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Abstract: Enterococcus faecalis (E. faecalis) is a growing cause of nosocomial and antibiotic-resistant
infections. Treating drug-resistant E. faecalis requires novel approaches. The use of bacteriophages
(phages) against multidrug-resistant (MDR) bacteria has recently garnered global attention. Biofilms
play a vital role in E. faecalis pathogenesis as they enhance antibiotic resistance. Phages eliminate
biofilms by producing lytic enzymes, including depolymerases. In this study, Enterococcus phage
vB_Efs8_KEN04, isolated from a sewage treatment plant in Nairobi, Kenya, was tested against clinical
strains of MDR E. faecalis. This phage had a broad host range against 100% (26/26) of MDR E. faecalis
clinical isolates and cross-species activity against Enterococcus faecium. It was able to withstand acidic
and alkaline conditions, from pH 3 to 11, as well as temperatures between −80 ◦C and 37 ◦C. It
could inhibit and disrupt the biofilms of MDR E. faecalis. Its linear double-stranded DNA genome of
142,402 bp contains 238 coding sequences with a G + C content and coding gene density of 36.01%
and 91.46%, respectively. Genomic analyses showed that phage vB_Efs8_KEN04 belongs to the genus
Kochikohdavirus in the family Herelleviridae. It lacked antimicrobial resistance, virulence, and lysogeny
genes, and its stability, broad host range, and cross-species lysis indicate strong potential for the
treatment of Enterococcus infections.

Keywords: bacteriophage; biofilm; Enterococcus faecalis; genome; multidrug resistance; phage therapy

1. Introduction

Enterococcus faecalis (E. faecalis) is a Gram-positive, facultative anaerobic coccus that
causes difficult-to-treat infections in the nosocomial setting [1]. It is commonly found
in nature and is part of the human intestinal microbiota, comprising less than 1% of the
microbiome [2,3]. Early in its evolution, E. faecalis acquired traits that enabled it to become
an effective nosocomial pathogen, resistant to several drugs and causing severe infections
in humans. It causes many human infections, including bacteremia, soft tissue and wound
infections, pneumonia, endocarditis, and urinary tract infections [4–6]. It can persist for
extended periods on medical equipment, and because of its high tolerance and genetic
adaptability, E. faecalis is a significant contaminant in the hospital environment [7]. The abil-
ity of E. faecalis to form biofilms is particularly concerning in clinical settings as its biofilms
form on medical equipment such as catheters and prosthetic heart valves, leading to persis-
tent infections that exhibit increased resistance to antibiotics within the biofilm structure [8].
Biofilms are organized communities of microorganisms that attach to surfaces and are
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embedded in self-produced extracellular polymeric substances (EPS) consisting of proteins,
extracellular DNA, and polysaccharides [9]. Bacterial biofilms enhance pathogenicity; for
example, they contribute significantly to persistent chronic urinary tract infections (UTIs),
including recurrences and relapses [10]. Existing antibiotics have limited efficacy in elimi-
nating biofilms and are less effective in treating the growing number of multidrug-resistant
(MDR) infections [11], prompting the exploration of phage-based therapies as promising
alternatives for eradicating biofilms and treating MDR pathogens. The dramatic increase
in the frequency of antibiotic therapy failures due to resistance has prompted scientists to
search for novel solutions.

Bacteriophages, viruses that infect bacteria, have been investigated for the develop-
ment of highly effective antimicrobials with low toxicity and minor environmental impact.
Bacteriophages, known for their narrow host range, are the most represented biological
entities on Earth, and their number in ecosystems is estimated to exceed 1031 [12]. Phages
can eliminate biofilms by producing enzymes that prevent biofilm formation and disrupt
existing biofilms [13]. Depolymerases and lysins are bacteriophage enzymes that selectively
degrade biofilms’ extracellular polymeric substance matrix components, enhancing the
phages’ access to bacterial biofilm [14].

Phages with narrow host ranges are highly specific for specific bacterial strains or
species. This specificity can be advantageous when precise targeting is needed, such as
treating specific bacterial infections [15]. However, this makes them less valuable when
targeting a wide range of bacteria, such as when treating polymicrobial infections or during
the emergence of phage resistance [16]. In this regard, a phage with a broad host range is
particularly advantageous because it can target more than one bacterial strain, presumably
leading to fewer treatment failures [15].

Many E. faecalis phages have been identified to date [17–20] and have been shown to
inhibit and disrupt the biofilms of their host bacteria [21–23]. For instance, studies have
shown the ability of phage EFDG1 to reduce two-week-old biofilms of E. faecalis V583 [24].
Additionally, a genetically engineered orthocluster VIII phage phiEf11 reduced the estab-
lished biofilm of E. faecalis strains JH2-2 and V583, which had formed on coverslips [25].
After 24 and 48 h of incubation, a significant, 10–100-fold decrease in viable cells was
observed [26]. Phage therapy has several potential advantages over traditional antibiotics.
The phages’ host specificity reduces damage to the body’s beneficial microbiota. Further-
more, since phages are part of the human microbiota and environment, phage treatment is
quite safe [27]. They can replicate within the body, increasing their numbers at the site of
infection, and have a rapid clearance potential [28]. A wave of successful bacteriophage
therapies has recently been reported in the United States and Europe. The Food and Drug
Administration (FDA) in 2016, for the first time, granted emergency approval for Tom Pat-
terson’s phage treatment for a life-threatening, multidrug-resistant Acinetobacter baumannii
infection after all antibiotics failed [29,30]. Additionally, the FDA approved a clinical trial
of an intravenous bacteriophage treatment for patients with ventricular assist devices who
have developed drug-resistant Staphylococcus aureus infection [29]. The study demonstrated
successful outcomes in several patients and most patients tolerated the treatment well and
did not have significant side effects [31,32]. Since then, several other patients were also
approved for the therapy [29,30]. Some clinical trials, including the treatment of urinary
tract infections, are underway, and some preliminary results are encouraging [32]. Despite
the promising nature of phage therapy in the fight against antimicrobial-resistant bacteria,
a few rare case studies have identified certain limitations. As an illustration, a patient
suffering from a Pseudomonas aeruginosa multidrug-resistant prosthetic vascular graft in-
fection was treated using a cocktail of phages (PT07, 14/01, and PNM) in combination
with ceftazidime-avibactam. The outcome, nonetheless, did not meet expectations. After
phage treatment and without antimicrobial therapy, a new bloodstream infection, increased
biofilm production, and the emergence of phage-resistant mutants in the bacterial isolate
occurred, highlighting the challenges and potential risks associated with phage therapy in
complex infections [33].
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This study presents the genomic characterization and antibiofilm activity of E. faecalis
phage vB_Efs8_KEN04, isolated from community wastewater in Nairobi, Kenya. This
phage exhibits a relatively broad host range against clinical MDR E. faecalis isolates and a
potent capacity to disrupt (eliminate already formed) and inhibit (prevent biofilm initiation)
E. faecalis biofilms under laboratory conditions. This study also evaluates the stability of
lytic phage vB_Efs8_KEN04 in vitro under different temperatures and pH ranges. The
discovery of phage vB_Efs8_KEN04 offers a promising phage-based therapy to effectively
combat multidrug-resistant enterococcal infections and their biofilms.

2. Materials and Methods
2.1. Strains and Cultural Conditions

Archived clinical isolates of multidrug-resistant E. faecalis and Enterococcus faecium (E.
faecium) (37 in total, 26 MDR E. faecalis and 11 MDR E. faecium) from patients in different
hospitals around Kenya were obtained from an ongoing surveillance study (protocol
WRAIR-2089/KEMRI-2767) in the Department of Emerging Infectious Diseases, Walter
Reed Army Institute of Research-Africa (WRAIR-A) in Kenya. Bacterial identity and
antimicrobial susceptibility testing profiles were first confirmed using the Vitek 2 version
9.02 automated platform (bioMérieux, Marcy-l’Étoile, France). The bacterial isolates were
cultured in tryptic soy broth (Oxoid Ltd., Basingstoke, Hampshire, UK) under aerobic
conditions with agitation at 37 ◦C and a speed of 200 rpm for phage isolation.

2.2. Bacteriophage Isolation, Purification, and Propagation

Raw sewage water samples were collected from a sewage treatment plant in Nairobi
East. It treats domestic and industrial wastewater, handling approximately 80% of the
wastewater generated in Nairobi city daily. It is, therefore, a significant source of bacteria in
the environment [34]. Phage vB_Efs8_KEN04 was isolated through an enrichment method
using E. faecalis isolate EFS8 as a host according to the method described by D’Souza
et al. with slight modifications [35]. Briefly, 50 mL of environmental wastewater was cen-
trifuged at 12,000× g for 10 min (Thermo Fisher Scientific, Waltham, MA, USA). A total of
8 milliliters of wastewater sterilized by filtration through a 0.22 µm membrane was mixed
with 2 mL of 5× tryptic soy broth (TSB; Oxoid Ltd., Basingstoke, Hampshire, UK) and
50 µL of bacterial culture grown in 1× TSB for 16–24 h at 37 ◦C with agitation at 200 rpm.
The mixture was incubated for 24 h at 37 ◦C with agitation at 200 rpm. Bacterial debris
was eliminated by centrifugation, and the supernatant was filter sterilized through a
0.22 µm filter. Serial 10-fold dilutions of phage vB_Efs8_KEN04 in sodium chloride–
magnesium sulfate (SM) buffer were spotted onto double-layer (0.7% top/1.5% bottom)
tryptic soy agar (TSA) agar overlaid with 100 µL of a culture of E. faecalis isolate EFS8 in the
semisolid top layer. The next day, a well-isolated phage plaque was suspended in SM buffer
and filter sterilized. Phage vB_Efs8_KEN04 was purified by three rounds of single-plaque
isolation through plaque assays and propagated to reach a high titer. Briefly, the following
components were mixed in a 50 mL falcon tube to amplify the phage—20 mL of TSB,
10 µL of 1M CaCl2, 40 µL of 1M MgCl2, 200 µL of 10% glucose, and 400 µL of the overnight
host bacteria—and then incubated at 37 ◦C with shaking at 200 rpm for 1−2 h to reach the
mid-log phase. When the host bacterium reached the exponential growth phase, 250 µL
of a single pure phage suspension was added, followed by incubation at 37 ◦C, 200 rpm
until lysis occurred. Bacterial debris was removed by a 10 min centrifugation at 12,000× g,
after which the supernatant was filtered through a sterile 0.22 µm filter. The filtrate was
centrifuged for 16−18 h at 10,000× g to pellet the phages. The supernatant was discarded
after centrifugation, leaving approximately 2 mL of supernatant to resuspend the pellet.
The phage titers were determined using a spot assay [36].
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2.3. Phage Stability
2.3.1. Thermal Stability

Thermal stability was determined by dispensing 20 µL of the propagated phage
suspension with a titer of 2 × 109 PFU/mL into 0.2 mL PCR tubes and incubating at
different temperatures (−80 ◦C, −20 ◦C, +4 ◦C, 20 ◦C, 22−30 ◦C, 37 ◦C, 40 ◦C, 45 ◦C,
50 ◦C, and 60 ◦C) for 1 h. After incubation, the phage lysate was diluted in SM buffer
using a 10-fold serial dilution technique in 96-well round-bottom (U) microplates (Thermo
Scientific, Roskilde, Denmark), and the phage titer was then evaluated using a spot assay
as described elsewhere [36]. The experiment was performed in triplicate, and the phage
lysate stored at +4 ◦C was used as the reference titer.

2.3.2. pH Stability

The effect of pH 1, 3, 5, 7, 9, 11, and 13 on phage titer and viability was studied for 1 h
in TSA plates using the spot test method, as described elsewhere [36]. The pH of the SM
buffer was adjusted to the desired value using 1M NaOH and 1M HCl. The pH of SM was
determined using a pH meter (Thermo Scientific, Roskilde, Denmark). After incubation,
the phage titer was evaluated. The experiment was performed in triplicate, and the phage
lysate stored at pH 7.5 was used as the reference titer.

2.4. Host Range Analysis

To investigate the activity of phage vB_Efs8_KEN04 against other endemic bacterial
strains, its host range was determined using a spot test [36] against a panel of 37 clinical
isolates of MDR enterococci, and the efficiency of plating (EOP) was determined using a
double-layer agar plate method, following a previously described protocol [37,38]. The
bacterial strains used for this study were associated with skin and soft tissue infection,
urinary tract infection, surgical site infection, and blood infection and were widely spread
across Kenyan regions. All the tested strains were cultured in broth overnight at 37 ◦C.
Briefly, 2 µL of an individual phage stock was spotted on a TSA plate with a lawn of 100 µL
of host bacteria cultured overnight in soft agar, which was examined for bacterial lysis after
18–24 h. Host range tests were performed in duplicates. A phage was termed ‘potent’ upon
infecting and lysing bacterial strain in the host range panel [39]. The EOP was calculated
by dividing the average plaque-forming units (PFU) of the test bacteria by the average
PFU of the host bacteria. Phages were categorized as high production (EOP ≥ 0.5) when
the productive infection on the test bacteria resulted in at least 50% of the PFU found
for the primary host; medium production (0.1 ≤ EOP < 0.5); low production efficiency
(0.001 < EOP < 0.1); inefficient (EOP ≤ 0.001), and reference (EOP = 1) [40,41].

2.5. Determination of Optimal Multiplicity of Infection

The optimal multiplicity of infection (MOI) of phage vB_Efs8_KEN04 was determined
as previously described with slight modifications [42]. Briefly, the ratio of bacteriophage
and mid-log phase bacterial culture of E. faecalis EFS8 (optical density, OD600 = 0.5) was
adjusted to MOIs of 1, 0.1, 0.01, and 0.001. Then, the mixture was incubated for 4 h at 37 ◦C
with shaking at 200 rpm. The samples were centrifuged at 12,000× g for 10 min and the
supernatants filtered through a 0.22 µm filter to remove the host bacteria. Next, the phage
titer was determined using a spot assay. The mixture with a ratio of phage vB_Efs8_KEN04
to E. faecalis EFS8 with the highest phage titer was considered the optimal multiplicity of
infection. Experiments were performed in triplicates and analyzed using GraphPad Prism
8.4.0 (GraphPad Software, Inc., San Diego, CA, USA).

2.6. Lytic Properties of Phage vB_Efs8_KEN04

The lysis dynamics of phage vB_Efs8_KEN04 lysis against E. faecalis EFS8 was deter-
mined as previously described with some modifications [42]. Briefly, phages were mixed
with a mid-log phase bacterial culture (OD600 = 0.5) at a MOI of 1, 0.1, 0.01, 0.001. The
mixed culture was incubated at 37 ◦C with shaking at 200 rpm for the duration of the
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experiment. OD600 readings were taken every 10 min for 2 h. An E. faecalis EFS8 culture
without phages served as a positive control. Experiments were repeated independently
three times and analyzed using GraphPad Prism 8.4.0 (GraphPad Software, Inc., San Diego,
CA, USA).

2.7. One-Step Growth Curve

One-step growth curves were determined as previously described with a slight mod-
ification [43]. Briefly, when the culture of E. faecalis EFS8 reached the mid-log phase
(OD600 = 0.5), bacteria were harvested by centrifugation at 10,000× g at 4 ◦C for 10 min
and resuspended in fresh TSB. Then, 1 mL of bacterial culture in TSB was infected with
1 mL of purified phages at a MOI of 1 and allowed to adsorb at room temperature for
10 min. After centrifugation and removal of the supernatant containing unbound phages,
pellets were resuspended in 50 mL fresh TSB medium and incubated at 37 ◦C with shaking
at 200 rpm for up to 90 min. Hundred microliter aliquots were taken every 5 min, 10-fold
serially diluted, and plated using the spot assay to determine phage titers. The burst size of
the phages was calculated as the ratio of the average phage titer at the plateau phase to
that at the latent phase [44]. Experiments were performed three times and analyzed using
GraphPad Prism 8.4.0 (GraphPad Software, Inc., San Diego, CA, USA).

2.8. Adsorption Assay

The adsorption rate was performed as previously described, with some modifica-
tions [45]. Briefly, the mid-log phase of the host bacterial suspension in the TSB medium
was mixed with phage solution at an MOI of 1 and incubated at 37 ◦C. At 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 15, and 20 min postinfection; then, the mixture was collected and centrifuged
immediately at 12,000× g for 10 min. The titers of unadsorbed phages of the supernatant
were determined using a spot assay.

2.9. Isolation of Phage-Resistant Mutants

Phage-insensitive mutants were isolated as described previously with slight modifica-
tions [46]. Briefly, 1 mL of a mid-log phase bacterial culture (OD600 = 0.5) of E. faecalis EFS8
was mixed with phage vB_Efs8_KEN04 at a MOI of 1 and incubated at 37 ◦C with shaking
at 200 rpm for 90 min to allow phage infection and killing of susceptible bacteria. After
incubation, the lysate was centrifuged at 12,000× g for 10 min to pellet phage-resistant
bacteria. The supernatant containing the phage particles was discarded and the pellet
resuspended in TSB, 100-fold diluted, and 50 µL inoculated onto sheep blood agar plates.
After incubating for 24 h at 37 ◦C, the number of colonies on each plate was counted
to calculate the colony-forming units. The frequency of phage-insensitive mutants was
determined by dividing the remaining viable colony counts by the initial viable colony
counts [37]. Bacterial culture (without phage) served as a positive control and a phage
without bacteria control plate served as a negative control to ensure no contamination of the
phage preparation. All experiments were conducted in triplicate. The identity of resistant
mutants was confirmed using the automated Vitek 2 version 9.02 platform (bioMérieux,
Marcy-l’Étoile, France) to ensure that they were E. faecalis isolates and not contaminants.
The resistant isolates were sub-cultured and screened by spot assay to confirm that they
had acquired full phage resistance with heritable phenotype.

2.10. Determination of the Nature of Phage Receptor

To determine the nature (protein or polysaccharide) of the phage vB_Efs8_KEN04
receptors on the bacterial surface, a mid-log phase bacterial culture of E. faecalis EFS8 was
incubated at room temperature (22−30 ◦C), 60 ◦C, and 100 ◦C for 15 min. After incubation,
1 mL of bacteria boiled to denature proteins was mixed with 1 mL of the phage (with a titer
of 5 × 109 PFU/mL) and incubated at room temperature for 10 min to allow phage adsorp-
tion. Postinfection, the mixture was collected and centrifuged immediately at 12,000× g for
10 min. The titers of non-adsorbed phages of the supernatant were determined using a spot
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assay. Phages will adsorb to the boiled bacteria if the phage receptors are polysaccharides
but not if they are proteins.

2.11. Biofilm Formation Assay

The ability of enterococci to form biofilms was assessed using a crystal violet biomass
assay [47]. Briefly, the bacterial isolates were grown overnight at 37 ◦C, 200 rpm in tryptic
soy broth (TSB). The enterococcal cultures were diluted 1:100 in fresh TSB containing 2%
glucose monohydrate (Oxoid Ltd., Basingstoke, Hampshire, UK), and 100 µL of the diluted
solution was dispensed into the wells of 96-well round-bottom (U) microplates (Thermo
Scientific, Roskilde, Denmark) and incubated under static conditions at 37 ◦C, 5% CO2
for 72 h without changing the medium. Wells with sterile TSB containing 2% glucose
were used as controls for contamination. E. faecalis strain ATCC 29,212 was used as a
positive biofilm control [48], whereas E. faecalis isolate EFS4 (ST947), an in-house isolate,
was used as the negative control. The experiments were performed in triplicate. After
incubation, planktonic bacteria were pipetted off, the wells were washed three times with
distilled water, and the plates were allowed to air-dry for 15 min. Adhesive bacteria were
fixed at 60 ◦C for 1 h and stained with 100 µL of 1% crystal violet for 20 min. This was
followed by three washes with 100 µL of sterile distilled water to remove the excess dye.
The microplates were air-dried for 15 min. Then, 100 µL of 33% glacial acetic acid was
added to each well, followed by pipetting to release the bound crystal violet dye from the
biofilm [49]. The stained adherent cells’ optical density (OD) was quantified at 630 nm
using a microtiter plate reader (BioTek Instruments, Gen5TM version 3.10, Santa Clara,
CA, USA). The strains were divided into groups based on the OD values of the bacterial
biofilms. Bacterial strains were classified as follows: OD values ≤ 0.0551 as non-biofilm
formers, weak biofilm-producing isolates (0.0551 < OD < 0.102), moderate biofilm formers
(0.102 < OD < 0.204), and those with OD > 0.204 were classified as strong biofilm-producing
bacterial strains [50,51].

2.12. Biofilm Inhibition Assay by Phage

The anti-biofilm effect of the phage was evaluated as described by Goodarzi et al.,
with some modifications [21]. To investigate the inhibitory effect of phages on biofilm
formation, a 3-day-old biofilm was formed in the presence of phages. Briefly, single colonies
of E. faecalis strains were cultured in TSB at 37 ◦C, 200 rpm for 24 h. After incubation, the
bacterial culture was diluted 1:100 in fresh TSB, supplemented with 2% glucose. The
diluted bacterial culture (100 µL) was dispensed into the wells, and 2 µL of phage lysate
(titer 9 × 109 PFU/mL) was added. The plates were incubated under static conditions at
37 ◦C, 5% CO2 for 72 h without changing the medium. Wells with sterile TSB containing 2%
glucose were used as controls for contamination. E. faecalis strain ATCC 29,212 was used as
a positive biofilm control, whereas E. faecalis isolate EFS4 (ST947) was used as the negative
control. Biofilm formation was performed in triplicate for treated and untreated samples.
After incubation for 72 h, the suspension was drained from the wells and rinsed with sterile
distilled water three times, and biofilm fixation, staining, and OD measurements were
performed as described in Section 2.11.

2.13. Biofilm Disruption Assay by Phage

A 2-day-old biofilm was formed in the absence of phages and then treated. Briefly,
single colonies of E. faecalis strains were cultured in TSB at 37 ◦C, 200 rpm for 24 h. After
incubation, the bacterial culture was diluted 1:100 in fresh TSB, supplemented with 2%
glucose. The diluted bacterial culture (100 µL) was dispensed into the wells, followed
by incubation under static conditions at 37 ◦C, 5% CO2 for 48 h without changing the
media. After 48 h of incubation, the plates were removed from the incubator, the planktonic
bacteria were pipetted off, the wells were washed twice to remove all planktonic cells,
and 100 µL of the phage lysate with a titer of 2 × 109 PFU/mL was added. For untreated
wells, the medium was replaced with TSB supplemented with 2% glucose; for treated wells,



Viruses 2024, 16, 1275 7 of 26

phage lysate was first mixed with TSB supplemented with 2% glucose and this mixture
was used for the treatment. The plates were then placed back in the incubator for 24 h.
Biofilm formation was performed in triplicate for treated and untreated samples. After
24 h of treatment, the suspension was drained from the wells and rinsed three times with
sterile distilled water. Biofilm fixation, staining, and OD measurements were performed as
described in Section 2.11.

2.14. Genomic DNA Extraction

Before DNA extraction, the pure phage suspension (2 × 109 PFU/mL) was propagated
to reach a titer of 3.5 × 1011 PFU/mL, as described in Section 2.2. One milliliter of the
propagated phage suspension was treated with 0.07 mg/mL of RNase A (Thermo Fisher
Scientific, USA) and 2.5 U/mL of DNase I (ThermoFisher Scientific, Waltham, MA, USA)
to remove host RNA and DNA, respectively. Deproteinization was achieved by adding
proteinase K and incubating at 56 ◦C for 1 h 30 min [35]. Phage DNA was isolated and
purified using the Norgen phage DNA isolation kit (Norgen Biotek Corporation, Thorold,
ON, Canada), following the manufacturer’s instructions. The quality and quantity of the
extracted DNA were determined using a Nanodrop One spectrophotometer and a Qubit4
fluorometer (Fisher Scientific, Waltham, MA, USA), respectively.

2.15. Genome Sequencing and Bioinformatic Analysis of Sequencing Data

The genomic library was prepared using an Illumina CollibriTM PCR-free ES DNA
library preparation kit (Illumina, San Diego, CA, USA) and purified using the CollibriTM

DNA library cleanup kit (Illumina, San Diego, CA, USA). The genome was sequenced on
the Illumina MiSeq platform (Illumina, San Diego, CA, USA). The quality of the raw reads
was assessed using FastQC v0.12.1 [52], trimmed with fastp v0.23.4 [53], and assembled
using shovill v1.1.0 (https://github.com/tseemann/shovill, accessed on 27 November
2023). Genome annotation was performed using pharokka 1.5.1 [54]. The complete phage
genome was further queried against CRISPR-Cas Finder (https://proksee.ca/, accessed on
11 December 2023), PhageLeads [55] (https://phageleads.dk/, accessed on 11 December
2023), PhageTerm 1.0.11 platforms [56] (https://cpt.tamu.edu/galaxy-pub, accessed on
27 November 2023) to determine CRISPR-like systems, lysogeny genes, and termini in the
phage genome, respectively. ARAGORN v1.2.41 [57] and tRNAscan-SE v2.0.12 [58] were
used to predict the tRNA and tmRNA genes. Nucleic acid sequence similarity searches
were performed using default parameters in BLASTn [59]. The identification of antimicro-
bial resistance and virulence genes was conducted by scanning the assembled nucleotide
sequence using Abricate version 1.0.1 [60] at https://github.com/tseemann/abricate, ac-
cessed on 27 November 2023, with the following datasets: NCBI AMRFinderPlus [61],
Comprehensive Antibiotic Resistance Database (CARD) [62], Virulence FactorDatabase
(VFDB) [63], and ResFinder [64].

2.16. Phylogenetic Tree and Comparative Genomics of Phage Genomes

To examine the genetic relationships between Enterococcus phage vB_Efs8_KEN04
and other Enterococcus phages, a phylogenetic tree was generated using the entire genome
sequences of 38 phages retrieved from the NCBI database (https://blast.ncbi.nlm.nih.gov/
Blast.cgi, accessed on 23 December 2023), including phage vB_Efs8_KEN04. The phages in-
cluded in the phylogenetic tree were selected according to the following criteria: (i) phages
should have a complete genome sequence [65]; (ii) they should exhibit a high similarity
of >70% to phage vB_Efs8_KEN04 [66]; and (iii) they should have a genome size similar
to that of phage vB_Efs8_KEN04 [67]. The analysis was conducted using the Virus Classi-
fication and Tree Building Online Resource (VICTOR), a method for the whole genome-
based phylogeny that makes use of the Genome BLAST Distance Phylogeny (GBDP)
method, which calculates accurate intergenomic distances between pairs of viruses [65]
(https://victor.dsmz.de, accessed on 23 December 2023), enabling the evaluation of similar-
ities and differences in genetic characteristics. The nucleotide sequences were compared

https://github.com/tseemann/shovill
https://proksee.ca/
https://phageleads.dk/
https://cpt.tamu.edu/galaxy-pub
https://github.com/tseemann/abricate
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://victor.dsmz.de
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using the genome explosion distance phylogeny (GBDP) method in the settings recom-
mended for prokaryotic viruses [68], and the branch length was magnified using the dis-
tance formula d0, according to GBDP. The formula d0 is used when nucleotide sequences of
prokaryotic viruses are analyzed [65] and it corresponds to the length of all high-scoring seg-
ment pairs divided by the total genome length (https://ggdc.dsmz.de/faq.php#qvictor7,
accessed on 10 December 2023). In addition, the intergenomic similarities between phage
vB_Efs8_KEN04 and the 20 closest related Enterococcus phages were determined using
a virus intergenomic distance calculator (VIRIDIC) [69] to further our understanding of
their interactions. The nucleotide identity of the complete genome length cut-off for genera
(>70%) and species (>95%) was used [66].

2.17. Phage Host Range Prediction Based on Phage Receptor-Binding Proteins

To predict the host range of phage vB_Efs8_KEN04, protein sequence similarity
searches were performed with the web-based proteinBLAST tool (https://blast.ncbi.nlm.
nih.gov/Blast.cgi, accessed on 20 June 2024) using tail fiber protein sequences (CDS143)
of phage vB_Efs8_KEN04 obtained after genome annotation. From the blastp results,
sequences with annotations unrelated to receptor-binding proteins (RBPs) (such as hy-
pothetical proteins, structural components of the tail fiber, glycerophosphoryl diester
phosphodiesterase, and tail proteins) were discarded. Only significant hits for annotated
tail fiber proteins with an E-value of 0, percent identity > 95%, and protein length similar to
the length of the phage vB_Efs8_KEN04 tail fiber protein were retained [70]. Information
on each annotated RBP (tail fiber protein) was collected, including the protein name, the
organism (phage) name, the phage host name, the percent identity, the protein length, and
the protein accession number. If the phage host strain was not provided, it was determined
through the literature review based on published papers.

2.18. Statistical Analysis

Statistical analysis of the biofilm results was conducted using GraphPad Prism 8.4.0
(GraphPad Software, Inc., San Diego, CA, USA), and a Student’s t-test was employed to
determine significance. Statistical significance was set at p < 0.05.

3. Results
3.1. Bacteriophage Isolation and Purification

Phage vB_Efs8_KEN04 was isolated from a wastewater plant using the E. faecalis isolate
EFS8 as the host strain. Phage vB_Efs8_KEN04 forms clear plaques on a double-layered
agar plate, as shown in Figure 1.
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3.2. Host Range Analysis

The host range and efficiency of plating studies were conducted on 37 MDR Entero-
cocci isolates, with 26 being E. faecalis isolates and the remaining 11 being E. faecium isolates.
These bacteria were isolated from urinary tract infections, skin and soft tissue infections,
surgical site infections, and blood infections in humans. E. faecalis phage vB_Efs8_KEN04
was active against all 26 MDR E. faecalis and 1/11 of the E. faecium in the spot assay (Table 1).
The EOP was greater than 0.5 for 13/26 (50%) E. faecalis isolates, indicating high production
of the phage, and an EOP ≥ 0.5 is considered good for therapy [41].

Table 1. Host range analysis of Enterococcus phage vB_Efs8_KEN04.

No. Bacterial Isolates Sequence Types
(ST) Origin Spot

Assay
Efficiency of

Plating (EOP)

1 E. faecalis EFS8 * 1904 Urinary tract infection ++ 1
2 E. faecalis EFS1 6 Skin and soft tissue infection ++ 0.15
3 E. faecalis EFS4 947 Skin and soft tissue infection + <0.001
4 E. faecalis EFS5 6 Skin and soft tissue infection ++ 0.076
5 E. faecalis EFS6 6 Skin and soft tissue infection ++ 0.05
6 E. faecalis EFS9 6 Urinary tract infection ++ 0.01
7 E. faecalis EFS10 6 Urinary tract infection ++ 1.1
8 E. faecalis EFS11 368 Urinary tract infection ++ 0.0004
9 E. faecalis EFS13 59 Skin and soft tissue infection ++ 0.5

10 E. faecalis EFS14 6 Skin and soft tissue infection ++ 1.7
11 E. faecalis EFS15 16 Urinary tract infection + <0.001
12 E. faecalis EFS17 6 Skin and soft tissue infection + <0.001
13 E. faecalis EFS18 368 Urinary tract infection ++ 0.0011
14 E. faecalis EFS19 1907 Urinary tract infection ++ 0.12
15 E. faecalis EFS21 44 Skin and soft tissue infection + <0.001
16 E. faecalis EFS22 1908 Skin and soft tissue infection + <0.001
17 E. faecalis EFS23 6 Urinary tract infection ++ 3
18 E. faecalis EFS25 6 Surgical site infection ++ 1.5
19 E. faecalis EFS26 6 Skin and soft tissue infection ++ 1.2
20 E. faecalis EFS27 1903 Urinary tract infection ++ 0.14
21 E. faecalis EFS28 28 Skin and soft tissue infection ++ 0.6
22 E. faecalis EFS29 6 Blood infection ++ 0.8
23 E. faecalis EFS30 28 Skin and soft tissue infection ++ 0.8
24 E. faecalis EFS31 6 Urinary tract infection ++ 1.2
25 E. faecalis EFS32 1903 Urinary tract infection ++ 0.9
26 E. faecalis EFS33 1903 Skin and soft tissue infection ++ 6
27 E. faecium EFM5 80 Urinary tract infection + <0.001
28 E. faecium EFM1 Skin and soft tissue infection − N/A
29 E. faecium EFM2 80 Skin and soft tissue infection − N/A
30 E. faecium EFM3 Skin and soft tissue infection − N/A
31 E. faecium EFM4 80 Skin and soft tissue infection − N/A
32 E. faecium EFM6 612 Skin and soft tissue infection − N/A
33 E. faecium EFM7 761 Skin and soft tissue infection − N/A
34 E. faecium EFM8 80 Urinary tract infection − N/A
35 E. faecium EFM9 80 Skin and soft tissue infection − N/A
36 E. faecium EFM10 2672 Urinary tract infection − N/A
37 E. faecium EFM11 761 Surgical site infection − N/A

EFS, E. faecalis; EFM, E. faecium; EOP, efficiency of plating. The EOP was determined by dividing the mean
plaque-forming units (PFU) of the target bacteria by the mean PFU of the host bacteria (EFS8). * Host bacteria;
++, very clear plaques; +, turbid plaques; −, no plaques; N/A, not applicable.

3.3. Host Range Prediction Based on Receptor-Binding Proteins

The majority of phages use their RBPs (tail fiber proteins or tailspike proteins) located
at the extremity of their tail to recognize and attach to specific receptors on the surface
of their hosts [71,72]. If a phage has RBPs similar to those of phages that infect their
bacterial host species, it is possible that the phage also infects these host strains using
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similar receptors on the bacterial surface to facilitate infection. In order to determine
potential hosts of phage vB_Efs8_KEN04, similarity searches were performed on Blastp
using the annotated tail fiber protein sequences of phage vB_Efs8_KEN04 and the results
are shown in Table 2. The BLASTp results revealed high similarities (>95%) between the
tail fiber protein of phage vB_Efs8_KEN04 and those of eleven other similar Enterococcus
phages infecting both E. faecalis and E. faecium strains, as listed in Table 2. This indicates that
phage vB_Efs8_KEN04 could potentially infect these Enterococcus strains, which include
vancomycin-resistant E. faecium strains (VRE001, VRE004, VRE008, VRE1147, VRE1181)
and the E. faecalis phage-resistant strain EFDG1r. However, experimental validation in the
laboratory is essential to confirm this predicted host range.

Table 2. Prediction of phage vB_Efs8_KEN04 host range using bioinformatics method.

Protein Name Phage Name %
Identity

Protein
Accession
Number

Protein Length Phage Hosts

Tail fiber protein * Enterococcus phage
vB_Efs8_KEN04 100% WZP34890.1 1832 E. faecalis EFS8

Putative tail fiber
protein

Enterococcus phage
MDA2 99.89% QVW28137.1 1825

E. faecium VREfm (VRE001,
VRE004, VRE008, VRE1147,

VRE1181) [73]

Putative tail fiber Enterococcus phage
phiM1EF22 99.95% BBE37304.1 1822 E. faecalis KUEF22 [74]

Tail fiber protein Enterococcus phage
ECP3 99.89% YP_009147083.1 1822 E. faecalis 10K28 [75]

Putative tail fiber Enterococcus phage
phiEF17H 99.89% BBE37101.1 1822 E. faecalis EF17 [74]

Tail fiber protein Enterococcus phage
vB_OCPT_Carl 98.68% UQT00063.1 1825

E. faecalis strains (DP11, EF07,
EF116PII, EF11, EF09PII, Ent6,

V587, Yi6-1) [76]

Tail fiber protein Enterococcus phage
EF24C 98.47% YP_001504140.1 1825 E. faecalis EF24 [77]

Tail fiber protein Enterococcus phage
vB_OCPT_Bob 98.30% UQT00475.1 1825

E. faecalis strains (B3286, DP6,
EF06, DP11, EF07, EF116PII,
EF11, EF09PII, Ent6, V587,

Yi6-1) [76]

Tail fiber protein Enterococcus phage
vB_OCPT_Car 97.10% UQT00278.1 1825

E. faecalis strains (DP11, EF07,
EF116PII, EF11, EF09PII, Ent6,

V587, Yi6-1) [76]

Putative tail fiber Enterococcus phage
Sw5 96.38% USL84310.1 1825 E. faecalis OG1RF

Tail fiber protein Enterococcus phage
vB_Efa29212_3e 96.66% UYB00790.1 1825 E. faecalis ATCC 29212TM [78]

Tail fiber protein Enterococcus phage
EFLK1 95.99% YP_009219864.2 1822

E. faecalis V583 and E. faecalis
V583 phage-resistant mutant

(EFDG1r) [79,80]

* The star indicates that the Enterococcus phage vB_Efs8_KEN04 tail fiber protein sequence was used for the
Blastp similarity searches.

3.4. Phage Stability

The stability of phage vB_Efs8_KEN04 was evaluated at different temperatures and
pH values. The results revealed that phage vB_Efs8_KEN04 was stable from −80 ◦C to
37 ◦C (Figure 2A and Table S1). Phage titer declined at temperatures of 40 ◦C and above.
Similarly, the stability rate of phage vB_Efs8_KEN04 was high at pH 5–11 (slightly acidic
to strongly basic) but low at pH 3 (strongly acidic). No phage activity was observed at
pH 1 or 13 (Figure 2B and Table S2). These findings suggest that phage vB_Efs8_KEN04
can withstand moderate acidic and alkaline conditions and a wide range of temperature
conditions between −80 ◦C and 37 ◦C.
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Figure 2. Phage stability test of Enterococcus phage vB_Efs8_KEN04. (A) Thermal stability test.
(B) pH stability test. Experiments were performed in triplicate. The triangle symbols represent
individual data points and the error bars represent the standard deviation.

3.5. Lytic Characteristics of Phage vB_Efs8_KEN04

The optimal multiplicity of infection of the phage vB_Efs8_KEN04 was 1 (Figure 3A).
Lower starting MOIs resulted in decreasing total phage titer. The dynamics of host strain
lysis were measured at various MOIs of phage vB_Efs8_KEN04. The most rapid and
robust lytic effect was demonstrated with an MOI of 1 starting after 20 min incubation and
reaching full lysis at 60 min (Figure 3B). Reduced MOIs resulted in increasing delay in and
completeness of observed lysis.
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Figure 3. Lytic characteristics of phage vB_Efs8_KEN04. (A) Phage yield using different multiplicity
of infections (MOIs) to determine the optimal MOI. (B) Phage vB_Efs8_KEN04 lysis dynamics against
E. faecalis EFS8.

3.6. Adsorption Efficiency and One-Step Growth Curve

To determine the adsorption rate of phage vB_Efs8_KEN04 on the surface of E. faecalis
EFS8, an adsorption assay was performed (Figure 4A) and the percentage of non-adsorbed
phages was determined. The data revealed that around 67% of the phage rapidly attached
to the E. faecalis EFS8 within 5 min, and 97% within 10 min. In addition, a one-step growth
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curve showed that the latent period of phage vB_Efs8_KEN04 was approximately 20 min,
followed by a rise phase of 40 min, and a plateau phase of 60 min after the initial infection
(Figure 4B). The average burst size was estimated to be 138.46 ± 18.45 plaque-forming
units per infected cell.

Viruses 2024, 16, x  12 of 27 
 

 

Figure 3. Lytic characteristics of phage vB_Efs8_KEN04. (A) Phage yield using different multiplicity 
of infections (MOIs) to determine the optimal MOI. (B) Phage vB_Efs8_KEN04 lysis dynamics 
against E. faecalis EFS8. 

3.6. Adsorption Efficiency and One-Step Growth Curve 
To determine the adsorption rate of phage vB_Efs8_KEN04 on the surface of E. fae-

calis EFS8, an adsorption assay was performed (Figure 4A) and the percentage of non-
adsorbed phages was determined. The data revealed that around 67% of the phage rapidly 
attached to the E. faecalis EFS8 within 5 min, and 97% within 10 min. In addition, a one-
step growth curve showed that the latent period of phage vB_Efs8_KEN04 was approxi-
mately 20 min, followed by a rise phase of 40 min, and a plateau phase of 60 min after the 
initial infection (Figure 4B). The average burst size was estimated to be 138.46 ± 18.45 
plaque-forming units per infected cell. 

 
Figure 4. (A) Adsorption kinetics of the phage to its host. (B) One-step growth curve of phage 
vB_Efs8_KEN04 at a MOI of 1. Experiments were performed in triplicate, and the error bars repre-
sent the standard deviation. 

3.7. Phage Mutation Rate and Nature of Phage Receptors 
Bacteria can protect themselves from phage infection using a range of mechanisms, 

such as blocking phage entry, utilizing restriction-modification systems, initiating abor-
tive infections, and deploying CRISPR-Cas systems [81–83]. To determine the level of bac-
terial resistance to the phage, we estimated the phage mutation frequency. The mutation 
rate of the phage vB_Efs8_KEN04 mutants was calculated as 1.8 × 10−5. 

To determine the nature of the phage receptors, the bacteria were denatured by high 
temperature and adsorption rates were measured. At 60 °C, almost all phages were ad-
sorbed and the adsorption rate was similar to that of the native bacteria of the positive 
control. However, when the bacteria were boiled at 100 °C, ~80% of the phages were ad-
sorbed (Figure 5). These findings indicate that the receptors are carbohydrate-based as 
bacterial surface proteins typically denature at a temperature of 60 °C and above, while 
polysaccharides are more heat-resistant. The reduction in phage adsorption rate at 100 °C 
suggests that even bacterial surface polysaccharides begin to degrade at this high temper-
ature [84]. 

A B

Burst size

Latent period

Figure 4. (A) Adsorption kinetics of the phage to its host. (B) One-step growth curve of phage
vB_Efs8_KEN04 at a MOI of 1. Experiments were performed in triplicate, and the error bars represent
the standard deviation.

3.7. Phage Mutation Rate and Nature of Phage Receptors

Bacteria can protect themselves from phage infection using a range of mechanisms,
such as blocking phage entry, utilizing restriction-modification systems, initiating abortive
infections, and deploying CRISPR-Cas systems [81–83]. To determine the level of bacterial
resistance to the phage, we estimated the phage mutation frequency. The mutation rate of
the phage vB_Efs8_KEN04 mutants was calculated as 1.8 × 10−5.

To determine the nature of the phage receptors, the bacteria were denatured by high
temperature and adsorption rates were measured. At 60 ◦C, almost all phages were
adsorbed and the adsorption rate was similar to that of the native bacteria of the positive
control. However, when the bacteria were boiled at 100 ◦C, ~80% of the phages were
adsorbed (Figure 5). These findings indicate that the receptors are carbohydrate-based
as bacterial surface proteins typically denature at a temperature of 60 ◦C and above,
while polysaccharides are more heat-resistant. The reduction in phage adsorption rate at
100 ◦C suggests that even bacterial surface polysaccharides begin to degrade at this high
temperature [84].
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Figure 5. Determination of phage vB_Efs8_KEN04 receptor nature through adsorption rate mea-
surements at different incubation temperatures. RT: room temperature (22−30 ◦C), NC: negative
control, PC: positive control. Experiments were performed in triplicate, and the error bars represent
the standard deviation.
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3.8. Biofilm Formation of Enterococcus faecalis

Of the 26 clinical MDR E. faecalis isolates that were examined for biofilm formation,
22 isolates (84.62%) were strong biofilm formers, one isolate (3.85%) was identified as a
weak biofilm former, one (3.85%) isolate as a moderate biofilm former, and two isolates
(7.69%) as non-biofilm formers (Table S3). A total of 24 MDR E. faecalis isolates (92.31%)
showed the ability to produce biofilms. E. faecalis isolate EFS8, the phage host, was a strong
biofilm former (Figure 6).
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Figure 6. The biofilm formation profile of Enterococcus faecalis isolates. The biofilm formation
experiment was performed in triplicate, and the error bars represent the standard deviation. The
horizontal grid line represents the E. faecalis isolates that met the OD threshold of 0.0551 for biofilm-
forming isolates.

3.9. Biofilm Inhibition and Disruption by Phage vB_Efs8_KEN04

The effects of phage vB_Efs8_KEN04 treatment on the inhibition and disruption of
biofilms of multidrug-resistant E. faecalis isolates are shown in Figure 7. For the inhibition
of biofilm formation (Figure 7A and Table S4), phage vB_Efs8_KEN04 treatment for 72 h
at 37 ◦C reduced the bacterial population significantly (**, p < 0.05) for some susceptible
bacteria. However, it could not prevent other bacteria (EFS5, EFS6, EFS15, EFS17, EFS21,
EFS22, EFS26, EFS27, EFS30, EFS31, EFS31, EFS32, and EFS33) from forming biofilms
(p > 0.05, highlighted by ns). Already formed biofilms were treated with phage vB_Efs8_
KEN04 for 24 h. It significantly disrupted biofilms and reduced the bacterial population
(**, p < 0.05) (Figure 7B and Table S5) for all the bacteria, including its host bacteria EFS8,
except for the isolate EFS18 (ns, p > 0.05).
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Figure 7. (A) Inhibition of biofilm by Enterococcus phage vB_Efs8_KEN04. (B) Biofilm disruption by
phage vB_Efs8_KEN04. Biofilm inhibition and disruption experiments were performed in triplicate,
and the error bars represent the standard deviation. Significance level: *, p < 0.05 significant;
**, p < 0.01 very significant; ***, p < 0.001 highly significant; ns, not statistically significant.

3.10. Genome Characteristics of Enterococcus faecalis Phage vB_Efs8_KEN04

The genome structure of phage vB_Efs8_KEN04, a newly isolated E. faecalis phage
in Kenya, was investigated in this study. The phage genome contained 8 tRNA genes
and was shown to be a linear double-stranded DNA with a length of 142,402 base pairs
and a G + C content of 36.01% (Figure 8). It belongs to the genus Kochikohdavirus of the
family Herelleviridae. The genome contained 238 coding sequences (CDS) with a coding
gene density of 91.46%. A total of 70 CDSs (29.41%) were predicted to encode func-
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tional proteins, and the remaining 168 (70.59%) were annotated as hypothetical proteins
(Table S6). The functional proteins were divided into the following categories:

(i) DNA replication, transcription, translation, and nucleotide metabolism: A total of
25 CDSs were predicted to encode for DNA replication, transcription regulation, trans-
lation, and metabolism-related proteins, such as HNH homing endonuclease, DNA
helicase, exonucleases, transcriptional repressor, DNA helicase, DNA primase, and a
transcriptional regulator, RNA polymerase beta subunit, and thymidylate synthase.

(ii) Structural and packaging proteins: 27 CDS were predicted to encode for tail, head,
and packaging proteins such as portal proteins, head proteins, tail fiber proteins,
head maturation proteases, virion structural proteins, tail proteins, tail assembly
chaperones, minor and major head proteins, and terminase large and small subunits.

(iii) Host lysis and adhesion proteins: Two CDS were predicted to encode holin and
endolysin proteins. BLASTp analysis of the phage vB_Efs8_KEN04 genome revealed
no similarities to the genes encoding integrase or excisionase. The genome of phage
vB_Efs8_KEN04 lacks genes encoding toxins, virulence factors, antibiotic resistance
genes, and CRISPR. These data indicate that phage vB_Efs8_KEN04 is a strictly lytic
phage that can be used to treat E. faecalis infection.

(iv) Sixteen CDS encode for moron, auxiliary metabolic genes, and host takeover.
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Analysis of phage vB_Efs8_KEN04 DNA termini and phage packaging mechanisms
revealed long direct terminal repeats (DTR) of 2849 bp with a specific packaging site called
the cos site, which serves as a recognition signal for the packaging machinery. This DTR is
comparable to that of bacteriophage T5 [85].

3.11. Phylogenetic Analysis

To gain a deeper understanding of the evolution and relationship between phage
vB_Efs8_KEN04 and other Enterococcus phages, the genome of phage vB_Efs8_KEN04 was
compared with that of 37 Enterococcus phages. These phage sequences were obtained from
the National Center for Biotechnology Information (NCBI) database, and all had identities
ranging from 78.06 to 99.29% with phage vB_Efs8_KEN04 (Table S7).



Viruses 2024, 16, 1275 16 of 26

The phylogenetic tree, generated with the whole genome sequences, indicated that
phage vB_Efs8_KEN04 had the highest similarity to Enterococcus phage PBEF129 (GenBank
accession number MN854830.2), Enterococcus phage phiM1EF22 (GenBank accession num-
ber AP018715.1), Enterococcus phage ECP3 (GenBank accession number NC_027335.2), and
Enterococcus phage vB_EfaM_Ef2.3 (GenBank accession number MK721192.1)
(Figure 9 and Table S7). Subsequently, we employed VIRIDIC to compute the interge-
nomic similarities, revealing the degree of similarity between phage vB_Efs8_KEN04 and
the top 20 phages most closely linked to it (Figure 10). This indicated that the similarity
of phage vB_Efs8_KEN04 and the other Enterococcus phages’ complete genome was sig-
nificantly greater than the genus threshold of 70% and lower than the species threshold
of 95% [66], suggesting that they belong to the same genus but distinct species. The in-
tergenomic similarities between phage vB_Efs8_KEN04 and the four most closely related
Enterococcus phages were as follows: Enterococcus phage PBEF129 (94.6%), Enterococcus
phage phiM1EF22 (93.3%), Enterococcus phage ECP3 (94.5%), and Enterococcus phage
vB_EfaM_Ef2.3 (93.5%) (Figure 10).
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Figure 9. Phylogenetic analysis of Enterococcus phage vB_Efs8_KEN04 and other related Entero-
coccus bacteriophages based on the similarity of whole genome sequences. The phylogenetic tree
was generated using the online Virus Classification and Tree Building Online Resource (VICTOR)
platform with the formula d0 [65]. Color code legend from left to right: green squares in the first
column correspond to the phages’ family cluster; green squares in the second column correspond to
the phages’ genus cluster; the third column corresponds to the phages’ species cluster; the fourth
column corresponds to the GC content (36-37%); and the fifth column corresponds to the genome
length (min: 130,952 bp; max: 156,952 bp). The first and second column color codes and shapes
indicate that all the phages are classified in the same family and genus, respectively. In the third and
fourth columns, if the shape, color, and color intensity are the same, it means that the phages shared
the same characteristics (species or GC content) but if they differed, it means that the phages are
different species or have different GC contents.
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Figure 10. Heatmap of the average nucleotide identity values between phage vB_Efs8_KEN04 and
the top 20 most similar Enterococcus bacteriophages. In the right half, the numbers represent the
similarity values for each genome pair. In the left half, three indicator values are presented for each
genome pair, in the order from top to bottom: aligned fraction genome 1 (for the genome found in
this row), genome length ratio (for the two genomes in this pair), and aligned fraction genome 2 (for
the genome found in this column). The vertical and horizontal red boxes indicate the intergenomic
similarities between phage vB_Efs8_KEN04 and the most similar Enterococcus phages. The vertical
and horizontal red text refer to the phage vB_Efs8_KEN04 isolated in this study and its GenBank
accession number.
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4. Discussion

The use of bacteriophages in treating bacterial infections, including E. faecalis, has, in
recent years, gained significant attention. This is due to the increase in antibiotic resistance
and the phages’ ability to infect and eliminate bacteria. Phages have the potential to serve
as a natural, safe, and efficient method for preventing and controlling multidrug-resistant
(MDR) organisms [86]. Studies have also shown that phages can be used to control biofilms
formed by E. faecalis [23,87].

This study characterized a highly lytic and broad-spectrum E. faecalis phage vB_Efs8
_KEN04 isolated from environmental wastewater in Nairobi, Kenya. It is a dsDNA phage
belonging to group I in Baltimore’s classification of viruses [88]. The genome of this phage
did not encode any lysogenic, antibiotic resistance, or virulence and CRISPR-cas genes.
Thus, it is an effective and safe candidate for phage therapy. Based on genome annotation,
phage vB_Efs8_KEN04 was classified as a member of the genus Kochikohdavirus in the
family Herelleviridae. Its genome contains eight genes encoding for transfer RNAs (tRNAs).
The presence of tRNAs in bacteriophage genomes is widespread, especially among virulent
phages [89]. However, their precise role has remained ambiguous for almost five decades
as phages utilize the host’s transcriptional machinery to control the expression of their own
genes after the initial infection [90]. Several hypotheses have been proposed for the role of
these phage-encoded tRNAs. The most established is codon compensation where codons,
rarely used by the host but necessary to the phage, are supplemented by the tRNAs encoded
by the phage [89]. Recently, a study proposed a new hypothesis that phage-encoded tRNAs
counteract the tRNA-depleting strategies of the host using enzymes such as VapC, PrrC,
Colicin D, and Colicin E5 to defend against a viral infection, and they have evolved to be
insensitive to host anticodon nucleases [91].

Phage vB_Efs8_KEN04 has an optimal MOI of 1 and a high adsorption efficiency,
achieving over 97% attachment within 10 min. Additionally, it has a short latent period of
20 min and a relatively high burst size of 138.46 ± 18.45 PFU per bacterium, in contrast
to most tail phages, which have a median latency period and burst size of 40–60 min and
50–100, respectively [77]. It also has an EOP ≥ 0.5 for 50% (13/26) of E. faecalis isolates, indi-
cating high progeny production per infected cell. The observed burst size was considered
large in comparison to other E. faecalis phages, which have reported average burst sizes of
5.7 PFU/cell for phage SAM-E.f 12 [92], 40 PFU/cell for phage LG1 [17], 70 PFU/cell for
phage vB_EfaS-271 [93], and 83 PFU/cell for phage PBEF129 [94]. However, larger burst
sizes have been reported for Enterococcus phages HEf13 and PEF7b (352 PFU/cell) [19,43],
PEF9 (303 PFU/cell), PEF1 (262 PFU/cell) [19], and EfKS5 (183.33 PFU/cell) [22]. Vari-
ations in the latent period and burst size of phages can be attributed to the type of host
cells, growth medium, pH, and temperature of incubation [95]. Phages with a large burst
size are considered more virulent as they can rapidly and effectively eliminate bacterial
infections [96].

Phage vB_Efs8_KEN04 exhibited a wide host range by displaying lysis activity against
all 26 clinical MDR E. faecalis isolates tested. These isolates belong to various sequence types
(ST6, ST16, ST28, ST44, ST59, ST368, ST947, ST1903, ST1904, ST1907, and ST1908) and are
associated with different infection types, such as urinary tract infection, skin and soft tissue
infection, surgical site infection, and blood infection. Enterococcus phages with broad host
ranges have previously been reported. For example, E. faecalis phages EF17H and EF24C
were shown to have broad host ranges, infecting 91% and 89% of tested hosts, respectively,
irrespective of the bacterial clinical origin [77]. In addition, phage vB_Efs8_KEN04 showed
cross-species activity against a clinical isolate of multidrug-resistant E. faecium. This lytic
effect of E. faecalis phages toward E. faecium has been reported on the E. faecalis phage
Max [97], phage EFRM31 [98], and the siphovirus IME-EF1 [20]. The phage’s ability to
target its host bacteria is due to its host receptors involved in recognition, interaction, and
adsorption during the phage attachment [99]. Additionally, the receptors are recognized
by the ends of the virion’s long tail fibers of the phage toward the host bacteria [100]. The
BLASTp similarity searches revealed that the tail fiber protein of phage vB_Efs8_KEN04,
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showed high similarity to the tail fiber proteins of eleven other similar Enterococuss
phages, including phages MDA2, phiM1EF22, ECP3, phiEF17H, vB_OCPT_Carl, EF24C,
and vB_OCPT_Bob, with percent identity ranging from 95.99% to 99.95%. This similarity in
RBPs suggests that phage vB_Efs8_KEN04 might recognize and bind to the same or similar
receptors on the host bacteria of these closely related phages, facilitating its infection. Based
on its tail fiber protein similarities, phage vB_Efs8_KEN04 is predicted to potentially infect
vancomycin-resistant E. faecium strains (VRE001, VRE004, VRE008, VRE1147, VRE1181),
which are among the host range of phage MDA2 [73]. Additionally, it could infect several
E. faecalis strains, including vancomycin-resistant strains EF09PII, EF116PII, V587 [76],
biofilm-forming E. faecalis V583, and the E. faecalis V583 phage-resistant mutant EFDG1r,
which developed resistance to Enterococcus phage EFDG1 [24,80].

The nature and locations of host cell receptors recognized by phages differ widely
based on the specific phage and host. These receptors can include a variety of structures,
from peptide sequences to polysaccharide moieties and can be located in the bacterial
cell walls, capsules, or slime layers [99]. This study revealed that phage vB_Efs8_KEN04
receptors are carbohydrate-based. However, additional experiments are essential to identify
the exact type of carbohydrate and the location of the receptors on the bacterial surface.
The current knowledge on E. faecalis phage receptors, the molecular basis of phage strain
specificity, and the mechanisms by which E. faecalis develops phage resistance is limited.
However, one study has reported that the E. faecalis phage efap05-1 may encode various
receptor-binding proteins, enabling it to adsorb to both polysaccharides and membrane
proteins [101]. Another study found that phages VPE25 and VFW require PIPEF, an inte-
gral membrane protein, for their adsorption [102]. Identifying phage receptors is crucial
for the rational selection of phages for therapeutic purposes and for understanding the
mechanisms of phage resistance [103]. In this study, we determined that E. faecalis EFS8 can
develop resistance to phage vB_Efs8_KEN04 with a mutation frequency of 1.8 × 10−5. Host
bacteria have developed a multitude of sophisticated and complex mechanisms to escape
phage infection. These include preventing phage adsorption through receptor modification
or blocking [104], escaping phage infection by employing superinfection exclusion systems,
restriction-modification systems, abortive infection systems, CRISPR-Cas adaptive immu-
nity, toxin-antitoxin systems, and phage-induced chromosome islands [104–107]. Further
research on phage-host interactions is essential to elucidate the resistance mechanisms of E.
faecalis EFS8 to phage vB_Efs8_KEN04.

When subjected to different temperatures and pH conditions, phage vB_Efs8_KEN04
showed the ability to withstand moderate acidic and alkaline conditions from pH 3–11
and a wide temperature range from −80 ◦C to 37 ◦C. Many external physical and chemical
factors, including but not limited to temperature, acidity, salinity, and ions, determine
bacteriophage occurrence, viability, and storage. These factors can inactivate the phage by
damaging its structural components (head, tail, envelope), lipid depletion, and/or DNA
structural changes [108]. The studied phage exhibited remarkable stability throughout a
broad range of temperatures and pH levels, making it advantageous for formulation into
a suitable pharmaceutical form and therapeutic applications. Furthermore, the phage’s
stability across acidic and alkaline environments (pH 3–11) enables it to be administered
orally without compromising its viability in the gastrointestinal tract [23].

In this study, we also investigated the effect of phage vB_Efs8_KEN04 on the biomass
reduction of E. faecalis biofilm by inhibition and disruption experiments. Biofilms are com-
munities of bacteria that can be highly resistant to antibiotics and contribute to persistent
infections [24,109]. Several factors contribute to the enhanced antimicrobial resistance of
microorganisms in a biofilm. These include the physical barrier created by the extracellular
matrix, which hinders the diffusion of antimicrobial agents [110]. Additionally, nutrient
and oxygen depletion within the biofilm can cause bacteria to enter a stationary state,
making them less susceptible to microbial killing [111].

Furthermore, a subpopulation of bacteria might differentiate into a phenotypically
resistant state, and some bacteria within the biofilm have been found to express specific
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antimicrobial resistance genes unique to biofilms [112]. Recent studies have demonstrated
that extracellular DNA (eDNA) in the biofilm matrix protects microbial cells against vari-
ous antimicrobial agents [113]. The biofilm formation phenotype of multidrug-resistant E.
faecalis was investigated, and the results revealed that out of 26 MDR tested for this purpose,
92.31% showed the ability to form biofilms. To date, several investigations have been per-
formed to test bacteriophages’ ability to inhibit and destroy E. faecalis biofilms [17,22,87,103],
but the mechanisms of the phage–biofilm interaction are not well understood [114]. As
indicated by the crystal violet biomass assay, the isolated phage vB_Efs8_KEN04 signifi-
cantly reduced biofilm biomass (p-value < 0.05) compared with the control for most of the
biofilm-forming E. faecalis isolates. Based on genome and structural proteome analysis, this
can be explained by the production of depolymerases, such as endolysins [115] (CDS121)
(Table S6), which penetrate the inner layers of the biofilm by degrading structural compo-
nents of the established biofilm exopolymeric matrix, allowing them to break it down or
disrupt its integrity, [116] and lyse bacteria at the edge of the EPSs [117]. The reduction of
bacteria on the biofilm causes the reduction of EPS material; thus, the biofilm is completely
eliminated [118].

Similarly, phage vB_Efs8_KEN04 was able to significantly decrease biofilm biomass
when compared with an already formed untreated biofilm. Therefore, phage vB_Efs8_
KEN04 has the potential to be successfully used as a biofilm eradication agent. The phage
could not inhibit the biofilm formation of several isolates (EFS5, EFS6, EFS15, EFS17, EFS21,
324 EFS22, EFS26, EFS27, EFS30, EFS31, EFS31, EFS32, EFS33) and could not disrupt already
formed biofilms of two isolates (EFS15, EFS18). This can be due to factors such as high-
density biofilm, sub-populate phage resistance in biofilm, and inhibition of phage infection
via quorum sensing [119]. To address this limitation of phage effectiveness and eradicate
bacterial biofilms more efficiently, the use of bacteriophage cocktails, containing two or
more phages, with different host ranges and modes of action is an alternative, as phage
cocktails can prevent further accumulation and diffusion of biofilms by reducing migratory
bacteria, increase activity by expanding the host range, and prevent the formation of phage-
resistant mutant bacteria [120–123]. Additionally, phages could be structurally engineered
or combined with other antimicrobial compounds, such as antibiotics, to enhance the
efficacy of eliminating microbial activity [124]. In future research, the phage-derived
enzymes may be studied as biological antibacterial agents to control Enterococcus and
its biofilm.

5. Conclusions

Phage vB_Efs8_KEN04 is a lytic phage belonging to the genus Kochikohdavirus in the
family Herelleviridae. It was isolated from a municipal sewage treatment plant located in
Nairobi East. Phage vB_Efs8_KEN04 exhibits efficacy against all the clinical multidrug-
resistant strains of E. faecalis tested and one E. faecium isolate, including the ability to
destroy bacterial biofilms. The genome analysis revealed that the phage lacks genes
of concern, including virulence, antibiotic resistance, and lysogeny genes. The phage
vB_Efs8_KEN04 has great potential as a candidate for phage therapy against enterococci
infections and for controlling biofilms. While this phage shows promise as a therapeutic
candidate, addressing safety and regulatory concerns is essential to its successful use in
therapy. Continued research, including clinical trials, to demonstrate safety and efficacy in
accordance with regulatory standards, and collaboration between regulatory agencies and
researchers are crucial for implementing phage therapy responsibly.

6. Limitations

A limitation of this study is the lack of animal models as representative models of
enterococci infection in humans as the experimental models can mimic the pathogenesis of
natural disease.
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