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Abstract: Fusarium root rot caused by the Fusarium species complex significantly affects the yield and
quality of Angelica sinensis, a valuable medicinal herb. Traditional management primarily relies on
chemical fungicides, which have led to pathogen resistance, environmental hazards, and concerns
regarding public health and the active components in A. sinensis. This study explores the efficacy
of a novel plant-derived biopesticide Shi Chuang Zhi Feng Ning (T1; SCZFN), alongside Bacillus
subtilis wettable powder (T2) and a chemical fungicide (T3), in controlling root rot and understanding
their impacts on the rhizosphere microbial community and root metabolome. Results of the field
experiment demonstrated that treatments T1 and T3 achieved control efficiencies of 73.17% and
75.45%, respectively, significantly outperforming T2 (39.99%) and the control. High-throughput
sequencing revealed that all treatments altered the diversity and structure of microbial communities,
with T1 and T2 reducing the abundance of taxa linked to root rot, such as Muribaculaceae spp., Humicola
spp., Fusarium spp., and Mycochlamys spp. Treatment T1 notably enhanced beneficial bacterial
taxa, including Acidobacteria spp., Nitrospira spp., and Pedosphaeraceae spp., involved in carbon
cycling and plant growth promotion. Metabolomic analysis identified 39, 105, and 45 differentially
expressed metabolites (DEMs) across the treatments, demonstrating T1’s potential to modulate the
root metabolome effectively. Further, a correlation analysis demonstrated a stronger correlation
between distinct microorganisms with significant influence and DEMs of T1 treatment compared to
other treatments. These findings underscore biopesticide SCZFN’s role in enhancing plant health and
disease suppression in A. sinensis, providing insights into its biocontrol mechanisms and supporting
the development of sustainable disease management strategies in its cultivation.

Keywords: Angelica sinensis; disease suppression; biological control; rhizosphere microbiome
modulation; root metabolomics

1. Introduction

Angelica sinensis (Oliv.) Diels, a member of the Umbelliferae family, is commonly
known as Dang Gui in China. It is a well-known traditional Chinese medicinal herb with a
long history of cultivation and is famous for its medicinal value [1]. A. sinensis is widely
used in the medical field and contains over 80 essential chemical components such as
volatile oils (e.g., ligustilide and n-butenolactone), organic acids (e.g., vanillic acid and
ferulic acid), flavonoids, terpenoids, polysaccharides, and others [2]. It exhibits superior
biological activities, including anti-tumor, anti-inflammatory, and antioxidant properties,
as well as uterine disorders and blood-nourishing effects [3], and ranks among China’s top
5 herbal medicines [4]. In addition to its medicinal properties, A. sinensis has been exported
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to more than 20 countries and regions, including America, Europe, Taiwan, Hongkong,
and Southeast Asia, as a dietary supplement [5].

Gansu Province in China, mainly Minxian County, is famous for A. sinensis production
with a long cultivation history of more than 1700 years. With the increase in domestic and
international market demands, the cultivation area of A. sinensis steadily increases each
year. In 2018, the planting area of A. sinensis in Gansu Province reached approximately
44,000 hectares, yielding an annual production of about 150,000 tons worth CNY 2.2 bil-
lion [6]. Recently, with the expansion of the A. sinensis cultivation area and continuous
cropping to meet the market demand, root rot disease has become a significant obstacle to
healthy crop production and decline in yield and quality [4,5,7]. During the early stage,
A. sinensis root rot is characterized by the yellowing and wilting of leaves followed by
necrosis of the root tissue, which hinders nutrient supply to the aerial parts and ultimately
leads to plant mortality due to inadequate nutrition and water availability [4].

Many previous studies reported that multiple genera or species of pathogens can
contribute to the occurrence of root rot disease [8,9]. Fusarium species are the main culprit
and responsible for the occurrence of root rot diseases in many crops [5]. Various Fusarium
spp. have been reported as the primary pathogen of root rot disease, including Fusarium
tricinctum, F. solani, F. oxysporum, F. acuminatum, and F. avenaceum [4,5,7]. Similarly, F. solani,
F. oxysporum, and F. acuminatum were identified as the primary culprits causing root rot
in Atractylodes macrocephala and Astragalus membranaceus [9]. Many previous studies have
reported that root rot is usually a mixed infection of different pathogens, in addition to the
primary pathogens, also accompanied by various “helper” auxiliary pathogens, including
Clonostachys rosea [10], Cylindrocarpon destructans [11], and Alternaria spp. [8].

There has been limited research on A. sinensis root rot, and most of the studies primar-
ily focus on isolating and collecting pathogens, with few studies conducted on effective
prevention and control methods. In agricultural production, chemical pesticides such as
carbendazim [12], fludioxonil [13], and hymexazol [14] are commonly employed for root
rot prevention and control. However, their increased usage in quantity and frequency has
resulted in environmental hazards, toxicity to no-targeted organisms, disturbed soil micro-
bial diversity, and developed resistance in pathogens to fungicides [4,15] and increased the
incidence of A. sinensis root rot [5]. So, there is an urgent need to delve into eco-friendly
control measures in the form of biological control using beneficial microbes or their active
bioproducts in sustainable agriculture [16,17].

Biocontrol agents, especially bacteria and fungi, significantly mitigate the incidence
of root rot disease and are commercially available in different countries [4,7]. For exam-
ple, members of bacterial genera from Bacillus spp., Pseudomonas spp., and Streptomyces
spp. improve plant growth and significantly control root rot disease in strawberries
and beans [18,19]. Similarly, it has been reported that B. tequilensis SY89 and Paenibacillus
polymyxa YF could secrete antimicrobial substances (polypeptides, lipopeptides, and polyke-
tides) and significantly reduced A. sinensis root rot by 61.54% and 65.38%, respectively [4].
Besides the application of a single-strain biocontrol agent, the microbial consortium suc-
cessfully reduces the root rot incidence by reshaping the rhizosphere microbiome and
decreasing the pathogen load [20,21]. Many previous studies have reported that the occur-
rence of root rot disease is directly correlated with changes in the rhizosphere microbial
community and alterations in the abundance of key pathogens [20,22,23]. Thus, analyz-
ing the composition and distribution of rhizosphere microbial communities is crucial for
their effective management to mitigate soilborne plant diseases, enhance plant growth
performance, and optimize agricultural yields [24–26].

In general, disease control primarily involves reducing the relative abundance of
pathogens within the soil microbial community, thereby allowing other microorganisms to
occupy the original ecological niche of the pathogens [20,27]. Additionally, disease control
can be achieved by increasing the prevalence of beneficial microbial flora capable of resisting
or inhibiting soilborne pathogens [25,28]. The interaction between the root system and
rhizosphere microorganisms plays a pivotal role in promoting the growth and enhancing
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the quality formation of medicinal plants [29]. Plant secondary metabolites, particularly
root exudates, can significantly influence the dynamics of soil microbial communities [30].
Moreover, these compounds encompass bioactive constituents that can impede pathogen
growth or recruit beneficial microorganisms for enhancing plant growth and inducing
systemic defense mechanisms against pathogens [31,32]. Additionally, plant secondary
metabolites are subject to modulation by both biotic factors (microbial communities and
population competition) [33] and abiotic factors (soil properties and climate conditions) [34].
Thus, it is suggested that root rot has become a significant obstacle to the cultivation of A.
sinensis, which seriously threatens its production.

Therefore, it is crucial to develop a biological pesticide that can effectively manage the
occurrence of Angelica root rot through biological control methods. The biopesticide Shi
Chuang Zhi Feng Ning (SCZFN; drug registration number: PD20140941) is extracted from a
traditional Chinese medicinal plant with an active ingredient of 5% carvacrol incorporating
various antibacterial and insecticidal activities. The biopesticide SCZFN has been applied
to over 200,000 hectares of Chinese medicinal materials, vegetables, potatoes, tea, and other
crops. It exhibits remarkable efficacy in controlling various plant diseases, particularly
A. sinensis root rot prevention and control. However, the mechanism underlying the
control of root rot in the field by SCZFN remains inadequately elucidated. In this study,
we investigated the changes in the rhizosphere soil microbial community and secondary
metabolites of A. sinensis roots to elucidate the preventive and therapeutic mechanisms
of SCZFN against A. sinensis root rot, along with Bacillus subtilis wettable powder as a
microbial bioagent and a commonly used chemical pesticide among farmers. We assumed
that the investigation of rhizosphere microbial communities could unveil the interaction
between SCZFN and pathogens, as well as the correlation between pathogens and other
microorganisms. Furthermore, exploring the secondary metabolites of the A. sinensis root
system can elucidate the impact of SCZFN on the diversity and metabolic pathways of
these secondary metabolites.

2. Results
2.1. Assessment of Different Treatments on Biocontrol Efficiency of Angelica sinensis Root Rot

To systematically evaluate the efficacy of different treatments in controlling Angelica
sinensis root rot, we assessed the disease index (DI), disease incidence (Di), and control
effect (CE) at the end of the experiment under different treatments (Table 1). Results
demonstrated that treatments T1 and T3 had the lowest values of DI (19.67% and 18.00%)
and Di (28.33% and 23.61%), as compared to T2 (DI; 44.00% and Di; 47.83%) and CK (DI;
73.33% and Di; 92.00%). Treatment T1 showed the best CE of 73.17%, which is similar to
the CE of treatment T3 (75.45%) and significantly higher than the CE of T2 (39.99%).

Table 1. The assessment of the control efficacy of various treatments on Angelica sinensis root rot
disease occurrence.

Treatments Disease Index (%) Disease Incidence (%) Control Effect (%)

CK 73.33 a 92.00 a ----- c
T1 19.67 c 28.33 c 73.17 a
T2 44.00 b 47.83 b 39.99 b
T3 18.00 c 23.61 c 75.45 a

CK; water treatment as a control (CK), T1; application of biopesticide shi chuang zhi feng ning (SCZFN), T2; appli-
cation of Bacillus subtilis wettable powder, and T3; application of fungicide Apron Advance (Swiss, Syngenta).
Different lowercase letters within the column show significant differences among treatments according to Duncan’s
multiple range test at p < 0.05.

2.2. Effect of Different Treatments on the Angelica sinensis Rhizosphere Microbiome Assembly

A total of 12 rhizosphere soil samples were subjected to an Illumina NovaSeq plat-
form to generate 16S and ITS paired-end sequencing. The data collected from Illumina
sequencing were processed for quality control, barcode and primer sequences removal, and
chimeras removal to obtain clean data. The data related to raw reads, effective tags, Q20
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and 30, and effective tag (%) of 16S and ITS gene sequencing are shown in Tables S1 and S2.
Amplicon sequence variants (ASVs) obtained through DADA2 analysis clustered clean
data at a 100% sequence similarity level for taxonomic annotation. The ASV results of
bacteria and fungi after denoise were classified into common and unique ASVs accord-
ing to different treatments, as shown in the Venn diagram (Figure 1). Analysis of ASVs
showed a total of 7500 bacterial ASVs, including 3961 in T1, 3849 in T2, 3124 in T3, and
3579 in CK, were found under different treatments. Among them, 1196, 1013, 782, and
847 ASVs were unique in T1, T2, T3, and CK, respectively, and 1195 ASVs were common
in all treatments (Figure 1A). A total of 1248 fungal ASVs were recovered, of which 527,
654, 417, and 174 ASVs belonged to T1, T2, T3, and CK, respectively. Furthermore, ASV
analysis showed that 174, 262, 163, and 170 were recovered as unique ASVs in T1, T2,
T3, and CK, respectively, with 100 ASVs as common among all treatments (Figure 1B).
Then, we annotated the species classification of bacteria and fungi based on all ASVs and
investigated the phylogenetic relationships of the top 100 representative sequences at the
genus level through multiple sequence alignment, respectively (Figure S1A,B).
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Figure 1. Venn diagram of the various treatments displays the distribution of common and shared
amplicon sequence variants (ASVs). The presence of intersecting numbers signifies shared ASVs,
while the absence of intersections indicates unique ASVs. The ASVs distribution in bacteria (A), and
the ASVs distribution in fungi (B). Application of biopesticide shi chuang zhi feng ning (SCZFN)
(T1), application of Bacillus subtilis wettable powder (T2), application of fungicide Apron Advance
(T3), application of water (CK).

2.3. Analysis of Distribution and Abundance of Rhizosphere Microbial Communities at the
Phyla Level

To better understand the impact of the three treatments on the microbial community
structure and composition, we conducted a statistical analysis for the top ten most abundant
bacterial and fungal phyla (Figure 2). The bar plot histograms were generated to reveal
the classifications of abundant ASVs of bacteria (Figure 2A) and fungi (Figure 2B) at the
phylum level. Bacterial phyla such as Proteobacteria, Acidobacteriota, Bacteroidota, and
Gemmatimonadota dominated the soil bacterial communities with a relative abundance
(RA) of 67.4%, 74.4%, 81.5%, and 74.8% in T1, T2, T3, and CK, respectively (Table S3). Pro-
teobacteria and Bacteroidota were found in low RA in the rhizosphere soil of T1 compared
with T2, T3, and CK. In contrast, there were several phyla, such as Acidobacteriota and
Gemmatimonadota, that were present in high RAs in the rhizosphere soil of T1 than T2, T3,
and CK (Figure 2C). Fungal phyla such as Ascomycota, Basidiomycota, and Mortierellomy-
cota dominated the soil fungal communities, and their RA accounted for more than 99% in
T1, T3, and CK except for T2 (98.76%) (Table S4). Fungal phyla such as Basidiomycota and
Mortierellomycota exhibited lower relative abundances in T1 compared to other treatments
and CK. Further, T1 demonstrated a significantly reduced RA of Ascomycota compared to
T2 and T3 (Figure 2D).
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Figure 2. The dynamics of most dominant bacterial and fungal communities at the phyla level.
Relative abundance bar plots for the top 10 most abundant bacterial (A) and fungal (B) phyla. The
box plot shows the significant difference and relative abundance of the differentially abundant
bacterial (C) and fungal (D) phyla under different treatments. The lowercase letters on each box plot
display significant differences among treatments (Wilcoxon test, p < 0.05). Application of SCZFN
(T1), application of Bacillus subtilis wettable powder (T2), application of fungicide Apron Advance
(T3), and application of water (CK).

2.4. Relative Abundance Analysis of Rhizosphere Microbial Community Composition at the
Genus Level

We conducted a genera-level analysis to better clarify the patterns of taxonomic distri-
bution and composition in the rhizosphere of Angelica sinensis under different treatments
(T1, T2, T3, and CK). Based on the species information and RA, heatmaps were generated
to display the RA of the top 35 bacterial and fungal genera under different treatments
(Figure 3). Further analysis of bacterial communities with different RAs revealed that the
rhizosphere of treatment T1 was significantly enriched with Nitrosphera spp., Nitrososphaer-
aceae spp., Pedosphaeraceae spp., Rokubacteriales spp., Vicinamibacteraceae spp., RB41 spp.,
Haliangium spp., Subgroup_7 spp., and Subgroup_10 spp. as compared to T2, T3, and CK
(Figure 3A). Haliangium spp. is the main predatory bacteria, and interestingly, the RA
of Haliangium spp. was significantly increased under the T1 treatment, which was not
observed in other treatments. Moreover, T1 treatment significantly increased the Pedosphaer-
aceae spp. and ADurb.Bin063–1 spp. belonging to the Verrucomicrobiota, and Pedosphaeraceae
spp. plays a key role in the biogeochemical cycles of organic materials. Similarly, the RA
of Nitrospira, an important genus of bacteria revealed to simplify nitrogen nitrification,
increased in T1 treatment, which was also different from other treatments.

On the other hand, the result of fungal communities showed that T1, T2, and T3 treat-
ments could significantly reduce the important pathogenic fungal genus of Fusarium that
causes root rot disease and the genus of fungi with high degradation efficiency effects on
humus, lignin, and cellulose, including Humicola spp. and Chrysosporium spp. (Figure 3B).
Typically, these genera are widely considered dominant fungi that cause continuous crop-
ping issues and root rot disease. In addition, it can be seen from Figure 3B that fungal
genera present in high RA in CK were significantly reduced in T1 and T3 treatments. These
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results agree with the experimental results obtained in the field that T1 and T3 treatments
significantly inhibited the occurrence of A. sinensis root rot disease.
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Figure 3. The analysis of the patterns of taxonomic distribution and soil microbial composition
at the genus level. The relative abundance heat maps and phylum-level cluster maps of the top 35
bacteria (A) and fungi (B) under different treatments. Application of SCZFN (T1), application of
Bacillus subtilis wettable powder (T2), application of fungicide Apron Advance (T3), and application
of water (CK).

2.5. Assessment of Differences in Rhizosphere Microbial Community Diversity and Structure

We analyzed the diversity and structure of the rhizosphere microbial community
of A. sinensis to better explore the changes in community composition under different
treatments (Figure 4). The alpha diversity indices (within-sample diversity) were calculated
to quantify the species richness of rhizosphere microbial communities under different
treatments (Figure 4A,B). The result showed that the Chao 1, Shannon, Simpson, and
Pileou indices of bacterial communities were found to be significantly higher in T1, T2, and
CK as compared to T3, and no significant difference was observed between T1, T2, and
CK, except for Chao 1 index (Figure 4A). However, the alpha diversity indices of fungal
communities showed an opposite trend compared to bacterial communities. The values
of Chao 1, Shannon, Simpson, and Pileou indices were significantly decreased in T1 than
that of T2, T3, and CK (Figure 4B). Further, Principal coordinate analysis (PCoA), based on
the Bray-Curtis dissimilarity matrix and ASV relative abundance distribution, was used
to assess the changes in the structure of bacterial and fungal communities under different
treatments. According to the PCoA results, the first two showed a total of 77.03% and
88.2% variations in the structure of rhizosphere bacterial (PERMANOVA, R2; 0.638341 and
p = 0.001) and fungal (PERMANOVA, R2; 0.56681 and p = 0.004) communities, respectively,
under different treatments (Figure 4C,D).
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Figure 4. Assessment of microbial community diversity and structure difference under different
treatments. Box plot showing the alpha diversity indices of bacterial (A) and fungal (B) communities
under different treatments. Alpha diversity indices include Chao 1, Shannon, Simpson, and Pielou
evenness. Different lowercase letters on each box plot represent the significant differences among
treatments according to the Wilcoxon test at p < 0.05. Principal coordinate analysis (PCoA) based
on the Bray–Curtis distance matrix demonstrates the separation between soil bacterial and fungal
communities under different treatments. PCoA for bacterial (C) and fungal (D) communities. Appli-
cation of SCZFN (T1), application of Bacillus subtilis wettable powder (T2), application of fungicide
Apron Advance (T3), and application of water (CK).

2.6. Characteristics of Angelica sinensis Intra-Kingdom Rhizosphere Microbial
Co-Occurrence Network

The interkingdom co-occurrence network analysis was performed to investigate the
impact of different treatments on bacterial-fungal interactions (Figure 5). The co-occurrence
network showed that the number of nodes was similar under all treatments without
significant differences (CK = 916, T1 = 933, T2 = 921, and T3 = 927). The number of
edges (total; 7251, positive; 3806, and negative; 3445) of T1 was significantly higher than
other treatments, including T2 (total; 6807, positive; 3582, and negative; 3225), T3 (total;
6977, positive; 3716, and negative; 3261), and CK (total; 6785, positive; 3634, and negative;
3151). These results suggested that the abundance of different microorganisms under
treatments T1, T2, and T3 was increased compared with CK (the circle size represents the
absolute abundance of different bacterial and fungal genera). Specifically, comparing the
co-occurrence network among treatments showed that T1 had higher network connectivity
and complex microbial interaction than other treatments. This indicated that T1 inhibited
pathogenic bacteria from occupying the ecological niche in the rhizosphere of A. sinensis,
resulting in a more complex microbial interkingdom network than CK.
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Figure 5. Co-occurrence networks analysis of bacterial and fungal communities at genus level
under different treatments. Nodes represent microbial genera, and edges represent the interaction
between microbes within a specific treatment, including the number of positive and negative edges.
Application of SCZFN (T1), application of Bacillus subtilis wettable powder (T2), application of
fungicide Apron Advance (T3), and application of water (CK).

2.7. Correlation Analysis of Microbial Communities and Disease Incidence

To further explore the relationship between disease occurrence and results of microbial
interkingdom co-occurrence network, a correlation analysis was performed at the genera
level according to the Pearson correlation coefficient (PCC; Figure 6). The PCC results
revealed that bacterial genera Muribaculaceae spp. (Figure 6A) and fungal genera Humicola
spp., Fusarium spp., and Mycochlamys spp. (Figure 6B) were positively correlated (p < 0.05)
with the disease incidence. The correlation results were consistent with those in Figure 3A,B,
as these microorganisms were significantly enriched in CK compared with other treatments.
These results showed that the primary pathogen causing root rot in A. sinensis is the
genus Fusarium, and combined results of correlation analysis suggested that Muribaculaceae
(coefficient = 0.6964; p-value = 0.012) spp., Humicola (coefficient = 0.6892; p-value = 0.013)
spp., and Mycochlamys (coefficient = 0.7689; p-value = 0.0034) spp., play a role of assisting
microorganisms, which provides a conducive environment for Fusarium spp., to infect the
roots of A. sinensis.
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Figure 6. Correlation analysis between Top 10 bacterial-fungal genera and disease incidence
according to Pearson correlation coefficient (PCC, p < 0.05). PCC between bacterial genera and
disease incidence (A), and PCC between fungal genera and disease incidence (B). Asterisks indicates
significant differences (* p < 0.05; ** p < 0.01; *** p < 0.001).

2.8. Integrated Characteristics of Metabolomics of Angelica sinensis

We identified the metabolites of all treatments and retained the results of a 30% lower
coefficient of variance through quality control (QC) (Figure S2). Finally, a total of 799 metabo-
lites were counted, including 472 positive ion modes (POS) and 327 negative ion modes
(NEG). The metabolites were chemically classified by comparison with three databases
(mzCloud, mzVault, and MassList). The metabolites were classified into 10 categories in
POS (Figure S3A) and 7 categories in NEG (Figure S3B). In two ion modes, lipids and lipid-
like molecules, as well as organic acids and derivatives, were the most diverse metabolites
and accounted for more than 50% of the total categories. The principal component analysis
(PCA) was used for all mass spectrum peaks of treatments and QC samples. The results
showed that the first two axes explained, in total, 31.19% of POS (Figure S4A) and 36.08%
of NEG (Figure S4B) variations in the metabolites, respectively. In addition, QC samples of
both POS and NEG are gathered, and the aggregation locations of the different treatment
groups are a certain distance from CK. This suggested that treatments and QC are of high
quality, and the metabolite types and their accumulation in A. sinensis were significantly
affected by different treatments. The results of PLS-DA are shown in Figure S5.

Meanwhile, the functional and classification annotations of all identified metabolites
were made by comparison with three databases (KEGG (KEGG PATHWAY), HMDB (Hu-
man Metabolome Database) and LMPD (LIPID MAPS Structure Database)) to clarify the
functional properties and types of these metabolites. The comparison results based on the
KEGG database showed that all metabolites in POS were clustered in 4 categories: cellular
processes, environmental information processing, genetic information processing, and
metabolism (Figure S6A). Among them, the metabolites of metabolism occupy the highest
proportion in all categories; the metabolites in secondary class global and overview maps
were significantly higher than those compared with others. Conversely, metabolites in NEG
were clustered in three categories, including environmental information processing, ge-
netic information processing, and metabolism (Figure S6B). Similar to POS, the metabolite
of Metabolism in NEG occupies the highest proportion in all categories, and global and
overview maps were significantly higher than others in the secondary class.

Interestingly, the classification and function of the results compared with the HMDB
database were consistent with the above results shown in Figure S3. The order of metabolite
numbers in POS was slightly different (Figure S6C), but the order of metabolite numbers
in NEG was consistent with Figure S3B (Figure S6D). Finally, compared with the LMPD
database, both POS and NEG were clustered in the five primary categories: fatty acyls,
glycerophospholipids, polyketides, prenol lipids, and sterol lipids. Among them, the
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number of metabolites in fatty acyls was the highest in POS (Figure S6E), and the number
of metabolites in the category glycerophospholipids was the highest in NEG (Figure S6F).

2.9. Assessment of Variations in Angelica sinensis Metabolites under Different Treatments

To clarify the quantity and type of significantly different metabolites between treat-
ments and CK, we screened out the differentially expressed metabolites (DEMs) between
treatments and controls. The results showed that compared with CK, there were 162 DEMs
in all treatments, including 39 DEMs in T1 vs. CK, 45 DEMs in T3 vs. CK, and 105 DEMs in
T2 vs. CK was significantly higher than others. Meanwhile, among all DEMs, 27 unique
metabolites were detected in T1 vs. CK, 28 unique metabolites in T2 vs. CK, and 81 unique
metabolites were significantly higher than others in T2 vs. CK. In POS, 26, 55, and 29 DEMs
were present in T1, T2, and T3, respectively, compared to the CK. Among all DEMs,
T1 vs. CK showed 13 up-regulation and 13 down-regulation; T2 vs. CK showed 22 up-
regulated and 33 downregulated; T3 vs. CK showed 18 up-regulated and 11 downregulated,
respectively. In NEG, 13, 50, and 16 DEMs were responded to T1, T2, and T3, respectively,
compared to the CK. T1 vs. CK showed 2 up-regulation and 11 down-regulation; T2 vs. CK
(14 up-regulated and 36 downregulated), T3 vs. CK (10 up-regulated and 6 down-regulated),
respectively (Figure 7, Table S5). Then, we performed hierarchical clustering analysis (HCA)
for all the DEMs between the obtained comparisons (Figure S7). In POS, metabolites were
divided into four main categories at the first level according to the functions or metabolic
processes involved. From top to bottom, the first type of T3 treatment had the most signifi-
cant difference from CK, and almost all the metabolite levels were up-regulated compared
with CK. The remaining categories showed the most significant difference between T2
treatment and CK; all of them showed different up-down levels from the CK. Similarly, in
NEG, among the three primary classifications, T2 treatment showed a significant difference
in up-down-regulation compared to CK. In the first two categories, from top to bottom,
except for the third category, treatment T3 was significantly up-regulated compared to CK.
These results indicated that T2 treatment had a much higher effect on the metabolism of
A. sinensis than other treatments.
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Figure 7. The analysis of d differentially expressed metabolites after comparison of different
treatments and controls. The presence of intersecting numbers signifies shared DEMs, while the
absence of intersections indicates unique DEMs. Volcano map of the overall distribution of DEMs.
(A–C) DEMs of different treatments compared to CK in positive mode, (D–F) DEMs of different
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treatments compared to CK in negative mode. The horizontal coordinate represents the difference in
multiple changes of metabolites in different groups (log2(fold change)), and the vertical coordinate
represents the difference in significance level (−log10(p-value)). Each point represents a metabolite.
Significantly up-regulated metabolites are represented by red dots, and significantly down-regulated
metabolites are represented by green dots. The size of the dot represents the VIP value. Application
of SCZFN (T1), application of Bacillus subtilis wettable powder (T2), application of fungicide Apron
Advance (T3), and application of water (CK).

2.10. KEGG Enrichment Pathways Analysis for DEMs

To explore the effects of different treatments on the metabolic pathways of A. sinen-
sis, we used the KEGG ID for DEMs to derive the metabolic enrichment pathways. The
results showed 21 enriched metabolic pathways in T1 compared to CK, including 11 in
POS and 10 in NEG (Figure 8A); among them, the significantly enriched pathway was
arginine and proline metabolism (p-value = 0.01982). In T2 vs. CK, there were 41 en-
riched metabolic pathways, including 14 in POS and 27 in NEG (Figure 8B). In T3 vs.
CK, there were 25 enriched metabolic pathways, including 19 in POS and 7 in NEG
(Figure 8C). Among the enriched pathways, the significantly enriched pathway was glu-
tathione metabolism (p-value = 0.02733), caffeine metabolism (p-value = 0.043), carbapenem
biosynthesis (p-value = 0.043), plant hormone signal transduction (p-value = 0.0322) and
biosynthesis of secondary metabolites (p-value = 0.042), respectively. Treatment T1 mainly
affects the metabolism of amino acids, including the metabolism of arginine, proline,
histidine, and so on. Treatment T2 mainly affects the biosynthesis of sesquiterpenoid, triter-
penoid, carbapenem, benzoxazinoid, and other substances of A. sinensis and the metabolism
of tyrosine, carbon, and so on. Treatment T3 mainly affects glutathione metabolism, car-
bapenem biosynthesis, and plant hormone signal transduction. This suggests that different
treatments have different effects on the main metabolic pathways of A. sinensis.
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corresponding metabolic pathway to the total number of identified metabolites in the pathway, and
the vertical coordinate represents the difference in significance level (−log10(p-value)). The size of the
dots represents the number of differentiated metabolites in the corresponding pathway. Application
of SCZFN (T1), application of Bacillus subtilis wettable powder (T2), application of fungicide Apron
Advance (T3), and application of water (CK).

2.11. Correlations between Differential Microorganisms and DEMs

The decline in the incidence of A. sinensis root rot cannot be attributed solely to
biopesticide treatment, but secondary metabolites also play a crucial role. Therefore, to
elucidate alterations in the relationship between secondary metabolites of A. sinensis and
the soil microbial community under different treatments, as well as gain further insights
into the combined impacts of biopesticide treatments and secondary metabolites on soil
microbial community structure, the correlations between the soil microbial communities
at the genus level and the DEMs were analyzed by PCC method. Initially, we compared
the absolute content of different bacteria (DB) and different fungi (DF) in each treatment’s
rhizosphere microbiome with the CK. Subsequently, we identified the top 30 DEMs (top 15
for the POS mode and top 15 for the NEG mode) for subsequent association analysis.
To gain deeper insights into the interplay between microorganisms and metabolites, we
further selected the top 20 distinct microorganisms (10 fungi and 10 bacteria), along with
the top 30 DEMs, for correlation analysis.

The results demonstrated that the relationship between DB and DEMs exhibited
higher complexity and correlation than that between DF and DEMs in T1 vs. CK. Specif-
ically, there was an extremely significant correlation between the variation in DB con-
tent and the presence of DEMs 6-hydroxymelatonin, L-ornithine, Asp-Phe methyl ester,
4-hydroxy-3-methylbenzoic acid, β-cortolone, 3-methylcrotonylglycine, coenzyme Q2, 4-[2-
(4-chlorophenyl) diaz-1-enyl]-2-methyl-6-(piperidinomethyl) phenol and D-threose, and sig-
nificantly correlated with metabolites cytidine and 1-palmitoyl-Sn-glycero-3-phosphocholine,
etc. On the other hand, fungal communities’ changes were found to be associated with
estriol and 1,2-di(3,4-dimethoxy phenyl) diaz-1-ene poles while also exerting an influence
on asaraldehyde and 2-(dimethylamino) guanosine (Figure 9A). The further correlation
and cluster analysis of the top 20 differential microbial genera and DEMs revealed that
bacterial genera including Pseudomonas spp., Flavobacterium spp., Muribaculaceae spp.,
Sphingobium spp., Dyadobacter spp., Halomonas spp. and Rhodoferax spp., along with fungi
Mortierella spp., Tetracladium spp., Humicola spp., Fusarium spp. and Mycochlamys spp.,
exhibited consistent correlations with the DEMs. Specifically, they demonstrated a positive
correlation with the right side of pregnenolone and a negative correlation with the left side
of coenzyme Q2 among the clustered DEMs. Interestingly, we found that Sphingobium spp.,
Dyadobacter spp., and Halomonas spp., which are beneficial to the plant and soil environ-
ment, as well as Humicola spp., which can induce resistance in plants, showed significant
correlations with most metabolites (Figure 9D). However, the association analysis results
of the microbiome and metabolome in T2 vs. CK revealed non-significant correlations
between DEMs and DB. Only 8 DEMs were found to be associated with DF. In comparison,
a significant correlation was observed for only two specific DEMs, flavin adenine dinu-
cleotide and LPC 15:1 (Figure 9B). Three DF (Plectosphaerella spp., Tetracladium spp., and
Humicola spp.) were significantly associated with most DEMs (Figure 9E). The relationships
between DEMs and DF in T3 vs. CK exhibited similarities to those observed in the T1
treatment (Figure 9C). Notably, the top 30 DEMs displayed more intricate associations
with differential microorganisms and demonstrated a higher significance level in relation
to DEMs than observed in the T2 vs. CK. Among these DEMs, eight were significantly
associated with DB, five of which exhibited significant differences. Furthermore, 15 DEMs
were significantly associated with DF, 6 showing significant distinctions. In addition,
7 DEMs showed significant associations with both DB and DF (L-glutathione (reduced),
1-methyluric acid, 4-methyl-6-phenyl-5,6-dihydro-2H-pyran-2-one, N3, N4-dimethyl-L-
arginine, 4-decyl-3-hydroxy-5-oxooxolane-2,3-dicarboxylic acid, 3-[4-methyl-1-(2-methyl
propanol)-3-oxocyclohexyl] butanoic acid and 2-(dimethylamino)guanosine). However, the
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correlation between the top 20 differential microorganisms and DEMs exhibited significant
differences from that of T1 vs. CK (Figure 9F). There was a less pronounced association
between T3 and CK in DEMs compared with T1 vs. CK, with only one fungal genus,
Humicola spp., demonstrating a significant correlation with most differential metabolites.
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metabolites (The top 15 of each of the two ion modes) and diverse microbial communities were
compared to CK under various treatments. (A–C) Correlations of the microbial community and
top 30 DEMs were determined using the Mantel test. (D–F) Correlations analysis of the Top 10
bacterial-fungal genera and Top 30 DEMs according to Pearson correlation coefficient. Asterisks
indicates significant differences (* p < 0.05; ** p < 0.01; *** p < 0.001). Application of SCZFN (T1),
application of Bacillus subtilis wettable powder (T2), application of fungicide Apron Advance (T3),
and application of water (CK).

3. Discussion

Angelica sinensis, a renowned Chinese herb, holds significant medicinal value in health-
care and medicine [1]. However, the frequent occurrence of root rot and excessive use of
chemical pesticides not only diminishes the medicinal properties of A. sinensis but also
contributes to environmental pollution and potential public health risks [4]. Therefore, it is
imperative to urgently identify a biopesticide capable of effectively managing root rot in
A. sinensis without compromising its valuable medicinal constituents. Since plant-derived
biopesticides are sourced from the natural environment, they offer a safer alternative for
controlling root rot in A. sinensis [35]. The biopesticide Shi Chuang Zhi Feng Ning (SCZFN)
created in our laboratory is a plant-based product derived from multiple traditional Chi-
nese medicinal plants. Extensive field tests have demonstrated its exceptional efficacy in
controlling root rot and other significant diseases of A. sinensis (such as brown spot and
stem rot). Field experiment results revealed that the control efficiency of SCZFN against
root rot disease is 73.17%, equivalent to the control efficiency (75.45%) of conventional
fungicide thiabendazole·fludioxonil·metalaxyl-M 18% FSC. Many previous studies have
demonstrated that compared to conventional chemical pesticides, broad-spectrum bio-
logical control agents can target multiple pathogens affecting the same host plant during
screening, thereby reducing the likelihood of pathogen resistance [4,17]. Although SCZFN
demonstrates high efficacy in controlling A. sinensis root rot, its underlying disease pre-
vention mechanism remains unreported. Therefore, in this study, we aimed to explore the
impact of SCZFN biopesticides on rhizosphere microbial communities and metabolites of
A. sinensis. We assumed that studying the rhizosphere microbiome and metabolites would
provide us with new insights into the biocontrol mechanism of SCZFN against A. sinensis
root rot compared to conventional fungicides.

The rhizosphere of plants functions as a specialized habitat for diverse microorgan-
isms, which play direct roles in disease pathogenesis, prevention, and plant growth and
health [32,36]. Soilborne pathogens typically derive nutrients from the soil or root secretions,
enhancing their abundance in the soil and occupying the ecological niche of the soil micro-
bial community to facilitate infection of plant roots [37,38]. Consequently, most studies on
controlling soilborne diseases have focused on reducing the prevalence of pathogens [5,25].
Our analysis of microbial communities revealed that all three treatments decreased the
relative abundance of the genus Fusarium, the primary pathogen responsible for A. sinensis
root rot. Notably, T1 and T3 exhibited significantly more significant reductions compared
to T2. This finding aligns with previous reports indicating that a novel attapulgite-coated
biocontrol agent can effectively control root rot by diminishing the relative abundance of
Fusarium [7]. From the perspective of reducing the abundance of the primary pathogen
to control root rot occurrence effectively, the three treatments exhibited varying degrees
of prevention against A. sinensis root rot by significantly decreasing Fusarium abundance
and efficiently inhibiting the abundance of auxiliary pathogens of genus Humicola and
Chrysosporium. Genus Humicola has been reported as the causal agent of Pinus pinea root
rot, and it is also a prominent fungal genus associated with tomato root infestation, causing
a similar disease characterized by root xylem rot; however, it does not directly initiate
the disease [39,40]. Chrysosporium is a pathogen associated with white rot; however, no
studies have reported that it can cause root rot [41,42]. However, variations in control
effectiveness among the three treatments indicated that they also exerted diverse effects on
other microorganisms within the rhizosphere soil microbiome.
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Alternatively, pathogens can be prevented by introducing additional soil-beneficial
microorganisms to occupy specific ecological niches or by stimulating plant resistance
mechanisms [24,32,43]. Our microbiome analysis showed that T1 significantly increased the
relative abundance of soil-beneficial microorganisms involved in carbon cycling promotion
(Acidobacteria), nitrogen enrichment (Nitrospira), and organic matter turnover for soil health
improvement (Pedosphaeraceae). Consistent with the results and views of Tao and colleagues,
introducing beneficial microorganisms induces plant resistance and can protect plants from
the infection of major pathogens [44]. Surprisingly, despite having comparable efficacy, T3
and T1 exhibited contrasting effects on the proliferation of these beneficial microorganisms,
suggesting a non-discriminatory inhibition of all organisms. The findings of our study align
with previous reports indicating that chemical pesticides, particularly those comprising
complex constituents and exhibiting long-lasting properties, exhibit potent inhibitory
effects against a diverse range of bacteria or fungi. Furthermore, it has been reported that
the continuous application of chemical pesticides detrimentally influences soil microbial
communities’ richness, diversity, composition, and functionality [45]. Many studies have
demonstrated the influence of microbial community stability and diversity on plant growth
and health [38,46]. Whether by enhancing soil microbial diversity [25] or establishing
beneficial microbial flora [26,47] to suppress the proliferation of pathogenic bacteria for
effective disease control.

The findings of our study are in general agreement with previous reports, indicating
that agricultural soils predominantly comprise bacterial phyla Proteobacteria, followed
by Acidobacteriota, Bacteroidota, and Gemmatimonadota dominated the soil bacterial
communities [25,26]. Our study found that the RA of these phyla in T1, T2, T3, and CK
were around 67.4%, 74.4%, 81.5%, and 74.8% respectively. Fungal phyla such as Ascomy-
cota, Basidiomycota, and Mortierellomycota dominated the soil fungal communities and
accounted for more than 99% RA in T1, T3, and CK except T2 [25,48]. The high-throughput
sequencing results revealed significant effects of T1 and T2 treatments on the diversity
and composition of microbial communities in rhizosphere soil. We observed significantly
higher values of α diversity index (including Chao 1 index, Shannon index, and Pielou
evenness index) of bacterial communities under T1 treatment. Moreover, the α diversity
index of the fungal community was significantly higher under T2 treatment. These findings
suggest that T1 effectively enhances the diversity of the rhizosphere bacterial community,
consistent with our observation that it increases the abundance of beneficial bacterial genera
Acidobacteria, Nitrospira, and Pedosphaeraceae. According to the previous research report, the
bacterial community plays a pivotal role in carbon cycling [49] and biochar amendment,
further enhancing plant carbon assimilation through modulation of rhizosphere bacterial
communities for improved tomato growth [50]. Additionally, PCoA results showed that
T1 and T3 were clustered separately, and T1 has a tighter degree of clustering, with a clear
separation between CK compared to other treatments, indicating that bacterial and fungal
community composition significantly differed under the application of SCZFN, which is
similar to the results of previous reports [25,51].

The analysis of the intra-kingdom co-occurrence network revealed that the relation-
ships between microorganisms became more intricate under T1 treatment. Although there
was no difference in the number of nodes, the number of edges significantly increased
compared to other treatments and CK, indicating higher network connectivity and complex
microbial interactions. This suggests that T1 can enhance the recruitment or introduction of
microorganisms by inhibiting pathogenic bacteria from occupying rhizosphere soil niches.
These recruited microorganisms also play a crucial role in suppressing pathogens infec-
tions, promoting greater diversity within the microbial community, and ensuring a more
stable and healthy structure for the bacterial–fungal interkingdom network than the CK
network. Previous studies have reported that pathogen invasion significantly impacts the
rhizosphere microbiome’s assembly, while the application of biological control agents alters
the structure and composition of this microbial community [25,52,53]. Further analysis
of the root rot incidence and microbial community based on the Pearson correlation co-
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efficient revealed consistent results with our previous findings. Numerous studies have
demonstrated the intricate nature of factors contributing to soilborne diseases, indicating
that the infection process is not solely driven by a single major pathogen but rather involves
multiple auxiliary pathogens in common co-infection [25,54,55]. Bacterial genera Muribacu-
laceae and fungal genera Humicola, Fusarium, and Mycochlamys were significantly associated
with the disease incidence of root rot, and these microorganisms exhibited significant
enrichment in the CK. The primary pathogen, Fusarium, has been extensively reported in
numerous studies [4,5]. Therefore, we supposed that Muribaculaceae spp., Humicola spp.,
and Mycochlamys spp. act as assisting microorganisms that create a favorable environment
for Fusarium to infect the root system of A. sinensi. However, further study is required to
elucidate their mutualistic relationship in the occurrence of root rot disease.

In general, biopesticides not only affect rhizosphere soil microbial diversity but also
affect plant metabolites’ types, accumulation, and metabolic pathways while preventing
and controlling diseases [56]. Plant activates their protective mechanisms and regulates
their metabolites and metabolic pathways in response to pathogens, including many plant-
derived biopesticides, which are also derived from plant secondary metabolites with
significant antibacterial effects [57]. Secondary metabolites of plants are essential com-
ponents of defense mechanisms against pathogen attack and environmental stress [58].
Abiotic and biotic environments that constantly change significantly influence the synthesis
and accumulation of plant secondary metabolites [59]. Therefore, plant metabolomics
analysis can elucidate the alterations and accumulation of A. sinensis under diverse treat-
ments (directly) and the shifts in the microbial community (indirectly), thereby aiding in
comprehending the impact of biopesticide treatment on secondary metabolite types and
metabolic pathways of A. sinensis and root decay infection on its respective counterparts.
The results of this study revealed the identification of 799 metabolites with LC-MS approach.
Lipids, lipid-like molecules, organic acids, and derivatives were the most abundant types,
accounting for over 50% of all secondary metabolites (in both positive and negative ion
modes), representing the primary type reported in studies on A. sinensis [60].

According to the PCA results, the metabolite types and accumulation of A. sinensis
under different treatments were different, and the three treatments were also distinct from
CK. This indicates a significant influence of A. sinensis on metabolite types and accumulation
under various treatments. Additionally, root rot disease resulted in substantial changes in
both types and accumulation of A. sinensis metabolites. This finding contradicts our initial
conjecture that after effective control by T1 and T3 treatments, the type and accumulation
of secondary metabolites would recover to similar levels. Consequently, this conclusion
provides a clear explanation for plant disease occurrence as well as why chemical pesticide
residues lead to significant differences in active component content within medicinal
plants [61]. Based on these findings, we investigated the abundance of differentially
expressed metabolites (DEMs) and their regulatory relationships under various treatments.
It was observed that compared to the CK, the T2 treatment exhibited 105 DEMs, including
81 unique metabolites, and showed enrichment in 41 metabolic pathways, surpassing the
other two treatments. However, no metabolic pathway was significantly enriched in the
KEGG pathway (one pathway in T1 treatment and five in T3 treatment). This indicates that
although T2 treatment has more effects on the types of metabolites of A. sinensis, it cannot
profoundly affect the metabolic pathway of A. sinensis.

Plant-associated rhizosphere microbial communities play a pivotal role in the biosyn-
thesis and accumulation of secondary metabolites in medicinal plants [62]. The rhizosphere
serves as a crucial interface for plant-soil-microbial information and material exchange,
with the interaction between plant roots and rhizosphere microorganisms being essential
for optimal plant growth and quality [63,64]. Therefore, we analyzed and investigated
the relationship between different rhizosphere microbial communities and DEMs under
various treatments. The comparison of microbial communities and DEMs among T1, T3,
and CK revealed a higher level of complexity and correlation. Additionally, the correlation
between the top 20 differentially abundant microbial genera treated by T1 and DEMs ex-
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hibited significantly stronger associations. The noteworthy observation is that Sphingobium,
Dyadobacter, and Halomonas, which have been found to be beneficial for plant and soil
environments, exhibited significant associations with the majority of DEMs in the Top 30.
The correlation analysis of T2 was consistent with the above conclusion, and there was no
significant correlation between differential microorganisms and differential expression of
metabolites. Treatment T3 showed complex correlations between the microbiome and dif-
ferential metabolites, but the top 20 differential microbes were not significantly associated
with the top 30 differential metabolites.

4. Materials and Methods
4.1. Site and Experimental Design Descriptions

The field experiment was conducted in the Angelica sinensis green standard planting
area, located in Minxian County (34◦36′ N, 104◦00′ E), Dingxi City, Gansu Province, China,
in 2022. A. sinensis has been continuously cultivated in the field for more than 10 years, and
the field is seriously infected with root rot disease. The climate is cold and wet, with an
average annual temperature of 6.1 ◦C and average annual precipitation of about 650 mm.
The soil was thoroughly turned and mixed with insecticide 3% phoxim granules prior to
transplanting A. sinensis seedlings to kill the larvae of insect pests. The experiment was
performed under four distinct treatments: T1; application of biopesticide Shi Chuang Zhi
Feng Ning (SCZFN), T2; application of Bacillus subtilis wettable powder (manufactured
by the GenTaiKeAn Company, Shandong, China), T3; application of pesticide Apron
Advance (thiabendazole·fludioxonil·metalaxyl-M 18% FSC; Syngenta, Shanghai, China),
commonly used by farmers, and water treatment was implemented as a control (CK).
Three months after seedling transplantation, throughout the growth period of A. sinensis,
all treatments were applied four times at one-month intervals. All field management
approaches throughout the entire growth period of A. sinensis were carried out according to
national standards except for disease control [7]. Seedlings of A. sinensis were transplanted
in a plot (5 × 5 m2) with a plant-to-row spacing of 40 cm × 40 cm, and the experiment was
conducted under a randomized complete block design. A row spacing area of 1 m wide
was established between each plot. The experiment was performed in replicates with three
plots per treatment as biological replicates and 140 seedlings per plot.

4.2. Samples Collections and Disease Severity Analysis

Rhizosphere soil and A. sinensis root samples were collected from each plot upon
observation of Fusarium root rot symptoms. Sixty plants were randomly selected using
an S-type sampling method [65] from each treatment (15 plants per plot) and transported
to the laboratory in dry ice. The rhizosphere soil adhering to the roots (10 plants per
replication) was collected precisely and mixed to make one composite sample to analyze
the rhizosphere microbiome [26]. Meanwhile, the same A. sinensis roots (10 roots per
replication) were crushed and mixed to make one sample for a metabolomic study. Briefly,
2 g of mixed rhizosphere soil and crushed root samples from each replication were collected
in 5 mL of sterilized falcon tubes, followed by rapid freezing in liquid nitrogen and stored
at −80 ◦C for subsequent studies. The efficacy of each treatment group was assessed using
the disease index method based on the percentage of root lesion area according to the
disease classification scale (0, 1, 2, 3, 4, and 5) [7]. Here, no or few diseases spot (0), the
infected area is not higher than 10% of the whole root area (1), the infected area accounted
for 11–30% of the whole root area (2), the infected area accounted for 31–50% of the whole
root area (3), the infected area accounted for more than 50% of the whole root area (4), and
the infected area accounted for more than 75% of the whole root area and the plant died (5).
The disease incidence (Di), disease index (DI), and control effect (C.E) were calculated
using the following formulas: Di (%) = (no. of infected plants/total no. of plants) × 100,
DI = sum ((disease ratings scale × no. of infected plants in each index)/(total number of plants
× maximum disease rating scale)). C.E (%) = (DI of control − DI of treatment) × 100/DI
of control.
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4.3. Soil DNA Extraction, PCR Amplification, and Amplicon Sequencing

Genomic DNA from soil was extracted using a PowerSoil DNA Isolation Kit (MoBio
Laboratories, Carlsbad, CA, USA) following the instructions provided by the manufac-
turer. The purity and concentration of extracted DNA were assessed using an ND2000
spectrophotometer and diluted (1 ng/µL) using sterilized water if required. PCR was
amplified for the V4 region of the 16S rRNA gene of bacteria [66] and the ITS1-5F region
of the ITS gene of fungi [67]. The sequence libraries were prepared according to Illumina
HiSeq protocols and were sequenced on an Illumina HiSeq platform to produce paired-end
reads of 250 bp by Novogene Co., Ltd. (Shanghai, China).

4.4. Microbiome Data Processing and Bioinformatics Analysis

Quality control of raw reads was performed by fastp (Version 0.20.0) [68], and chimera
sequences were deleted using Vsearch (Version 2.15.0) to get clean reads [69]. The sequenc-
ing and species annotation of clean reads were conducted using DADA2 (v. 1.32.0) and
QIIME2 software (QIIME 2 2023.5) to produce the amplicon sequence variants (ASVs),
and ASVs with an abundance of less than 5 were excluded [70,71]. Silva database (https:
//www.arbsilva.de) was used for bacterial taxonomic annotation, and the fungi unite
database (https://unite.ut.ee/) was used [72,73]. The alpha diversity indices (Chao 1,
Shannon, Simpson, and Pielou evenness) and beta diversity based on the Bray–Curtis
distance matrix were calculated using QIIME 2 [71] and visualized using boxplots and
principal coordinate analysis (PCoA) analysis, respectively, using the ggplot2 package
in R software (version 4.4.0), and PERMANOVA based on Adonis was performed to cal-
culate overall variations in the microbial communities [74]. The relative abundance bar
plots and violin box diagram at phylum for ASVs were generated using GraphPad Prism
(v 9.0.0), and the chord diagram was made using Circos Table Viewer (v0.63-10) online
(https://mk.bcgsc.ca/tableviewer/visualize/). Significant differences among microbial
communities were calculated using the Wilcoxon test at p < 0.05. We used sparCC in
R to analyze microbial co-occurrence networks for bacterial and fungal communities in
ASVs at the genus level (p < 0.05 and correlation coefficient > 0.3) [25] and were visualized
in Gephi 0.9.2. Correlation analysis was achieved according to the Pearson correlation
coefficient (p < 0.05) between disease incidence and bacterial–fungal genera and using an
online bioinformatics platform (https://www.bioinformatics.com.cn).

4.5. Metabolites UHPLC-MS/MS Analysis

For metabolomic analysis, 100 mg of root tissues (as collected above) were grounded
with liquid nitrogen, and the homogenate was resuspended with prechilled 80% methanol
by well vortex [75]. The samples were incubated on ice for 5 min and centrifuged at
15,000× g, 4 ◦C for 20 min. The supernatant was diluted to a final concentration containing
53% methanol by LC-MS grade water. The samples were transferred to a fresh Eppen-
dorf tube and centrifuged at 15,000× g, 4 ◦C for 20 min. Finally, the supernatant was
injected into the LC-MS/MS system analysis. UHPLC-MS/MS analyses were performed
using a Vanquish UHPLC system (ThermoFisher, Germany) coupled with an Orbitrap Q
ExactiveTMHF-X mass spectrometer (Thermo Fisher, Dreieich, Germany) by Novogene Co.,
Ltd. (Beijing, China). Samples were injected onto a Hypesil Gold column (100 × 2.1 mm,
1.9 µm) using a 17-min linear gradient at a 0.2 mL/min flow rate. The eluents for the
positive polarity mode were eluent A (0.1% FA in water) and eluent B (methanol). The
eluents for the negative polarity mode were eluent A (5 mM ammonium acetate, pH 9.0)
and eluent B (methanol). The solvent gradient was set as follows: 2% B, 1.5 min; 2–85%
B, 3 min; 85–100% B, 10 min; 100–2% B, 10.1 min; 2% B, 12 min. Q ExactiveTM HF-X mass
spectrometer was operated in positive/negative polarity mode with a spray voltage of
3.5 kV, capillary temperature of 320 ◦C, sheath gas flow rate of 35 psi, and aux gas flow rate
of 10 L/min, S-lens RF level of 60, Aux gas heater temperature of 350 ◦C.

https://www.arbsilva.de
https://www.arbsilva.de
https://unite.ut.ee/
https://mk.bcgsc.ca/tableviewer/visualize/
https://www.bioinformatics.com.cn
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4.6. Data Processing and Metabolite Identification

The raw data files generated by UHPLC-MS/MS were processed using the Compound
Discoverer 3.1 (CD3.1, Thermo Fisher Dreieich, Germany) to perform peak alignment, peak
picking, and quantitation for each metabolite under positive ion mode (POS) and negative
ion mode (NEG) [76]. The normalized data was used to predict the molecular formula based
on additive ions, molecular ion peaks, and fragment ions. Then, the peaks were matched
with the mzCloud (https://www.mzcloud.org/), mzVault, and MassList databases to
obtain accurate qualitative and relative quantitative results [77]. Statistical analyses were
performed using the statistical software R (v3.5.0), and compounds whose CVs of relative
peak areas in QC samples were greater than 30% were removed for metabolite identification
and relative quantification.

4.7. Metabolomics Data Analysis

These metabolites were annotated using the KEGG database (https://www.genome.
jp/kegg/pathway.html), HMDB database (https://hmdb.ca/metabolites), and LIPIDMaps
database (http://www.lipidmaps.org/). The centering and scaling of metabolome raw data
were performed using the R scale function in R. Principal components analysis (PCA), and
partial least squares discriminant analysis (PLS-DA) was performed using metaX [78], and
univariate analysis (t-test) was performed to calculate the statistical significance (p-value).
The metabolites with VIP > 1, p < 0.05, fold change (FC) ≥ 2, or ≤0.5 were assigned
as differentially expressed metabolites (DEMs) [79]. Volcano plots were used to filter
metabolites of interest based on log2FC and −log10(p-value) of metabolites by “ggplot2”
in R (v3.5.0). For hierarchical clustering analysis (HCA), the data were normalized using
z-scores of the intensity areas of differential metabolites and were visualized by “Pheatmap”
package in R. The functions of these metabolites and metabolic pathways were studied
using the KEGG database. The metabolic pathway enrichment of differential metabolites
was performed; when the ratio was satisfied by x/n > y/N, the metabolic pathway was
considered as enriched and when the p-value of the metabolic pathway < 0.05, the metabolic
pathway was considered as statistically significant enrichment.

4.8. Correlations Analysis between Differential Microorganisms and DEMs and
Statistical Analysis

Using the linkET package in R (v3.5.0), the Mantel test was used to investigate Pear-
son’s r linkages between root secondary metabolites and rhizosphere microorganisms [64].
Correlation analysis of differential rhizosphere microorganisms (bacterial–fungal gen-
era) in the top twenty and differential expressed metabolites in the top thirty (POS and
NEG) was performed using the OmicShare tool, a free online platform for data analysis
(https://www.omicshare.com/tools). IBM SPSS Version 20.0 (SPSS Inc., Chicago, IL, USA)
was used to calculate the significant differences among treatments according to Duncan’s
multiple range test at p < 0.05 based on analysis of variance (ANOVA). All figures were
adjusted, combined, and modified using Adobe Illustrator 2019.

5. Conclusions

In conclusion, the application of biopesticide SCZNF significantly mitigates root rot
incidence in Angelica sinensis by modulating the host microbiome and root metabolites. Ap-
plication of SCZNF (T1) showed a control effect of 73.17%, similar to fungicide (T2) 75.45%,
significantly higher than Bacillus subtilis (T2; 39.99%). This effectiveness is attributed to T1
and T3 ability to lower the abundance of fungal genera, including Fusarium spp., Humicola
spp., and Chrysosporium spp., known to cause root rot disease and continuous cropping
issues. Treatment T1 significantly enhanced the abundance of beneficial bacterial taxa such
as Acidobacteria spp., Nitrospira spp., and Pedosphaeraceae spp., which promote plant growth
and soil health through improved carbon cycling and nitrogen enrichment. Additionally, T1
fostered a more complex and stable interkingdom network, indicating better recruitment of
beneficial microbes and suppression of root rot pathogens. Metabolomic analysis showed

https://www.mzcloud.org/
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://hmdb.ca/metabolites
http://www.lipidmaps.org/
https://www.omicshare.com/tools
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that all treatments significantly affected the secondary metabolites in A. sinensis roots, with
T2 leading to a greater enrichment of metabolic pathways and 105 differentially expressed
metabolites compared to the control. However, correlation analysis revealed a stronger as-
sociation between microbial communities and metabolites in T1 and T3 than in T2. Overall,
this study underscores the intricate interactions between A. sinensis, its root metabolome,
and the rhizosphere microbial community in influencing disease susceptibility.
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nation analysis (PLS-DA) of different metabolites under different treatments. Figure S6. Function
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phyla. Table S5. Metabolite differential screening results.
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