DA), regulate a large
part of the altered processes in FMS. MAs are involved in processing pain and emotions, as
well as in regulating sleep, wakefulness, and cognitive functions [7]. Furthermore, there
is evidence of a decrease in MAs and their main metabolites in the CSF of people with
FMS [8–10]. Also, antidepressant drugs that increase MA levels have shown effectiveness
in symptom relief in FMS patients [11,12].

Reserpine was a first-line antihypertensive drug, but it is rarely used nowadays due to
its pro-depressive side effects and the emergence of safer drugs [13]. This depressive-like
symptoms can be explained by an MA depletion in neurons, mainly 5-HT, NE, and DA.
Reserpine inhibits the uptake of cytosolic MAs into storage vesicles through a blockade
of the vesicular monoamine transporter-2 (VMAT-2). Thus, reserpine action leads to an
MA exit stoppage from the presynaptic neuron, ending up in a reduced transmission of
the nervous signal in the postsynaptic neuron [13–15], causing a temporary decrease in
MA levels. Due to its mechanism of action, the RIM model was developed at a preclinical
level [5], which has been used to evaluate therapeutic alternatives in FMS [16–21].

Pharmacometrics represents an essential strategy to quantitatively characterize longitu-
dinal pharmacokinetic (PK) and pharmacodynamic (PD) relationships with drug exposure
and effect variability by integrating large, complex, and heterogeneous information, allow-
ing a more efficient and optimal model-informed drug discovery and development process.
This method allows working with sparse sampling designs with few data points per sub-
ject [22]. Therefore, this strategy perfectly contributes to a more efficient and informed
drug discovery and development process together with the “3 Rs” principle (replacement,
reduction, refinement), which has been highly endorsed by research and regulatory author-
ities in recent years [23–25]. They provide more accurate efficacy and safety estimates by
differentiating disease changes over time from changes caused by the treatment [26,27].
Recently, disease models have been published [28–34], but a quantitative framework able
to characterize and explore disease dynamics for FMS is still lacking. Therefore, the aims of
this study were (i) to develop a population pharmacokinetic model able to characterize the
time course of reserpine in rats, and (ii) to establish a population PK–PD model in rats by
linking the impact of reserpine on dopamine, norepinephrine, and serotonin longitudinally
in different brain regions in order to quantitatively characterize the RIM model.

2. Materials and Methods
2.1. Experimental Design and Analysis

A total of 120 male Sprague Dawley rats (Envigo RMS B.V., NM Horst, Limburg, The
Netherlands) were used, which weighed in between 300 and 450 g. Animals were housed
in the Central Research Unit at the University of Valencia (Spain) with a controlled cycle
of 12 h light–12 h darkness at constant temperature (22 ± 2 ◦C) and humidity (55 ± 10%),
and the air was filtered through HEPA filters and renewed more than 15 times/hour. Water
and food were provided ad libitum. All the experimental protocols followed the Animal
Care Guidelines of the European Communities Council Directive (2010/63/EU), Royal
Decree 53/2013, and were approved by the Ethics Committee of the University of Valencia
prior to performing the experiments (procedure A1546594024579). Animals were randomly
assigned to experimental conditions.

Reserpine (Sigma-Aldrich, St. Louis, MI, USA) was administered once daily for
three days at three dose levels: 0.1, 0.5, and 1 mg/kg. For each dose, six euthanasia
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times were established at the third dose: pre-dose and 30 min, 2, 4, 24, and 48 h after
administration (Figure S1). Rats were anesthetized (isoflurane + O2) and euthanized by the
guillotine technique.

Plasma samples were obtained immediately after decapitation, stored in heparinized
vials, centrifuged, and stored at −80 ◦C until processing. For nervous tissue extraction,
after decapitation, the brain (medial prefrontal cortex (PFC), amygdala (AMY) nuclei), and
the lumbar portion of the spinal cord (SC) were extracted. Nervous tissue was stored at
−80 ◦C until its processing.

2.1.1. Plasma Reserpine Quantification

Plasma samples of reserpine were determined by liquid chromatography–mass spec-
trometry (LC–MS). The method was validated in terms of linearity, precision, accuracy,
limit of detection and quantification, specificity, interval, and robustness. The analytical
quantification of reserpine in plasma samples was conducted using an Acquity® TQD
mass spectrometer (Waters) under meticulously optimized conditions. Liquid chromatog-
raphy (LC) separation was performed using a C18 BEH column (2.1 × 100 mm, 1.7 µm)
maintained at 35 ◦C, with a flow rate of 0.3 mL/min in an isocratic mode. The mobile
phase consisted of water with 0.5% formic acid and acetonitrile, with a gradient shift from
10% to 90% acetonitrile over a 3 min period. The injection volume was set at 5 µL. Mass
spectrometry (MS) conditions included a capillary voltage of 3 KV, skimmer voltage of 5 V,
and an RF lens voltage of 0.3 V. The source temperature was maintained at 120 ◦C, with a
desolvation temperature of 350 ◦C, a cone gas flow rate of 25 l/h, and a desolvation gas flow
rate of 650 l/h. Data acquisition was performed in multiple reaction monitoring (MRM)
mode for both positive and negative ionization, ensuring precise detection of reserpine
with transitions at m/z 609.2 to 192.03 and 609.2 to 395.7. The lower limit of quantification
of reserpine was 0.1 µg/mL.

2.1.2. Brain Monoamine Quantification

Brain tissue was homogenized in 10 volumes (w/v) of ice-cold 0.4 M perchloric
acid containing 5.3 mM sodium metabisulfite, 0.27 mM EDTA and 8.3 mM L-cysteine
and centrifuged for 30 min at 14,000 RPM with an Eppendorf 5430R centrifuge. Each
aliquot of each supernatant was then filtered through 0.45 µm-pore Millex-HV (Merck
Life Science S.L.U., Madrid, Spain) filters and assayed by HPLC using a DECADE Elite
electrochemical detector. Noradrenaline, dopamine and 5-HT were determined using an
Alexys Analyzer at 0.46 V (Antec Scientific, Zoeterwoude, Netherlands) following the
manufacturer’s methods. Briefly, monoamines were assayed using an Acquity UPLC BEH
C18 1.7 µm (1.0 × 100 mm) column (Waters Cromatografía, S.A., Cerdanyola del Vallès,
Barcelona, Spain). The composition of the mobile phase was 100 mM phosphoric acid,
100 mM citric acid, 0.1 mM EDTA (adjusted at pH 6.0 with sodium hydroxide solution),
980 mg/L octane-1-sulfonic acid sodium salt, and 7% acetonitrile, and was delivered at
0.075 mL/min. The temperature of the detector was set to 42 ◦C. The lower limits of
detection and quantification fluctuated between 1 and 5 pmol/mL. Data acquisition and
calculation were carried out by Clarity chromatography software of Data Apex (Prague,
Czech Republic).

2.2. Data Analysis

The model building, model evaluation, and simulation-based analyses were performed
using non-linear mixed-effect (NLME) analysis, incorporating fixed- and random-effect
parameters in Monolix software (v2024R1). RStudio software (v2023.12.1) and R® 4.2.1
(R Foundation for Statistical Computing, Vienna, Austria) were used for graphical eval-
uation. Population parameters were estimated using the estimation method of SAEM
(stochastic approximation expectation maximization). The inter-animal variability (IAV)
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was modeled exponentially (Equation (1)), the distribution of which is centered on zero,
and the Ω symbol represents its variance:

Pi = TVP × eη (1)

where Pi represents the value of the individual parameter, TVP the value of the typical
population parameter, and η the inter-animal deviation, acquired from the distribution
variance (Ω). Residual variability was estimated using a proportional model, described by
the following equation:

Y = IPRED × (1 + ε) (2)

where Y represents the experimental observations from the dataset, IPRED represents
the individual predicted observation at time t, and ε the single random error effect (with
mean 0 and variance σ) [35]. The significance of the non-diagonal elements of the Ω
variance–covariance matrix and subject-specific residual unexplained variability were
also evaluated.

The PK and PK–PD model selection was conducted through a combination of sta-
tistical, numerical, and graphical techniques. Analysis of the objective function value
(OFV), which approximates to −2xlog (likelihood) for nested models, and the Bayesian
information criterion (BIC) for non-nested models were used. Final parameter estimates
and their relative standard error (RSE) were obtained via the Fisher information matrix,
which was estimated with a stochastic approximation using a Markov chain Monte Carlo
algorithm [36].

Model evaluation of the final PK and PK–PD models was performed through prediction-
corrected visual predictive checking (pc-VPC) with 1000 datasets obtained by Monte Carlo
simulation using the final parameter estimates for both fixed and random effects [37]. Each
simulated dataset had study design features (covariates, dosing times, and PK sampling
times) identical to those in the analysis dataset. For each simulated dataset, the 2.5th,
50th, and 97.5th percentiles of the simulated concentrations in each bin were calculated.
Then, the 95% prediction intervals of these percentiles were calculated and displayed
graphically, together with corresponding percentiles computed from raw data. In addition,
goodness-of-fit plots to assess the performance of the final PK and PK–PD model were built.

2.2.1. Population Pharmacokinetic Model

Reserpine plasma levels were described with PK compartmental models parameter-
ized in apparent volumes of distribution, as well as first-order distribution and elimination
clearances. Non-linear processes on distribution and elimination through Michaelis-Menten
equations were also evaluated.

2.2.2. Population Pharmacokinetic–Pharmacodynamic Model

The time course of MAs after reserpine administration was determined through a
compartmental approach, evaluating linear and non-linear processes under the principle
of parsimony [38,39]. Different structures (turnover response, precursor-pool, and trans-
duction models) were combined to elaborate a PK–PD structure able to characterize the
longitudinal MA levels across different brain regions.

Covariates were tested on the PK–PD model, which consisted of the brain area and the
type of MA. A comparison of final parameter estimates was conducted after the addition of
each covariate vs. the base model. The covariate was retained if a statistically significant
reduction in the OFV was observed (p-value < 0.05). This step was repeated until the
inclusion of other covariates was not statistically significant.

2.3. Simulation-Based Analysis

Monte Carlo simulations (n = 10,000) were conducted assuming a log-normal distribu-
tion of PK–PD parameters to reproduce different FMS disease statuses. Once-daily (QD)
dosage tested (0.1, 0.5, and 1 mg/kg) and untested (2 and 4 mg/kg) regimens were consid-
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ered. Several PD outcomes were evaluated to internally validate the PK–PD framework
and to understand the rate (Cmax and Cmin) and extent (area under the curve: AUC) of
disease status achieved.

3. Results
3.1. Dataset and Data Exploration

For PK model development, 120 samples (i.e., one sample per animal) were available.
Experimental MA (5-HT, DA, and NE) observations (n = 828) after reserpine administration
were obtained in AMY, PFC, and SC. PK and PD samples were collected from 48 to 96 h after
the first dose was administered. Table 1 summarizes the number of samples across the dose
levels evaluated and brain regions, while Figure S2 shows graphical representation of the
experimental PK and PD samples across different reserpine doses. Individual longitudinal
PK and PD profiles were created with a pre-established combination of samples from
different animals.

Table 1. Number of samples obtained per dose group (PK model) and per NT and nervous tissue
(PD model).

Dose Group Number of PK Samples
Number of PD Samples

5-HT DA NE

AMY PFC SC AMY PFC SC AMY PFC SC

0.1 mg/kg 39 31 31 31 30 28 31 29 31 31
0.5 mg/kg 40 30 31 31 31 31 31 28 31 31
1.0 mg/kg 41 31 31 31 31 32 31 31 31 31

Total 120 278 276 274

PK: pharmacokinetic; PD: pharmacodynamic; 5-HT: serotonin; DA: dopamine; NE: norepinephrine; AMY:
amygdala; PFC: prefrontal cortex; SC: spinal cord.

3.2. Data Analysis
3.2.1. Population PK Model

A one-compartment model with double extravascular absorption and linear elimina-
tion was selected based on the OFV and AIC criteria. The absorption was modeled with a
simultaneous first-order rate constant (ka1= 19.14 h−1/kg) and a zero-order rate process
(ka2 = 44.69 mg/h/kg). A proportion of 96% (F1) of the administered dose was absorbed
through the linear process. Linear disposition processes (V and CL) were assumed for
reserpine in the central compartment.

3.2.2. Population PK–PD Model

The final PK–PD framework included a precursor-dependent model, whose structure
was defined by Sharma et al. [40] and adapted to best fit the study data. Figure 1 illustrates
a schematic representation of the population PK–PD model for reserpine and MA.

Table 2 lists the parameters of the final PK–PD model, which involves a precursor
pool (P) produced at a zero-order process (kin = 6.1 × 10−3 mg/h), and the response
(R) is mediated and eliminated through first-order processes (kp = 8.6 × 10−4 h−1 and
kout = 2.7 × 10−2 h−1). Parallel to this process, a three-transit compartment chain (M1, M2,
M3) is incorporated, governed by a zero-order production rate constant (k0 = 1.9 × 10−1 h−1)
and assuming the initial condition M10 = M20 = M30 = 1. The amount of reserpine in
the central compartment stimulates the transit from P to R (SLP1 = 1.1 × 10−1 h) and the
degradation of R through a linear drug effect model (SLP2 = 1.25 h). The covariate analysis
identified the brain regions (PFC, SC, and AMY) as statistically significant covariates on kin,
which could be a consequence of different baseline levels of MA across the brain regions.
Low-to-moderate IAV was estimated for most of the PK–PD parameters, except for ka1
(209%), F1 (170%), and SLP1 (358%). Moderate RUV (residual unexplained variability)
was obtained for the PK (56%) and PD (71%) observations, which was expected based
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on the study design characteristics of the longitudinal profiles. Figure 2 depicts the final
model evaluation (pc-VPC) of the population PK–PD model, suggesting that the PK–PD
framework is capable of characterizing both the median tendency and the dispersion of the
data. Goodness-of-fit plots showed an acceptable degree of performance of the model in
describing the experimental data (Figures S3 and S4).
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Table 2. Final population pharmacokinetic–pharmacodynamic parameters of reserpine and neuro-
transmitters in rats.

Parameters
Population PKPD Model Estimates Bootstrap Results

Fixed Effects Inter-Animal
Variability Fixed Effects Inter-Animal Variability

Value RSE
(%) Value RSE

(%)
Median Value

(2.5th–97.5th Percentiles)
Median Value

(2.5th–97.5th Percentiles)

ka1 (h−1/kg) 19.14 FIX - 226 28 19.14 FIX 221 (135–379)
ka2 (mg/h/kg) 45.43 12 32 - 44.78 (36.06–57.22) 30
F1 0.95 3 179 22 0.94 (0.87–0.99) 177 (119–270)
V (mL/kg) 1.3 21 59 30 1.2 (0.84–1.9) 53 (34–102)
CL (mL/h/kg) 4.5 × 10−1 11 37 25 4.7 × 10−1 (3.6 × 10−1–5.6 × 10−1) 35 (23–60)
kin (mg/h) AMY 6.97 18 97 9 7.04 96 (81–116)
kin (mg/h) PFC 2.10 18 2.16
kin (mg/h) SC 1.78 19 1.76
kp (h−1) 8.6 × 10−4 14 29 37 8.4 × 10−4 (6.6 × 10−4–1.1 × 10−3) 25 (15–57)
kout (h−1) 2.7 × 10−2 11 22 24 2.6 × 10−2 (2.2 × 10−2–3.4 × 10−2) 25 (14–35)
SLP1 (h) 1.1 × 10−1 47 358 11 1.3 × 10−1 (4.9 × 10−2–2.5 × 10−1) 344 (291–440)
k0 (h−1) 1.9 × 10−1 6 9 67 2.1 × 10−1 (1.7 × 10−1–2.1 × 10−1) 10 (3–25)
SLP2 (h) 1.25 20 74 18 1.23 (0.85–1.83) 72 (53–104)

Residual unexplained variability

PK (%) 54 9 56 (45–65)
PD (%) 71 9 72 (65–77)

RSE (%): residual standard error expressed as percentage; ka1: first-order absorption rate constant; ka2: du-
ration of zero-order absorption; F1: fraction absorbed by means of ka1; V: apparent volume of distribution;
CL: elimination clearance; kin: precursor production rate constant; kp: response production rate constant; kout:
response degradation rate constant; SLP1: slope relating reserpine levels with kp stimulation; k0: transit response
production rate constant; SLP2: slope relating transit compartments with kout stimulation; PK: pharmacokinetic;
PD: pharmacodynamic.

3.3. Simulation-Based Analysis

The simulation-based analysis offered a primary internal validation by simulating
experimental dosage regimens (0.1, 0.5, and 1 mg/kg QD for three consecutive days) and a
posterior model application with additional doses (2 and 4 mg/kg QD for three consecutive
days). The simulation profiles using the PK–PD model across all dosing strategies are
presented in Figure 3. When increasing doses of repetitive reserpine administrations, higher
MA depletion is achieved and Cmax and Cmin become steeper, while lower doses lead to
higher and steadier MA concentrations.

The numerical predictive check for Cmax, Cmin, and AUC is displayed in Figure 4.
Regarding the reference dose (1 mg/kg) of the RIM model, the administration of 2 mg/kg
would provide a median reduction of 44%, 39%, and 39% (Cmax), 59%, 58%, and 58% (Cmin)
and 54%, 62%, and 49% (AUC), whereas 4 mg/kg would lead to a median reduction of 60%,
73%, and 63% (Cmax), 85%, 78%, and 77% (Cmin), and 79%, 80%, and 52% (AUC) across
AMY, PFC, and SC, respectively. The results show a proportional reduction between 1 and
2 mg/kg, but a less than proportional reduction between 2 and 4 mg/kg, which could be
indicating a complete depletion of the precursor, affecting the prediction of more severe or
advanced FMS stages.
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Figure 3. Simulation of time-course profiles on different nervous tissues obtained using PK–PD model
for neurotransmitters after different reserpine dosage regimens. Experimental doses are represented
as solid lines, additional simulated doses are represented as dotted lines. A gradual increase in color
intensity represents the level of dose considered (0.5 to 4 mg/kg). Shaded areas represent the study
period in the experimental protocol. MA: monoamine; AMY: amygdala; PFC: prefrontal cortex; SC:
spinal cord.
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Figure 4. Numerical predictive check. Simulated Cmax (top), Cmin (middle) and pharmacodynamic
AUC (bottom) of neurotransmitters at different simulated dosage regimens of reserpine. Evaluation
was performed for the study period after the third reserpine administration (48 h) until the end of the
study period (96 h). Yellow diamonds represent the experimental median values for each parameter.
Percentage values represent the percentage change in the median with respect to 1 mg/kg dose. PFC:
prefrontal cortex; SC: spinal cord.

4. Discussion

FMS is a disease with a lack of understanding regarding its etiopathogenesis [3], but
several MAs have been demonstrated to be implicated in the underlying mechanisms [1].
Nevertheless, no mathematical approaches account for these MA alterations in FMS, re-
vealing a scientific gap of knowledge. The current population PK–PD model of RIM, the
most accurate animal model of FMS, characterizes the reserpine-induced mechanism in
CNS and improves the evaluation of pharmacological therapies under different disease
status conditions.

After repetitive reserpine administration, the longitudinal changes in MA levels
showed an initial and rapid increase, with a subsequent MA depletion to the minimum
around 72 h and a recovery that slightly approached baseline levels at 96 h. The proposed
PK–PD framework characterized these patterns. This is in accordance with previous studies
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that were related to depressive and pain-related symptoms, which showed a decrease in
MA levels after repetitive reserpine administration [6,16,18,41,42].

The influence of reserpine on the longitudinal MA profiles varies across different
brain regions, as demonstrated and characterized in the current work (Figure 3). The more
remarkable MA synthesis of the analyzed centers is found in the AMY precursor pool.
In fact, in PFC and especially in SC, it is observed that at the highest doses simulated
(2 and 4 mg/kg), a depletion in the precursor pool occurs, which leads to a depletion in
MA levels in the response compartment (Figure 3). Reserpine administration affects the
neurotransmission of the AMY differently than the other studied areas related to pain
processing, which could lead to a pattern of functional alterations in the model, like those
observed in FMS. Morphometric, connectivity, and functional alterations have been found
in pain processing areas in patients with FMS, especially in those related to the affective–
motivational aspects of pain [43–46]. Regarding this, the AMY plays a crucial role in the
affective component of pain, and the aberrant activation of the AMY in pain-related fear
has been proposed as a biomarker of FMS [47].

The PK–PD relationship between reserpine and MAs was described with a linear drug
effect model across the dose range (0.1–1 mg/kg) evaluated, indicating a proportional
relationship between reserpine exposure and response (MAs) [34,48]. The additional dose
levels tested (2 and 4 mg/kg) after three consecutive daily doses would provide reductions
of about 50% and 75% in the different PD outcomes (AUC, C0, Cmax, and Cmin) in all
brain regions in rats, which could contribute to a more individualized design of new
pharmacological candidates for the different brain regions, as well as the impact of the dose
on the degree of disease. Nevertheless, it must be considered that the precursor-pool model
contemplates the saturation of the response due to the depletion of the levels in the pool
compartment, which appears to occur at 4 mg/kg.

Despite the rapid elimination of reserpine (t1/2 = 2.25 h) and the recovery of baseline
MA levels around 96 h, similar behavioral alterations to those described in FMS persist or
appear in subsequent weeks [6,16,17,19]. For example, FMS-like sleep disturbances develop
from the third week after reserpine administration [49]. Therefore, reserpine administration
can trigger other pathophysiological mechanisms that may not directly relate to MA levels.

The abrupt depletion of MAs in the system can lead to plastic changes that permanently
modify connectivity [50]. On the other hand, the massive accumulation and degradation by
MAO (monoamine oxidase) of MAs accumulated in the cytosol of monoaminergic neurons
that cannot be released by VMAT-2 blockade can lead to cytotoxicity, neuroinflammation,
or cell death [51]. In this respect, glial cells could be involved. It has been described that the
mechanisms that lead to chronic pain appear to be a glial and immune interaction [2,50,52].
Research on these interactions shows that glia-mediated neuroinflammation is a key mech-
anism underlying the maintenance of chronic pain [53,54]. Furthermore, it has recently
been described that mammalian astrocytes have VMAT-2 receptors, and it is necessary to
know how the administration of reserpine can affect their functioning and influence the
symptoms generated [55]. Studying the neuroimmune and glial processes present in the
RIM model can shed light on the pathophysiological mechanisms involved in FMS. Finally,
reserpine has a sympatholytic effect [13]. Long-term consequences of NE depletion in the
sympathetic terminals produced by reserpine administration could be relevant scientifi-
cally, since FMS has been considered a stress-related pathology [2,4,10] and the autonomic
nervous system is altered in people with FMS [56].

The study and the development of the present PK–PD model had a few limitations.
Due to the study design conditions, longitudinal profiles were constructed from different
rats, leading to an IAV and residual error increase. Moreover, no covariates (body weight,
age, breed, or sex) were statistically significantly different on PK or PD parameters in
order to explain the large IAV, except the brain region on kin, due to the low variation of
these covariates among animals. Additionally, although the proposed model explains the
longitudinal pattern of MAs, the methodology of dissection and homogenization of areas of
interest for counting MAs does not allow us to verify whether the measured MAs are found
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in the presynaptic or postsynaptic neuron or in the synaptic cleft. In vivo studies would be
necessary to corroborate the model. Finally, further studies are necessary to assess whether
this model can be translated into clinical conditions.

5. Conclusions

In conclusion, this study successfully developed and validated a pharmacokinetic (PK)
coupled with a pharmacodynamic (PD) model for characterizing the rapid depletion of
a precursor pool with a delayed effect on the degradation of MAs in different regions of
the rat brain. The model was evaluated after three daily administrations of 0.1, 0.5, and
1 mg/kg of reserpine in rats. The evaluation of pharmacodynamic outcomes revealed that
the concentration of MAs in the different brain regions changed proportionally across the
dose levels evaluated. However, the impact of reserpine on the longitudinal MA profiles
varied across different brain regions, with a greater MA synthesis from the AMY precursor
pool. The developed PK–PD model can be a powerful tool for correlating MA levels with
behavioral and biochemical results obtained with the RIM model. This may be useful
in searching for biomarkers in FMS and translating the results of preclinical studies to
human research. Future studies should analyze the pathophysiological mechanisms in
the nervous system due to reserpine administration and correlate them with MA levels
using the proposed PK–PD model. Additionally, they should also investigate possible
neuroinflammation processes and glial alterations that may lead to the FMS-like symptoms
present in the RIM model.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/pharmaceutics16081101/s1. Figure S1: Reserpine administration
and sampling schedule scheme; Figure S2: Individual longitudinal PK and PD profiles obtained
from experimental data across different reserpine doses; Figure S3. Goodness-of-fit plots of the final
population pharmacokinetic model of reserpine in rats; Figure S4. Goodness-of-fit plots of the final
population pharmacokinetic-pharmacodynamic model of reserpine in rats.
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