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Abstract: Precision agriculture has revolutionized crop management and agricultural production,
with LiDAR technology attracting significant interest among various technological advancements.
This extensive review examines the various applications of LiDAR in precision agriculture, with
a particular emphasis on its function in crop cultivation and harvests. The introduction provides
an overview of precision agriculture, highlighting the need for effective agricultural management
and the growing significance of LiDAR technology. The prospective advantages of LiDAR for
increasing productivity, optimizing resource utilization, managing crop diseases and pesticides, and
reducing environmental impact are discussed. The introduction comprehensively covers LiDAR
technology in precision agriculture, detailing airborne, terrestrial, and mobile systems along with
their specialized applications in the field. After that, the paper reviews the several uses of LiDAR in
agricultural cultivation, including crop growth and yield estimate, disease detection, weed control,
and plant health evaluation. The use of LiDAR for soil analysis and management, including soil
mapping and categorization and the measurement of moisture content and nutrient levels, is reviewed.
Additionally, the article examines how LiDAR is used for harvesting crops, including its use in
autonomous harvesting systems, post-harvest quality evaluation, and the prediction of crop maturity
and yield. Future perspectives, emergent trends, and innovative developments in LiDAR technology
for precision agriculture are discussed, along with the critical challenges and research gaps that
must be filled. The review concludes by emphasizing potential solutions and future directions
for maximizing LiDAR’s potential in precision agriculture. This in-depth review of the uses of
LiDAR gives helpful insights for academics, practitioners, and stakeholders interested in using this
technology for effective and environmentally friendly crop management, which will eventually
contribute to the development of precision agricultural methods.

Keywords: precision agriculture; LIDAR technology; crop management; disease detection; yield
estimation; autonomous harvesting systems

1. Introduction

Precision agriculture is a developing area that uses modern technologies and data-
driven methods to maximize crop yield [1,2]. Traditional agricultural practices have
drawbacks for productivity, resource use, and crop management [3]. To address these
challenges, the integration of LiDAR (light detection and ranging) technology in precision
agriculture has emerged as a promising solution. Using laser pulses, LIDAR can produce
precise 3D models of the surrounding area for use in remote sensing applications. Since
its creation for mapping purposes, LIDAR has found extensive use in several sectors, in-
cluding forestry, urban design, and, most recently, agriculture [4-6]. It is an important tool
for crop management since it can record precise, high-resolution data. The introduction
of LiDAR technology in precision agriculture has changed crop management techniques,
allowing farmers to make educated choices based on accurate and real-time data [7]. LIDAR
technology facilitates more targeted interventions and optimizes resource use—such as
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water, fertilizers, and pesticides—by providing precise data on crop, soil, and field condi-
tions. Agricultural robots equipped with LiDAR enhance various functions, including crop
monitoring, disease detection, weed management, yield estimation, mapping, autonomous
navigation, and harvesting operations [8-11]. Several studies suggest combining data from
aerial and terrestrial LIDAR systems for crop, canopy, and ground may be a simple, effec-
tive, and inexpensive way to enhance site-specific monitoring in agriculture [12-14]. There
is substantial potential for the use of LiDAR in precision agriculture for crop management.
However, this field still requires a thorough examination. LiDAR applications’ present
condition may be better understood by researching case studies, reviewing the existing
literature, and critically evaluating recent developments.

Previous literature reviews [15-17] on LiDAR in precision agriculture have provided
valuable insights but have not focused on crop management, particularly crop cultiva-
tion and harvesting. Debnath et al. [15] explored LiDAR applications within a limited
scope, and Rivera et al. [16] focused exclusively on studies limited to a 5-year timeframe
(2017-2022). This comprehensive review examined the application of LiDAR in crop man-
agement, emphasizing its role in improving cultivation and harvesting, earlier foundational
work, and incorporating the latest advancements. This broader perspective allows us to
provide a thorough and up-to-date overview of the possible advantages and difficulties
connected with the application of LiDAR technology in crop management methods by
concentrating on the unique function of LiDAR technology in these important areas of
precision agriculture.

The review paper follows a well-organized structure to explore the critical evaluation
of applications of LiDAR for cultivating and harvesting crops in precision agriculture.
The paper begins with an introduction that establishes the background and context of
precision agriculture, emphasizing the importance of efficient crop management. It then
introduces LiDAR technology as an emerging tool with revolutionary potential in this
field. The research objective of the paper is to provide a comprehensive evaluation of
LiDAR applications. The subsequent sections are divided into key themes. The first
section provides an overview of LiDAR technology in precision agriculture, discussing its
definition, principles, and different types of LIDAR systems. A key summary of the study
results on airborne LiDAR systems (ALSs), terrestrial LIDAR systems (TLSs), and mobile
LiDAR systems (MLSs), has been presented in the tables for better understanding and
clarity. Key differences between and uses of each LiDAR system are concisely summarized
in these tables, which serve as crucial references. The following sections delve into the
applications of LiDAR in crop cultivation and harvesting separately, examining its role in
crop monitoring, weed detection, plant health assessment, soil analysis, yield estimation,
and autonomous harvesting systems. A critical evaluation section follows, exploring
the advantages and limitations of LiDAR technology. Various LiDAR systems and their
uses in crop management are summarized in detail at the end of the paper. This table
provides a brief overview of the cutting-edge technologies being used by scientists all
around the globe to improve crop management. It concludes with a comparison of different
LiDAR system types (ALS, TLS, and MLS) and their limitations. The paper concludes
with future perspectives and challenges, highlighting emerging trends, research gaps, and
potential solutions. By following this structured approach, the review paper aims to give a
thorough and insightful analysis of the role of LiDAR in revolutionizing crop management
in precision agriculture.

1.1. Overview of Precision Agriculture

Field-level management techniques for supporting sustainable food production sys-
tems are improved by precision agriculture. Furthermore, to produce food sustainably,
agricultural operations must be more closely matched to the potential of soil fertility,
crop requirements, and environmental circumstances [18]. Precision agriculture aims to
maximize agricultural earnings using many essential tactics. It first emphasizes effective
resource management by operating systems for applying fertilizers, agrochemicals, and
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water at varying rates. Ensuring these inputs are dispersed precisely where required helps
reduce waste and increase efficacy [19].

Furthermore, precision farming tries to reduce agricultural output losses during har-
vest. Farmers may decide the best time to harvest their crops and ensure the highest yield
and quality using cutting-edge technology and real-time data analysis [20,21]. This strategy
strives to reduce the negative environmental impacts of farming. Precision agriculture
minimizes fertilizer loss into water bodies and greenhouse gas emissions using focused
irrigation and precise input application that protects the environment [22,23]. Finally, preci-
sion agriculture aims to minimize the total environmental impact of agricultural inputs.
Promoting techniques that support sustainable agricultural systems and boost long-term
soil health includes techniques such as carbon sequestration and soil organic matter im-
provement [24,25]. In conclusion, precision agriculture refers to a variety of techniques that
enhance resource management, reduce yield losses, reduce environmental hazards, and
maximize the overall effect of agricultural inputs, eventually resulting in higher agricultural
profitability and sustainability.

1.2. Importance of Efficient Crop Management and the Emerging Role of LiDAR Technology

Effective crop management is crucial in the context of sustainable agriculture and the
need to meet the expanding requirements of a rapidly expanding global population [26].
Since LiDAR technologies have the potential to revolutionize precision farming, their
development and application in this context have received a lot of attention. The study
conducted by Xu et al. [27] research centered on the advancement and assessment of a
UAV-LiDAR system designed to facilitate precision agriculture and plant phenotyping. The
highest canopy height was estimated with a reported error of 0.1 m. The results provide
empirical support for the effectiveness of the LIDAR system, suggesting its potential use in
fields including precision crop management and plant breeding. Since LiDAR can take ex-
act three-dimensional data on crop health, terrain, crop breeding, and vegetation structure,
farmers may use this information to manage their fields better regarding irrigation, fertil-
ization, insect control, and more [28]. Zhang et al. [29] reported that LIDAR data combined
with sophisticated analytics and machine learning algorithms further enhanced capability,
enabling farmers to recognize crop-stress zones, adopt better planting practices, and pre-
cisely target treatments. LIDAR technology enhances environmental sustainability, reduces
resource waste, and boosts agricultural productivity. It aids in creating high-resolution
elevation models and vegetation maps, supporting watershed management, land use plan-
ning, and climate adaptation while optimizing resource use and advancing sustainable
food production amidst growing global populations. It is of the highest significance in
modern agriculture to have effective crop management to fulfill the ever-increasing needs
for food production while simultaneously reducing the number of resources used and the
negative impact on the environment [30,31]. The implementation of precision agricultural
methods, such as LiIDAR applications, is essential for reaching these goals.

1.2.1. Enhancing Productivity

Using effective crop management techniques, farmers may maximize production po-
tential by carefully matching inputs such as water, fertilizer, and pesticides to the demands
of various crops. By delivering thorough and reliable data regarding crop health, growth
patterns, and fertilizer needs, LiDAR technology significantly increases agricultural yield.
El-Naggar et al. [32] used terrestrial LIDAR for the estimation of crop growth and water
use. When compared to manually observed canopy height, the TLS findings showed a
noteworthy and statistically significant correlation with minor biases and errors. The R?
values of the correlation coefficients for barley, pea, and bean were 5.85 (RMSE = 0.95),
3.01 (RMSE = 0.93), and 1.82 (RMSE = 1.82), respectively. Additionally, the TLS approach
showed promise—with an RMSE of 37.56 and an R? value of 0.70 for predicting bean
biomass. LiDAR allows farmers to assess crop attributes such as height, density, and
canopy structure precisely, using laser beams to produce high-resolution 3D reconstruc-
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tions of the terrain. According to a study by Eyre et al. [33] geographically weighted
regression (GWR) models that utilize topographic variables derived from LiDAR data are
highly efficient at identifying field-scale variations in crop yield across various varieties.
The coefficient of determination values for maize, wheat, soybeans, and the overall average
of all crops were R? = 0.80, 0.73, 0.71, and 0.75, respectively, based on the mean of the
local relationships. LiDAR data identifies nutrient deficits and insect infestations, enabling
targeted actions. Canopy models provide insights into light, airflow, and shade patterns,
optimizing planting densities, irrigation, and pruning.

LiDAR data enhances irrigation design and water management, provides accurate
yield estimates, and integrates with remote sensing and analytics for harvest planning and
supply chain management. Farmers may embrace precision agriculture, maximize resource
allocation, reduce environmental impact, and contribute to efficient and sustainable food
production using LiDAR technology with other instruments [34].

1.2.2. Resource Optimization

Precision agriculture has been transformed by LiDAR technology, which has great
promise for increasing agricultural output while solving issues with resource efficiency,
water shortages, and environmental sustainability. LiDAR provides precise irrigation
procedures that save water use while assuring optimum plant development by detecting
soil moisture levels and crop water needs [35]. LiDAR is also essential for the targeted
administration of pesticides and fertilizers since it helps avoid over-application and possible
environmental damage [36]. Farmers can detect regions of changing crop density and health
thanks to its capability to build comprehensive 3D models of crop canopies, allowing the
creation of prescription maps for exact input applications. This technique, known as
variable rate application, minimizes the effect on the environment, uses fewer chemicals,
and best utilizes available resources.

Additionally, LiDAR data may be combined with data analytics and machine learning
to create predictive models, allowing data-driven decision-making for picking the best
crop types, modifying planting densities, and implementing timely interventions [37]. The
advantages of the technology also extend to the management of orchards and vineyards,
enabling the precise assessments of tree and vine structures for improved pruning tech-
niques, canopy management, and yield estimates. Farmers may achieve sustainable and
effective crop production via precision farming techniques by using the power of LIDAR
and combining it with other technologies, eventually resulting in a more resource-efficient
and ecologically conscientious agricultural sector [38,39].

1.2.3. Disease and Pest Management

The early identification of plant stress indicators and disease signs using LiDAR
data helps farmers intervene strategically to slow disease development. Farmers may use
LiDAR to administer targeted treatments, eliminating the need to use broad-spectrum
pesticides and encouraging sustainable agricultural methods [40]. Incorporating LiDAR
data with remote sensing, machine learning, and data analytics enables the creation of
predictive models for disease and parasite outbreaks, thereby facilitating proactive decision-
making [41]. By giving data on plant water needs and nutrient distribution, LiDAR also
helps improve irrigation and fertilization operations. Additionally, the system offers
agricultural yield assessment and forecasts, supporting farmers in projecting production
potential, optimizing resource allocation, and enhancing harvest procedures. Improved
production decreased environmental effects, and the development of sustainable agriculture
are all possible because of LIDAR'’s capacity to deliver precise crop information, identify
plant health concerns, and optimize resource management [42,43].

1.2.4. Sustainability and Environmental Impact

Achieving sustainable agricultural practices is a global priority. Efficient crop manage-
ment practices supported by LIDAR applications contribute to reducing the environmental
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footprint of agriculture. By optimizing inputs and minimizing the wastage of resources
such as water and fertilizers, LIDAR aids in the reduction of greenhouse gas emissions,
nutrient runoff, and soil degradation. This leads to more environmentally friendly and
sustainable agricultural systems [44,45].

In conclusion, efficient crop management is crucial for meeting the increasing demand
for food production while minimizing resource utilization and environmental impact.

2. LiDAR Technology in Precision Agriculture: An Overview
2.1. LiDAR in Precision Agriculture

LiDAR technology operates based on the principles of laser ranging and time-of-
flight (TOF) measurement. It involves emitting laser pulses towards the target area,
which bounce back when they encounter objects or surfaces, allowing for precise distance
calculations [46,47]. LIDAR systems provide precise distance measurements by measuring
the time it takes for the laser pulses to return. To create accurate 3D maps of the surround-
ings, these data are combined with the angles and placements of the laser pulses. LIDAR
scanners generate laser beams in a pattern that scans a large region while quickly capturing
several points in each location. These points precisely depict the shape outlines and spatial
features of the items in the scanned area, forming point clouds together. Additionally, it is
possible to measure the strength of the returned laser pulses, providing extra information on
the reflectance or surface characteristics of the objects [48-50]. Figure 1 provides a detailed
explanation of the LiDAR system’s operating concept as described by Bates et al. [51].
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Figure 1. Use of LiDAR in precision agriculture [51].

The distance a single photon has traveled to and from an object is calculated using
Equation (1):
d=ct/2, )

where “d” is the distance from an object; “c” is the speed of light, whose value is constant;
and “t” is the time-of-flight, which can be measured by the difference between the start
time of the emitted pulse and the time the reflected pulse hits the sensor.

Phase shift measurement (PMS), which uses a continuous light source, modulates
light power at a fixed frequency. As a result, we may say that the modulated light has a
sinusoidal profile. Equation (2) may be used to calculate the distance between the source
and the object in terms of the angle between the waves’ peaks:

d =cA0/2nf )

where “d” is the distance, “c” is the speed of light, “A8” is the phase difference, and “f” is
the frequency of the modulated power. TOF or PMS distance measurements are converted
into elevation data. These elevation data appropriately represent numerous ground objects
in the scanned region. Researchers and professionals can effectively visualize and analyze
the terrain, the topography, and the structural characteristics of ground objects by utilizing
the precise elevation data derived from TOF or PMS measurements [52].

LiDAR has gained recognition in precision agriculture as a powerful tool for crop
monitoring, management, and harvesting due to its ability to capture highly accurate and
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detailed spatial information. By providing precise measurements of crop height, canopy
structure, and vegetation density [53,54], LIDAR enables farmers and agronomists to assess
crop health, monitor growth patterns, and detect variations or stress factors [55,56]. Further-
more, LiDAR assists in soil analysis, allowing for precise soil mapping, the identification of
soil properties, and the assessment of soil erosion risks. This spatial information empowers
farmers to make data-driven decisions for optimizing irrigation, fertilization, pest control,
and overall crop management.

2.2. Types of LIDAR Systems and Their Use in Precision Agriculture

A detailed overview of several LIDAR systems and their specialized applications in
precision agriculture is explained by Jin et al. [57], as presented in Figure 2. Researchers
categorized LiDAR systems based on the range of LiDAR sensors, distinguishing between
proximal sensing and remote sensing. Proximal sensing platforms, such as terrestrial
LiDAR systems (TLSs) and mobile LiDAR systems (MLSs), and remote sensing platforms,
such as airborne LiDAR systems (ALSs), play distinct roles in precision agriculture, each
contributing unique capacities to the field. By analyzing these various LiDAR technologies
in-depth, this review provides valuable insights into how each system can be utilized for
crop management.
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Figure 2. Different types of LIDAR systems are used in precision agriculture [57].

2.2.1. Airborne LiDAR Systems (ALSs)

Airborne LiDAR systems involve the installation of the LiDAR system onto unmanned
aerial vehicles (UAVs), which can be aircraft or drones, allowing them to efficiently collect
data at low altitudes over agricultural fields, as shown in Figures 3 and 4. These systems
emit laser pulses and measure the time it takes for the pulses to return after hitting the
target objects [58].

By analyzing the returned signals, the ALS can create highly accurate 3D models of the
terrain and vegetation [59]. They provide valuable information for precision agriculture,
such as crop health assessment, vegetation mapping, and canopy structure analysis [60].
The ALS provides high-resolution data, offers a cost-effective solution for precision agri-
culture, and has been successfully used for crop monitoring, terrain modeling, and flood
risk assessment in various agricultural settings [61]. Rakesh et al. [62] reported that ALSs
can perform targeted analysis and decision-making for crop management, such as crop
yield estimation, disease detection, and irrigation management. Fareed et al. [63] stated
that ALSs can capture detailed information about crop conditions, plant health, and pest
infestations at the field level. After a comprehensive review, Aslan et al. [64] concluded that
ALS is particularly useful for field mapping, yield estimation, and resource optimization.
Dowling et al. [65] and Qin et al. [66] employed UAV-LiDAR for mapping and navigation
and demonstrated effective obstacle avoidance capabilities in their studies. Turner et al. [67]
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used ALS observations to map soil surface roughness (SR) in agriculture. The findings
demonstrated that soil profile surface heights estimated by ALS were more precise and
accurate than those estimated by ground measurements. The effects of farming activities
on surface roughness were tracked using LiDAR data, which showed promising results for
mapping SR in agriculture. Ladefoged et al. [68] found geographical and temporal trends
in the evolution of local agricultural systems using a high-resolution ALS. Researchers
emphasized that integrating LiDAR data with productivity models improved the com-
prehension of agricultural growth in the Hawaiian area. Zhang et al. [69] reported that
accurate estimation of grassland vegetation parameters such as maximum, minimum, and
mean canopy height, AGB, and fractional vegetative coverage at a high spatial resolution
can be achieved with a UAV-mounted ALS, as presented in Figure 4.

LASER SCANNING

Figure 3. Airborne LiDAR system [58].
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Figure 4. UAV-mounted ALS for canopy height estimation [69].
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Liu and Bo [70] used the UAV-LiDAR system to identify different crop species in
the complicated, fragmented agricultural landscape and crop planting structure by using
canopy height model (CHM) data. The accuracy of crop species classification was signifi-
cantly improved by including geometric and textural cues in the object-based classification
technique. The suggested object-based classification framework enabled the research to
categorize crop species with an overall accuracy of 90.33%. Table 1 illustrates the diverse
applications of ALSs and important findings from the literature in the realm of crop man-
agement. The classification, implementation, and limitations of ALSs are presented in

Table 2.

Table 1. Uses of ALSs in the realm of crop management.

Crop

Crop Management Practices Important Findings

Ref.

Sorghum

UAV-LiDAR and RGB photogrammetry accurately assessed canopy
height (CH) and LAI in sorghum. LiDAR outperformed
photogrammetry, achieving superior accuracy with an R? of 0.975 and
a RMSE of 5.94% for CH.

Growth monitoring

[71]

Pea,
Chickpea

Highly significant correlations (p < 0.0001) were found between
Crop height estimation LiDAR-estimated and manually measured plant heights, with
correlation coefficients (r) of 0.74 for chickpeas and 0.91 for peas.

[72]

Atlas, Red
Carina, Pasto

The LiDAR-based hyperspectral physiological reflectance index (PRI)
Height, biomass, and demonstrated superior performance, distinguishing between
grain estimation salt-affected and treated plants. The overall dataset achieved an R? of
0.46, with specific subgroups reaching an R? of 0.64.

[73]

Potato

The LiDAR scanner demonstrated a strong correlation with
field-measured parameters, with a high R? of 0.89 and a low RMSE of
0.028 m for PH, and an R? of 0.81 with an RMSE of 31.65% for AGB.

Monitoring agricultural
biomass and plant growth

[74]

Sugarcane

Crop growth parameters were monitored, including height, density,
and vegetation indices. Predictive models were evaluated based on
multispectral predictors alone, LIDAR predictors alone, and a fusion of
both, then compared against an NDVI benchmark. The multispectral
model showed slightly superior performance (R? = 0.57) compared to
the LiDAR model (R? = 0.52), with both models surpassing the NDVI
benchmark (R? = 0.34).

Prediction of biomass and
leaf N, content

[75]

Sugarcane

Six regression algorithms (MLR, SMR, GLM, GBM, KRLS, and RFR)
were employed to construct the sugarcane aboveground fresh weight
(AFW) model using LiDAR data. Results showed that RFR
outperformed other models’ prediction accuracy (R2 =0.96,

RMSE = 1.27 kg m~2). The final sugarcane AFW distribution maps
demonstrated strong agreement with detected values (R? = 0.97,
RMSE = 1.33 kg m ).

Estimation of yield and
aboveground fresh weight

[76]

Sorghum

Two biomass prediction methods were explored: one utilized LSM to
predict biomass from LiDAR point cloud data directly, and the other
Biomass estimation employed the APSIM crop simulation model. The LiDAR approach
and prediction yielded R? values of 0.48 and 0.55 for SVR and MLP, respectively, while
the APSIM model achieved R? of 0.31 and 0.67 for SVR and MLP,
respectively.

[77]

Avocado,
Macadamia,
Mango

The study found that crown structure measurements, particularly those
based on the top of the crown, exhibited strong consistency between
Orchard and tree ALS and TLS data. Crown area measurements showed the highest
crown assessment correlation (R2 = 0.997) between the two data sources. The linear
model’s RMSE for maximum crown height derived from ALS and TLS
data was 0.29 m, with an R? of 0.99.

[78]
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Table 1. Cont.

Crop Crop Management Practices Important Findings Ref.

The 95th percentile of normalized LiDAR points showed a strong
Monitoring of CH, biomass,  correlation (R? = 0.88) with manually measured crop heights and
and N2 uptake (R? = 0.92) with crop heights obtained from a UAV system using optical
imaging, out of the 57 UAV-LiDAR metrics that were analyzed.

Wheat [79]

Geometric features extracted from LiDAR data yielded dependable
and precise biomass predictions. The 750-1100 nm spectral range
proved to be the most informative for biomass prediction, with R?
values for end-of-season biomass ranging from 0.64 to 0.89.

Sorghum Biomass prediction [80]

Table 2. Classification, implementation, and limitations of airborne LiDAR systems.

Component Description Implementation Limitations

Emits laser pulses and
LiDAR Sensors measures the time it takes for
them to return

Limited by battery life and
flight duration (especially
for UAVs)

Mounted on aircraft (e.g.,
UAVs and planes)

Signal interference can affect
Integrated with LiDAR sensor accuracy, especially in
dense vegetation

Global Positioning Provides precise
System (GPS) location information

Measures the rate of

Inertial Measurement . . Works with GPS to provide Sensor drift over time can
. acceleration and changes in e
Unit IMU) . . accurate positioning data affect data accuracy
rotational attributes
Onboard storage system for High-capacity storage Storage capacity may limit the
Data Storage ) ; amount of data collected
capturing LiDAR data systems onboard . . .
during a single flight.
UAV (Unmanned Alrcraft without a human Suitable for small to Limited ﬂlg}}t time e.md
. . pilot onboard are used for . payload capacity; subject to
Aerial Vehicle) . . medium-scale areas o
carrying LiDAR sensors weather conditions
. .Alrplanes or helicopters Suitable for Higher operational costs and
Manned Aircraft piloted by humans are used . L
large-scale mapping regulatory restrictions

for carrying LiDAR sensors.

2.2.2. Terrestrial LIDAR Systems (TLSs)

TLSs are ground-based setups that utilize stationary tripod stands to scan and capture
detailed crop information at different locations. These systems emit laser pulses in various
directions, capturing multiple measurements from different angles. By combining these
measurements, TLSs generate precise 2D and 3D point cloud data of the surrounding
environment, as shown in Figure 5.

~

Foliage
Trunk
Ground

Lower Left
Lower Right

Figure 5. TLS for crop height estimation [81].
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Many researchers reported that TLSs are especially effective for detailed mapping
of crop structures, including plant height, canopy density, and individual plant or tree
measurements. In contrast to UAV-based LiDAR, which typically covers larger areas from
above, a TLS provides high-resolution, ground-level data that offers greater precision in
assessing specific crop attributes and intricate details within a given area. It is also reported
that TLSs are superior to UAV-LiDAR for accurate crop health assessment, growth pattern
assessment, and biomass estimation at the field level. Researchers have utilized TLSs for
crop phenotyping, growth analysis, and precision irrigation management [82].

Hosoi and Omasa [83] estimated vertical plant area density profiles of the wheat
canopy during several development phases, including tillering, stem elongation, blooming,
and ripening, using a portable TLS. By setting up regression models between LiDAR-
measured plant area density and organ dry weight, the researchers were able to determine
the total dry weight and carbon stocks of above-ground wheat organs. Researchers con-
cluded that these results could help better understand how carbon is stored in agricultural
systems and improve crop management techniques and carbon sequestration methods.
Martinez et al. [84] used a TLS to measure the LAI of grapevine and reported that the
LiDAR sensor can also produce maps if the maximum distance between scan points does
not exceed 15 m. However, to avoid LAI overestimation, increasing the horizontal resolu-
tion of LiDAR scanning is essential. Hobart et al. [85] used drones and photogrammetry
to measure tree wall heights in apple orchards and compared them with TLS data as a
reference, as described in Figure 6. Researchers reported that although there was a good
match between the drones’ point clouds and the ground-based LiDAR data, the drones’
point clouds had trouble collecting the fine apple tree shoots, which resulted in lower
assessments of tree wall heights. The method can be used to manage orchards precisely,
but it must be modified to consider the wider tree gaps and the decreased vertical extent of
tree walls.

Height [m]

43 44 45 46 47 48 49
Distance [m]

Figure 6. View of apple trees rows as an RGB, point clouds from drones (orange) and LiDAR (blue)
superimposed with tree wall height curves [85].

Using a TLS, Hofle [86] described a unique method for mapping individual maize
plants. The developed method involved point cloud segmentation and filtering detected
plants accurately and consistently, as shown in Figure 7. The amplitude variation of ho-
mogenous regions was minimized using radiometric correction, improving the separability
of maize plants and the surrounding soil with greater accuracy when applied to LiDAR
point clouds taken by TLS, which provided benefits including lessened obstruction effects
and more uniform point density.
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Maize field with 8 rows
ca. 1 month after sowing

(b)

Figure 7. (a) Maize plants (arranged in 8 rows) with additional vegetation, and (b) a 3D model of the

segmented point cloud [86].

Xu et al. [87] developed a unique precision farming technique combining TLS and
camera data to identify corn seedlings in fields precisely. The technique required removing
distance effects from TLS intensity data, registering point cloud and camera data for
proper color representation, and separating corn plants from the soil with a random
forest algorithm employing geometric and radiometric parameters. The performance of
employing either feature type alone was improved in a case study using a commercial TLS
sensor with an integrated camera, which showed a high accuracy of 98.8% in distinguishing
maize seedlings from the soil. The results of Koenig et al. [88] highlight the significant
effectiveness of geometric and radiometric LIDAR point cloud characteristics in accurately
classifying tree induction data to identify post-harvest growth. Key findings from the
literature are included in Table 3, which shows TLS uses in crop management.

Table 3. Use of TLSs in the realm of crop management.

Crop Crop Management Practices Important Findings Ref.

A comparison was made between TLS and UAV-based imaging for
CSM-derived plant height in crops using analyses based on polygon

Barley Plant-height measurement grids. The results revealed a high correlation between TLS and [89]

UAV-derived plant height (R? = 0.91), with a 4.81% higher coefficient of
variance observed in TLS compared to UAV data.

Wheat

High-throughput revealed high consistency, with a strong correlation (R? ~ 0.98) and
phenotyping of plant height =~ minimal RMSE values (RMSE = 8.4 cm). LiDAR and structure from

The comparison of PH derived from LiDAR and structure from motion
[90]
motion exhibited high repeatability (H?) in plant height.

Rice

Three regression approaches, SMLR, RF, and LME modeling, were
assessed for biomass estimation using an extensive TLS. The LME model
exhibited the most significant improvement in panicle biomass, showing

Biomass estimation for a 0.74 increase in R? (LME: R? = 0.90, SMLR: R? = 0.16) and a 1.15 t/ha
individual organs and decrease in RMSE (LME: RMSE = 0.79 t/ha, SMLR: RMSE = 2.94 t/ha). [91]

aboveground biomass (AGW) In comparison to SMLR and RF, LME modeling provided similar AGB

estimation accuracies for pre-heading stages but notably higher
accuracies for post-heading stages (LME: R? = 0.63, RMSE = 2.27 t/ha;
SMLR: R? = 0.42, RMSE = 2.42 t/ha; RF: R? = 0.57, RMSE = 2.80 t/ha).

Wheat

Estimation of plant height,
ground cover, and AGW

Canopy height strongly correlated with LIDAR (R? = 0.99,

RMSE = 0.017 m). In contrast to NDVI, LiDAR remained unaffected by
saturation at high ground cover and exhibited a strong association

(R =0.92, slope = 1.02) at ground cover above 0.8. AGW estimation [92]
employed 3D voxel index (3DVI) and 3D profile index (3DPI), with the
strongest associations with biomass observed for 3DPI (R? = 0.93) and

3DVI (R? = 0.92).
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Table 3. Cont.
Crop Crop Management Practices Important Findings Ref.
Ultrasonic and LiDAR sensors were compared to manual canopy
Canopy characterization (crop measurements. Strong correlations were found between crop volume
Vineyard height, width, volume, and  values from ultrasonic sensors and leaf area index (R? = 0.51) and canopy ~ [93]
leaf area) volumes measured by ultrasonic and LiDAR sensors (R? = 0.52). LIDAR
accurately predicted canopy volume.
Significant correlations emerged between LIDAR impacts and LAI
Grapevine Canopy geometry during each growth stage. The estimated values of tree row volume [94]
p characterization (R? = 0.99) and leaf wall area (R? = 0.95) exhibited statistical significance
relative to the vine’s growth stage.
Measurement of Strong correlations were found between manual and LIDAR-based
Apple, Pear, non-destructive vegetative measurements of vegetative volume in tree-row plantations, especially [95]
Vineyards volume and surface area of ~ with the tree area index (TAI) parameter. A significant correlation
tree row (R? = 0.814) was also observed between LIDAR volume and foliar area.
A high correlation (R? = 0.75) existed between LiDAR-measured height
. S and actual plant height. Achieving up to 95% accuracy, the LiDAR-based
. Detection and discrimination . SR .
Maize sensor effectively discriminated vegetation from the ground. Weed [96]
of plants and weeds L .
discrimination success was demonstrated through canonical
discriminant analysis (CDA) with a rate of 72.2%.
Vinevard The LiDAR system recorded the mid-range spray drift with a 2.4 m
A yle ’ Monitoring of pesticide clouds  distance resolution and a 100 ms temporal resolution at the highest pulse [97]
PP repetition frequency.
At an airflow rate of 34,959 m3 /h, correlation coefficients for
conventional nozzles ranged from 0.87 to 0.91, while for air injection
. Drift detection in nozzles, the range was from 0.88 to 0.40. At 27,507 m3/h, conventional
Vineyard . . .. e [98]
vineyard spraying nozzles showed coefficients between 0.85 and 0.94, whereas air injection

nozzles ranged from 0.07 to 0.88. Finally, at 6423 m3/h, conventional
nozzles had coefficients from 0.93 to 0.98.

2.2.3. Mobile LiDAR Systems (MLSs)

Mobile LiDAR systems are portable devices that allow users to collect data by mount-
ing the scanners on manned or unmanned ground vehicles such as tractors or robot vehicles,
which are autonomous or remotely controlled and designed to operate on land. It can
even be mounted on a backpack or held by a person walking. These systems are typically
lightweight and easy to operate [99]. With the MLS, researchers and farmers can capture
localized information and perform detailed measurements in smaller areas or specific
field sections. They provide the ability to assess crop height variations, monitor canopy
structure, and identify micro-environmental factors that influence crop growth. The MLS is
useful for on-the-spot assessments and can complement data from other LiDAR platforms.
Researchers have utilized MLSs for crop height estimation, plant architecture analysis, leaf
area index, and precision nutrient management [100,101].

Zhou et al. [102] reported that MLSs performed better than ALSs when scanning tree
growth. Point cloud data provides more precision and completeness than an MLS and
can accurately extract forestry characteristics and record individual tree branch structures.
Underwood et al. [103] employed an MLS to efficiently map flower and fruit distributions
and forecast individual tree production in almond orchards, as depicted in Figure 8. The
technology employed a robotic ground vehicle equipped with LiDAR and video sensors
to generate a 3D map of the orchard and identify the plants throughout the year. A
significant linear relation existed between canopy volume measured by LiDAR and yield.
The created maps were used to classify almonds correctly. Researchers concluded that
these findings advance precision agriculture by providing valuable insights for optimizing
almond orchard management and increasing the accuracy of yield prediction.
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(a) Shrimp (b) Lidar Scans (c) Colour Imagery

Figure 8. Mapping an almond orchard using an MLS [103].

Arno et al. [104] predicted LAI by transversely surveying grapevines along the rows
using MLS sensors placed on a tractor. Vine height, cross-sectional area, canopy volume,
and tree area index (TAI) were calculated. The TAI significantly correlated with LAI values,
demonstrating the viability of using LIDAR sensors to characterize grapevine leaves. In the
wheat improvement project, Deery et al. [105] assessed the repeatability of nondestructive
measurements of AGB and crop growth rate (CGR) using an MLS. The research compared
two LiDAR-based techniques for calculating AGB using damage data. Different water
supply levels and wheat genotypes were the subjects of several investigations. According
to the findings, there are strong correlations between MLS-derived biomass indices and
AGB, suggesting that MLSs may serve as a reliable substitute for AGB. The study’s overall
findings demonstrate MLSs’ potential as a trustworthy tool for evaluating AGB and CGR
in wheat breeding and research.

In their work, Ruhan et al. [106] estimated the aboveground AGB of individual trees
using a backpack LiDAR system and optimized quantitative structural models (AdQSM).
They were able to accurately determine the diameter at breast height (DBH) of each tree by
using the point cloud data obtained from the backpack LiDAR system. The investigation
confirmed that the use of backpack LiDAR in a non-destructive manner could produce
accurate estimates of the AGB of individual trees. A unique phenotyping approach has
revolutionized field-based plant research, as Zhu et al. [107] demonstrated. It combined
a backpack LiDAR device with the GUI program Crop Quant-3D, as shown in Figure 9.
The method made it possible to collect millions of 3D points to measure crop height and
complicated features precisely, such as changes in canopy structure. With good correlations
to traditional manual measures, the integrated approach effectively separated genotype
and treatment effects on important morphological features. The system showed potential
in effectively utilizing current genetic data for improved plant phenomics research, yet
there is potential for improvement in accuracy and cost.

Guo et al. [108] developed and tested Crop 3D, a high-throughput crop phenotyp-
ing technology. They used LiDAR technology with other advanced sensors to gather
phenotypic data from several sources during the crop growth cycle. The researchers
discussed the platform’s design, functionality, testing outcomes, and prospective appli-
cations and prospects in crop phenotyping. They concluded from their research that
systems merging LiDAR and conventional remote sensing methods could be the future of
high-throughput crop phenotyping. An overview of the various ways in which the MLS
optimizes agricultural practices is presented in Table 4, which provides a concise summary
of MLS applications in crop management and highlights significant findings from the
relevant literature.
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Figure 9. Data acquisition using backpack LiDAR system (a) Aerial view of the experimental
site (b) Backpack LiDAR system (c) Function and data acquisition (d) 3D reconstruction of the
experimental field (e) AGB estimation through point clouds data [107].

Table 4. MLS application in crop management.

Crop

Crop Management Practices

Important Findings Ref.

Apple

Estimation of tree
canopy density

The 2D algorithm identified peak points at the canopy center, correlating
with apple variety, tree age, and tall spindle form. Notably, the middle

section exhibited higher canopy points than the top and bottom. The 3D
algorithm excelled in evaluating tree canopy point density, surpassing

[109]

the 2D version. Ensuring precise alignment during scanning is vital to

avoid experimental errors.

Wheat

Crop biomass estimation

A proximal active reflectance sensor offering spectral indices and crop
height estimates was compared to the LiDAR system. The correlation

between LiDAR-derived crop height and crop biomass was 0.79,
revealing substantial variability in biomass across the field. This

[110]

suggested the potential of LIDAR technology for large-scale operations

and site-specific management.

Apple

Leaf area detection

A test platform was constructed to measure orchard tree canopy leaf

areas manually. Polynomial regression, BPNN, and PLSR algorithms

were employed to analyze the relationship between canopy point clouds

and leaf areas. The BP neural network (86.1% test, 73.6% verification [111]
accuracy) and PLSR (78.46% test, 60.3% verification accuracy)

outperformed the Fourier function in polynomial regression

(59.73% accuracy).

Vineyard

Estimation of canopy size
parameters (thickness, height,
and volume) and LAI

UAVs, MLSs, and mobile apps (MA) effectively estimated canopy size
variations. Strong correlations (R2 > 0.7) were observed, with the highest

at R? = 0.78 (UAV vs. MLS) for canopy volumes. Height data showed

robust correlations (R2 = 0.86, MA vs. MLS), while thickness data had [112]
weaker correlations (R? = 0.48, UAV vs. MLS). LAI demonstrated

moderate but consistent correlations with canopy volumes, ranging from

R2 = 0.69 (LAI vs. UAV) to R?

=0.74 (LAI vs. V MLS).
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Table 4. Cont.

Crop

Crop Management Practices Important Findings Ref.

Sorghum

Detection and measurement
of estimation of individual
sorghum panicles

Panicles were identified with 89.3% overall accuracy, encompassing a
10.7% omission and 14.3% commission rate. Estimated panicle
dimensions demonstrated a strong correlation with LiDAR-derived
measurements (panicle length: r = 0.88, RMSE = 3.10 cm; panicle width:
r=0.79, RMSE = 1.67 cm; plant height: r = 1.00, RMSE = 0.80 cm).
Comparison with harvested panicle data revealed moderate-to-high
correlations (panicle length: r = 0.79, RMSE = 2.48 cm; panicle width:

r = 0.63, RMSE = 1.49 cm; plant height: r = 0.86, RMSE = 11.4 cm).

[113]

Cabbage,
Leek,
Potato,
Wheat

Soil and plant segregation was accomplished by calculating weighted
sums, eliminating the need for additional sensor data. This dynamic

Canopy estimation method extracted vegetation from point clouds in strips with varying [114]

coverage and sizes. The resulting vegetation clouds were validated
against drone imagery, confirming a precise match with all green areas.

Ryegrass

Estimation of fresh weight
and dry matter yield

R? between FWY and seasons (winter, spring, summer, and autumn)

were 0.81, 0.92, 0.94, and 0.90, respectively. Similarly, the R? values

between DMY and the seasons were 0.87, 0.73, 0.87, and 0.79,

respectively. These results suggest that LIDAR estimation of DMY is [115]
accurate within seasons for paired-row breeding plots. However, it is

sensitive to significant changes in dry matter content (%) among seasons,
requiring seasonal algorithms for correction.

Miscanthus
giganteus

Measurement of crop height

The sensor assessed stem densities in static mode, yielding an average
error of 5.08% (max 8%, min 1.8%). It also measured crop height in a

5 x 10 m field, showing a 4.2% error compared to manual measurements.
The sensor traversed a field edge in dynamic mode, generating a
three-dimensional crop structure. An ordinary least-squares
surface-fitting algorithm produced top and ground surfaces, resulting in
an average crop height. Dynamic measurements showed a 3.8% average
error (max 6.5%, min 1.5%).

[116]

3. Applications of LiDAR in Crop Cultivation
3.1. Crop Monitoring and Management

Precision agriculture relies on effective crop monitoring and management strategies,
and LiDAR technology offers valuable tools for these tasks [117]. By utilizing LiDAR
data, farmers and agronomists can gain insights into plant health, disease detection, weed
management, and crop growth monitoring [118-120].

Figure 10 presents an overview of the applications of LiDAR in agriculture for crop
monitoring and management practices, as using just RGB data prevents the correct ex-
traction of plant structural information. LiDAR, a potentially active technique, deals with
overcoming this problem by sending laser pulses through tree canopies and picking up
vegetation in the understory. LIDAR delivers accurate, three-dimensional (3D) plant data
by measuring the return pulse time. LiDAR sensors have been successfully used in sev-
eral successful projects to estimate different vegetation parameters, including vegetation
height [121], coverage [122], leaf area index [123], above-ground biomass [124], and crown
size and volume [125]. For example, Brede et al. [126] used the TreeQSM approach to
estimate tree volume in their comparison of UAV laser scanning with terrestrial laser
scanning. A machine learning-based classification method was carried out by Moorthy
et al. [127] to discriminate between woody and leafy components in 3D point clouds. In
most instances, the solution outperformed previous methods, eliminating the need for
additional post-processing procedures. Based on their research, Montzka et al. [128] con-
cluded that crop height, gap percentage, and intensity are three LIDAR metrics that can
predict the AGB, with slightly improved accuracy when testing plants in wet environments.
In recent years, LIDAR technology has enabled precise and detailed measurements of
crop characteristics [129-132], such as crop height [133], canopy density, plant growth
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rate [134], plant species diversity [135], and aboveground fresh and dry biomass [136-138].
This information allows farmers to monitor the health and development of crops more
accurately. By analyzing LiDAR data, they can identify variations in plant height, which
may indicate uneven nutrient distribution or pest infestations [139]. Detailed information
regarding these applications is described in Figure 10.
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Figure 10. An overview of applications of LiDAR in agriculture (A) canopy and individual height
measurement, (B) growth prediction and measurement, (C) field management practices, (D) breeding,
(E) crop management practices) [57].

3.1.1. Plant Health Assessment, Maintenance, and Disease Detection

Traditional methods for plant health assessment, maintenance, and disease detection
are often unreliable and costly. In contrast, LIDAR technology offers detailed information
on vegetation structure, crop growth, leaf area, and canopy density-key indicators of
plant health—providing a more accurate and cost-effective solution. By analyzing LiDAR-
derived metrics such as plant height, canopy volume, or leaf area index, researchers
and farmers can assess the overall condition of crops [140]. Deviations from expected
values may indicate stress, nutrient deficiencies, or disease presence. The early detection
of diseases is crucial for implementing timely interventions, such as targeted pesticide
application or adjusting irrigation and fertilization practices [20].

LiDAR technology has been extensively studied for estimation-oriented agricultural
applications, including maintenance tasks. It has proven effective across different soil types
and temperature conditions, including in orchards, providing valuable insights for crop
management and optimization. For example, Escola et al. [141] substitute conventional
approaches to calculate the number of trees in an olive grove by using an MLS. This
approach was also used by Sandonis-Pozo et al. [142] to estimate the canopy characteristics
of almond trees to locate the canopy areas requiring maintenance. Anken et al. [143] used
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a more accurate method for the precise measurements of canopy area in a project named
‘3D Mosaic’, which aimed to better regulate water and fertilizer use in orchards. Using
conventional cameras, two techniques were used in a plum orchard in Potsdam, Germany:
LiDAR (plane-mounted laser) and NIR (near-infrared) imaging. Both techniques generated
precise canopy size measurements and demonstrated a good connection with real leaf area.
The camera system provided a more affordable alternative, while the LiDAR system has
the benefit of easy data processing. Moreover, traditional methods of measuring the height
of wheat are labor-intensive and prone to inaccuracy. However, since it reveals the yield
and weather resilience, this assessment is significant for this crop type. Dhami et al. [144]
presented methods for assessing wheat crop heights using a 3D LiDAR sensor mounted
on a UAV. They created a mechanism for retrieving plant heights from 3D LiDAR data in
plot-based phenotyping contexts. The researchers also created a toolchain for modeling
phenotyping farms and determined plant height in a wheat field with an accuracy of
RMSE of 6.1 cm. Notably, their method accurately predicted plant heights in a field with
112 plots, making it the first time 3D LiDAR data were gathered over a wheat field by
an aerial robot. A multi-sensor phenotyping system was developed by Yuan et al. [145]
for estimating wheat canopy heights using ground phenotyping technologies, UAV, and
manual measurements. Ultrasonic sensors and LiDAR technologies were used in the
system, as shown in Figure 11. The accuracy of wheat height estimates was improved by
pre-processing LiDAR data to counteract the slanting effect. The RMSE for LiDAR was
0.05 m, and the R? for the correlation between manual measurements and LiDAR was 0.97.
The RMSE for UAV was 0.09 m, and the R? for the correlation between manual and UAV
was 0.91. Both measurements were used to determine canopy height. LIDAR produced the
most accurate findings, with an R? of 0.97 and an RMSE of 0.05 m.

. Ultrasonic sensor
= footprint
Area covered
by LIDAR

16 Lasers
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W
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Figure 11. Phenotyping system and scanning areas of LIDAR and ultrasonic sensors [145].

Meanwhile, maize heights were examined by Ziliani et al. [146] and Gao et al. [147].
With this metric, one can get an overall assessment of the plant’s health condition. With
this index, farmers can evaluate the overall condition of the plant. In related research, Zhou
et al. [148] employed an ALS to track maize development and examine how the climate
affected this plant over the lodging season. Estimating sugar cane yields requires careful
crop observation during its entire development cycle. Sofonia et al. [149] monitored sugar
cane yield with different nitrogen fertilizer treatments (0, 70, 110, 150, and 190 ng-ha’l)
in Australia using an ALS. This study aimed to simultaneously compare two systems,
CSIRO Hovermap LiDAR, and Micasense RedEdge multispectral camera, to conclude the
relationships between plant height, biomass, and yield, as shown in Figure 12. The results
indicated that both technologies offer accurate crop height measurements and timely
problem detection. However, UAV-LIiDAR exhibited greater consistency and stronger
correlations when analyzing the biophysical properties of sugarcane compared to optical
remotely sensed data.
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Figure 12. (A) LiDAR and (B) photogrammetry time-series point cloud data colored by survey (dark
blue to red) [149].

Ghamkhar et al. [150] suggested employing an MLS to do this effectively. They were
the first to get findings that could be put into practice and compared to the conventional
method.

3.1.2. Weed Detection and Fertilizer Application

Effective weed detection, control, and precise fertilizer application are vital for opti-
mizing crop productivity. LIDAR technology enhances these practices by offering detailed
insights into plant height and canopy structure. This enables accurate weed detection and
targeted fertilizer application, as LIDAR can differentiate between crops and weeds based
on variations in vegetation height and structure. This enables the development of precise
and targeted weed control strategies, reducing the reliance on broad-spectrum herbicides
and minimizing the potential negative environmental impact [151]. Removing weeds from
fields before they consume crop nutrients is essential. As a result, it is essential to constantly
monitor crops for the presence of wild plants and remove them before they may spread
disease. Pretto et al. [152] provide an alternate method for the identification of wild plants
by combining the use of a TLS and an ALS. The researchers in this study detect and manage
the removal of wild plants with the help of an ALS and a TLS, as shown in Figure 13.
Computer vision technologies such as LIDAR were used to navigate robotic vehicles during
agricultural exploration, and weed detection was accomplished using the AgriColMap
method. This vehicle can estimate the density of the crop and use that information to guide
itself around the field.

@D&@,, .

@ (

b)
)
e ‘
(©) d)

(
Figure 13. Conceptual identification and removal of wild plants using an ALS and a TLS (a) Weed
detection via ALS (b) Signals transfer to TLS (c) Navigation to exact location (d) Removal of weeds
via TLS [152].
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Liu et al. [153] used UAV-LiDAR to estimate differences in the plant height of cotton
plants across space. The research discovered a maximum relative error of 12.73% and
an error value of 3.48 cm by comparing hand plant height measurements with LiDAR
measurements. The coefficient of variation analysis showed height variations in the crop
row direction ranged from 0.54 to 1.04. In the direction perpendicular to the crop row,
the coefficient of variation ranged from 0.06 to 1.27. The study showed insights into
deriving geometric data from field crops and delivers useful information for variable
equipment operations in cotton fields. Nguyen et al. [154] developed DairyBioBot, an
unmanned ground vehicle (UGV) equipped with a ground-based LiDAR sensor and real-
time kinematic (RTK) positioning system. In broad perennial ryegrass field experiments,
this novel approach enabled accurate and effective monitoring of plant volume as a proxy
for biomass. R? values of 0.71 at the row level and 0.73 at the plot level showed a robust
relationship between LiDAR-derived plant volume and biomass on a fresh mass (FM) basis.
Robotic equipment created by Cruz-Ulloa et al. [155] made it possible to automate the
fertilization process and treat each plant individually. Researchers identified cabbages as
the target crop and used LiDAR technology to automate fertilizer management. Researchers
reported that point clouds provide remarkable potential for exact localization, which in
turn makes it possible to follow and monitor the development of specific crops over time.
Machine learning methods such as Euclidean clustering [156], support vector machines,
k-nearest neighbors, and k-means have often been employed for applications requiring
fruit or tree measurements and phenotyping [157]. However, voxelization was used by
Itakura and Hosoi [158] to recognize the weeds present in the crop.

3.1.3. Crop Growth Monitoring

Monitoring crop growth and estimating potential yield are critical aspects of preci-
sion agriculture. LIDAR technology provides accurate and real-time data on crop height,
canopy cover, and biomass. By regularly scanning fields, farmers can track the progress
of crop growth and identify areas with potential issues. LiDAR data can help optimize
irrigation scheduling, nutrient management, and harvest planning [159]. Many researchers
recommended that the data collected through LiDAR were intended to be used by the
farmer to optimize crop production, and the farmer may project the yield to get insight into
the condition of the crop. Changes in crop biomass indicate to farmers that the plant has
entered the reproduction phase. This shift must be noticed so that the farmer can estimate
the quantity of fertilizers required in advance. Li et al. [160] found that compared to the
traditional manual approach, an ALS was considerably more effective, time-saving, and
useful even in difficult-to-reach locations and adverse geographic conditions for calculat-
ing LAI and plant height in maize fields. Their study emphasizes the potential of ALS
technology in increasing data-gathering procedures for LAI evaluation and optimizing
agricultural operations, as shown in Figure 14. With R? values of 0.89, 0.86, and 0.78, the
analysis showed a significant correlation between the canopy height data from the 3D point
clouds and manual measurements.

Data collection (UAV image acquisition + ground truth data)

Ay hnaes
Al B BAMGRETIA '
zaAad:)

Figure 14. Measurement of LAI using UAV-LiDAR systems [160].
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3.1.4. Autonomous Navigation System

For autonomous vehicles, efficient field navigation is crucial since it enables the
accurate completion of various tasks. Modern autonomous vehicles use a variety of sensors
to gather important information about their surroundings and current robotic state [161].
Cameras and dual-antenna real-time kinematic (RTK) systems provide a rich data stream,
but their effectiveness is very sensitive to changes in lighting and environment [162]. As
a result, LIDAR sensors provide improved navigational dependability in an agricultural
environment, making them preferable to visual cameras [163].

Wenju et al. [164] developed an orchard-harvesting robot with autonomous navi-
gation. The technique solved the problem of frequent navigational breaks by enabling
continuous operation while turning. The method changed navigation modes based on
GNSS distances. The results of the experiment were promising, with minimal data loss
during communication and repeated pauses in orchard rows. The study emphasized the
potential advantages of LiDAR technology for increasing navigational accuracy and or-
chard harvesting efficiency. To address the requirement for effective plant protection, Wang
et al. [165] described the creation of an autonomous navigation system for orchards. The
system used a three-module strategy: perception, decision, and control. Millimeter-wave
radar and 3D LiDAR were used to identify obstacles and perceive surroundings. Based on
LiDAR data, orchard navigation lines were extracted using a four-step methodology. The
ADRC control method successfully improved the noise immunity of the plant protection
machinery’s system. This was a great achievement in the field of agriculture technology,
as it ensures that the machines can operate effectively without any interruption caused by
external interference.

Liu et al. [166] combined automated navigation (AN) with precision variable-rate
spraying (PVS) utilizing a single 3D LIDAR sensor to increase pesticide application safety
in orchards while reducing environmental effects. Fruit trees were found, and the region
of interest (ROI) was determined using a LIDAR sensor. The random sample consensus
(RANSAC) technique was used in 2D processing inside the ROI to compute the center-
of-mass coordinates of fruit trees and calculate the robot’s vertical distance from the fruit
tree row center line. The encoder and inertial measurement unit (IMU), which correct data
from the fruit tree canopy, are then used to guide the robot along the FTR center line. The
findings demonstrate outstanding accuracy by drastically reducing pesticide application,
air drift, and ground loss compared to conventional spraying, achieving reductions of
32.46%, 44.34%, and 58.14%, respectively. Reduced pesticide volume, ground loss, air drift,
and improved environmental control result from this integrated strategy using 3D LIDAR,
an encoder, and an IMU. In recent research, Bertoglio et al. [167] developed a navigation
system that utilized LiDAR and wheel encoder sensors for precise navigation in row-
structured agricultural environments such as vineyards. The technique used the straight,
regular geometry of rows of plants. In simulated and real-world testing, the system showed
mean displacement errors of 0.049 m and 0.372 m, respectively, for in-row navigation.

Additionally, the researchers devised an end-row points detection to facilitate end-row
navigation in vineyards, a feature frequently neglected in comparable works. The outcomes
demonstrate the efficacy and reliability of their methodology. Many algorithms, such as
the graph-based optimization of simultaneous localization and mapping (SLAM) [168],
RANSAC [169], and Hoo Control System [170], have also been employed for navigation-
based applications. Moreover, precision agriculture has led to autonomous agricultural
equipment, which decreases human labor, simplifies processes, and boosts production.
However, precise obstacle detection and avoidance technologies are needed to keep these
machines safe [171]. Traditional LIDAR-based obstacle identification approaches for farm-
ing areas are laborious and time-consuming owing to manually created features. To address
this issue, Qin et al. [172] used deep learning on agricultural equipment with LiDAR, a
camera, and GNSS/INS. Researchers used focal sparse convolution to train a 3D obstacle
detector called Focal Voxel R-CNN and extracted useful features from sparse point cloud
data. With a mean average precision (mAP) of 91.43% and a detection speed of 28.57 frames
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per second (FPS), the proposed model greatly outperformed Voxel R-CNN in terms of
detection performance. This methodology presented autonomous agricultural machinery
with a more dependable approach to obstacle identification. Kong et al. [173] used 2D
LiDAR combined with the minimum cost maximum flow (MCMF) and density-based
spatial clustering of applications with noise (DBSCAN) algorithms to identify obstacles
in front of tractors. The study introduced a mechanism to classify security alert levels
based on obstacle states and a way to distinguish between static and dynamic obstacles.
Vehicles were tested for static and dynamic obstacles at different speeds and directions.
The results revealed a remarkable average warning accuracy rate of 89.5%. The system’s
reliable obstacle prediction ensures agricultural vehicle safety, advancing agricultural mech-
anization. Jiang and Ahmed [174] employed LiDAR to guide an autonomous spraying
robot for orchard operations.

3.1.5. Above-Ground Biomass (AGB) and Yield Estimation

Researchers also used LiDAR to accurately estimate above-ground biomass [175-179]
and yield estimation [180,181]. The ability to accurately estimate canopy structure, height,
and biomass distribution is useful for evaluating carbon sequestration and fine-tuning
agricultural management strategies. Rapid, non-destructive data collection using LiDAR
is essential for maintaining effective and sustainable agriculture methods. In southern
Spain, Rodriguez et al. [182] measured carob biomass with an ALS and evaluated the crop’s
carbon storage with allometric methods; this classification was essential for estimating the
soil’s qualities and assessing the plants’ biomass. Sun et al. [183] used an advanced MLS
to track cotton plant development throughout the seasons and year. This novel technique
shed light on the dynamics of plant growth under various climatic circumstances and
demonstrated how data-driven approaches have the potential to transform agricultural
management practices. The successful implementation of the MLS provided thorough
monitoring capabilities and has implications for improving crop yield and quality while
reducing resource consumption and environmental impact, highlighting its significance in
advancing productive and sustainable agricultural practices. It was also stated that yield
estimates could be improved by incorporating LiDAR data.

A semi-autonomous vehicle designed for vineyard monitoring was created by Vidoni
et al. [184] in response to the need for frequent estimates. Two LiDAR scanners were
installed on the truck to thoroughly scan the vineyards, allowing for the study of plant
volume and morphology. The researchers created a complex algorithm based on measure-
ments of branch thickness and the NDVI. The NDVI was crucial to get important data on
the properties of the tree canopy.

3.2. Soil Analysis and Management

LiDAR technology significantly benefits soil analysis and management practices in
precision agriculture. By capturing detailed topographic information, LiDAR assists in
mapping, classifying, and monitoring essential soil parameters [185].

3.2.1. Soil Mapping and Classification

Combining LiDAR data with precise georeferencing techniques allows for the creation
of high-resolution soil maps. By analyzing variations in surface elevation and slope from
LiDAR, researchers and farmers can identify and map different soil types and their spatial
distribution within a field. This detailed information supports accurate soil classification
and enables targeted soil management practices, such as variable-rate fertilization and
site-specific irrigation. As commercial airborne and ground-based LiDAR technology
becomes more widely available, it shows tremendous potential for quantifying the spatial
distribution of surface roughness (SR) across large areas reasonably and effectively [186].
By measuring the laser pulse return times transmitted from an airborne platform toward
the ground, LiDAR creates a 3D point cloud. Airborne laser scanners (ALSs) can outline
the geographical distribution of SR using high-density, accurate elevation data that may be
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quickly gathered over wide regions, providing a suitably dense sample rate [187]. Foldager
etal. [188] highlighted the benefits of LIDAR technology for the efficient and precise analysis
of soil surfaces in agricultural practices. Researchers measured and analyzed a furrow’s
cross-sectional size and shape following a trailing shoe sweep using a manual pinboard and
a LiDAR sensor. Pinboard and LiDAR measurements demonstrated significant differences
of up to 41%. Additionally, LIDAR research on the effect of irrigation on furrow areas
revealed variable increases in cross-sectional area under various irrigation levels. Hollaus
et al. [189] used a dual approach to quantify roughness in their research and used two
different measures of roughness, “Surface Roughness” (SR) and “Terrain Roughness” (TR).
Full-waveform airborne laser scanning (FWF-ALS) terrain points within a certain height
range from the terrain surface were measured for the SR computation. They proved
that FWF-ALS helped in characterizing surface properties with its laser point attributes,
and they introduced a new method, vertical roughness mapping (VRM), for identifying
roughness across different vertical layers in forested regions, with accurate results when
validated against in situ reference data.

3.2.2. Soil Moisture Content and Nutrient Analysis

LiDAR data can indirectly provide insights into soil moisture content by analyzing
vegetation reflectance patterns and canopy structure. Changes in vegetation characteristics
detected by LiDAR, such as reduced canopy height or increased gaps, may indicate areas
with higher moisture stress. LiDAR data, when combined with spectral analysis tech-
niques, can also help estimate soil nutrient levels. By examining the relationship between
LiDAR-derived metrics and nutrient content, farmers can develop precise fertilization
plans designed to meet the demands of varying soil types throughout a field.

Phosphorus levels are another crucial aspect of soil nutrient management, as they
pose a threat to water quality. Cassidy et al. [190] employed an ALS to examine this trait in
crops and mitigate the potential for excessive phosphorus in soil. The research developed a
runoff routing model using LiDAR elevation data and soil hydraulic conductivity values
to identify hydrologically sensitive areas. The presence of above-optimal soil phosphorus
levels in agricultural fields makes places where surface runoff paths are concentrated and
where the danger to water quality is greater.

To establish the appropriate resolution for defining observed soil moisture patterns,
Southee et al. [191] investigated three LIDAR-derived terrain surfaces produced at different
spatial resolutions. They used the topographic wetness index (TWI), percent elevation index
(PEI), and canopy height model (CHM) to analyze soil moisture at spatial resolutions of
2m, 5m, 10 m, and 20 m, respectively. Algorithms for removing depression were also used.
For depths of 0-15 cm and 040 cm, respectively, the coefficients of determination between
soil moisture and TWI were R? 0.346 and R? 0.292. According to the findings, predicting
soil moisture patterns at shallow depths (from 0 to 15 cm) may be more successful when
using high-spatial-resolution variables (between 2 m and 5 m). On the other hand, deeper
depths (from 0 to 40 cm) could be better suited for coarser resolutions (10 m, 20 m).

To better plan water and irrigation management, Demelezi et al. [192] showed how
the spatial visualization of data could show the advantages of using high-accuracy remote
sensing LiDAR data to find soil hydrological characteristics and to prevent potential
field waterlogging. Additionally, the utilization of remotely sensed data, such as LiDAR,
provided a significant benefit in data collection and site information presentation. As a
result, at the plot-farm level, mapping and digitalizing landscape LiDAR information was
beneficial, accurate, and simple to comprehend. Comparatively, Kemppinen et al. [193]
used LiDAR data and field experiments to examine the role of soil and land surface variables
on landscape-scale soil moisture change. This investigation modeled soil moisture and
its temporal change using generalized additive models (GAM), boosted regression trees
(BRT), and RFR. Figure 15 presents the forecasting abilities of four different soil moisture
modeling techniques. The horizontal and vertical segments show the ranges of each
modeling technique. Results showed that the average predictive performance was an R?
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value of 0.47 and an RMSE of 9.34 VWC (volumetric water content, %), whereas the average
model fit was an R? value of 0.60 and an RMSE of 8.04 VWC%. The temporal variation
models performed predictably with an R? of 0.01 and an RMSE of 15.29 CV%, and they fit
with an R? of 0.25 and an RMSE of 13.11 CV%.
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Figure 15. Comparing four soil moisture modeling methods [193].

4. LiDAR Applications in Crop Harvesting

Real-time crop production process optimization, including fertilization, crop pro-
tection, and harvesting, becomes possible when these essential aspects are considered.
However, research and development on the vehicle-based use of LiDAR technology in
agriculture for collecting and exploiting such characteristics is still in the early stages.
This section explores how LiDAR technology is utilized in various aspects of crop har-
vesting to improve efficiency and productivity. We discuss three key areas of application:
crop maturity and yield prediction, autonomous harvesting systems, and post-harvest
quality assessment.

Saeys et al. [194] investigated how to assess crop density in front of combine harvesters
using two LiDAR sensors and data-processing techniques. An illustration of the crop den-
sity and combine harvester mounted with the LiDAR system is depicted in Figure 16. It was
shown that using a linear model based on the local standard deviation of the penetration
depth, accurate estimations of crop density could be generated from the scans from both
sensors. R? values for this linear model varied from 0.81 to 0.96 during experiments with
various driving speeds and machine vibration levels. The suggested new approach for
predicting crop volume showed excellent results. Researchers concluded LiDAR technology
could improve combine harvester automated feed rate control systems.

Selbeck et al. [195] investigated the vehicle-based scanning LiDAR sensor in terms of
its measuring properties in maize stands. Laser beam form, laser layer, laser echoes, field of
view, and data density variation were all mentioned as potential sources of measurement
error, and solutions were proposed to eliminate them. The 3D model made from the scanner
data allowed the computation of the volume and biomass parameters for machine control
and gave adequate surface information about maize stands. The researchers concluded that
there is a correlation between the weighted biomass and the height and volume calculated
by the model. Deremetz et al. [196] suggested an ultra-wide-band-based technique to
guarantee a relative localization without requiring a direct line-of-sight to the object. To
replicate a person’s route without direct communication or an absolute localization system,
the approach locally approximates the trajectory of the human leader as a circle. Prins
and Niekerk [197] used LiDAR, Sentinel-2, aerial, and machine learning to distinguish
five crop varieties in an intensively planted region. Ten machine-learning techniques and
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various combinations of the three datasets were tested. The classification results were
interpreted by comparing the aggregate accuracies, kappa, standard deviation, and f-score.
Using LiDAR data to distinguish between various crop types was effective, with XG Boost
offering the most significant overall accuracy of 87.8%. Furthermore, the crop-type maps
made using Sentinel-2 data and those created using LiDAR data largely agreed.

Figure 16. Different crop densities and combine harvester with LIDAR system (a) 100 ears per m?;

(b) 200 ears per m?; (c) 300 ears per m?; (d) 400 ears per m? [194].

To determine the optimal time to harvest sugarcane, Canata et al. [198] investigated
LiDAR technology, specifically a laser sensor mounted on agricultural platforms. The
measurement system integrates a laser sensor, GNSS receiver, and inertial device with
a computer on the platform of an agricultural tractor. The data collection process was
carried out around ten days before harvest. The approach generated point clouds with a
density of roughly 2000 points m 2 and extracted sugarcane plant height measurements.
The research discovered that platform oscillation vibration considerably impacted the
dataset in one experimental area owing to high-amplitude spectral power. The suggested
measuring system identified sugarcane plants in the pre-harvest phase without signal
saturation issues.

4.1. Crop Maturity and Yield Prediction

LiDAR technology offers non-destructive and accurate methods for crop maturity and
yield prediction. By capturing detailed 3D data of crop canopies, LIDAR enables precise
assessment of key parameters such as plant height, leaf area, and canopy density. These
metrics are critical for determining crop maturity and optimizing harvest timing, thereby
maximizing crop quality and yield potential. LIDAR-based yield estimation models have
shown promising results in predicting crop yields with high accuracy, contributing to
better planning and resource allocation. To forecast wheat production and grain protein
content (GPC), Sun et al. [199] used LiDAR technology with deep learning algorithms
and time-series proximate sensing data. They incorporated LiDAR data using data fusion
methods, which significantly increased prediction accuracy. Apple fruit detection and yield
prediction were accomplished by Gene-Mola et al. [200] using a multi-beam LiDAR sensor
with forced airflow and an air-assisted sprayer. The fruit identification algorithm was
developed using reflectance thresholding (RT) and a support vector machine (SVM). The
experiment was designed to boost fruit detection and decrease fruit occlusions by shifting
the tree foliage using a multi-view sensor. Figure 17 illustrates how forced airflow affects
fruit identification.
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Figure 17. Multi-beam LiDAR system for the detection of fruits [200].

When comparing the number of apples found by LiDAR with the forced airflow
system to the real number of apples per tree, the RMSE was 19.0%, and the R? was 0.58 and
0.54, respectively, when scanning was performed from the east and west sides. The RMSE
was 5.7%, and the R? was 0.87 when both sides of the trees were evaluated. As a surrogate
for biomass, canopy height has been widely adopted [201]. Tilly et al. [202] added a field
spectrometer to their platform and derived bivariate biomass regression models by fusing
3D data and spectral TLS data. Researchers used linear and exponential biomass regression
models (BRMs) to evaluate the accuracy of plant height and vegetation indices (VIs) as fresh
and dry biomass estimators. Their results demonstrate the promising potential of remotely
sensed plant characteristics for estimating barley biomass. Li et al. [203] investigated
the potential of airborne-LiDAR data in measuring the AGB and belowground biomass
(BGB) of maize; it identifies canopy height and LAI as essential factors that directly affect
biomass components. LIDAR-derived maize height and LAI data were used to illustrate the
geographical distribution of biomass components and field-based estimate methods were
presented. The findings showed that LiDAR-estimated biomass was equivalent to field-
measured biomass, highlighting the enormous potential of airborne LiDAR for determining
canopy height, LAI, and the various biomass components of maize at the height of the
growth season.

4.2. Autonomous Harvesting Systems

LiDAR technology is essential for the advancement of autonomous harvesting sys-
tems. It provides real-time, precise data on crop location, size, and orientation, enabling
autonomous vehicles and robotic systems to navigate and maneuver with high accuracy
in agricultural fields. By employing both 2D and 3D LiDAR, these systems can effectively
detect and avoid obstacles, including plants, structures, and other potential hazards, mini-
mizing the risk of collisions. This capability enhances the safety and efficiency of harvesting
operations, allowing for continuous, high-quality crop collection while reducing the need
for manual intervention. Furthermore, the integration of LiDAR data with other sensors
and advanced algorithms improves decision-making processes, optimizing the overall
performance and productivity of autonomous harvesting systems [204,205]. Addition-
ally, LIDAR-based perception systems enhance the precision and dexterity of harvesting
robots, enabling them to harvest ripe crops selectively while minimizing damage to the
surrounding vegetation. Geer et al. [206] developed a LiDAR-based SLAM autonomous
robotic system for harvesting strawberries with a novel software architecture, GMapping
version 1.3, integrated with ROS and a SLAM algorithm. Laboratory and field experiments
were conducted to assess the accuracy of the autonomous harvesting system. Researchers
reported that advanced robotic systems could identify the correct rows to travel between
while maintaining a constant distance from the fruit trees. The perception system was
designed to function effectively, avoiding fruit damage or loss of position. Vrochidou
et al. [207] developed a LiDAR-based autonomous harvester for grape harvesting, which
mainly consisted of three units: (1) an aerial unit, (2) a remote-control unit, and (3) the
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ARG ground unit, as shown in Figure 18. Three machine vision algorithms-grape cluster
detection, ripeness assessment, and grape stem identification—were sequentially executed
to complete the harvesting process. LiDAR utilized two algorithms for localization: (1) an
ICP algorithm for mapping robot pose utilizing 3D data from 16 laser beams to ensure
precise position monitoring, and (2) a wall-following algorithm using one LiDAR laser
beam to maintain a fixed operational distance. Researchers have also confirmed that the
inherent versatility built into the system’s architecture enables it to be seamlessly adapted
for various crops and orchard settings.

@ P/elémn\lt ~ Vineyard images acquisition

n
U . ~ Path planning

Remote-Control Unit ~ Mission preparation

~ Monitoring and data gathering

~ Autonomous navigation

~ Decision making

~ Performance of viticultural tasks
~ Sensor control

ARG Ground Unit

Figure 18. Conceptual architecture system of the integration of three parts [207].

Xiong et al. [208] designed a fully integrated LiDAR-based strawberry harvesting
system for picking strawberries in clusters. The data from the 2D LiDAR were processed
using the GMapping SLAM technique to generate a map. The system was tested on a
strawberry farm, demonstrating its capacity to effectively harvest strawberries that were
partly covered by leaves. Depending on the parameters, the first-attempt success rates
ranged from 50.0% to 97.1%, while on the second try, these rates rose to 75.0-100.0%.

4.3. Post-Harvest Quality Assessment

After harvesting, maintaining the quality of crops is crucial for maximizing their mar-
ket value. LiDAR technology offers valuable insights for post-harvest quality assessment.
By analyzing the optical properties of harvested crops, such as color and surface characteris-
tics, LIDAR can help detect defects, damage, or signs of spoilage. This information enables
the timely sorting and grading of crops, ensuring that only high-quality products reach the
market. Furthermore, LIDAR-based 3D scanning can facilitate precise crop volume and
shape measurements, providing essential data for efficient packaging and storage. Many
researchers used LiDAR technology to quantify crop height and wheat straw production for
post-harvest quality evaluation [209,210]. When utilized along with yield monitor data, this
might be very helpful in calculating and mapping signs of crop stress for the post-harvest
evaluation of growing season conditions.

Long et al. [211] used a hybrid strategy, combining a multi-sensor system with LiDAR
sensor technology to present accurate, site-specific measures of grain production, grain
protein content, and straw yield. The system included a mass-flow yield monitor, an optical
NIR spectrometer, a LIDAR sensor, a global positioning system receiver, and a laptop
computer, as shown in Figure 19. This combined method maintained the same level of
spatial resolution as grain yield. By analyzing connections between grain yield and protein
maps produced by the yield monitor and protein sensor, researchers could detect areas in
fields where nitrogen or water stress was limiting grain output. The results of this study
highlight the potential of stress-related indicator maps in enhancing the ability to evaluate
grain yield maps.
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Figure 19. Multi-sensor system for post-harvest assessment of environmental stress in wheat [208].

Mulley et al. [212] investigated the potential for determining the health of date palms
using accessible thermal, hyperspectral, LIDAR, and visual RGB pictures. Despite diffi-
culties in preprocessing and evaluating the quality of hyperspectral and thermal data, the
approaches used in this inquiry provide interesting directions for future investigations.
These results highlight how remote sensing data may support precision agricultural tech-
niques and improve plantation management. Notably, the combined use of high-resolution
thermal and hyperspectral images may provide information on the health of specific trees.
Additionally, combining these indicators may provide a complete tree health assessment
technique. Table 5 summarizes different LIDAR systems and LiDAR sensors used for

efficient crop management by different researchers.

Table 5. Summary of the use of LiDAR systems for efficient crop management.

LiDAR

Software

LIDAR Sensor Algorithm Model Crop Feature Ref.
Types System
RIEGL RiSCAN Pro ICPA . .
TLS VZ-1000 8.0 IDW MCSM, DEM Paddy rice Crop height [213]
TerraScan 16.0 Biomass
TLS ILRIS Surfer 8 ICP QTM Shrubs detection [214]
RIEGL RiSCAN Pro CSM, DTM, Canopy hight
TLS VZ-1000 8.0 1P CHM Wheat detection (215]
TerraScan 16.0 CHM, DEM, Maize, Crop heights
ALS VUX-1UAV R Studio Random forest DSM Soybean estimation [216]
. TerraScan 16.0 TIN . Biomass
ALS Leica ALS70 ENVI 5.6 FLASH DTM, BEM Maize estimation [217]
Clougc’lj;)glpare TransUNet Canopy and
ALS DJI Matrice DJi Terra3.0 U NeL FCN o CMM,DSM, o i head [218]
M300 PCTA DTM .
Python 3.7 CXHA estimation
LiDAR 360
CloudCompare
SICK 2.11.3 Monitorin,
TLS MATLAB - DIM Sugarcane onttorng [219]
LMS200 production
R2013a
R Studio 0.96
RANSAC
TLS RigelScan Elite PCL 1.9.1 PCPA - Legume Phenotyping [220]

CGA
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Table 5. Cont.
LiDAR LIDAR Sensor Software Algorithm Model Crop Feature Ref.
Types System
CloudCompare
2.10.2 Crop height
RIEGL RiPROCESS DTM, DSM,  Potato, Sugar .
ALS RiCOPTER 40, 3DPL CHM beet, Wheat a“‘i.blof‘ass (221]
RiPRECISION estimation
4.0
PCPA
LabVIEW 2.0
LMS 511, K-means Sorghum, Morphological
LS SICK AG M?O?gbA B clustering SDLSM Maize traits detection [222]
LOWESS
TLS FARO Focus SCENE 2022 D};SS;\? N MSM Maize Segmaerrllc;atlon [223]
570 PCL1.12.0 KDTree MOSM stratification
TLS LMS-Z420i RiSCAN Pro SDA CSM, DTM,  Barley, Sugar  Crop heights [224]
DSM, beet estimation
Lodged crop
RIEGL . CHM, DEM, . .
ALS VUX-1TUAV LiDAR360 - DTM, DSM Maize helght [225]
estimation
CloudCompare
. 2124 CXHA . Tree volume
TLS Kaarta Stencil 2 MATLAB ASA - Olive estimation [226]
2022a
Hail
RIEGL SideLook 1.1.01 . .
TLS LMS-Q680i R Studio 1.0 Mean height DTM, CMM Corn defoliation [227]
assessment
PCL 1.0 Plant detection
TLS FX6 LIDAR MATLAB RANSAC CRM Maize a d etectio [228]
R2011a and mappng
R Studio
. . PCL Bunch ripeness
TLS LiDAR Lite V3 Arduino IDE - IWM Palm prediction [229]
1.8.13
FARO SCENE .
TLS F’*?)I];OXE‘Z’BUS 544 - DTM, Maize N}[lomt?rmg [230]
LiDAR360 phenotypes
. Plowing
Velodyne VeloView 3.5
TLS VLP-16 MATLAB RANSAC LBM - furro.vfz [231]
recognition
CloudCompare Leaf
LiDAR-Lite v3 Python 2.7 PCSA 3D point
TLS LMS400 MATLAB PCAA cloud Canola morphology [232]
extraction
2017a
TDS-130L Point Cloud RANSAC Leaf
TLS 3D MeshLab ICPA - Tomato morpholpgy [233]
analysis
FARO Focus ClgudCompareZ.llB
TLS 350 RiProcess 2.8 Ear heicht
RIEGL FARO SCENE - LADE Maize e;ﬁmi tigon [234]
ALS VUX-1TUAV POSPAC UAV

5.0




Sensors 2024, 24, 5409 29 of 44
Table 5. Cont.
LiDAR LIDAR Sensor Software Algorithm Model Crop Feature Ref.
Types System
CloudCompare Crown
Leica Aibot 29.1 ASA DTM,
ALS X6V2 MATLAB PCAA DEM Apple Parameters [235]
detection
R2019a
. Pruning
ALS  LeicaALssoqr T OSION/LDV - reedetection  pypyy oy Olive biomass [236]
3.42 algorithm . .
estimation
CloudCompare, ASA, Crown
ALS LM7800 MATLAB, k-means DTM, DSM Walnut parameters [237]
FUSION/LDV algorithms detection
Clouggg P ICPA Plant
MLS LMS511 pro MATLAB CHA - Strawberry ve%(e)t;ttlﬁfe [238]
R2021a &
PCL1.11.1
3D Velodyne, CloudCom- ICPA . .
TLS 2D Sick LMS pare 2.10.2 RANSAC KM, DEM Citrus Canopy height [239]
Pix4D 4.6.0
Cloug(ﬁ) rgpare 3D Point Tree canopy
TLS LMS-511 e ICPA Cloud Apple and fruit [240]
MATLAB LRM, KNN lit
R2022a ' quanty
LabVIEW 2020
TLS SICK LMS111 MATLAB ICPA CSM, CHM, Apple Canopy leaf [241]
DSM area
R2020a
Sick MATLAB Tree canopy
TLS LMS-111 R2022a ASA ) Peach estimation [242]
PCL1.8.1
TLS Sick LMS200 MATLAB LRM - Apple, Pear,  Canopy leaf [243]
Vineyard area
R2018a
OMD10M- Fruit
Python 3.7 SORA URL,
TLS R2000-B23- LabVIEW 2019 GNBA PLSRM Banana chlgrophyll [244]
V1V1D estimation
PCL
CloudCom- Plant
ALS VelOdL%rT‘%P“Ck pare 2.11.3 Slgf/[ CHM, LAI Peach parameter [245]
MATLAB estimation
R2021a
Sick CloudCompare ASA Canopy
TLS LMS 200 2.8.1 CXHA - Orange volume [246]
R Studio 1.1.x estimation
. SOPAS ET
TLS iﬁ‘sﬁ? MATLAB PCA - Plants Pl.?nt. [247]
R2016a monitoring
Optech ILRIS . Biomass
TLS 36D Polyworks v10 - LLSVM Grapevine estimation [248]
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Table 5. Cont.
LiDAR LIDAR Sensor Software Algorithm Model Crop Feature Ref.
Types System
CloudCompare
Backpack 2.6.1
DG50 MATLAB Tree branch
MLS, TLS FARO Focuss 2016a TreeQSM QSM Apple information [249]
350 LiDAR 360
v4.1
CloudCompare CXHA, CSF
. 29.1 ASA . Canopy
MLS VLP-16 LiDAR MATLAB VBS DTM Grapefruit pa}:amiter [250]
2016a ASBS estumation
CloudCompare
MATLAB 3D crown
TLS FARC;];: ocus TreeQSM - QSM Peach architecture [251]
FARO SCENE estimation
v2022.1.0
VeloView Canopy
Velodyne RANSAC LRM :
MLS VLP-16 MATLAB ASA CEPD Apple dgns@y [252]
2020a estimation
.. Skeletonization, .
MLS Stereo vision ROS CNN ™ Cherry Pruning [253]
PCL 1.11.1
FARO Visual Studio DTA LRM . .
TLS Focus S70 2022 LA-DT LAEM Rapeseed Leaf estimation [254]
FV-2200

From the summary provided in Table 5 above, it is observed that, due to their easy
access to crops, MLSs are useful for a variety of tasks, including crop monitoring, object
detection and classification, tree volume estimation, crop monitoring, and navigation.
On the other hand, the TLS has a distinct advantage in tasks such as pruning and is
particularly suitable for digitization-related tasks such as accurately capturing tree structure
and foliage. For both the MLS and TLS, the following LiDAR sensor types are often used:
LMS511, LMS111, Focus 350, LMS511, and VLP-16 (also known as Puck). Regarding duties
such as tree counting, determining irrigation areas, assisting navigators, and monitoring
orchards, ALSs excel because of their unique viewpoint and are excellent at capturing the
spatial arrangement of things. When it comes to processing point clouds, CloudCompare,
LiDAR360, and Point Cloud Library are the three most used tools, and the most prevalent
sensor type is the VLP-16. ArcGIS is a frequently used option for viewing and analyzing
LiDAR point cloud rasterization data. By utilizing point cloud processing techniques, one
can estimate metrics, classify and cluster data for artificial vision and monitoring purposes,
and voxelize digital representations of foliage, seeds, plants, and tree structures. This
enables an integrated approach to tasks utilizing LiDAR technology. Table 6 provides a
comprehensive comparison between different types of LIDAR systems (ALS, TLS, and
MLS) and their respective advantages, applications, and limitations for crop management
in precision agriculture.
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Table 6. Comparison of airborne LiDAR systems (ALSs), terrestrial LIDAR systems (TLSs), and

mobile LiDAR systems (MLSs) for crop management in precision agriculture.

Aspect Airborne (]:AIII??)R System Terrestrial LIDAR System (TLS) Mobile LiDAR System (MLS)
Platform Aircraft (e.g., UAVs, Stationary tripods or Moving vehicles (e.g., tractors, ATVs)

planes, helicopters)

ground vehicles

Coverage Area

Large-scale,
extensive coverage

Small to medium-scale,
site-specific

Medium-to-large-scale, linear
coverage (e.g., along field rows)

Data Collection

Rapid, wide-area scanning

High-detail, stationary, or
limited-area scanning

Continuous, high-density scanning
along paths of movement

Altitude/Range

High altitude, large range

Ground level, limited range

Variable altitude, depending on
vehicle height and field conditions

Resolution

Moderate to high, depending
on altitude and sensor

Very high due to proximity
to crops

High, suitable for detailed mapping
of crop rows and field features

Applications

Large field surveys,
topographic mapping,
biomass estimation

Detailed plant structure analysis,
canopy height measurement

Field condition monitoring, crop
health assessment, yield estimation

Advantages

Extensive coverage, rapid data
collection over large areas

High precision and detail,
minimal atmospheric interference

Mobility, ability to cover large areas
quickly and repeatedly

Limitations

Weather dependent,
regulatory restrictions, cost

Limited coverage area, requires
multiple setups for large fields

Limited by vehicle access, potential
for obstructions in the field

Crop management

practices

Field topography, crop
biomass, and health mapping

Detailed crop structure analysis,
disease detection

Monitoring crop growth, assessing
field variability, yield prediction

5. Conclusions

In conclusion, this review paper explored the critical evaluation of LiDAR applications
in precision agriculture for crop management. LiDAR technology has shown great potential
in revolutionizing crop management practices in precision agriculture. Its applications
in crop yield forecasting, biomass mapping, crop height measurement, and autonomous
navigation for agricultural robots demonstrate its ability to provide accurate and timely data
for decision-making. As LiDAR technology advances, it is expected to play an increasingly
important role in optimizing cultivation and harvesting practices, ultimately contributing
to more sustainable and efficient agricultural systems. LiDAR technology emerged as a
promising tool with its unique capabilities and advantages in agriculture. This section
explores the future perspectives and challenges associated with LiDAR applications in
precision agriculture and the potential advancements and innovations that will likely shape
the field.

5.1. Emerging Trends and Innovations in LiDAR Technology

This subsection focuses on the emerging trends and innovations in LiDAR technology
that are relevant to precision agriculture. New developments in LiDAR technology for
precision agriculture encompass a range of advancements. These include downsizing and
integrating LiDAR sensors onto drones and equipment, resulting in enhanced compactness
and durability. Moreover, higher resolution and multi-wavelength capabilities significantly
improve object recognition. Sensor fusion has enhanced environmental modeling accuracy,
while integration with autonomous vehicles and advanced driver-assistance systems has
opened new avenues for real-time crop monitoring in precision agriculture. Combining
LiDAR with data from other sensors allows for comprehensive crop health and environmen-
tal assessments. Additionally, LIDAR, improved by machine learning and Al, facilitates
automated crop management, variable rate application, and 3D modeling. Additionally,
autonomous vehicles and robots with LiDAR are transforming processes such as planting
and harvesting, and cloud-based data processing and accessibility make precision agricul-
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ture accessible and cooperative. These emerging trends highlight the evolving nature of
LiDAR technology and its potential to revolutionize precision agriculture.

5.2. Key Challenges and Research Gaps

In this subsection, we address the key challenges and research gaps that exist in the im-
plementation of LiDAR technology for precision agriculture. We discuss obstacles such as
data processing and interpretation, sensor calibration and accuracy, and cost-effectiveness.
Additionally, we explore the need for further research in data fusion techniques, standard-
ized protocols, and long-term impact assessments.

Despite the promising applications of LiDAR in precision agriculture, several chal-
lenges remain. The main challenge with using LiDAR technology in agricultural applica-
tions is the initial capital cost, which is often significant. To address this, there is a need
for cost-effective LIDAR sensors designed specifically for research applications that offer
a balance between affordability and performance. Researchers must also devise methods
to fully leverage the capabilities of these more economical sensors to facilitate broader
adoption in the agricultural sector. In addition, the operational and processing difficulties
associated with LiDAR data and the limited canopy penetration capacity for low-stature
vegetation such as maize also present a research gap in LiDAR application in agriculture.

5.3. Potential Solutions and Future Directions

To overcome existing challenges, further research and development are needed to
improve LiDAR technology and its integration with other remote sensing techniques.
Furthermore, the development of automated, on-the-go data processing capabilities and
specialized commercial LiDAR systems for field operation may aid the use of LiDAR
in precision agriculture. One of the key areas of research is to improve data processing
efficiency, which is crucial for handling large quantities of data collected by LiDAR sensors.
Researchers are now studying expert algorithms and computational approaches to stream-
line data processing and analysis to facilitate the rapid and accurate estimation of biomass
components. Recent research also covers sensor calibration techniques, which are essen-
tial to ensure the accuracy and reliability of LIDAR data. Calibration methods are being
improved to decrease data collection errors and increase biomass estimation accuracy.

Cost saving is another important consideration when using LiDAR technology for
crop parameter estimates. Researchers are investigating novel approaches to reduce costs
and improve the affordability of LIDAR systems for farmers and agricultural practitioners.
Reducing costs while increasing data quality involves analyzing alternate sensor designs,
using drone-based LiDAR platforms, and optimizing data gathering techniques.

We stress the value of multidisciplinary interactions in addition to technological
developments. The issues faced by LiDAR-based crop management techniques might be
addressed comprehensively by bringing together professionals from multiple disciplines,
such as remote sensing, agronomy, and data science. Researchers may design integrated
solutions that use the full capabilities of LIDAR technology in agriculture by combining
their skills, knowledge, and resources. LiDAR technology can potentially improve the
performance of other precision agricultural tools. LiDAR data may be used with data
from drones, remote sensing satellites, and ground-based sensors to provide a thorough
and precise picture of crop management practices. This connection enables rapid and
well-informed decision-making.
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Nomenclature

ASBS Alpha Shape by Slices Algorithm
ASA Alpha Shape Algorithm

APSIM Agricultural Production Simulator
BEM Biomass Estimation Model

BPNN Back Propagation Neural Network
CHM Crop Height Model

CRM Crop Row Model

CSM Canopy Surface Model

CMM Canopy Metric Model

CSF Cloth Simulation Filter Algorithm
CFPD Canopy Foliage Prediction Model
CMA Canopy Metric Algorithm

CHA Concave Hull Algorithm

CGA Computational Geometry Algorithm
CXHA Convex Hull Algorithm

CVM Cross Validation Model

DTM Digital Terrain Model

DEM Digital Elevation Model

DSM Digital Surface Model

DTA Delaunay Triangulation Algorithm

DBSCAN  Density Based Clustering Algorithm
FLASH Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes

GBM Generalized Boosted Model

GMM Gaussian Mixture Model

GLM Generalized Linear Model

GNBA Gaussian Naive Bayes Algorithm
WM Tterative Waterfall Model

ICPA Iterative Closest Point Algorithm
WM ITterative Waterfall Model

IDW Inverse Distance Weighting Algorithm
KM Kinematic Model

KNN k-Nearest Neighbour Algorithm
LAEM Leaf Area Estimation Model

LAI Leaf Area Index

LADE Leaf Area Density Estimation Model
LA-DT Leaf Area- Delaunay Triangulation
LBM Laser Beam Model

QTM Quantitative Terrain Model

QSM Quantitative Structure Model

RFR Random Forest Regression Model
LRM Linear Regression Model

LLSVM Lateral Linear Stereoscopic Vision Model
LME Linear Mixed Effects Model

MCSM Multitemporal Crop Surface Model
MSM Multi-Spectral Model
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MLRM Multiple Linear Regression Model

MSM Maize Segmentation Model
MOSM Maize Organ Stratification Model
NDVI Normalized Difference Vegetation Index

OQSM Optimized Quantitative Structural Model
PLSRM Partial Least Square Regression Model

PCL Point Cloud Library

PCA Poly Cylinder Algorithm

PCSA Point Cloud Segmentation Algorithm
PCTA Point Cloud Transformer Algorithm
PCPA Point Cloud Processing Algorithm

PCAA Principal Component Analysis Algorithm
PH Plant Hight

RANSAC Random Sample Consensus Algorithm
ROS Robot Operating System

SLAM Simultaneous Localization and Mapping Algorithm
SVIA Spectral Vegetation Indices Algorithm
SLMR Stepwise Multiple Linear Regression
SVMM Support Vector Machine Model

SDA Standard Deviation Algorithm

SORA Statistical Outlier Removal Algorithm
TIN Triangulation Network Filtering Algorithm
™ Tree Model

ULR Univariate Linear Regression

VBA Voxel-Based Algorithm

3DPI 3D Photo Inpainting

3DPC 3D Point Cloud

3DCM 3D Crop Model
3DLSM 3D Leaf Surface Model

3DSM 3D Surface Model
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