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Abstract: Assessing physical activity is important in the treatment of chronic conditions, including
chronic low back pain (cLBP). ActiGraph™, a widely used physical activity monitor, collects raw
acceleration data, and processes these data through proprietary algorithms to produce physical
activity measures. The purpose of this study was to replicate ActiGraph™ algorithms in MATLAB
and test the validity of this method with both healthy controls and participants with cLBP. MATLAB
code was developed to replicate ActiGraph™’s activity counts and step counts algorithms, to sum the
activity counts into counts per minute (CPM), and categorize each minute into activity intensity cut
points. A free-living validation was performed where 24 individuals, 12 cLBP and 12 healthy, wore
an ActiGraph™ GT9X on their non-dominant hip for up to seven days. The raw acceleration data
were processed in both ActiLife™ (v6), ActiGraph™’s data analysis software platform, and through
MATLAB (2022a). Percent errors between methods for all 24 participants, as well as separated by
cLBP and healthy, were all less than 2%. ActiGraph™ algorithms were replicated and validated for
both populations, based on minimal error differences between ActiLife™ and MATLAB, allowing
researchers to analyze data from any accelerometer in a manner comparable to ActiLife™.

Keywords: actigraphy; chronic low back pain; ActiGraph; inertial measurement units; algorithms

1. Introduction

Low back pain (LBP) is the leading cause of disability worldwide, affecting over
500 million people globally [1–3]. It is estimated that up to 80% of adults will experience
an episode of back pain in their lives [4]. Physical activity has a beneficial effect on
musculoskeletal conditions, including LBP [5–7]. However, the appropriate amount of
recommended physical activity in the LBP population is questioned, as it has been shown
that both too much and too little activity may be associated with LBP [8,9]. Unfortunately,
some LBP cases do not resolve, leading to chronic low back pain (cLBP), which is defined as
pain between the inferior border of the ribcage and gluteal fold lasting more than 12 weeks,
resulting in pain on at least half the days in the past 6 months [10].

Research suggests that engaging in regular physical activity can reduce the risk of de-
veloping cLBP, as well as improve symptoms and function in those who already experience
LBP [11,12]. More specifically, core strengthening, or spinal stabilization exercises, can help
strengthen the muscles supporting the lower back and improve flexibility and range of
motion (ROM), which can contribute to a healthier spine [13,14]. However, high-impact
activities, such as running or jumping, may put excessive stress on the spine and contribute
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to pain or injury. Similarly, activities that involve repetitive bending, twisting, or lifting
may also be problematic for those with LBP [9]. Conversely, a meta-analysis published in
2019 that examined the association between physical activity and LBP found an inverse
relationship between physical activity and LBP [8,15]. A significant limitation of the meta-
analysis is that most of the included studies used self-administered questionnaires that
likely produce overestimation and recall bias, highlighting the importance of quantitative
physical activity assessment.

In recent years, there has been an increasing emphasis on wearable technologies and
tools to measure actigraphy and other physical activity metrics. Common amongst numer-
ous actigraphy devices is that they contain accelerometers or inertial measurement units
(IMUs), which are devices that measure and report acceleration, along with other measures,
including angular rates, magnetic fields, which can be used to estimate orientation. With
all these options available, it is often difficult to know which devices or options are best for
a given application.

Actigraphy is a non-invasive technique for measuring free-living physical activity
with devices that collect accelerometry data for movement detection and positional changes.
Actigraphy devices are traditionally worn on the wrist or waist. The use of actigraphy to
objectively measure physical activity has been validated in various studies providing an
alternative to self-reported measures alone [16,17]. The collected raw accelerometry data are
quantified into physical activity measures, including activity counts and step counts [18].
Activity counts can be summed over an epoch, or time frame, and categorized into cut
points to represent the intensity of activity over the epoch. Freedson Adult (1998) cut
points are one commonly used method, which were developed to correspond to common
metabolic equivalent of task (MET) categories [19]. A commonly used epoch length is
60 s, resulting in counts per minute (CPM), that can then be categorized into a cut point to
describe the activity intensity during each minute of data collected.

ActiGraph™ (ActiGraph™, Inc., Pensacola, FL, USA) accelerometers are widely used
to assess physical activity in research settings, with over 20,000 papers published using these
devices [18]. ActiGraph™ sensors are also the most commonly used sensors for assessing
physical activity in individuals with cLBP [20]. The software, ActiLife™, processes raw
acceleration data through proprietary algorithms to produce physical activity measures
such as activity counts, counts per minute (CPM), step counts, and intensity cut points.
Many studies assessing physical activity collect data from an ActiGraph™ worn on the
waist attached to the body by a belt, which is typically removed while sleeping [21].

Although ActiGraph™ sensors are the most commonly utilized sensors for assessing
physical activity in individuals with cLBP, greater than 60% of studies in a recent scoping
review used alternative devices [20]. The high variability in the model of the devices, the
algorithms for analyses, and wear location makes it difficult to directly compare findings
and limits progress in this important research area. Moreover, the proprietary nature of
the data analyses algorithms limits opportunities to customize and optimize the outcomes
for the application and population of interest [22]. For example, for individuals with cLBP,
placing IMUs along the lumbar region may reveal new insight into physical activity or
spinal movements. Moreover, the flexibility to adjust the cut points and/or data analysis
algorithms to output additional kinematic analysis metrics such as velocity or ROM may
reveal new insights and/or treatment opportunities.

To translate the data collected through a custom IMU, the ActiGraph™ proprietary
algorithms must be reproduced and validated to obtain comparable results. Until recently,
the ActiGraph™ activity counts algorithm was completely proprietary, making it diffi-
cult for researchers and clinicians to translate accelerometry data to activity counts in a
standardized way unless the data were collected and analyzed through an ActiGraph™
device. Therefore, the purpose of this work was to replicate ActiGraph™ algorithms in
MATLAB (2022a) and to test the validity of the algorithms to analyze ActiGraph™ data
and reproduce the outputs of the ActiLife™ (v6) software for both healthy controls and the
cLBP population. It is hypothesized that the custom MATLAB algorithms can reproduce
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the outputs of the ActiLife™ software when analyzing ActiGraph™ collected data with a
percentage error of less than 5% for all outcomes. The outcomes selected for replication
and validation were activity counts, step counts, and activity intensity level (minutes in
sedentary, light, moderate, vigorous, and very vigorous activity) as they are the most
commonly reported outcomes for assessing physical activity in individuals with cLBP [20].

2. Materials and Methods
2.1. Algorithm Development

Figure 1 displays the proposed algorithm workflow that is described in detail through-
out this section. To summarize, the raw y-axis acceleration data are calculated into step
counts and activity counts. The activity counts are summed into CPM and then categorized
based on the Freedson Adult (1998) cut points [19].
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Figure 1. Algorithm workflow. Raw y-axis data are calculated into activity counts and step counts
based on the accelerometer signals, then are summed into counts per minute (CPM) with Freedson
Adult cut points for categorization. These data are then summarized by the total time and percentage
of overall time spent in each categorization. The coordinate system for the ActiGraph™ is shown in
Figure 2.
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In 2022, ActiGraph™ published a description of their proprietary activity count algo-
rithm used to process raw acceleration data in ActiLife™, which served as the foundation
for the custom MATLAB algorithms developed for this project [23]. The MATLAB algo-
rithms utilized a sampling frequency of 60 Hz and an epoch length of 60 s [18].
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The seven processing steps described by Neishabouri, et al. [18] were programmed
into a MATLAB function. The steps are down-sampling the signal to 30 Hz, band-pass
filtering the down-sampled signal, rescaling the filtered signal by multiplying it by a factor
of 17.127404, taking the absolute values of the rescaled signal, applying a threshold to the
signal so that all values greater than 128 are set to 128 and all values between 0 and 4 are
set to 0, further down-sampling it to 10 Hz, and summing the down-sampled signal within
a 60 s epoch length. The inputs to the function are the raw acceleration data, sampling
frequency, and epoch length. The output is the CPM vector for all data collected. The total
activity counts are calculated by summing the entire vector. Although most actigraphy
downstream analysis focuses on the activity counts in the vertical (y-axis), the activity
counts in the x-axis and z-axis were also calculated.

When evaluating physical activity over extended periods of time, a wear time algo-
rithm must be used to detect periods when the person takes the device off. ActiGraph™
provides two options in ActiLife™: Troiano (2007) [24] and Choi (2011) [25]. The Troiano
method was chosen for this application, as the Choi method was validated in a smaller
sample size, a majority of which were children [24–26]. As described by Troiano, the wear
time algorithm detects non-wear time from 60 s y-axis epoch counts [24]. Non-wear time
was defined by an interval of at least 60 consecutive minutes of zero activity counts, with
allowance for 1–2 min of counts between 0 and 100 [24]. The function input is the CPM
vector calculated through the activity counts algorithm, and the output is a non-wear vector
consisting of 1’s and 0’s, where “1” is defined as wear time during the minute, and “0” is
defined as non-wear time. The algorithm removes CPM during non-wear time, resulting
in only wear time. The new CPM vector is summed to achieve the total counts, excluding
non-wear time. The total wear time in minutes is determined by the length of the vector.
The resulting variables are the CPM excluding non-wear time in the X, Y, and Z directions,
totals in all axes, and total wear time in minutes. All further analysis is based on the CPM
excluding non-wear time.

Since the y-axis is in-line with gravity, it is the most common axis analyzed when
calculating activity counts. However, the ActiGraph provides a 3-axes accelerometer data;
therefore, it is also possible to consider all three axes. The vector magnitude, which reflects
all three axes, was calculated according to Equation (1).

Vector Magnitude Counts Total =
√
(X Axis Total Counts)2 + (Y Axis Total Counts)2 + Z Axis Total Counts2 (1)

Using the CPM output from the activity counts algorithm and wear time algorithm, the
code assigns each CPM to the corresponding Freedson cut point, as described in Figure 1.
The total minutes in each cut point are summed to calculate the total minutes spent in
sedentary, light, moderate, vigorous, and very vigorous activity. The percentages spent in
each cut point are calculated by dividing the total minutes spent in a cut point by the total
wear minutes multiplied by 100.

Another common activity metric is step counts. Although many step count algorithms
exist, for the sake of consistency, the step count algorithm implemented in ActiLife™ was
modified for this application. Upon request, ActiGraph™ customer support provided a
draft version of their step count algorithm, and a step count algorithm was developed in
MATLAB based on the description and pseudo-code they provided [27,28]. The algorithm
includes down-sampling the signal to 30 Hz, band-pass filtering the down-sampled signal,
rescaling the filtered signal by multiplying it by a factor of 17.127404, applying threshold to
identify step as a crossing below zero into −4 followed by a crossing above zero into 4, and
summing the number of steps identified. Because this step count algorithm is not published
or validated, pilot testing was used to verify results as the algorithm was developed.

2.2. Participants

This study consisted of participants with cLBP and healthy controls. All subjects gave
their informed consent before they participated in this study. This study was conducted
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in accordance with the Declaration of Helsinki, and the protocol was approved by the
Ethics Committee of The University of Pittsburgh (STUDY20020091). Potential participants
were recruited using the Pitt + Me® recruitment registry (Clinical and Translational Science
Institute (CTSI), University of Pittsburgh, Pittsburgh, PA) and all were phone-screened to
ensure they met inclusion/exclusion criteria. Healthy participants were included if they
had no history of LBP within the last two years, no current low back symptoms, and no
back surgeries. Participants with cLBP were included if they had a history of LBP greater
than twelve weeks with persisting symptoms ≥ 50% of the time [10]. Recruitment occurred
between 1 June 2021 and 17 December 2021. Participants with cLBP were matched to
asymptomatic controls who were as close in age as possible. Asymptomatic participants
whose ages fell in those decades were screened until the number of asymptomatic partici-
pants was equal or nearly equal to the participants with cLBP. The goal was to have the
same number of participants with cLBP and without, matching gender as much as possible.

2.3. Free-Living Validation

An ActiGraph™ GT9X (ActiGraph, Pensacola, FL) was used in this work, a tri-axial
accelerometer with the following coordinate system: y-axis = vertical direction, x-axis = hor-
izontal direction, and z-axis = perpendicular direction when oriented as displayed in
Figure 2. Participants were instructed to wear an ActiGraph™ GT9X for up to seven days
on their non-dominant hip attached by a belt, as shown in Figure 3, except while sleeping
or showering. Seven days was selected for this study as it is the most common duration
utilized for assessing physical activity in cLBP based on a scoping review [20].
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2.4. Data Processing and Analysis

Software needed to process the data included ActiSync™ (ActiGraph™, Pensacola, FL,
USA), CentrePoint (ActiGraph™, Pensacola, FL, USA), ActiLife™ (ActiGraph™, Pensacola,
FL, USA), and MATLAB (2022a). ActiSync™ software was used to upload ActiGraph™
raw data to CentrePoint, ActiGraph™’s data management software. Raw data were ex-
ported through CentrePoint. The raw data for all participants were processed in both
ActiLife™ and MATLAB, and the results were compared. Mean results for total y-axis
activity counts, total vector magnitude counts, total step counts, and total minutes spent
in each category based on the Freedson cut points were calculated [19]. For analysis, per-
centage errors between the two methods were calculated for all participants and separated
between participants with cLBP and healthy controls to test the algorithm performance in
both populations.
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3. Results
3.1. Participant Demographics

Twenty-four participants, twelve cLBP and twelve healthy controls, were recruited
and consented to participate in this study. Participant demographics are displayed in
Table 1. The ages of participants ranged between 21 and 69 years old.

Table 1. Participant demographics.

Condition Gender Average Age (Years ± SD)

cLBP Females: N = 10
Males: N = 2 41.9 ± 16.8

Healthy Females: N = 8
Males: N = 4 42.4 ± 16.5

Total Females: N = 18
Males: N = 6 42.2 ± 16.3

cLBP = chronic low back pain, SD = standard deviation.

3.2. Free-Living Validation

Mean results for total y-axis counts, total vector magnitude counts, total step counts,
and total minutes spent in each Freedson cut point in ActiLife™ and the developed
MATLAB algorithms are displayed in Table 2, as well as percent errors between the
two methods. Total percentage errors for all 24 participants, as well as separated by
group, were all less than 2%. The lowest percent error was the activity counts algorithm
with an error of 0.00% for all participants, 0.00% for the healthy group, and 0.01% for the
cLBP group. The highest percent error was for the total minutes in the sedentary category,
with an error of 1.21% for all participants, 1.31% for the healthy group, and 1.11% for the
cLBP group.

Table 2. Results of the seven-day free-living validation including total error (N = 24), and error
separated by participants with chronic low back pain (cLBP) (N = 12) and healthy controls (N = 12).

ActiLife™ MATLAB Error (%) Healthy
Error (%)

cLBP
Error (%)

Total y-Axis Activity Counts 1,849,697.0 1,849,615.5 0.00 0.00 0.01
Total Vector Magnitude Counts 3,486,535.2 3,494,540.1 0.23 0.31 0.15

Total Step Counts 49,850.3 49,884.9 0.07 0.09 0.05
Total Minutes in Sedentary 3573.4 3616.8 1.21 1.31 1.11

Total Minutes in Light 1629.8 1629.8 0.00 0.01 0.01
Total Minutes in Moderate 225.8 225.4 0.18 0.08 0.40
Total Minutes in Vigorous 17.0 17.0 0.24 0.56 0.00

Total Minutes in Very Vigorous 0.2 0.2 0.00 0.00 0.00

cLBP = chronic low back pain.

4. Discussion

The purpose of this work was to replicate ActiGraph™ algorithms in MATLAB (2022a)
and to test the validity of these algorithms to analyze ActiGraph™ data and reproduce the
outputs of the ActiLife™ software for both healthy controls and the cLBP population. It
was hypothesized that the custom MATLAB algorithms can reproduce the outputs of the
ActiLife™ software when analyzing ActiGraph™ collected data with a percent error of less
than 5% for all outcomes. This work was successful in developing algorithms in MATLAB
replicating techniques used in ActiLife™ to quantify physical activity metrics of wearable
sensor accelerometry data including activity counts, CPM, cut points, wear time, and step
counts. Percent errors for all 24 participants, as well as separated by group, were all less
than 2%, which was well below the hypothesized target of <5%.

Several studies have attempted to reverse engineer the algorithm with similar goals of
standardizing the method to quantify activity counts with custom devices. Peach, et al. [28]
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attempted to determine the form of the filter used in the ActiLife™ software, which is the
first step in processing raw acceleration data into counts, and tested the developed filter
on various frequencies. They concluded that the filtration method can drastically alter the
results, and stressed the need for a published, standardized method [28]. In another study,
Rao, et al. [29] attempted to go beyond just the filtering step and explored the additional
processing steps needed to obtain the final desired end products, which are activity counts.
Rao, et al. [29] were able to design a method that closely matches ActiLife™, but the method
was never fully validated. Brønd, et al. [22] described a method in MATLAB to quantify
activity counts from raw acceleration data using a custom device and tested the validity
of the method in both a mechanical validation and a 24 h free-living experiment. Brønd,
et al.’s [22] validation resulted in a relative difference ranging from 0.5% to 4.7% with a
group mean of 2.2%. In contrast, the relative difference during this study’s seven-day
free-living validation resulted in a relative difference group mean of 0.00% for activity
counts, which was an improvement over Brønd, et al. [22]. To our knowledge, this current
paper is one of the most comprehensive studies published to date that has attempted to
replicate the outputs of the ActiLife™ software having included activity counts, non-wear
time, CPM, cut points, and step counts in a single application, emphasizing the unmet need
and novel methods of this work.

These validated algorithms allow researchers and clinicians to calculate physical ac-
tivity measures equivalent to those collected through an ActiGraph™. These algorithms
can be a baseline for researchers interested in analyzing physical activity with a device that
collects accelerometry data. The algorithms may have to be modified for the specific device,
but they can assist in overcoming the beginning challenges. For example, the device’s sam-
pling frequency and coordinate system would have to be known and modified in the code.
Additionally, the location of the device on the body should be close to the person’s center
of gravity, as these algorithms would not be appropriate for a wrist- or ankle-worn device
where the accelerations would be vastly different. This work validated the algorithms in
participants with cLBP but could be extended to any other population including other
chronic conditions where physical activity is crucial to treatment. Additionally, it could be
extended to other populations including athletes or the military, where assessing physical
activity could help optimize performance.

5. Conclusions

The purpose of this work was to replicate ActiGraph™ algorithms in MATLAB (2022a)
and to test the validity of these algorithms to analyze ActiGraph™ data and reproduce the
outputs of the ActiLife™ software for both healthy controls and the cLBP population. All
metrics evaluated, including activity counts, CPM, cut points, wear time, and step counts,
resulted in a percentage error of less than 2% for both asymptomatic and cLBP partici-
pants. This work sets the stage for researchers to use MATLAB to assess accelerometry
data in a comparable manner to ActiLife™, while allowing for more transparency and
more accessible iterative improvements and customization for specific populations, like
cLBP assessment.

Limitations to this study include validating the algorithms on only 24 participants,
12 with cLBP and 12 healthy controls, and not testing the algorithms on data collected
through a custom device. Additionally, the majority of the participants were female (N = 18),
which may limit generalizability of the findings due to potential gender differences in cLBP
and physical activity levels. Although this study demonstrated the validity of the custom
MATLB algorithms, further work could focus on the small differences between methods,
which may further improve results. For example, the counts algorithm developed in
MATLAB uses a built-in “resample” command, which could be different from the one used
in ActiLife™.

The next steps for this study include adapting the validated algorithms and applying
them to custom brand IMUs mounted on the spine in participants with cLBP and healthy
controls. Data collected through an ActiGraph™ worn on the waist will be compared to
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data collected through the custom brand IMUs worn on the spine to interpret differences
in device and location and to determine the feasibility of this method in participants with
cLBP. Moreover, future work will aim to use the activity data to identify not just the volume
of activity but possibly the type of activity, which may be very important for patients
with cLBP.

Author Contributions: Conceptualization, J.F.H. and K.M.B.; methodology, J.F.H. and M.E.J.; soft-
ware, J.F.H., H.A.C. and Z.F.A.; validation, J.F.H.; formal analysis, J.F.H.; resources, J.F.H. and K.M.B.;
data curation, J.F.H. and Z.F.A.; writing—original draft preparation, J.F.H.; writing—review and
editing, M.E.J., J.M.J., S.R.P., A.J.C., H.A.C., Z.F.A. and K.M.B.; visualization, J.F.H.; supervision,
M.E.J., J.M.J., S.R.P., A.J.C. and K.M.B.; project administration, M.E.J. and K.M.B.; funding acquisition,
M.E.J. and K.M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the University of Pittsburgh’s Clinical and Translational
Science Institute (CTSI) Virginia Kaufman Pain Research Challenge 2020. This research was sup-
ported by the National Institutes of Health through the NIH HEAL Initiative under award number
U19AR076725-01. The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health or its NIH HEAL Initiative. The
Back Pain Consortium Research Program is administered by the National Institute of Arthritis and
Musculoskeletal and Skin Diseases.

Institutional Review Board Statement: This study was conducted in accordance with the Decla-
ration of Helsinki and approved by the Institutional Review Board of the University of Pittsburgh
(STUDY20020091, date approved: 21 June 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in this study.

Data Availability Statement: The generated datasets from this study are available upon request to
the corresponding author.

Acknowledgments: University of Pittsburgh Clinical and Translational Science Institute (CTSI) for
their supportive program management throughout the study progress. University of Pittsburgh
Physical Therapy-Clinical and Translational Research Center for clinical research space. The authors
wish to thank Jessa Darwin for editorial support on the manuscript.

Conflicts of Interest: Jakicic has the following relationships to disclose: (1) Scientific Advisory Board
for Wondr Health, Inc., (2) Principal Investigator awarded by Epitomee Medical, Inc. to the University
of Kansas Medical Center, (3) Consultant to Education Initiatives, Inc. The other authors declare no
conflicts of interest. The funders had no role in the design of this study; in the collection, analyses, or
interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Hartvigsen, J.; Hancock, M.J.; Kongsted, A.; Louw, Q.; Ferreira, M.L.; Genevay, S.; Hoy, D.; Karppinen, J.; Pransky, G.; Sieper, J.;

et al. What low back pain is and why we need to pay attention. Lancet 2018, 391, 2356–2367. [CrossRef]
2. Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; et al.

Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015 2015:
A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [CrossRef] [PubMed]

3. World Health Organization. Musculoskeletal health. Available online: https://www.who.int/news-room/fact-sheets/
detail/musculoskeletal-conditions#:~:text=Low%20back%20pain%20is%20the,7.4%25%20of%20global%20YLDs (accessed on
3 November 2023).

4. Rubin, D.I. Epidemiology and Risk Factors for Spine Pain. Neurol. Clin. 2007, 25, 353–371. [CrossRef] [PubMed]
5. Hurwitz, E.L.; Morgenstern, H.; Chiao, C. Effects of Recreational Physical Activity and Back Exercises on Low Back Pain and

Psychological Distress: Findings From the UCLA Low Back Pain Study. Am. J. Public Health 2005, 95, 1817–1824. [CrossRef]
[PubMed]

6. Pinto, R.Z.; Ferreira, P.H.; Kongsted, A.; Ferreira, M.L.; Maher, C.G.; Kent, P. Self-reported moderate-to-vigorous leisure time
physical activity predicts less pain and disability over 12 months in chronic and persistent low back pain. Eur. J. Pain 2014, 18,
1190–1198. [CrossRef] [PubMed]

7. Darlow, B.; Perry, M.; Dean, S.; Mathieson, F.; Baxter, G.D.; Dowell, A. Putting Physical Activity While Experiencing Low Back
Pain in Context: Balancing the Risks and Benefits. Arch. Phys. Med. Rehabil. 2016, 97, 245–251.e7. [CrossRef] [PubMed]

8. Alzahrani, H.; Mackey, M.; Stamatakis, E.; Zadro, J.R.; Shirley, D. The association between physical activity and low back pain:
A systematic review and meta-analysis of observational studies. Sci. Rep. 2019, 9, 8244. [CrossRef] [PubMed]

https://doi.org/10.1016/S0140-6736(18)30480-X
https://doi.org/10.1016/S0140-6736(16)31678-6
https://www.ncbi.nlm.nih.gov/pubmed/27733282
https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions#:~:text=Low%20back%20pain%20is%20the,7.4%25%20of%20global%20YLDs
https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions#:~:text=Low%20back%20pain%20is%20the,7.4%25%20of%20global%20YLDs
https://doi.org/10.1016/j.ncl.2007.01.004
https://www.ncbi.nlm.nih.gov/pubmed/17445733
https://doi.org/10.2105/AJPH.2004.052993
https://www.ncbi.nlm.nih.gov/pubmed/16186460
https://doi.org/10.1002/j.1532-2149.2014.00468.x
https://www.ncbi.nlm.nih.gov/pubmed/24577780
https://doi.org/10.1016/j.apmr.2015.09.020
https://www.ncbi.nlm.nih.gov/pubmed/26471211
https://doi.org/10.1038/s41598-019-44664-8
https://www.ncbi.nlm.nih.gov/pubmed/31160632


Sensors 2024, 24, 5323 9 of 9

9. Heneweer, H.; Vanhees, L.; Picavet, H.S.J. Physical activity and low back pain: A U-shaped relation? Pain 2009, 143, 21–25.
[CrossRef] [PubMed]

10. Deyo, R.A.; Dworkin, S.F.; Amtmann, D.; Andersson, G.; Borenstein, D.; Carragee, E.; Carrino, J.; Chou, R.; Cook, K.; DeLitto, A.;
et al. Report of the NIH Task Force on Research Standards for Chronic Low Back Pain. J. Pain 2014, 15, 569–585. [CrossRef]

11. Burton, A.K. How to prevent low back pain. Best Pract. Res. Clin. Rheumatol. 2005, 19, 541–555. [CrossRef] [PubMed]
12. Gordon, R.; Bloxham, S. A Systematic Review of the Effects of Exercise and Physical Activity on Non-Specific Chronic Low Back

Pain. Healthcare 2016, 4, 22. [CrossRef]
13. Alqhtani, R.S.; Ahmed, H.; Ghulam, H.S.H.; Alyami, A.M.; Al Sharyah, Y.H.H.; Ahmed, R.; Khan, A.; Khan, A.R. Efficacy of

Core-Strengthening and Intensive Dynamic Back Exercises on Pain, Core Muscle Endurance, and Functional Disability in Patients
with Chronic Non-Specific Low Back Pain: A Randomized Comparative Study. J. Clin. Med. 2024, 13, 475. [CrossRef] [PubMed]

14. Alkhathami, K.; Alshehre, Y.; Brizzolara, K.; Weber, M.; Wang-Price, S. Effectiveness of Spinal Stabilization Exercises on Movement
Performance in Adults with Chronic Low Back Pain. Int. J. Sports Phys. Ther. 2023, 18, 169–172. [CrossRef] [PubMed]

15. Kremer, E.F.; Block, A.; Gaylor, M.S. Behavioral approaches to treatment of chronic pain: The inaccuracy of patient self-report
measures. Arch. Phys. Med. Rehabil. 1981, 62, 188–191.

16. Kelly, L.A.; McMillan, D.G.E.; Anderson, A.; Fippinger, M.; Fillerup, G.; Rider, J. Validity of actigraphs uniaxial and triaxial
accelerometers for assessment of physical activity in adults in laboratory conditions. BMC Med. Phys. 2013, 13, 5. [CrossRef]

17. Colbert, L.H.; Matthews, C.E.; Havighurst, T.C.; Kim, K.; Schoeller, D.A. Comparative validity of physical activity measures in
older adults. Med. Sci. Sports Exerc. 2011, 43, 867–876. [CrossRef]

18. Neishabouri, A.; Nguyen, J.; Samuelsson, J.; Guthrie, T.; Biggs, M.; Wyatt, J.; Cross, D.; Karas, M.; Migueles, J.H.; Khan, S.; et al.
Quantification of acceleration as activity counts in ActiGraph wearable. Sci. Rep. 2022, 12, 11958. [CrossRef]

19. Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sports
Exerc. 1998, 30, 777–781. [CrossRef] [PubMed]

20. Berger, M.; Bertrand, A.M.; Robert, T.; Cheze, L. Measuring objective physical activity in people with chronic low back pain using
accelerometers: A scoping review. Front. Sports Act Living 2023, 5, 1236143. [CrossRef]

21. Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega,
F.B. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review
and Practical Considerations. Sports Med. 2017, 47, 1821–1845. [CrossRef] [PubMed]

22. Brønd, J.C.; Andersen, L.B.; Arvidsson, D. Generating ActiGraph Counts from Raw Acceleration Recorded by an Alternative
Monitor. Med. Sci. Sports Exerc. 2017, 49, 2351–2360. [CrossRef] [PubMed]

23. Syed, S.; Muschelli, J. ActiGraph-ActiWave-Analysis/Algorithms/Non_Wear_Time/Troiano_2007.py. p Public Domain Reposi-
tory for Shaheen Syed. Available online: https://github.com/ (accessed on 14 March 2022).

24. Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Masse, L.C.; Tilert, T.; McDowell, M. Physical activity in the United States measured by
accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [CrossRef] [PubMed]

25. Choi, L.; Liu, Z.; Matthews, C.E.; Buchowski, M.S. Validation of accelerometer wear and nonwear time classification algorithm.
Med. Sci. Sports Exerc. 2011, 43, 357–364. [CrossRef] [PubMed]

26. ActiGraph. What is the Difference between the Wear Time Validation Algorithms? Available online: https://actigraphcorp.my.site.
com/support/s/article/What-is-the-difference-between-the-Wear-Time-Validation-algorithms (accessed on 3 November 2023).

27. Dunson, A.; Hoydick, J. [EXTERNAL] NEW CHATBOT LEAD: jfh44@pitt.edu [00177502]. Hoydick, J., Ed.; 2022.
28. Peach, D.; Van Hoomissen, J.; Callender, H.L. Exploring the ActiLife(®) filtration algorithm: Converting raw acceleration data to

counts. Physiol. Meas. 2014, 35, 2359–2367. [CrossRef] [PubMed]
29. Rao, Z.; Albinali, F. From Raw Acceleration Data to Activity Count: 2790 Board #313 June 3, 9: 30 AM-11: 00 AM. Med. Sci. Sports

Exerc. 2016, 48, 786. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.pain.2008.12.033
https://www.ncbi.nlm.nih.gov/pubmed/19217208
https://doi.org/10.1016/j.jpain.2014.03.005
https://doi.org/10.1016/j.berh.2005.03.001
https://www.ncbi.nlm.nih.gov/pubmed/15949775
https://doi.org/10.3390/healthcare4020022
https://doi.org/10.3390/jcm13020475
https://www.ncbi.nlm.nih.gov/pubmed/38256609
https://doi.org/10.26603/001c.68024
https://www.ncbi.nlm.nih.gov/pubmed/36793568
https://doi.org/10.1186/1756-6649-13-5
https://doi.org/10.1249/MSS.0b013e3181fc7162
https://doi.org/10.1038/s41598-022-16003-x
https://doi.org/10.1097/00005768-199805000-00021
https://www.ncbi.nlm.nih.gov/pubmed/9588623
https://doi.org/10.3389/fspor.2023.1236143
https://doi.org/10.1007/s40279-017-0716-0
https://www.ncbi.nlm.nih.gov/pubmed/28303543
https://doi.org/10.1249/MSS.0000000000001344
https://www.ncbi.nlm.nih.gov/pubmed/28604558
https://github.com/
https://doi.org/10.1249/mss.0b013e31815a51b3
https://www.ncbi.nlm.nih.gov/pubmed/18091006
https://doi.org/10.1249/MSS.0b013e3181ed61a3
https://www.ncbi.nlm.nih.gov/pubmed/20581716
https://actigraphcorp.my.site.com/support/s/article/What-is-the-difference-between-the-Wear-Time-Validation-algorithms
https://actigraphcorp.my.site.com/support/s/article/What-is-the-difference-between-the-Wear-Time-Validation-algorithms
https://doi.org/10.1088/0967-3334/35/12/2359
https://www.ncbi.nlm.nih.gov/pubmed/25389908
https://doi.org/10.1249/01.mss.0000487359.02777.91

	Introduction 
	Materials and Methods 
	Algorithm Development 
	Participants 
	Free-Living Validation 
	Data Processing and Analysis 

	Results 
	Participant Demographics 
	Free-Living Validation 

	Discussion 
	Conclusions 
	References

