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ABSTRACT
Acute kidney injury (AKI) is a systemic clinical syndrome increasing morbidity and mortality 
worldwide in recent years. Renal tubular epithelial cells (TECs) death caused by mitochondrial 
dysfunction is one of the pathogeneses. The imbalance of mitochondrial quality control is the 
main cause of mitochondrial dysfunction. Mitochondrial quality control plays a crucial role in AKI. 
Mitochondrial quality control mechanisms are involved in regulating mitochondrial integrity and 
function, including antioxidant defense, mitochondrial quality control, mitochondrial DNA (mtDNA) 
repair, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis. Currently, many studies 
have used mitochondrial dysfunction as a targeted therapeutic strategy for AKI. Therefore, this 
review aims to present the latest research advancements on mitochondrial dysfunction in AKI, 
providing a valuable reference and theoretical foundation for clinical prevention and treatment of 
this condition, ultimately enhancing patient prognosis.

1.  Introduction

Acute kidney injury (AKI) is a common and life-threatening 
clinical emergency characterized by a rapid deterioration of 
renal function [1]. It has a high incidence and mortality rate; 
approximately 13 million people suffer from AKI, and 1.7 mil-
lion deaths occur each year [2]. The incidence of AKI among 
hospitalized patients in high-income countries is up to 20%, 
affecting approximately 50% and 25% of adult and pediatric 
patients in intensive care, respectively [3,4]. AKI is caused by 
nephrotoxic drugs, sepsis, rhabdomyolysis, urinary tract 
obstruction, and ischemia-reperfusion injury (IRI), among oth-
ers [5]. There are no definite preventive or therapeutic mea-
sures for AKI, except for dialysis to relieve symptoms [6]. AKI 
is an important factor leading to chronic kidney disease 
(CKD) and end-stage renal disease (ESRD) [7]. Approximately 
30%–70% of patients with AKI develop CKD within one year 
with approximately 17% of cases progressing to ESRD [8]. 
Additionally, the 5-year rehospitalization rate is 32.4% with 
more than 2 million AKI-related deaths annually worldwide 
[9]. Mitochondria play a critical role in both the physiological 
functioning and pathological processes of the kidney [10]. 
They serve as a central hub in renal cell metabolism and sig-
naling [11]. These organelles generate adenosine triphos-
phate (ATP) necessary to power energy-intensive reabsorption 
mechanisms of water and solutes across the nephron [12]. 
Most ATP generated during aerobic respiration is produced 
through the transfer of electrons to the electron transport 

chain (ETC) during oxidative phosphorylation. This process 
starts with glucose fueling the TCA cycle via glycolysis, trans-
ferring electrons to complexes I and II of the mitochondrial 
inner membrane ETC [13]. Electrons then move through the 
ETC to complex IV, where they combine with molecular oxy-
gen. As electrons pass through complexes I, III, and IV, pro-
tons are pumped into the intermembrane space, facilitating 
the conversion of ADP to ATP by ATP synthase (complex V) 
[14]. Dysfunctional mitochondria cause a decrease in ATP 
production, inflammation, and/or renal epithelial cell death 
[12,15,16]. In addition to generating ATP from glucose, mito-
chondria coordinate numerous other biosynthetic and cata-
bolic pathways. These include fatty acid β-oxidation, heme 
biosynthesis, steroidogenesis, ketogenesis, gluconeogenesis, 
and amino acid metabolism [17]. Presently, investigations 
into mitochondrial dysfunction in AKI predominantly rely on 
mouse and cell models in the realm of medical research. 
Several studies have shown that mitochondrial dysfunction 
influences the injury, repair, and progression of AKI [18–20]. 
Various mitochondrial quality control mechanisms are 
involved in regulating mitochondrial integrity and function 
to withstand stress and maintain the integrity and function 
of organelles, including antioxidant defense, protein quality 
control, mtDNA repair, mitochondrial dynamics (fusion and 
fission), mitophagy, and mitochondrial biogenesis [21]. 
Therefore, maintaining the integrity and function of the mito-
chondria is essential for cell homeostasis. In this review, we 
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discuss the mechanisms and potential therapeutic approaches 
associated with mitochondrial dysfunction in the pathogene-
sis of AKI.

2.  Renal energy metabolism

The kidney is one of the highest energy-consuming organs 
and requires a large amount of energy to actively maintain 
various metabolic, plasma hemodynamics, electrolyte and 
water homeostasis, nutrient reabsorption, and hormone 
secretion. The kidney exhibits the second highest mitochon-
drial content and oxygen consumption after the heart [22]. 
In the renal cortex, where there is abundant oxygen delivery 
and dense mitochondria, energy is created through aerobic 
metabolism with essentially no glycolysis. The renal cortex 
depends primarily on oxidation of fatty acids for Krebs cycle 
substrates. Almost all of ATP utilized by the renal tubules is 
dedicated to active reabsorption, and the production of ATP 
through oxidative phosphorylation adapts to meet the 
resorptive requirements of the tubules [23].

3.  Mitochondrial dysfunction in renal tubule 
epithelial cells (TECs)

The development of AKI is influenced by a multitude of fac-
tors and encompasses a variety of cell types within renal tis-
sue. Among these, the damage and subsequent death of 
renal TECs are recognized as the primary pathological mech-
anisms underlying AKI. As the primary component of the 

renal cortex, TECs are the main target cells of kidney injury 
due to their low tissue blood flow and oxygen supply, as 
well as the accumulation and concentration of various harm-
ful substances in these cells [24,25]. Due to the high mito-
chondrial content of TECs, cellular injury can lead to changes 
in mitochondrial metabolism, the production of reactive oxy-
gen species (ROS), an imbalance in calcium homeostasis, and 
cell apoptosis [26] (Figure 1). Cumulatively, mitochondrial 
defects in renal tubules contribute to epithelial atrophy, 
inflammation, or cell death, thereby driving the development 
of kidney diseases [11].

The highly dynamic nature of mitochondrial morphology, 
including changes in length, shape, size, and number, allows 
for the coordination of mitochondrial metabolism in response 
to cellular needs [27]. Various injurious stimuli, such as inflam-
matory cytokines, ischemia-reperfusion, drug, and toxins, can 
damage mitochondria [23]. This damage disrupts the normal 
vectorial pumping of protons across the inner mitochondrial 
membrane by enzymatic complexes in the ETC. Subsequent 
loss of membrane potential impairs selective permeability, 
leading to mitochondrial swelling. AKI leads to mitochondrial 
fragmentation, swelling, formation of vacuoles, and disappear-
ance of mitochondrial cristae [28]. In certain animal models of 
AKI, we observed sepsis induced AKI(SI-AKI) or IRI-AKI may 
lead to a decrease in mitochondrial number and alterations in 
ultrastructure due to the depletion of ATP and a decrease in 
membrane potential [29,30]. SI-AKI is characterized by tubular 
cell death, interstitial inflammatory cell infiltration, and mito-
chondrial dysfunction [31]. Conspicuous pathological alter-
ations over time, including severe vacuolar degeneration, 

Figure 1.  Mitochondrial dysfunction in AKI. After the kidney is damaged by various factors, under the involvement of a variety of mitochondrial quality 
control mechanisms, severe hypoxia, and acidosis of TECs lead to atrophy, necrosis, and apoptosis.
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detachment of TECs and tubular lumen dilatation showed in 
lipopolysaccharide (LPS)‐induced septic AKI mice [32]. In SI-AKI, 
there is an upregulation of autophagy and apoptosis [33]. In 
IRI-AKI, mitochondrial fragmentation, autophagy, and apopto-
sis are elevated [34,35]. Furthermore, prior investigations have 
documented that the pathogenesis of contrast induced AKI 
(CI-AKI) includes the cytotoxic impact of iodinated contrast 
media leading to oxidative stress, endothelial injury, and secre-
tion of vasoconstrictors affecting the TECs. Finally, mitochon-
drial dynamics dysregulation has been documented in both an 
in vivo murine model of cisplatin-induced AKI (CisI-AKI) and an 
in vitro cellular model using HK-2 cells [36–39]. Additionally, in 
toxic AKI, there is an increase in both autophagy and mito-
chondrial fragmentation alongside a decrease in synthesis 
[40,41]. These results provide hope for patients with AKI by 
improving renal tubular mitochondrial dysfunction [42]

4.  Mitochondrial energy metabolism and AKI

Mitochondria are highly dynamic and morphologically plastic 
organelles in cells, containing their unique DNA, and consist-
ing of four components including the inner membrane (IMM), 
outer membrane (OMM), membrane gap (IMS), and matrix. 
Their roles in cellular respiration, production of ROS, and oxi-
dative phosphorylation (OXPHOS) enable them to produce 
ATP for energy production [43]. Once mitochondria are dam-
aged, not only are there morphological and functional 
changes, but also the accumulation of damaged mitochon-
dria can result in several pathological changes, including the 
accumulation of by-products ROS, a decrease in mitochon-
drial membrane potential, and the translocation of apoptotic 
proteins [44]. Mitochondrial dysfunction precipitates a signif-
icant release of ROS, which in turn trigger apoptosis and 
proinflammatory pathways, exacerbating the injury [28,45]. 
Studies have shown that LPS-induced AKI is associated with 
hexokinase activation and increased glucose-6-phosphate 
dehydrogenase activity, which enhance pentose phosphate 
pathway activity [46–49]. Sepsis induces a metabolic shift 
driven by the mammalian target of rapamycin complex 1 
(mTORC1)–induced stabilization of hypoxia-inducible fac-
tor–1α (HIF-1α) [46]. When ATP levels decrease, AMP-activated 
protein kinase (AMPK), an essential sensor of energy deficit 
states, becomes activated. AMPK activation facilitates mito-
chondrial biogenesis and mitophagy through the induction 
of peroxisome proliferator-activated receptor (PPAR) γ coacti-
vator 1α (PGC-1α) [50]. Additionally, AMPK boosts glycolytic 
flux, fatty acid oxidation, and glucose transport [51]. During 
SI-AKI, modulating metabolism by reducing OXPHOS and 
mitochondrial ROS production, optimizing energy expendi-
ture, and strengthening cellular defenses against oxidative 
damage helps stabilize energy balance through mitochon-
drial biogenesis and mitophagy. Furthermore, the impaired 
combustion of fuel in AKI results in the intracellular accumu-
lation of fatty acids, which serve as the principal fuel for the 
renal cortex [52]. This accumulation may contribute to cellu-
lar dysfunction and death through lip toxicity, ultimately fos-
tering fibrosis [53].

AKI leads to a reduction in local nicotinamide adenine 
dinucleotide (NAD+). NAD+, functioning as an electron car-
rier from glycolysis, the Krebs cycle, and β-oxidation to the 
ETC is indispensable for the efficient generation of ATP [54]. 
In the context of mitochondrial dysfunction, an overload of 
mitochondrial reactive oxygen species (mtROS) can cause 
significant alterations in the mitochondrial membrane. This 
can lead to a persistent and intense state of mitochondrial 
acidosis, which in turn triggers the influx of extracellular cal-
cium ions (Ca2+) and results in cytoplasmic Ca2+ overload 
[55]. Ca2+ overload causes a range of harmful effects, includ-
ing ATP depletion, degradation of cell membrane proteins 
and phospholipids, damage to mtDNA, heightened oxidative 
stress, and ultimately, the re-opening of the mitochondrial 
permeability transition pore (mPTP) by Ca2+ overload and 
mtROS [20]. The opening of MPTP can trigger changes in the 
osmotic pressure between IMM and OMM, which ultimately 
leads to further damage to mitochondrial structures and the 
onset of a vicious cycle. However, reducing mtROS produc-
tion and inhibiting changes in mitochondrial permeability 
can help maintain the integrity of the mitochondrial mem-
brane, improve mitochondrial morphology, and reduce the 
extent of kidney damage [18]. Before the clinical manifesta-
tion of AKI, the mitochondrial structure of ischemic human 
kidneys changes, indicating that changes in the mitochon-
drial structure might not appear after injury; instead, mito-
chondrial dysfunction might be the cause of kidney injury 
[56]. Additionally, mitochondrial dysfunction can exacerbate 
kidney injury. Damaged mitochondria impair cellular energy 
metabolism and become the main source of ROS, which 
mediate oxidative stress and disrupt the stability of mtDNA. 
They are released along with mtDNA as damage-associated 
molecular patterns (DAMPs) in the cytoplasm, where they 
activate inflammatory responses [57–59]. A study found that 
NADH: ubiquinone oxidoreductase core subunit V1 (NDUFV1) 
improved the integrity and function of mitochondria, leading 
to reduced oxidative stress and maintain mitochondrial 
homeostasis in IRI-AKI mice [60] (Table 1). Hence, improving 

Table 1.  Mitochondrial dysfunction in AKI.

Mitochondrial 
dysfunction type Protective mechanism

Experimental 
model References

Energy 
metabolism

1.  ROS scavenger
2.  Maintaining membrane 
potential
3.  Decrease oxidative 
phosphorylation

IRI-AKI [60]

Mitochondrial 
dynamics

4.  Mitochondrial fusion and 
fission

IRI-AKI [84–86]
SI-AKI [32]

The antioxidant 
defense 
system

5.  Preventing excessive ROS 
production
6.  Maintaining optimal ATP 
production
7.  Decrease elevated 
oxidative stress

IRI-AKI [57]
SI-AKI [72,73]
CisI-AKI [70]
CI-AKI [75] [76]

Mitochondrial 
biogenesis

8.  Increasing ATP 
production
9.  Promote mitochondrial 
biogenesis

IRI-AKI [97]
SI-AKI [31,111]
CisI-AKI [39]

SI-AKI: sepsis-induced acute kidney injury; IRI-AKI: ischemia/reperfusion- 
induced acute kidney injury; CisI-AKI: cisplatin-induced acute kidney 
injury; CI-AKI: contrast-induced acute kidney injury.
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mitochondrial function is a promising strategy for treating 
renal dysfunction.

5.  Mitochondrial quality control and AKI

The mitochondrial quality control system comprises molecu-
lar and organelle quality control mechanisms. Mitochondria 
are the main source of cellular energy and the primary target 
of ROS in cells [61]. Thus, they are particularly vulnerable to 
damage under stressful conditions. Various quality control 
mechanisms in the mitochondria act at the molecular or sub-
cellular level to alleviate stress and maintain the integrity 
and functions of organelles, including antioxidant defense, 
protein quality control, mtDNA repair, mitochondrial dynam-
ics (fusion and fission), mitophagy, mitochondrial biogenesis 
mitochondrial DNA repair and protein quality control [11,62] 
(Figure 2). These quality control mechanisms facilitate the 
reduction of stress and maintenance of the steady state of 
mitochondrial structure and function [62]. Mounting evi-
dence underscores the involvement of perturbations in mito-
chondrial quality control in the pathogenesis of AKI and 
incomplete or maladaptive renal repair [62]. In the kidneys, 
mitochondrial quality control is a prerequisite for maintaining 
mitochondrial function, energy production, and cellular func-
tion. However, mitochondrial dysfunction due to AKI caused 
by multiple factors can cause cell death and tissue damage, 
which can further promote kidney dysfunction, eventually 

leading to organ failure [63,64]. Several studies have shown 
that mitochondrial dysfunction greatly promotes the patho-
genesis of AKI and adversely affects kidney repair after AKI 
[62,65,66]. Mitochondrial pathology can be detected in the 
kidney before the occurrence of renal injury and persists in 
the renal tubules that fail to recover after AKI. Disruption of 
mitochondrial homeostasis persisted for up to 144 h follow-
ing glycerol injection or IRI-AKI in mice [40]. Also, pre-AKI 
and post-AKI mitochondrial protection (such as inhibiting 
mitochondrial fragmentation through genetic or pharmaco-
logical methods) can alleviate kidney injury and decrease the 
transition to CKD [67].

5.1.  The antioxidant defense system in the mitochondria

The antioxidant defense system in the mitochondria helps in 
preventing excessive ROS production, maintaining optimal 
ATP production, and the proper functioning of the mitochon-
dria. Mitochondria generate ATP through ETC. Although con-
centrations of ROS in cells act as signaling molecules, high 
concentrations of ROS can react rapidly with NO to form 
strong oxidants and nitrogenous compounds, causing dam-
age to mitochondria and cells [68]. When ROS production 
exceeds the ROS removal ability of the antioxidant defense 
system of the cell, mitochondrial oxidative stress occurs, 
leading to the fragmentation of mtDNA, which results in 
mtDNA mutations in the next generation. The fragmentation 

Figure 2.  Mitochondrial quality control. Mitochondria quality control includes the biogenesis of mitochondrial structural proteins from nuclear DNA and 
dynamic remodeling of the mitochondrial network via fission and fusion to maintain an optimally functioning mass of mitochondria within the cell. 
PPAR-α: peroxisome proliferator-activated receptor alpha; PGC-1α: peroxisome proliferator-activated receptor gamma coactivator-1 alpha; NRF1/2: nuclear 
respiratory factor 1/2; TFAM: mitochondrial transcription factor A; ERR1: estrogen-related receptor-1; OPA1: optic atrophy 1; MFN1/2: mitochondrial fusion 
protein 1/2; DRP1: dynamin-related protein-1; YY1: transcriptional repressor protein 1; ΔΨm: mitochondrial transmembrane potential; ROS, reactive oxygen 
species; OXPHOS: Oxidative phosphorylation.
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of mtDNA reduces the efficiency of the ETC, decreases ATP 
production, and damages proteins and lipids [69]. In IRI-AKI, 
ROS promotes kidney damage by suppressing the mainte-
nance of mtDNA mediated by mitochondrial transcription 
factor A (TFAM), leading to a decrease in mitochondrial 
energy metabolism and an increase in the release of cyto-
kines [57]. Recent evidence has unequivocally demonstrated 
the protective role of transcription factor EB(TFEB) in mito-
chondrial function [70]. TFEB acts as a master regulator of 
the autophagy-lysosomal pathway, facilitating the removal of 
misfolded protein aggregates or damaged organelles. The 
TFEB pathway governs mitochondrial quality control through 
three primary mechanisms: mitophagy, mitochondrial bio-
genesis, and scavenging of ROS [71]. In CisI-AKI, TFEB 
decreased in a concentration-dependent manner in mouse 
kidney tissue and HK-2 cells treated with cisplatin. Knockdown 
of TFEB worsened cisplatin-induced kidney cell injury, which 
was partially improved by TFEB overexpression in HK-2 cells. 
TFEB knockdown also worsened cisplatin-induced damage to 
mitochondria in vitro, causing membrane potential depolar-
ization, mitochondrial fragmentation, and swelling [70]. ROS 
can also release cytochrome C, triggering apoptosis and 
causing mitochondrial dysfunction [69]. During AKI and renal 
repair, the ability of TECs to remove ROS from the mitochon-
dria is impaired, leading to the accumulation of ROS and 
inhibition of mitochondrial oxidative phosphorylation, which 
in turn decreases the activity of cytochrome C oxidase and 
causes mitochondrial dysfunction [62]. Furthermore, recent 
studies have shown RIPK3 exacerbates kidney tubular injury 
by inducing elevated oxidative stress and mitochondrial dys-
function and treatment with a mitochondria-targeted antiox-
idants (SkQR1) after SI-AKI improved the function of the 
kidneys in rats [72,73]. Also, considering that oxidative stress 
is also thought a main cause of CI-AKI. Electrons leaking 
from the ETC undergo reactions with oxygen resulting in the 
formation of superoxide anions, which can be subsequently 
converted to hydrogen peroxide by superoxide dismutase 
(SODs) [74]. Recent studies have shown delivery of recombi-
nant sestrin2 ameliorates oxidative stress, mitochondrial 
damage, and renal dysfunction in CI-AKI [75]. Cisplatin’s accu-
mulation in the mitochondrial matrix can impact cytochrome 
c oxidase, resulting in a decrease or even depletion of intra-
cellular ATP levels and an elevation in ROS [76]. Conversely, 
administration of a mitochondrial-specific SOD mimetic 
(GC4419) alleviated AKI triggered by a single cisplatin dose 
and kidney fibrosis induced by repeated cisplatin administra-
tions [77]. Therefore, the balance between ROS production 
and clearance in the mitochondria is crucial for maintaining 
mitochondrial function and cell activity.

5.2.  Mitochondrial dynamics and AKI

Mitochondria are highly dynamic organelles with a lifecycle 
that includes continuous remodeling through fission, fusion, 
and mitophagy, followed by intracellular disposal. Under 
physiological conditions, the balance between mitochondrial 
fusion and fission is maintained, and fission and fusion 

facilitate the exchange of substrates and metabolites in cells, 
producing subcellular organelles [78,79]. Many studies have 
shown that during AKI, fission occurs more often than fusion, 
leading to mitochondrial fragmentation. Mitochondrial frag-
mentation occurs before TECs apoptosis, and inhibiting mito-
chondrial fission can alleviate TECs death and kidney injury [80].

Dynamin-related protein 1 (Drp1), a pivotal regulator of 
mitochondrial fission, promptly translocate to mitochondria 
upon tubular cell injury onset [81]. Drp1, which is mainly 
found in the cytoplasm, translocate to the mitochondrial 
outer membrane upon activation by interacting with recep-
tor proteins like mitochondrial fission factor (MFF), mitochon-
drial elongation factor 1 (Mid51), and mitochondrial fission 1 
(Fis1), thereby carrying out its function [82,83]. Recent 
research findings suggest that Drp1 inhibitors can mitigate 
Drp1-mediated mitochondrial fragmentation by inhibiting 
the interaction between Drp1 and Fis1, thereby providing 
significant protective effects in mice kidney IRI and Bama 
miniature pig kidney IRI models [84]. Additionally, both 
siRNA-mediated knockdown of Drp1 and the expression of a 
dominant-negative Drp1 significantly mitigated mitochon-
drial fragmentation, cytochrome c release, caspase activation, 
and apoptosis, promote TECs repair and kidney recovery, and 
reduce kidney fibrosis [84–86]. Subsequent in vivo investiga-
tions demonstrated mitochondrial fragmentation in proximal 
tubular cells during renal IRI and cisplatin-induced nephro-
toxicity in mice [35]. The stagnation of mitochondrial fusion 
also enhances mitochondrial fragmentation and TECs death 
in AKI. In vitro study reported that the loss of mitochondrial 
fusion protein 2 (MFN2), a key factor for mitochondrial OMM 
fusion, can promote Bax-mediated TECs injury and death 
through the mitochondrial pathway, which indicated that 
inhibiting mitochondrial fusion can also exacerbate TECs 
injury in AKI [87]. Recent research suggests that SIRT3 plays 
a protective role against AKI [88]. It is proposed that enhanc-
ing Sirt3 activity to improve mitochondrial dynamics holds 
promise as a therapeutic approach to improving outcomes in 
renal injury [41]. Sirt3 overexpression mitigated LPS-induced 
mitochondrial damage and apoptosis in TECs by enhancing 
OPA1-mediated mitochondrial fusion via the deacetylation of 
i-AAA protease (YME1L1), an upstream regulatory factor of 
OPA1 [32]. Overall, these findings suggest that the activation 
of fission and the stagnation of fusion can induce mitochon-
drial fragmentation, and thus, they are crucial for renal tubu-
lar injury repair in AKI.

5.3.  Mitochondrial biogenesis and AKI

Abnormal mitochondrial biogenesis in TECs also occurs in 
AKI. Mitochondrial biogenesis involves the production of new 
mitochondria and the replication of mtDNA, which can 
increase ATP production to meet the growing energy demand. 
Peroxisome proliferator-activated receptor gamma 
coactivator-1α (PGC-1α) is a major regulator of mitochondrial 
biogenesis, and it is highly expressed in the proximal tubules 
[89]. PGC-1α serves as the master regulator of mitochondrial 
biogenesis, orchestrating the transcriptional processes that 
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result in augmented mitochondrial mass [18,90]. This family 
consists of three members: PGC-1α, PGC-1β, and PGC-1-
related coactivator (PRC) [91]. The former two have close 
homology, and they are both involved in the regulation of 
mitochondrial physiological processes. PGC-1α can activate 
the expression of several nuclear genes, including TFAM, TFEB, 
nuclear respiratory factor 1 (NRF1), nuclear respiratory factor 
2 (NRF2), peroxisome proliferator-activated receptor alpha 
(PPAR-α), estrogen-related receptor 1 (ERR1), and transcrip-
tional repressor protein 1 (YY1) to promote mitochondrial 
biogenesis [92]. Therefore, it is anticipated that PGC-1α 
expression would rise in metabolically active tissues like the 
kidney [93]. However, PGC-1α levels significantly decline in 
kidney diseases, encompassing AK and CKD [18]. Notably, 
PGC-1α downregulation is consistently observed in experi-
mental AKI models induced by conditions such as sepsis, IRI, 
cisplatin exposure, or folic acid administration [94–99]. This 
downregulation correlates with mitochondrial dysfunction 
and impaired mitochondrial biogenesis. Furthermore, NRF2 is 
a pivotal transcription factor involved in safeguarding against 
oxidative stress and modulating the inflammatory cascade 
[100]. The NRF2-mediated antioxidant response orchestrates 
the expression of genes encoding proteins, these proteins act 
either directly or indirectly to scavenge free radicals, thereby 
mitigating cellular oxidative stress [101]. Recent research indi-
cates that Nrf2 may exert protective effects against inflamma-
tion beyond its antioxidant functions [102]. Nrf2 plays a 
crucial role in modulating the innate immune response by 
downregulating the expression of pro-inflammatory genes 
while enhancing anti-inflammatory signaling [103,104]. NRF2 
deficiency exacerbates susceptibility to both ischemic and 
nephrotoxic AKI in mice, culminating in oxidative stress and 
consequent tissue injury [105,106]. TFAM and TFEB serves as 
a critical regulator of mitochondrial DNA transcription and 
replication [92]. TFEB enhances mitochondrial biogenesis by 
upregulating PGC-1α expression, which subsequently fosters 
TFEB expression [71]. Numerous mitochondrial genes harbor 
YY1 binding sites within their promoter regions, and this tran-
scription factor has been identified to collaborate with PGC-1α 
in regulating their expression [107]. DNA-binding sites for 
ERR-α have been delineated in a considerable number of 
nuclear-encoded mitochondrial genes, encompassing those 
pivotal in oxidative phosphorylation, fatty acid oxidation, the 
TCA cycle, and regulators of mitochondrial dynamics such as 
fusion and fission. Moreover, the transcriptional coactivators 
PGC-1α and PGC-1β serve as potent activators of ERRs, stim-
ulating the expression of mitochondrial genes [108]. 
Meanwhile, PGC-1α regulates the expression of intracellular 
mitochondrial antioxidant defense substances, which can ele-
vate the levels of manganese superoxide dismutase (MnSOD, 
SOD2), cyclooxygenase-5, cyclooxygenase-3, uncoupling pro-
tein 2 (UCP-2), thioredoxin reductase 2 (TRXR2), and thiore-
doxin 2 (TRX), thereby protecting cells from damage caused 
by mitochondrial dysfunction. Many studies have shown that 
enhancing the expression of PGC-1α through mitochondrial 
biogenesis can decrease kidney injury and help in repairing 
AKI [109,110]. In folic acid-induced AKI(FA-AKI), the level of 

PGC-1α decreases with the severity of kidney injury but 
returns to normal during the kidney recovery period, indicat-
ing a negative association between PGC-1α expression in the 
renal tubules and the severity of AKI [95]. Furthermore, the 
expression of PGC-1α in the renal cortex of wild-type mice 
decreased during the development of IRI-AKI. PGC-1α knock-
out mice developed more severe AKI symptoms, decreased 
NAD and nicotinamide adenine dinucleotide (NAM) levels in 
TECs, accumulation of fatty acids in TECs, and failure to 
recover renal function [97]. In addition, the renal biopsy sam-
ples of AKI patients show a lower expression of PGC-1α com-
pared to its expression in normal human kidney tissue [97]. 
These results suggest that the production of new mitochon-
dria to replace damaged and degraded mitochondria during 
AKI can meet the increased metabolic and energy demands 
during the recovery phase of acute injury [91]. LPS induced 
decreased expression of PGC-1α and its downstream mito-
chondrial target genes in renal cortical cells of SI-AKI mice 
and decreased mitochondrial DNA content in the renal cortex 
[31,111]. Furthermore, a reduction in the level of PGC-1α, a 
transcription coactivator responsible for regulating mitochon-
drial biogenesis, was noted in the CisI-AKI mouse model, indi-
cating impairment of mitochondrial biogenesis [39]. 
Pharmacological approaches to restore mitochondrial biogen-
esis have been developed and have shown effective improve-
ment in ischemic kidney injury. For example, the β2-adrenergic 
receptor (β2AR) agonist Formoterol and the selective 5-HT1F 
receptor agonists LY344864 and LY334370 have been used 
[112,113]. These are feasible approaches to reducing damage 
due to AKI and promoting recovery.

5.4.  Mitophagy and AKI

Some studies have suggested that mitophagy strongly influ-
ences the pathogenesis of AKI and is generally considered to 
be a defense mechanism under pathological conditions [114]. 
Mitophagy is a selective form of autophagy that can seques-
ter and degrade surplus or damaged mitochondria through 
autophagosomes, thus eliminating ROS to promote the main-
tenance of cellular energy metabolism, inhibiting excessive 
activation of mitochondrial fission, regulating mitochondrial 
quality control, and maintaining cellular homeostasis 
[57,115,116]. In the initial stage of kidney injury, inducing 
mitochondrial engulfment by removing damaged mitochon-
dria ensures quality control, which in turn can prevent the 
accumulation of ROS and the release of pro-apoptotic factors, 
ultimately reducing TECs injury and death [117]. The induc-
tion of mitophagy can also prevent damaged mitochondria 
from releasing mtDNA, which can help decrease immune acti-
vation and inflammation related to the pathogenesis of AKI. 
Two signaling pathways mediate mitophagy, including the 
mitophagy receptor pathway (consisting of BNIP3, BNIP3L/
NIX, FUNDC1) and the PINK1/PARK2 (or PINK1/Parkin) path-
way [118] (Figure 3). Mitophagy is induced through the 
receptor-mediated mitophagy pathway by recruiting mitoph-
agy structural protein and microtubule-associated protein 
light chain and binding with the mitochondrial BNIP3L 
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membrane protein NIX and mitochondrial outer membrane 
domain-containing protein FUNDC1, which constitute the 
receptor-mediated mitophagy pathway [119–123]. Additionally, 
phosphatase and tensin homolog-induced putative kinase 1 
(PINK1)-mediated mitophagy induced by the mitochondrial 
outer membrane protein homolog PINK1 is the most widely 
studied classic mitophagy pathway in research on age-related 
diseases. PINK1 is a mitochondrial serine/threonine kinase, 
and Parkin is an E3 ubiquitin ligase that depends on cytoplas-
mic protein-linking enzymes. Mitophagy is regulated through 
the PINK1/E3 ubiquitin ligase Parkinson’s disease protein 2 
(Parkin/PARK2) classic pathway via the activity of PINK1 and 
E3 ubiquitin ligase [124–129]. Damaged mitochondria and 
lysosomes fuze to form mitochondrial autolysosomes, which 
eliminate damaged mitochondria and prevent the excessive 
accumulation of ROS. Several recent studies have shown that 
mitophagy is activated by the action of IRI, cisplatin, and con-
trast agents. Mitophagy reduces mtROS, improves energy 
metabolism, attenuates inflammatory response, and maintains 
mitochondrial dynamic homeostasis, thus decreasing TECs 
death in AKI, improving organ function, and promoting injury 
repair (Table 2).

Mitophagy is triggered in TECs in ischemic AKI models, 
both in vitro and in vivo [130]. In mice, renal IRI triggers 
PINK1-PARK2-mediated mitophagy in TECs. Mice deficient in 

Pink1, Park2, or both exhibits exacerbated mitochondrial 
damage and heightened inflammatory cell infiltration in the 
context of renal IRI [124]. When mitochondria are damaged, 
PINK1 accumulates in the outer mitochondrial membrane, 
where it binds to the translocase of the outer mitochondrial 
membrane and becomes activated by autophosphorylation. 
Activated PINK1 then phosphorylates ubiquitin, leading to 
the recruitment of PRKN to the mitochondria and activation 
of its E3 ligase activity. This process ultimately ubiquitinates 
mitochondrial substrates and initiates mitophagy [115]. 
Additionally, BNIP3 overexpression ameliorates renal injury 
and enhances mitophagy in tubular HIF-1α-deficient mice 
subjected to IRI [123]. Furthermore, Ndrg2 deficiency may 
emerge as a promising therapeutic target for IRI injury by 
reducing oxidative stress, preserving mitochondrial homeo-
stasis, and promoting PINK1/Parkin-mediated mitophagy acti-
vation in mice []. In SI-AKI, it was found that the impediment 
of Parkin recruitment to mitochondria hinders the initiation 
of mitophagy, leading to extensive apoptosis of TECs and 
exacerbating kidney damage [129,131]. The protective effects 
of mitophagy in sepsis-induced AKI can be attributed to a 
reduction in inflammation [132]. Liu et  al. found that PINK1 
deficiency improved cisplatin-induced AKI in rats, potentially 
through the inhibition of DNM1L-mediated mitochondrial fis-
sion and excessive mitophagy [133]. In CI-AKI models, both 

Figure 3.  Molecular mechanisms of mitophagy. There are two major mechanisms for mitochondrial priming in mitophagy. In the PINK1/PARK2 pathway, 
mitochondrial damage or depolarization impairs the import of PINK1 into the mitochondria, resulting in the accumulation of PINK1 on OMM. Then, PINK1 
recruits PINK2 from the cytosol and activates its E3 ligase activity via phosphorylation. Upon activation, PINK2 catalyzes the formation of poly-ubiquitin 
chains on OMM proteins. In the mitophagy receptor pathway, BNIP3、BNIP3L/NIX and FUNDC1 mitophagy receptors localize to the OMM and interact 
directly with LC3 to mediate mitochondrial elimination.PINK1: PTEN-induced putative kinase-1; parkin: Parkinson protein-2 E3 ubiquitin protein ligase; 
BNIP3: BCL-2/adenovirus E1B 19 kDa protein-interacting protein 3; BNIP3L: BCL-2/adenovirus E1B 19 kDa protein-interacting protein 3-like; nix: NIP3-like 
protein X; FUNDC1: FUN14 domain-containing 1; IMM: inner mitochondrial membrane; OMM: outer mitochondrial membrane; LC3: light chain 3.
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in vitro and in vivo, PINK1-PRKN-mediated mitophagy pre-
vented apoptosis and tissue damage by lowering mitochon-
drial ROS levels and suppressing NLRP3 inflammasome 
activation [58]. However, knocking out the key factors of the 
mitophagy signaling pathway, i.e., PINK1, Parkin, or BNIP3, 
can increase mitochondrial damage, ROS production, and cell 
apoptosis in the mice renal tubules [134]. These findings sug-
gest that the activation of TECs mitophagy might be a 
potential therapeutic strategy to alleviate renal tubular 
injury in AKI.

5.5.  Mitochondrial protein quality control in AKI

Maintaining mitochondrial proteomic homeostasis is para-
mount for cellular health and bioenergetics [135]. The mito-
chondrial protein quality control system comprises 
chaperones catalyzing protein folding and ATP-dependent 
proteases responsible for removing unwanted and unrepaired 
proteins [62]. Proper protein import, targeting, folding into 
functional proteins, and their regulated turnover are indis-
pensable for mitochondrial health and integrity. These molec-
ular processes collectively constitute the mitochondrial 
protein quality control (MPQC) system [136]. When the sys-
tem’s capacity is overwhelmed by excessive amounts of 
unfolded or misfolded proteins, it triggers the mitochondrial 
unfolded protein response (UPRmt) [137]. A diminished 
capacity of mitochondrial protein quality control systems can 
lead to mitochondrial dysfunction, thereby contributing to 
the development of various diseases [138]. Additionally, sig-
nal transduction from mitochondria to the cell nucleus occurs 
through the SiRT3-FOXO3A axis [139,140]. Accumulation of 

misfolded proteins induces mitochondrial autophagy and 
antioxidant defense mechanisms to reduce oxidative stress 
within the mitochondria [141]. However, there is currently no 
literature definitively elucidating the functional relationship 
between mitochondrial protein quality control systems and 
AKI. Further research is warranted to explore this topic more 
comprehensively.

5.6.  Mitochondrial DNA repair in AKI

Mitochondria are regulated by dual-genome control mecha-
nisms, whereby mtDNA encodes a small portion of mito-
chondrial proteins, while over 99% of mitochondrial proteins 
are encoded by nuclear DNA (nDNA), synthesized in the 
cytoplasm, and subsequently translocated into the mitochon-
dria [142–144]. Human mitochondrial DNA (mtDNA) is a 
double-stranded circular molecule comprising 16,569 base 
pairs with a molecular mass of 107 daltons [145]. It consists 
of two intertwined strands forming a double helical struc-
ture, including a heavy chain and a light chain. The heavy 
chain encodes 28 genes, while the light chain encodes 9 
genes, totaling 37 genes. Among these, only 13 genes 
encode proteins crucial for mitochondrial energy production. 
Additionally, 7 genes encode proton pumps in the electron 
transport chain, which are responsible for receiving electrons 
from NADH [146]. With increasing age, mutations in mtDNA 
accumulate, resulting in a higher frequency of mutations in 
mtDNA compared to nDNA.The progressive accumulation of 
mtDNA mutations can lead to insufficient cellular energy pro-
duction and oxidative stress, ultimately culminating in mito-
chondrial dysfunction [147]. Dysfunction in mtDNA repair 

Table 2. A ctivation mechanism and protective effect of mitophagy in AKI.

Mechanism Experimental model Protective effect against AKI References

PINK1/PARK2 
pathway

IRI-AKI 1.  Removal of damaged mitochondria
2.  Scavenging ROS
3.  Reducing inflammatory response
4.  Inhibiting apoptosis
5.  Inhibiting mitochondrial depolarization
6.  Modulate cell death

[124,125,128]

CisI-AKI 7.  Inhibiting apoptosis
8.  Scavenging ROS
9.  Inhibit mitochondrial depolarization

[126,156]

SI-AKI 10.  Inhibiting apoptosis
11.  Mitochondrial quality control
12.  Removal of damaged mitochondria

[127,129,131]

CI-AKI 13.  Reduction of mtROS production
14.  Inhibition of NLRP3 inflammatory vesicle activation
15.  Reduce mitochondrial damage

[58]

BNIP3 pathway IRI-AKI 16.  Removal of damaged mitochondria
17.  Scavenging ROS
18.  Reduce inflammatory response.
19.  Inhibiting apoptosis

[119–122]

CI-AKI 20.  Inhibition of NLRP3 inflammatory vesicle activation
21.  Inhibit apoptosis

[157]

FUNDC1 pathway IRI-AKI 22.  Inhibiting apoptosis
23.  Mitochondrial quality control

[116]

BNIP3L/NIX pathway IRI-AKI 24.  Inhibiting apoptosis
25.  Reduction of mtROS production

[123,158]

PINK1: PTEN-induced putative kinase-1; PNRK2: Parkinson protein-2 E3 ubiquitin protein ligase; BNIP3: BCL-2/adenovirus E1B 19 kDa protein-interacting 
protein 3; BNIP3L: BCL-2/adenovirus E1B 19 kDa protein-interacting protein 3-like; FUNDC1: FUN14 domain-containing 1; Drp1: power-related protein 1; 
SI-AKI: sepsis-induced acute kidney injury; IRI-AKI: ischemia/reperfusion-induced acute kidney injury; CisI-AKI: cisplatin-induced acute kidney injury; CI-AKI: 
contrast-induced acute kidney injury; mtROS: mitochondrial reactive oxygen species; NLRP3: NOD-like receptor family pyrin structural domain 3.
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mechanisms compromises mitochondrial function, heightens 
susceptibility to cell death, and has been associated with 
human diseases including cognitive impairment, cardiac and 
skeletal myopathies, nephropathies, hepatopathies, and 
endocrinopathies [145].

The dynamic interplay between mitochondrial fission and 
fusion is crucial for maintaining the organization and integ-
rity of mtDNA [148,149]. Inhibition of mitochondrial fission 
leads to the aggregation of mtDNA, resulting in mitochon-
drial deformation [150]. Additionally, the uneven distribution 
or defects in mtDNA can hinder oxidative phosphorylation in 
the mitochondrial respiratory chain [151]. Deficiencies in 
mitochondrial fusion can further impair and diminish mtDNA 
synthesis. Reduced expression of mitochondrial fusion pro-
teins may result in increased levels of mutant mtDNA, indi-
cating a potential role of mitochondrial fusion in mitigating 
the detrimental effects of defective mtDNA through dilution 
[152]. In a rat model of IRI, a significant presence of oxidized 
DNA was observed in the cytoplasm of renal tubular epithe-
lial cells one hour after reperfusion [153]. Treatment with the 
ATP-sensitive potassium channel opener diazoxide effectively 
reduced oxidative mitochondrial DNA levels [154]. As it 
stands, treatment options for mtDNA repair remain limited. 
However, advancements in model organism research are 
progressively enhancing our comprehension of the patho-
physiology underlying these conditions. This growing under-
standing is expected to catalyze the development of novel 

therapeutic drugs aimed at addressing mtDNA-related dis-
eases in the future.

6.  Mitochondrial targeting for AKI therapy

Mitochondrial dysfunction plays a crucial role in the develop-
ment of various kidney diseases, highlighting the potential of 
mitochondria as therapeutic targets that require further 
investigation. Current research focuses on several key areas 
related to mitochondrial dysfunction in kidney diseases, 
including alterations in mitochondrial biogenesis, imbalances 
between fusion and fission processes leading to mitochon-
drial fragmentation, oxidative stress, release of cytochrome c 
and mitochondrial DNA resulting in apoptosis, mitophagy, 
and defects in energy metabolism [20,62].

Recently, numerous agents have emerged as potential 
therapeutic approaches in kidney pathology, targeting differ-
ent mitochondrial processes. For example, in a mouse model 
of ischemic AKI, the lack of Drp1 inhibited mitochondrial 
fragmentation in TECs, or treatment with a mitochondria- 
targeted antioxidant (SS-31) promoted renal recovery and 
mitigated renal fibrosis [37]. Moreover, Mitoquinone (MitoQ), 
a mitochondria-targeted antioxidant known for its capacity 
to inhibit mitochondrial ROS production, exhibits a propen-
sity to accumulate within cells, facilitated by the positive 
charge of the plasma membrane. Subsequently, it undergoes 
further enrichment within mitochondria, driven by the 

Table 3.  Therapeutic targeting of drugs for mitochondrial dysfunction in AKI.

Drug name Drug type Mechanism Experimental model References

SS-31 Cardiolipin protection Binds cardiolipins
Prevents their peroxidation
Maintains mitochondrial membrane structure and 

potential

IRI-AKI
SI-AKI
CisI-AKI
UUO
CI-AKI

[159–162]

SS-20 1.  Binds cardiolipins
2.  Increases ATP
3.  ROS scavenger

IRI-AKI [163]

Mdivi-1 Fission inhibitor Selectively inhibits Drp1
Induces mitochondria fusion
Increases ATP production

IRI-AKI
SI-AKI
CisI-AKI
UUO

[164]

SRT1720 Biogenesis activator 4.  Activates Sirtuin1
5.  Increase expression of PGC-1α

IRI-AKI
UUO
CisI-AKI

[165,166]

Resveratrol Activates Sirtuin1
ROS scavenger

IRI-AKI [167]

Formoterol 6.  Increase PGC-1α synthesis IRI-AKI [168]
LY344864 7.  Selectively activates 5-HT1F receptor IRI-AKI [169,170]
Thiazolidinediones 8.  Increased PPAR-γ expression

9.  Reduced oxidative stress
IRI-AKI [62,171–173]

TDZD-8 mPTP inhibitor Selectively inhibits GSK-3β
Decreases MPT

IRI-AKI
NSAID-AKI

[174,175]

MitoQ Antioxidants 10.  ROS scavenger
11.  Maintain mitochondrial ΔΨm

CisI-AKI [155]

SkQR1 12.  Maintain mitochondrial ΔΨm IRI-AKI [176]
Curcumin 13.  Weaken oxidant stress IRI-AKI [177]
Urolithin A Enhancement of 

Mitophagy and 
Autophagy

14.  Maintain mitochondrial ΔΨm
15.  Restores ATP production

CisI-AKI [178]

SS-20: Szeto–Schiller peptide 20; SS-31: Szeto–Schiller peptide 31; Mdivi-1: mitochondrial division inhibitor 1; IRI-AKI: ischemia/reperfusion-induced acute 
kidney injury; CisI-AKI: cisplatin-induced acute kidney injury; CI-AKI: contrast-induced acute kidney injury; NSAID-AKI: non-steroidal anti-inflammatory 
drug-induced acute kidney injury; UUO: unilateral ureteral obstruction; mPTP: mitochondrial permeability transition pore; SkQR1: 10-(6′-plastoquinonyl) 
decylrhodamine 19; TDZD-8: 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione; 5HT1F: 5-hydroxytryptamine receptor 1 F; GSK-3β:, glycogen synthase 
kinase 3β; MitoQ: mitochondrial coenzyme Q; ΔΨm: mitochondrial membrane potential.
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positive charge of the mitochondrial membrane [155]. Li 
et  al. discovered that the suppression of Drp1 phosphoryla-
tion, facilitated by mitochondrial division inhibitor-1 (Mdivi-1), 
markedly attenuates renal IRI-induced mitophagy in rats, 
while not impacting overall autophagy. Their findings further 
validated that diminished mitophagy exacerbates cellular 
apoptosis and exacerbates IRI-induced renal dysfunction 
[130]. These agents aim to restore mitochondrial function 
and mitigate the harmful effects of mitochondrial dysfunc-
tion on renal health. Currently, a variety of strategies are 
being employed to target mitochondria to enhance kidney 
function and improve kidney treatment. The agents utilized 
in these strategies can be categorized as biogenesis activa-
tors, fission inhibitors, antioxidants, mPTP inhibitors, and 
compounds that promote mitophagy and protect cardiolipin 
[67] (Table 3). Additionally, several clinical trials are currently 
underway investigating targeted treatments for AKI. These 
include a Phase I study evaluating MTP-131 in subjects with 
impaired kidney function(NCT02436447), a trial assessing an 
antioxidant’s efficacy in reducing renal uremic toxins and oxi-
dative stress in patients undergoing hemodialy-
sis(NCT03946176), and a study investigating the use of the 
antioxidant coenzyme Q10 to mitigate acute kidney injury 
following cardiac surgery(NCT04445779, NCT01408680, 
NCT00908297, NCT00307996). Finally, curcumin, a natural 
polyphenol compound found in turmeric, has been studied 
for its potential antioxidant, anti-inflammatory, and nephro-
protective properties [20]. A randomized controlled trial on 
the efficacy of curcumin in preventing CI-AKI following kid-
ney transplant surgery (NCT04890704, NCT01225094, 
NCT01285375, NCT03935958).

7.  Conclusion

In this review, we comprehensively explore the underlying 
mechanisms that precipitate mitochondrial dysfunction in 
AKI and succinctly introduce pertinent mitochondrial-targeted 
therapeutic drugs and ongoing clinical trials. The research 
findings suggest that preserving mitochondrial function 
holds promise for renal protection and mitigating the burden 
of AKI. AKI is frequently linked to significant necrosis and 
apoptosis in TECs, with mitochondrial dysfunction emerging 
as a central pathophysiological factor. However, the kidney is 
a heterogeneous organ comprising diverse cell types, with 
researchers primarily concentrating on tubular epithelial cells; 
hence, mitochondrial dysfunction in other cell types often 
remains largely uncharted.

Presently, although numerous therapeutic targets for AKI 
have been identified through research, and with advance-
ments in human clinical trials assessing the efficacy and 
safety of mitochondrial-targeted therapy for AKI treatment, 
the clinical implementation of these targeted therapeutic 
drugs holds paramount importance in retarding the progres-
sion of AKI and enhancing the prognosis of AKI patients. In 
summary, despite the potential therapeutic benefits of 
mitochondrial-targeted drugs in AKI, their clinical utilization 
still encounters several challenges and unknown factors, 

including adaptation to different AKI subtypes, the side 
effects of targeted drugs, and the uncertainty surrounding 
treatment outcomes, necessitating further research to gain a 
deeper understanding of the pathophysiological role of mito-
chondria in AKI and additional clinical trials to tackle 
these issues.
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