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Abstract: In this study, the emphasis is on assessing how satellite-derived vegetation indices respond
to drought stress characterized by meteorological observations. This study aimed to understand
the dynamics of grassland vegetation and assess the impact of drought in the Wielkopolskie (PL41)
and Podlaskie (PL84) regions of Poland. Spatial and temporal characteristics of grassland dynamics
regarding drought occurrences from 2020 to 2023 were examined. Pearson correlation coefficients
with standard errors were used to analyze vegetation indices, including NDVI, NDII, NDWI, and
NDDI, in response to drought, characterized by the meteorological parameter the Hydrothermal
Coefficient of Selyaninov (HTC), along with ground-based soil moisture measurements (SM). Among
the vegetation indices studied, NDDI showed the strongest correlations with HTC at r = −0.75,
R2 = 0.56, RMSE = 1.58, and SM at r = −0.82, R2 = 0.67, and RMSE = 16.33. The results indicated
drought severity in 2023 within grassland fields in Wielkopolskie. Spatial–temporal analysis of NDDI
revealed that approximately 50% of fields were at risk of drought during the initial decades of the
growing season in 2023. Drought conditions intensified, notably in western Poland, while grasslands
in northeastern Poland showed resilience to drought. These findings provide valuable insights for
individual farmers through web and mobile applications, assisting in the development of strategies
to mitigate the adverse effects of drought on grasslands and thereby reduce associated losses.

Keywords: drought stress; grasslands; hydrothermal coefficient of selyaninov; plant response;
satellite imagery; vegetation indices

1. Introduction

Plant stress is a critical focus of environmental research, particularly in the context
of climate change, ecosystem ecology, and conservation efforts [1,2]. Understanding how
plants respond to various stressors such as drought, heat, cold, salinity, and pollution
is essential for predicting how ecosystems will respond to changing environmental con-
ditions [3]. In the face of climate change, extreme weather events such as heatwaves,
droughts, and floods are becoming more frequent and severe. These events have had a
significant impact on plant health and productivity. By studying the responses of plants to
these stressors, researchers can better predict which species are most vulnerable and which
may be more resilient in a changing climate. This knowledge is crucial for developing
effective conservation strategies and mitigating the impacts of climate change on plant
biodiversity. In grassland ecosystem ecology, plant stress research is particularly important
because grasslands are highly sensitive to environmental changes [4,5].

Grassland ecosystems provide essential services such as carbon sequestration, water
filtration, and habitat for a diverse range of species [6,7]. Understanding how different
grassland species respond to stress can help researchers predict how these ecosystems will
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change in the future and develop strategies to conserve their biodiversity and ecosystem
functions [8]. Additionally, plant stress research is essential for agriculture, as it helps
farmers select crop varieties that are more resilient to environmental stressors, ultimately
increasing crop yields and food security [9]. By studying plant stress responses, researchers
can also develop new techniques for sustainable agriculture, such as drought-resistant
crops and more efficient irrigation systems [10]. Therefore, plant stress plays a crucial role
in environmental research, helping scientists understand how plants respond to chang-
ing environmental conditions and developing strategies to conserve biodiversity, protect
ecosystems, and ensure food security in a changing climate [11].

Remote sensing has revolutionized the way we detect and monitor plant stress by
providing valuable information on the spectral responses of plants to various stressors [12].
It involves the collection and interpretation of data from a distance, often using satellites,
aircraft, or drones equipped with sensors capable of detecting different wavelengths of
light. One of the key benefits of remote sensing for detecting plant stress is its ability to
capture large-scale, spatially explicit information about plant health and vigor [13]. By
measuring the spectral reflectance of plants across different wavelengths of light, remote
sensing can provide valuable insights into the physiological and biochemical changes
that occur in plants under stress. For example, stressed plants often exhibit changes in
chlorophyll content, leaf water content, and canopy structure, which can alter their spectral
reflectance properties. Remote sensing techniques such as multispectral and hyperspectral
imaging can detect these changes by measuring the amount of light reflected by plants at
specific wavelengths [14].

Multispectral imaging systems typically capture light in a few discrete bands, such
as the visible and near-infrared spectra (NIR), allowing us to calculate vegetation indices
such as the commonly used Normalized Difference Vegetation Index (NDVI). These indices
provide valuable information about plant health and vigor, with low values indicating
stressed or unhealthy vegetation [15]. This allows researchers to detect subtle changes
in plant physiology and biochemistry associated with stress [16]. It is important to note,
however, that this relationship does not hold for all vegetation indices. Other indices, such
as the Enhanced Vegetation Index (EVI) or the Water Band Index (WBI), may respond
differently to plant stress. In some cases, higher values could indicate stress or other
physiological changes. Therefore, remote sensing science and techniques play a crucial
role in detecting and monitoring plant stress by providing valuable information on the
spectral responses of plants to various stressors [17]. By combining remote sensing data
with ground-based observations and models, we can understand how plants respond to
environmental stress and develop strategies to mitigate the impacts of stress on agricultural
productivity, ecosystem health, and biodiversity conservation [18,19].

A widely used satellite data source comes from the Sentinel-2 satellites, which are
highly popular due to their open-access policy, providing freely available data to the
public [20,21]. The Sentinel-2 satellites provide high-resolution imagery at 10 m up to
60 m with a wide swath at 290 km, allowing for detailed observation and monitoring of
changes in land cover [22], water bodies [23], vegetation, and ecosystems [24]. Secondly,
the Sentinel-2 satellites capture imagery in 13 spectral bands, ranging from the visible
to the shortwave infrared (SWIR), enabling researchers to analyze various vegetation
indices and detect changes in plant health, biomass, and stress levels [25]. Additionally, the
satellites revisit the same area on the Earth’s surface every 5 days with both satellites in
operation, providing a frequent revisit time for regular monitoring of changes in vegetation,
land cover, and environmental conditions. Lastly, the global coverage provided by the
Sentinel-2 satellites allows researchers to monitor changes in vegetation, land cover, and
environmental conditions across the entire planet.

A notable limitation of using Sentinel-2 for monitoring vegetation, including drought
stress, is its optical sensor’s susceptibility to cloud cover, which can obscure the satellite’s
view of the Earth’s surface [26]. This issue is particularly challenging in regions such as
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Poland, known for frequent cloud cover, where it can significantly hinder the continuity
and reliability of the data [27,28]. Therefore, in our study, we used near-cloud-free images.

Our study aims to explore which commonly used vegetation indices retrieved from
Sentinel-2 satellite imagery best capture changes in grassland vegetation caused by drought
stress. We evaluated in situ measurements conducted during the growing season, as well as
meteorological datasets, to identify conditions indicating drought. Then the meteorological
and satellite imagery-based retrievals were examined to figure out the plant stress due to
drought conditions. The manuscript proceeds with further analyses focusing on (1) the
contribution of different vegetation indices from Sentinel-2 to determining plant drought
stress, (2) the impact of utilizing high-resolution temporal satellite observations under
frequent cloud coverage on the detection of drought severity in grasslands in Poland, and
(3) the potential applications of our study’s findings for plant science and mapping drought
stress using earth observation data.

The innovative aspect of this research lies in its evaluation of various Sentinel-2
vegetation indices specifically tailored to detect plant stress, determining which most
accurately reflect changes in grassland vegetation due to drought, and incorporating high-
resolution temporal analysis under conditions of frequent cloud coverage, with implications
for enhancing drought stress mapping using remote sensing data.

2. Materials and Methods

The following steps were taken to examine the sensitivity of satellite-derived vegeta-
tion indices to plant drought stress: (1) conducting field measurements in grasslands from
2020 to 2023; (2) creating a database of meteorological parameters to investigate drought
conditions; (3) developing a database of vegetation indices primarily for identifying drought
using Sentinel-2 imagery; (4) investigating and detecting drought through cross-verification
of in situ and meteorological data with satellite information; and (5) culminating in the
creation of illustrations that present spatiotemporal variations of drought intensity in Polish
grasslands. We have included brief descriptions for context and employed color coding to
visually distinguish between each step (Figure 1).
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Figure 1. The process of examining the sensitivity of satellite-derived vegetation indices to plant
drought stress at grasslands in Poland from 2020 to 2023.

2.1. Study Areas

The study areas, which are highlighted with a red frame in Figure 2, are spread
across different regions of the country, each characterized by unique natural conditions
that include variations in terrain, water bodies, and vegetation structures. These areas
vary from lowlands to hilly terrains, influencing the types of soil, their structure, and
their properties. Furthermore, the sites range from regions with intense human activity to
more pristine areas, adding to their diversity and making them valuable for research. In
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the Podlaskie region of northeastern Poland, coded as PL84 under NUTS 2 (NUTS2 is a
classification level in the NUTS (Nomenclature of Territorial Units for Statistics) system
of the European Union, used for regional analysis and allocation of structural funds), the
landscape is mostly lowland but features a variety of terrain. The presence of rivers like
the Biebrza and Bug enhances the region’s ecological diversity by supporting a rich mosaic
of aquatic and wetland ecosystems. These river valleys are often humid, fostering unique
ecological conditions that are conducive to the growth and development of the extensive
grasslands [29].
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Figure 2. Location of field measurements conducted at grasslands highlighted by red dots in
Wielkopolskie (PL41) and Podlaskie (PL84) provinces in Poland.

Conversely, the Wielkopolskie region in western Poland, coded PL41 under NUTS 2,
features a more balanced topography, predominantly composed of lowlands interspersed
with some hilly areas. The Wielkopolskie Lowland, lying at the heart of this region,
exemplifies a typical lowland terrain characterized by flat or gently rolling landscapes
ideal for intensive farming [30]. This region is traversed by numerous rivers and streams,
including the significant Warta River, which is a key hydrographic feature of the landscape.

Climatically, the regions span various climatic zones of Poland, leading to differences
in temperature, precipitation, and vegetative periods. These climatic conditions directly
influence soil development and its agricultural utility. Podlaskie experiences a moderately
warm continental climate with a shorter growing season, with an average annual tempera-
ture of 6.5 ◦C and annual rainfall of 550 mm [31]. In contrast, Wielkopolskie is characterized
by a warmer transitional climate with milder winters and warmer summers, where the
average annual temperature is 7.5 ◦C and the total rainfall is 500 mm [32]. Both regions
have experienced increases in temperatures and more frequent extreme weather events,
such as droughts and heavy rainfall, in recent years [33]. In Wielkopolskie, key challenges
include severe drought [34] and soil erosion [35].

The distribution and characteristics of grasslands across Poland present significant
challenges for nature conservation [36]. Typically, these grassland patches are relatively
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small in size, increasing the risk of local species extinction. Additionally, they are often
situated at considerable distances from one another, impeding the movement of populations
between patches and hindering their ability to re-establish [30]. Analyses have shown
that the proportion of permanent grasslands in the agricultural land structure in 2020
is significantly higher in the Podlaskie Voivodeship compared to Wielkopolskie, with
proportions of 38.2% and 13.9%, respectively [30].

2.2. Field Measurements

Ground measurements were conducted in the grasslands recognized in the Podlaskie
and Wielkopolskie voivodeships (Figure 1). A total of 46 field sites were selected for ground
measurements, with 23 sites in each of the two voivodeships. Field sites were chosen to
capture the variability and spatial distribution of the vegetation. In the Wielkopolskie
region, the study area consisted of three fields smaller than one hectare, eighteen fields
ranging from one to ten hectares, and two fields larger than ten hectares. Conversely, in
the Podlaskie region, there were four fields smaller than one hectare and nineteen fields
between one and ten hectares.

Ground measurements were synchronized with Sentinel-2 overpasses and were carried
out every three to four weeks during the growing season from April to September. Table 1
lists the field campaign dates from 2020 to 2023. The frequency of ground measurements
depended on cloud cover observations, the distances between specific fields, and the
accessibility of convenient locations for easy access. During the ground campaigns, two
biophysical parameters characterizing soil conditions and vegetation state were measured
at the field sites: soil moisture (SM; measured to a depth of 15 cm) using the TRIME-PICO64
(Ettlingen, Germany) and grass height using the Electronic Bluetooth® Plate Meter EC-20,
supported by photo documentation.

Table 1. Ground measurement dates were conducted at Wielkopolskie and Podlaskie voivodeships
across the years 2020–2023.

Year Wielkopolskie Podlaskie

2020 16.06, 22–23.06, 30.06, 15.07, 18.07, 06.08, 12–13.08,
23.08, 09–10.09, 17.09, 24.09

06–08.07, 28–29.07, 18–20.08,
30.09, 01.10

2021
24.04, 26.04, 08.05, 10.05, 21.05, 04–05.06, 17.06, 21.06,

02–03.07, 17.07, 29.07, 31.07, 02.08, 21–22.08, 04.09,
06.09, 19.09, 23.09

10–11.05, 09–10.06, 29–30.06,
26–27.07,
23–24.08

2022
22.04, 30.04, 07.05, 20.05, 22–23.05, 27.05, 18.06, 25.06,

08.07, 20.07, 24.07,
06–07.08, 25.08, 28–29.09

10–11.05, 22–23.06, 27–28.07

2023 29.04, 02.05, 12.05, 21.05, 17.06, 24.06, 09.07, 16.07,
27.07, 05.08, 13.08, 26–27.08, 10.09, 23–24.09 19–20.04, 24–25.05, 05–06.07

2.3. Satellite Data Acquisition

The Sentinel-2 program, part of the Copernicus program, offers several advantages for
environmental research and monitoring (https://sentinel.esa.int/web/sentinel/missions/
sentinel-2 (accessed on 13 July 2024). The grassland areas in the Podlaskie region include
three Sentinel-2 granules: 34UED, 34UFD, and 34UFE. Similarly, the grass fields in the
Wielkopolskie region include three Sentinel-2 granules: 33UWT, 33UWU, and 33UXU.
The satellite data are accessible from orbits 22, 122, 79, 36, and 136, allowing for image
acquisition every 5–6 days. Sentinel-2A and Sentinel-2B satellite images at processing level
2A were automatically retrieved using Google Earth Engine (GEE), a cloud-based platform
offering geospatial data, tools, and computational power for analyzing and visualizing
satellite imagery and other geospatial data. Users can access and analyze the data using
various programming languages, such as Python and JavaScript. GEE also provides a
range of tools for data processing and analysis, including machine learning algorithms for

https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
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image classification and time-series analysis [37]. For this study, we utilized the JavaScript
API within the Earth Engine Code Editor. The climate in the two regions is moderately
continental, characterized by a short growing season, prolonged snow and ice cover, and
significant cloudiness. Consequently, we filtered the satellite data to include only those
images with less than 10% cloud cover. Table 2 provides a comprehensive list of the selected
Sentinel-2 images for the years 2020–2023 over the study areas.

Table 2. Number of S2 imaging scenes across years 2020–2023 used for the study.

Year Wielkopolskie Podlaskie

2020 108 60
2021 97 48
2022 107 45
2023 100 59

Next, satellite meteorological datasets from ERA-5 Land, developed by the European
Centre for Medium-Range Weather Forecasts (ECMWF), were utilized. ERA-5 Land is
renowned as a top-tier tool for analyzing worldwide weather conditions and represents an
enhanced iteration thanks to the incorporation of currently used technologies and refined
algorithms [38]. The ERA5-Land dataset offers a spatial resolution of 0.1 degrees, equivalent
to approximately 9 km × 9 km, providing detailed meteorological insights across diverse
Earth regions. Spanning from 1950 to the present, this dataset facilitates the examination
of climate trends over decades. Encompassing a wide range of meteorological variables,
including air temperature, humidity, wind speed, atmospheric pressure, precipitation, and
more, ERA5-Land provides a comprehensive toolkit for analysis. These parameters are
accessible at different atmospheric levels. Demonstrating its versatility, ERA5-Land has
proven invaluable in various scientific domains such as climate studies [38], land cover
and vegetation seasonality [39], and weather forecasting [40]. In our study, we exploited
ERA5-Land data, specifically daily averaged air temperature and daily total precipitation,
to find out the sensitivity of remote sensing-based drought indices at grasslands.

2.4. Meteorological Drought Assessment

To investigate the meteorological conditions for grass development and detect drought,
ERA-5 Land datasets comprising daily air temperature (Figure 3) and daily total precipita-
tion (Figure 4) at grasslands during the growing season from 2020 to 2023 were utilized. It
was observed that the distributions of average daily temperatures from 2020 to 2023 for
grasslands in two distant voivodeships did not differ significantly. However, the thermal
conditions for grass growth in both regions exhibited frequent temperature fluctuations,
especially in 2022 and 2023, when temperature observations often surpassed the critical
threshold of 20–25 degrees Celsius for average daily temperature. This threshold is consid-
ered the limit for thermal stress in plants under Polish climate conditions [41]. Additionally,
concerning daily rainfall totals, distinct differences were observed in the temporal distri-
bution of grasslands in both regions. In the Podlaskie Voivodeship, there were frequent
instances of large daily rainfall totals exceeding 50 mm in 2020. Conversely, during a
similar period in the Wielkopolskie Voivodeship, relatively consistent rainfall events were
recorded, with daily totals not exceeding 40 mm. In subsequent years, daily rainfall totals
generally ranged from 10 to 20 mm, depending on the observation period.

Next, the Hydrothermal Coefficient (HTC), also known as Selyaninov’s coefficient [42],
was calculated to estimate meteorological drought conditions in grasslands. This widely
used metric for drought monitoring in central and eastern European countries [43,44]
characterizes the atmospheric moisture conditions that contribute to drought. The HTC
is closely linked to the productivity of various grassland types [45]. Considering the
widespread use of HTC in research, it was deemed an appropriate method for assessing
the occurrence and intensity of drought.
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Podlaskie (b) voivodeships.

The HTC combines air temperature and precipitation parameters over a specific period.
HTC is calculated as the ratio of accumulated air temperature to accumulated precipitation
over a given period. It is defined by the following Equation (1) [42]:

HTC =
10∑n

i=1 Pi

∑n
i=1 Ti

(1)

where

n—length of the preceding period in days;
Pi—precipitation amount on the ith day (mm);
Ti—daily average of the air temperature on the ith day (◦C).

This study adopted the widely accepted classification into nine HTC classes [46]. The
HTC values are as follows: extremely dry (HTC < 0.4), very dry (HTC 0.4–0.8), dry (HTC
0.8–1.1), quite dry (HTC 1.1–1.4), optimum (HTC 1.4–1.7), quite humid (HTC 1.7–2.1),
humid (HTC 2.1–2.6), very humid (HTC 2.6–3.0), and extremely humid (HTC > 3.0). In
order to investigate the complexity and dynamics of meteorological drought for each
analyzed moment within the growing season from 2015 to 2023, the median of the HTC
index over the preceding 30 days (HTC30) was determined. The 30-day median HTC
index is described as valuable because it smooths out short-term fluctuations and outliers,
offering a more consistent and reliable measure of heat transfer performance [44].
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2.5. Vegetation Indices Calculations

To assess how sensitive satellite-derived vegetation indices (VIs) are to plant stress,
we selected and calculated VIs specifically designed for drought mapping using Sentinel-2
images of the study area. Initially, we identified the most commonly used spectral vegeta-
tion indices, which capture various aspects of plant growth, drought detection, and canopy
water content. These VIs are detailed in Table 3.

Table 3. Spectral indices used in study.

Short Name Full Name Formula Authors

NDVI Normalized Difference Vegetation Index NDVI =
R842 − R665
R842 + R665

Rouse et al., 1973 [47]

NDII Normalized Difference Infrared Index NDII =
R842 − R1610
R842 + R1610

Hardisky et al., 1983 [48]

NDWI Normalized Difference Water Index NDWI =
R860 − R1240
R860 + R1240

Gao, 1996 [49]

NDDI Normalized Difference Drought Index NDDI =
NDVI − NDWI
NDVI + NDWI

Gu et al., 2007 [50]

The Normalized Difference Vegetation Index (NDVI) is a widely used measure of plant
health and density, derived from the difference between the maximum absorption of red
light and the maximum reflectance of near-infrared light. NDVI values range from −1 to 1,
with higher values representing healthier and more abundant vegetation. This index is in-
strumental in monitoring vegetation and detecting changes in ecosystems and biodiversity.
However, its accuracy can be influenced by atmospheric conditions, the soil background,
and the structure of the plant canopy [51]. Moreover, when vegetation is dense and covers
100% of the ground, NDVI gives poor estimates of vegetation productivity because it is
saturated and does not reflect the increase in biomass [52,53]. The Normalized Difference
Infrared Index (NDII) specifies vegetation moisture and leaf water content. NDII values can
range from −1 to 1, with higher values indicating greater water content in vegetation and
lower values indicating less moisture. NDII is particularly useful for monitoring grassland
productivity [54], detecting mowing frequency [55], and assessing plant hydric stress [56].
The Normalized Difference Water Index (NDWI), primarily developed by Gao in 1996 [49],
is utilized to monitor changes in moisture levels and water content in grassland plants [57].
The last one, the Normalized Difference Drought Index (NDDI), was developed by Gu in
2007 [50] for assessing drought in grasslands. It is based on the relationships between two
previously established indices: NDVI and NDWI. The value of the NDDI index increases
with the severity of the drought. Assuming minimum drought criteria for NDVI < 0.5 and
NDWI < 0.3, a drought condition occurs at NDDI > 0.25. The NDDI has been validated for
evaluating drought conditions in grasslands in India [58] and Mongolia [59].

2.6. Estimating Drought Response to VIs

Considering that the NDVI and NDWI indices are included in the NDDI calcula-
tion and given that NDII is regarded as a less efficient indicator for monitoring drought
conditions [57], we focused on investigating the sensitivity of the latest NDDI indicator
values in relation to meteorological records. Additionally, ground measurements were used
for cross-validation to assess the usefulness of the index that best characterizes drought
severity. Furthermore, to verify drought severity, which is described within the value
ranges of NDII and NDDI, we examined the significance of the relationships between them.
We conducted a verification of the usefulness of vegetation indices through regression
analysis in two stages. First, we assessed the extent to which changes in HTC values are
reflected in the values of S-2 NDDI used as a drought indicator, and we examined their
consistency with in situ soil moisture measurements taken at grassland sites from 2020
to 2023. The second stage focused on investigating drought severity by examining the
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relationship between NDDI and NDII. Finally, temporal variations of drought severity
with S-2 NDDI at individual grassland parcels in the Wielkopolskie region during the
growing season across the years 2020–2023 were studied. The performance statistics of
the correlations were evaluated using various metrics, including the Pearson correlation
coefficient (r), the coefficient of determination (R2), which is the square of the correlation
coefficient, as well as the mean bias error (MBE), mean absolute error (MAE), and root
mean square error (RMSE).

3. Results

The heatmaps (Figure 5) visualize temporal patterns of HTC30 during the growing
seasons across years from 2015 to 2023 in Wielkopolskie and Podlaskie. The HTC30
is segmented into ten-day periods throughout the growing season, which spans from
day 80 to day 300 of the year. The heatmaps illustrate a transition in meteorological
conditions from wetter to drier over the years. Until the end of March (DOY 60–90), the
data show predominantly “wet” and “extreme wet” conditions (blue shades), while during
the growing season lasting until the end of September (DOY 90–270), there is a mix of
all categories, indicating diverse conditions. In the most recent years, there has been a
clear shift towards “dry” and “extremely dry” conditions (red shades). Specifically in
Wielkopolskie, we noted frequent extreme dry and very dry conditions, i.e., 119 out of 216,
which constitute 55% of all observations. This pattern suggests a long-term trend towards
increased dryness, with significant seasonal variability within each year, reflecting the
changing climate and its potential impact on the studied area. On the other hand, Podlaskie
has experienced moderately dry and moderately wet conditions in recent years. The
heatmaps provide a visual representation of changing conditions over time and highlight a
shift towards drier conditions in recent years, which is critical for understanding long-term
climatic trends and planning for future environmental and resource challenges.

Plants 2024, 13, x FOR PEER REVIEW 9 of 20 
 

 

of NDII and NDDI, we examined the significance of the relationships between them. We 
conducted a verification of the usefulness of vegetation indices through regression analy-
sis in two stages. First, we assessed the extent to which changes in HTC values are re-

flected in the values of S-2 NDDI used as a drought indicator, and we examined their 
consistency with in situ soil moisture measurements taken at grassland sites from 2020 to 

2023. The second stage focused on investigating drought severity by examining the relation-
ship between NDDI and NDII. Finally, temporal variations of drought severity with S-2 
NDDI at individual grassland parcels in the Wielkopolskie region during the growing sea-

son across the years 2020–2023 were studied. The performance statistics of the correlations 
were evaluated using various metrics, including the Pearson correlation coefficient (r), the 

coefficient of determination (R²), which is the square of the correlation coefficient, as well as 
the mean bias error (MBE), mean absolute error (MAE), and root mean square error 
(RMSE). 

3. Results 

The heatmaps (Figure 5) visualize temporal patterns of HTC30 during the growing 
seasons across years from 2015 to 2023 in Wielkopolskie and Podlaskie. The HTC30 is 
segmented into ten-day periods throughout the growing season, which spans from day 

80 to day 300 of the year. The heatmaps illustrate a transition in meteorological conditions 
from wetter to drier over the years. Until the end of March (DOY 60–90), the data show 

predominantly “wet” and “extreme wet” conditions (blue shades), while during the grow-
ing season lasting until the end of September (DOY 90–270), there is a mix of all categories, 

indicating diverse conditions. In the most recent years, there has been a clear shift towards 
“dry” and “extremely dry” conditions (red shades). Specifically in Wielkopolskie, we 
noted frequent extreme dry and very dry conditions, i.e., 119 out of 216, which constitute 

55% of all observations. This pattern suggests a long-term trend towards increased dry-
ness, with significant seasonal variability within each year, reflecting the changing climate 

and its potential impact on the studied area. On the other hand, Podlaskie has experienced 
moderately dry and moderately wet conditions in recent years. The heatmaps provide a 
visual representation of changing conditions over time and highlight a shift towards drier 

conditions in recent years, which is critical for understanding long-term climatic trends 
and planning for future environmental and resource challenges. 

 

Figure 5. Temporal patterns of HTC30 at Wielkopolskie (left) and Podlaskie (right) regions during 
the growing season from March (DoY 60) until the end of October (DoY 300) in 2015–2023. 

Figure 5. Temporal patterns of HTC30 at Wielkopolskie (left) and Podlaskie (right) regions during
the growing season from March (DoY 60) until the end of October (DoY 300) in 2015–2023.

Figure 6 shows the relationship between NDDI and HTC, characterized by a significant
negative correlation coefficient r = −0.75 and R2 = 0.56. The errors are relatively low,
i.e., MBE = 0.04, MAE = 1.28, and RMSE = 1.58. The blue trend line illustrates that
as NDDI increases, HTC decreases, indicating that higher NDDI values, which signify
greater drought severity, are associated with lower HTC values, reflecting drier conditions.
The data points are predominantly concentrated within the lower NDDI range (0 to 1.5)
and the higher HTC range (1 to 4), thereby substantiating the negative correlation. This
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strong relationship suggests that NDDI is an effective index for identifying areas with
lower hydrothermal conditions, supporting its use for monitoring drought severity in the
studied region.
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To substantiate the hypothesis regarding the relationship between SM and NDDI, an
investigation was conducted (Figure 7). The analysis revealed a strong negative correlation
between the drought index and soil moisture at r = −0.82 and R2 = 0.67, indicating that
higher NDDI values are associated with lower soil moisture levels. The regression line and
the scatter of the points show that soil moisture decreases as NDDI increases, reinforcing
the inverse relationship.

While NDII and NDDI are considered appropriate for determining drought severity,
the relationship between NDII and NDDI was investigated as well (Figure 8). A blue
exponential regression line runs through the data points, highlighting the general trend
between NDII and NDDI at the level r = −0.71, R2 = 0.50, with a relatively low RMSE of 0.94.
The line indicates that as NDDI values increase, NDII values tend to decrease, suggesting a
negative correlation between the two indices. The plot also features annotations dividing
the data into two regions: “stressed” and “severely stressed”. The “stressed” region,
marked with an orange ellipse, contains a cluster of data points where NDII values are
positive (ranging from 0 to 0.2) and NDDI values are relatively low (up to around 0.5).
This region indicates conditions of moderate stress. In contrast, the “severely stressed”
region, outlined with a red ellipse, encompasses data points where NDII values are lower
(ranging from −0.1 to −0.3) and NDDI values are higher (from around 0.5 to 3.0). This
area represents conditions of severe stress, where higher drought conditions correspond
with lower NDII values. Overall, the scatter plot provides a visual representation of the
negative correlation between NDII and NDDI, emphasizing the varying levels of stress
indicated by different clusters of data points. NDDI offers several advantages over NDII
for determining drought conditions. NDDI is specifically designed to measure drought by
combining information from both vegetation and soil moisture content. This dual focus
makes it a more targeted and direct indicator of drought stress. In contrast, NDII primarily
measures vegetation moisture content, which can be influenced by a variety of factors other
than drought, such as plant health, soil type, or recent rainfall. Consequently, while NDII
provides valuable information about vegetation health and moisture, it does not exclusively
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indicate drought conditions. NDDI’s design to specifically detect drought stress makes it a
more effective and reliable tool for identifying and assessing drought severity.
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to drought.

Figure 9 comprises four scatter plots, each representing the occurrence and intensity of
drought conditions measured by NDDI across the years 2020–2023 at individual grassland
fields in Wielkopolskie. Each plot showcases how NDDI values fluctuate over time, with
each data point corresponding to observations from various fields or stations, indicated
by distinct colored markers. In the 2020 plot, NDDI values generally remain low, with
only a few instances where values exceed 1, indicating mild drought conditions. However,



Plants 2024, 13, 2319 12 of 19

in 2021, there is a noticeable increase in NDDI values, especially around DOY 100–150,
where several points exceed 3, signifying more severe drought conditions. The 2022 plot
shows a broader distribution of higher NDDI values, particularly between DOY 100 and
200, with some points reaching up to 5, indicating very severe drought conditions during
this period. The 2023 plot continues this trend, with numerous observations exceeding 2
and several reaching up to 5, particularly between DOY 100 and 200, suggesting persistent
and severe drought conditions. Overall, the data indicates a trend of increasing drought
severity over the four-year period, with 2022 and 2023 experiencing the most significant
drought conditions. This pattern highlights the importance of continuous monitoring and
analysis of NDDI values to manage and mitigate the impacts of drought on agricultural
fields and other affected areas.
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4. Discussion

This study demonstrated that satellite-derived indices for detecting plant stress offer
new opportunities for continuous temporal and spatial monitoring of grassland vegetation
health. The findings support the hypothesis that terrestrial ecosystems remain under stress
due to hydrothermal conditions affecting the state and development of grass plants. The
severity of the drought in 2023 was attributed to a significant increase in HTC, accompa-
nied by higher daily air temperatures and a notable decrease in daily rainfall. Our study
confirmed that the utilization of hydrothermal coefficients (HTC) enables us to explore
spatio-temporal patterns of meteorological drought, thereby facilitating the detection of
drought stress in grass plants. While HTC offers a comprehensive approach to quantifying
the combined influence of temperature and moisture on vegetation, there are some lim-
itations associated with their application. Their calculation entails complexities, relying
on sophisticated models and algorithms, which can be computationally demanding [60]
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and may not uniformly capture the impact of temperature and moisture variations across
different vegetation types and geographical regions, potentially introducing biases in
interpretation [61]. Furthermore, the accuracy of HTC estimates hinges on the availabil-
ity and quality of input data, including meteorological observations and remote sensing
imagery [44].

In this study, well-validated Sentinel-2 surface reflectance products were used to deter-
mine vegetation indices (VIs) and analyze drought dynamics for 2020–2023. Shepherd [62]
confirmed the quality of compositions from Sentinel-2 satellite images, demonstrating the
use of improved cloud-free and composited daily, weekly, or monthly mosaics for regular
land monitoring. Due to unfavorable weather conditions in Poland, where clouds are
present on average 150 days per year [63], S-2 imaging scenes with less than 10% cloud cov-
erage were taken into consideration. As shown in Table 2, the number of acquired images
for the two distinct areas varied significantly across different years. For the Wielkopolskie
region, nearly twice as many cloud-free or minimally cloudy satellite images were obtained.
This spatial relationship confirms observations of spatial variability in the number of cloudy
days in Poland, as documented by Sypniewska [63]. Moreover, a consistent and repeatable
amount of annual Sentinel-2 scenes was collected for the years 2020–2023, regardless of
geographic location. Similar variations in the availability of cloud-free or minimally cloud-
covered satellite optical data have been noted in previous grassland studies conducted
under Polish climate conditions [64,65]. This variability is an important factor to consider
in future studies. Therefore, we recommend that future research investigating temporal
patterns in remote sensing data should account for this factor and explicitly evaluate its
impact on drought stress in grass plants.

Among the tested vegetation indices and relationships presented in Figures 6 and 7, the
NDDI has shown the strongest correlation with HTC and SM. The NDDI is highly applicable
for detecting drought severity in grasslands due to its sensitivity to both vegetation and soil
moisture conditions. It integrates NDVI and NDWI, leveraging the red and near-infrared
spectra critical for NDVI and the shortwave infrared spectrum essential for NDWI. NDVI
captures the photosynthetic activity of plants by distinguishing between healthy vegetation
and stressed or sparse vegetation using red and NIR reflectance. NDWI, on the other
hand, is sensitive to leaf water content, utilizing the SWIR spectrum to detect moisture
levels in vegetation. By combining these indices, NDDI provides a comprehensive measure
of both plant health and water stress, enabling more accurate and timely detection of
drought conditions in grasslands. This dual sensitivity allows for better monitoring and
management of drought impacts, ultimately aiding in the preservation of these critical
ecosystems, as noted in the previous studies of Artikanur [66] and Patil [67]. Meteorological
conditions significantly influence the values of NDDI, providing an added value in this
study for detecting plant stress (Figure 9). The integration of meteorological data, such
as temperature and precipitation, with NDDI allows for a more accurate assessment of
drought severity and its impact on vegetation. This enhanced detection capability is crucial
for understanding the extent of stress in plants, particularly in Polish grasslands under
various climate zones, where the interplay between climatic factors and plant health is
complex and dynamic [68–70].

The analysis of VIs revealed that plant drought stress can be detected and moni-
tored using the NDDI provided at a 10-m spatial resolution from S-2 imagery. While
many studies have analyzed drought in Poland using commonly used indices such as the
Drought Information Satellite System (DISS) at a coarse 1000 m spatial resolution [71] and
the Standardized Precipitation Evapotranspiration Index (SPEI) based on meteorological
observations at a 0.25-degree spatial resolution [34], our approach offers local farmers the
opportunity to investigate drought conditions with much greater precision at individual
field levels. Farmers in the Wielkopolska region, which is strongly affected by soil ero-
sion [35], should take particular interest in these types of analyses. Research examining
drought frequency between 2001 and 2023, conducted using the DISS index methodology
with satellite data from the Terra MODIS satellite [71], has highlighted that agricultural
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fields and grasslands in Wielkopolska are significantly more vulnerable to drought com-
pared to the Podlaskie region (Figure 10). Therefore, the critical focus remains on linking
adverse conditions for grass vegetation growth and providing precise spatial information
at a resolution of 10 × 10 m, along with frequent temporal updates. These requirements are
met by the satellite observations provided within the Earth Observation Copernicus S-2.
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In the context of tracking drought severity with high temporal and spatial accuracy
for individual farmers in Wielkopolskie, Figure 11 unveils new insights for utilizing S-2
NDDI observations. The figure illustrates the proportion of grassland fields endangered by
drought in ten-day periods across four years. In 2023, drought risk peaked early in the year,
notably between DOY 70 and 90, with over 50% of fields affected, a significantly higher
proportion compared to the same period in other years. Another substantial increase in
2023 occurred around DOY 150 and 230, once again surpassing the other years. In contrast,
2021 exhibited consistently low drought risk throughout the year, while 2020 and 2022
showed moderate risk spikes at various periods. These data indicate that 2023 experienced
more severe and frequent drought conditions in grassland fields, especially in the early
and mid-year periods, underscoring a notable escalation in drought risk compared to
previous years.
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estimated from satellite Sentinel-2 NDDI observations across 2020–2023.

Examining drought sensitivity in agriculture has been the subject of numerous stud-
ies conducted by various researchers [72–74]. It has been proven that satellite-derived
information provides valuable, repeatable, and near-real-time data. However, utilizing the
Normalized Difference Drought Index (NDDI) with Sentinel-2 data for mapping drought
severity comes with several uncertainties and limitations. One primary challenge is the
variability in atmospheric conditions, such as cloud cover and aerosol presence, which
can affect the accuracy of satellite imagery and its availability (Table 2). Additionally,
the spatial resolution of Sentinel-2, while high, may still miss small-scale variations in
drought conditions within heterogeneous landscapes. The temporal resolution also poses a
limitation, as a ten-day period from five-day revisits might not capture rapid changes in
soil moisture and vegetation stress. Furthermore, the NDDI relies on the accuracy of both
NDVI and NDWI, which can be influenced by factors such as soil background, vegetation
type, and phenological stage [51,57]. Calibration and validation of NDDI data against
ground-based measurements are essential to ensure reliability but can be resource-intensive
and geographically limited [67]. Thus, during field campaigns (Table 1), we collected in
situ soil moisture data to confirm the reliability of the NDDI. These factors collectively
introduce uncertainties in the assessment and mapping of drought severity, potentially
affecting the precision of drought monitoring and decision-making processes [75].

5. Conclusions

The examination of vegetation indices to assess drought stress across various grass-
land regions in Poland has provided valuable insights into the intricate interplay between
environmental factors and meteorological observations. This study emphasizes the critical
role of effective grassland management in promoting agricultural sustainability amidst
challenges posed by climate change, which often manifests in drought occurrences. The
findings underscore the necessity for adaptive management strategies that prioritize re-
silience within agricultural systems. Distinct growth patterns in grasslands were observed,
particularly concerning drought, as indicated by NDDI observations. While Wielkopolskie
experienced increased drought occurrences in the first decades of the growing seasons from
2022 to 2023, Podlaskie exhibited stable conditions with minimal variations. These findings
underscore the importance of considering local environmental factors when analyzing
vegetation dynamics.
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Additionally, the examination of meteorological conditions revealed significant re-
gional differences, particularly in temperature and precipitation. The year 2023 presented
considerable challenges for vegetation development, characterized by unfavorable condi-
tions across all study areas. These observations underscore the vulnerability of agricultural
systems to climatic variability and the importance of adaptive management strategies. The
use of the NDDI index for assessing drought response provided insights into distinguishing
between wet and dry conditions. Significant variations in drought occurrences and the pro-
portion of fields at risk were identified within Poland, influenced by climatic fluctuations
and grassland management practices. The use of the NDDI index proved invaluable for
assessing vegetation water content, offering a potential tool for monitoring and managing
grassland resources.

The implications of these findings extend beyond academic research, holding prac-
tical significance for agricultural stakeholders. By enhancing our understanding of the
relationship between environmental conditions and biomass production, farmers and land
managers can implement more effective cultivation practices and grassland management
strategies. This knowledge is particularly crucial given changing climatic conditions, where
adaptive approaches are essential for ensuring the resilience and sustainability of agri-
cultural systems. In conclusion, this study provides valuable insights into the complex
dynamics of vegetation growth and response to drought across diverse agricultural land-
scapes. By elucidating the influence of environmental factors on agricultural outcomes, it
lays the groundwork for informed decision-making and sustainable resource management
in response to evolving climatic challenges.
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