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Abstract

Introduction: Developing alternative approaches to evaluating absolute efficacy of new HIV 

prevention interventions is a priority, as active-controlled designs, whereby individuals without 

HIV are randomized to the experimental intervention or an active control known to be effective, 

are increasing. With this design, however, the efficacy of the experimental intervention to prevent 

HIV acquisition relative to placebo cannot be evaluated directly.

Methods: One proposed approach to estimate absolute prevention efficacy is to use an HIV 

exposure marker, such as incident rectal gonorrhea, to infer counterfactual placebo HIV incidence. 

We formalize a statistical framework for this approach, specify working regression and likelihood-

based estimation approaches, lay out three assumptions under which valid inference can be 

achieved, evaluate finite-sample performance, and illustrate the approach using a recent active-

controlled HIV prevention trial.

Results: We find that in finite samples and under correctly specified assumptions accurate and 

precise estimates of counterfactual placebo incidence and prevention efficacy are produced. Based 

on data from the DISCOVER trial in men and transgender women who have sex with men, 

and assuming correctly specified assumptions, the estimated prevention efficacy for tenofovir 

alafenamide plus emtricitabine is 98.1% (95%CI: 96.4% to 99.4%) using the working model 

approach, and 98.1% (95% CI: 96.4% to 99.7%) using the likelihood-based approach.

Conclusions: Careful assessment of the underlying assumptions, study of their violation, 

evaluation of the approach in trials with placebo arms, and advancement of improved exposure 

markers are needed before the HIV exposure marker approach can be relied upon in practice.
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Introduction

The last decade has seen dramatic success in HIV prevention1 with effective pre-exposure 

prophylaxis (PrEP) products.2–8 Despite these successes, HIV remains a major threat to 

global health.9 As considerable challenges to implementing existing prevention interventions 

exist,10,11 additional biomedical prevention interventions are needed.

A variety of new preventive interventions (e.g., alternative PrEP agents, vaccines, etc.) 

are in development.12 Placebo-controlled randomized trials that enroll individuals without 

HIV and follow them for incident HIV acquisition have historically been required for 

regulatory approval of new interventions. For new interventions in the same “class” as 

an intervention already proven effective, future trials will likely be “active-controlled”;13 

participants without HIV are randomized to the experimental intervention or an existing 

“active control” intervention already proven effective. Even for new interventions in as-yet-

unproven classes, e.g., vaccines, an active-controlled design may be necessary.

The fundamental challenge of an active-controlled trial is that absolute prevention efficacy, 

i.e., the reduction in HIV incidence for the intervention relative to placebo, cannot be 

evaluated based on the trial data alone. Instead, relative efficacy of the experimental and 

active control interventions is assessed. Yet absolute efficacy is arguably the parameter 

of most interest.14,15 A traditional approach to estimating efficacy is using data from a 

historical placebo-controlled trial of the active control to set a “margin” for establishing 

non-inferiority or superiority of the experimental intervention, based on the assumption 

that efficacy established in the historical trial can be carried over to the new trial.16,17 

This approach is challenging in HIV prevention, since many interventions are highly user-

dependent,18–20 and efficacy of vaccines and monoclonal antibodies depends on properties 

of the exposing virus;21–23 thus, efficacy in the historical trial may not apply to the current 

trial. In addition, non-inferiority trials generally require larger sample sizes than placebo-

controlled trials, especially if the active control is highly effective. Therefore, developing 

alternative approaches to evaluating absolute efficacy of new HIV prevention interventions is 

a priority.

One approach proposed in concept24,25 and widely discussed in the HIV prevention 

field14,15,25–31 is to use a marker of HIV exposure as a proxy to infer “counterfactual 

placebo” HIV incidence, i.e., the incidence observed had a placebo arm been included in the 

active-controlled trial. This requires establishing the association between incidence of HIV 

and an HIV exposure marker in the absence of intervention, estimated based on historical 

data. Provided the intervention does not affect the HIV exposure marker, incidence of the 

marker in the active-controlled trial can be used to estimate counterfactual placebo HIV 

incidence. Figure 1 illustrates this concept. Incident rectal gonorrhea has been proposed as 

the HIV exposure marker for men who have sex with men, based on observational data 

suggesting that the incidence rates of these two sexually-transmitted infections are highly 
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correlated.24 US Food and Drug Administration (FDA) advisory committees reviewing new 

PrEP agents support this approach,32 and the FDA endorsed the approach in guidance to 

industry. Yet, a formal statistical framework is lacking.

Here, we: 1) articulate a statistical framework for inferring counterfactual placebo HIV 

incidence for an active-controlled trial using a marker of HIV exposure; 2) describe two 

estimation approaches and articulate the assumptions under which they produce unbiased 

estimates; 3) conduct a simulation study designed to closely mimic data on HIV and 

rectal gonorrhea and evaluate the performance of the methods under idealized conditions, 

i.e., when all assumptions are satisfied; and 4) apply the methodology to data from a 

recently conducted active-controlled HIV prevention trial.6 and highlight the limitations of 

the approach and implications for its use in future HIV prevention trials.

Methods

Setting and notation

Let X indicate the HIV prevention intervention where X = 0 denotes placebo, X = 1 denotes 

experimental intervention, and X = 2 denotes active-control intervention.

For an active-controlled trial, Y  denotes the HIV diagnosis event time and λk
Y  denotes 

the HIV incidence rate for subjects randomized to X = k for k = 1, 2. Let λ0
Y  denote the 

counterfactual HIV incidence for the trial population under placebo. Incidence rates are 

assumed constant over time. The quantity of primary interest is the prevention efficacy of the 

experimental intervention, given by

PE1 = 1 − λ1
Y

λ0
Y .

(1)

We formulate a general approach for evaluating PEk = 1 − λk
Y /λ0

Y , k = 1, 2.

Remark 1.—Prevention efficacy is evaluated against a backdrop standard of HIV 

prevention for the target population, consisting of proven and available HIV prevention 

products.13 Therefore, λ0
Y , hereafter “placebo incidence”, is the counterfactual HIV incidence 

where trial participants are randomized to receive a placebo in addition to the standard of 

HIV prevention. Interpretation of λ0
Y  and PEk are specific to this standard of prevention.

In a randomized placebo-controlled trial for intervention k, λk
Y  and λ0

Y  are estimated directly. 

However, in an active-controlled trial, only λk
Y  can be estimated, and λ0

Y , and therefore PEk, 

cannot be estimated directly. Instead, data from external cohorts are used to establish a 

relationship between HIV and an exposure marker, so as to infer λ0
Y .

Assumptions

Let λk
Z denote the incidence of HIV exposure marker Z in the active-controlled trial 

population, given randomization to intervention X = k. We assume λk
Z is constant in time. We 
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establish the relationship between λ0
Y  and λ0

Z based on data from M external cohorts, each 

of which is conducted under a specific standard of HIV prevention. We refer to these as 

“placebo” incidence rates for simplicity. For external cohort m = 1, …, M, let λm0
Y  and λm0

Z  be 

the incidences of HIV and the exposure marker, respectively.

We parameterize the relationship between HIV and the exposure marker incidences as

g λm0
Y = f ℎ λm0

Z + ϵm,

(2)

for m = 0, …, M, where λ00
Y = λ0

Y  and λ00
Z = λ0

Z are the incidence parameters for the active-

controlled trial population, g( ⋅ ) and ℎ( ⋅ ) are known link functions appropriate for non-

negative incidence parameters, e.g., logit or log links, g( ⋅ ) is an invertible function, f( ⋅ ) is 

an unknown regression function that can be either parametric or nonparametric, and ϵm is an 

i.i.d. mean-zero error term. Importantly, λm0
Y  and λm0

Z  are random variables: there is variability 

in the placebo incidence rates across cohorts due to different compositions of risk factors 

and differences in the standard of prevention for both HIV and the exposure marker.

We state the following assumptions.

Assumption 1.—Model (2) describes a general relationship between placebo HIV and 

exposure marker incidence rates that holds across external cohorts and the active-controlled 

trial population.

While HIV and exposure marker incidences may vary, the association between the incidence 

rates is assumed constant. To evaluate Assumption 1, one must consider carefully the 

background standard of HIV prevention for the active-controlled trial population, and 

whether any element of this prevention package influences the relationship between HIV 

and the exposure marker. For example, oral PrEP is known to reduce HIV but does not have 

a biological effect on rectal gonorrhea or other non-HIV sexually transmitted infections,6 

even though it may have an effect in terms of behavioral “risk disinhibition”.33 Therefore, 

if the trial standard of HIV prevention does not include oral PrEP, the external cohorts 

should be drawn from populations without access to oral PrEP. Elements of the standard of 

HIV prevention (i.e., condoms and risk reduction counseling) may influence HIV and rectal 

gonorrhea incidences, but not to modify their association, and therefore may not be critical 

to consider in evaluating external cohorts. Effective biomedical prevention of non-HIV 

sexually transmitted infections is another potential effect modifier. Other potential effect 

modifiers include subject demographics, behaviors, and features of the local HIV epidemic, 

i.e., population prevalence of HIV and level of viral suppression for those living with HIV. 

Blinding may also influence the relationship between HIV and the exposure marker. While 

the counterfactual placebo arm is (conceptually) blinded, the external cohorts may not be. 

While Assumption 1 can be evaluated for the external cohorts, whether it holds for the trial 

population cannot be tested, given the absence of a placebo arm for the trial population.
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Assumption 2.—An unbiased estimate of the parameters in f can be obtained based on 

estimated incidences λm0
Y , λm0

Z
, m = 1, …, M, and their associated variances in the external 

cohorts. The estimate of f after plugging in those parameter estimates is denoted by f .

Assumption 2 indicates the relationship between HIV and exposure marker incidences can 

be consistently estimated using the observed incidence rates from the external cohorts. This 

assumption is specific to the estimation approach and will be discussed below.

Assumption 3.—The exposure marker incidence is not modified by randomization to 

active intervention X = k, i.e., λk
Z = λ0

Z.

Assumption 3 stipulates that the incidence of the HIV exposure marker under X = k is the 

same as that under placebo. In evaluating this assumption one must consider whether the 

intervention, or elements of the standard of HIV prevention, may modify the incidence of 

the exposure marker. Whether or not the active-controlled trial is blinded is also relevant, 

since knowledge of receipt of intervention may modify behavior. This assumption can be 

partially evaluated in the context of an historical randomized, placebo-controlled trial of the 

intervention with the exposure marker collected as an endpoint. However, the historical data 

do not inform on whether Assumption 3 holds for the trial population.

Under Assumptions 1–3, counterfactual placebo HIV incidence can be consistently 

estimated by

λ0, k
Y = g−1f ℎ λk

Z ,

where λk
Z
 is the observed exposure marker incidence in the trial arm randomized to 

intervention k. Importantly, uncertainty in the estimated counterfactual placebo HIV 

incidence is comprised of the uncertainty due to fitting the regression model, f , and the 

uncertainty in the exposure marker incidence, λk
Z
, as illustrated in Figure 1. Prevention 

efficacy, PEk, can then be estimated by

PEk = 1 − λk
Y

λ0, k
Y ,

where λk
Y
 is the estimated HIV incidence among those randomized to intervention k in the 

active-controlled trial.

Remark 2.—If the exposure marker incidence is not modified by either intervention in 

the active-controlled trial, the exposure marker incidence among all trial participants may 

be used to estimate counterfactual placebo HIV incidence. This provides a more precise 

estimate, relative to the estimate based on the exposure marker incidence among participants 

that received intervention k.
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Bivariate Linkage Model

To estimate PEk, we focus on a special case of model (2) for which we discuss validity 

and violation of Assumption 2. We assume a bivariate normal distribution for the log-

transformed HIV and exposure marker incidence rates, Um = log λm0
Y  and V m = log λm0

Z . In 

particular,

Um

V m
∼ MV N2

μU

μV
,

σU
2 ρσUσV

ρσUσV σV
2 ,

(3)

for m = 1, …, M, where MV Np(μ, Σ) denotes a p-dimensional multi-normal distribution 

with mean μ and variance matrix Σ, μU and μV  are means of Um and V m, respectively, σU
2  and 

σV
2  are variances of Um and V m, respectively, and ρ ∈ (0, 1) is the correlation of Um and V m that 

measures the magnitude of association.

We assume the estimated incidence rates from the external cohorts, λm0
Y , λm0

Z
, are 

conditionally independent given the true incidence rates λm0
Y , λm0

Z , for m = 1, …, M. The 

joint conditional distribution is given by

(
Um

V m
) (

Um

V m
) ∼ MV N2 (

Um

V m
),

sU, m
2 0
0 sV , m

2 ,

(4)

where Um = log λm0
Y

, V m = log λm0
Z

 and sU, m
2  and sV , m

2  are the conditional variances of Um and V m

given Um, V m , respectively. Conditional independence is a common assumption in bivariate 

outcome meta-analysis,34,35 in part because conditional dependence is not commonly 

evaluated or reported in studies. We evaluate bias due to violation of the conditional 

independence assumption in simulations. Note that (4) is a model for the log-transformed 

incidence rates, but it does not stipulate a model for individual-level HIV and exposure 

marker outcomes.

Under the bivariate linkage model, the parameters μU, μV , σU
2 , σV

2 , ρ  can be estimated 

using a maximum likelihood approach given the observed external cohort data Um, V m

(m = 1, …, M). Write μU, μV , σU
2 , σV

2 , ρ  as the estimates. The counterfactual placebo 

HIV incidence λ0
Y  can therefore be estimated by

λ0, k
Y = exp μU + ρσUσV

σV
2 + sV , k

2 logλk
Z − μV ) ,

(5)

and prevention efficacy can be estimated by
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PEk = 1 − λk
Y

λ0, k
Y .

(6)

See Supplementary Materials for details.

While maximum likelihood estimation yields consistent and efficient parameter estimates 

under correct model specification, it may not be stable when the number of external cohorts 

is small, e.g., M < 20, as suggested by our simulations. When M is small, we suggest fitting 

a working regression model or “working model”:

Um = α∗ + β∗V m + ϵm
∗ , ϵm

∗ ∼ N 0, σ ∗ 2 .

(7)

In general, the working model is mis-specified. However, the estimated regression function 

based on working model estimates α∗, β∗, σ∗  and denoted by f∗, may approximate f

enough to provide adequate inference about counterfactual placebo HIV incidence. Using 

the working model, the counterfactual placebo HIV incidence is estimated by

λ0, k
∗ , Y = exp α∗ + β∗logλk

Z ,

(8)

and prevention efficacy is estimated by

PEk
∗ = 1 − λk

Y

λ0, k
∗ , Y .

(9)

See Supplementary Materials for details.

In summary, assuming the bivariate linkage model (3), the procedure for estimating 

counterfactual placebo HIV incidence and prevention efficacy is as follows:

Step 1. Given estimated incidences λm
Y , λm

Z
 from m = 1, …, M external cohorts, fit the 

bivariate linkage model using either the maximum likelihood or working model approaches;

Step 2. Given the estimated incidence rate of the exposure marker λk
Z
 from the active-

controlled trial, estimate the counterfactual placebo HIV incidence λ0
Y , using either (5) for 

maximum likelihood, or (8) for the working model approaches;

Step 3. Given the estimated HIV incidence rate λk
Y
 in the active-controlled trial, estimate PEk

using either (6) for the maximum likelihood, or (9) the working model approaches.
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R code for implementation is available on Github (https://github.com/feigao1/

CF_Exposuremarker).

Simulation studies

To evaluate the numerical performance of the counterfactual placebo incidence and 

prevention efficacy estimates, we examine the ideal scenario when all assumptions hold 

(with maximum likelihood estimation), and when Assumption 2 holds approximately (with 

working model estimation).

External cohorts—Incidences in the external cohort λm0
Y , λm0

Z  are generated from 

the bivariate linkage model (3) with log link functions where the parameter values 

μU, μV , σU
2 , σV

2 , ρ = ( − 3.189, − 2.245, 0.537, 0.814, 0.98) are the maximum likelihood 

estimates based on published studies reporting both HIV and rectal gonorrhea incidence for 

men who have sex with men, summarized in Supplementary Table S1. The interquartile 

range of HIV and marker incidences in the cohorts are (2.5, 6.8) and (5.8,19.4) cases 

per 100 person-years, respectively. We also consider a bivariate linkage model (3) with 

logit link functions (see Supplementary Materials). Since the maximum likelihood estimate 

of the correlation ρ is high (0.98), we also consider a moderate correlation scenario 

wherein ρ = 0.5. We set the number of external cohorts to M = 10 or 20, as generally 

only a small number of external studies will be available with the required data. The 

person-times for the external cohorts, PY m, are uniformly distributed between 200 and 

5000 person-years. The number of HIV and exposure marker events, ncase, m
Y  and ncase, m

Z , 

follow binomial distributions with expectations PY mλm0
Y  and PY mλm0

Z , respectively. In each 

cohort m, we estimate incidences by λm0
Y = ncase, m

Y /PY m, λm0
Z = ncase, m

Z /PY m; standard deviations are 

estimated by sU, m
2 = 1 − λm0

Y / λm0
Y PY m  and sV , m

2 = 1 − λm0
Z / λm0

Z PY m .

Active-controlled trial—We consider a single arm trial for conciseness, with a follow-up 

time of nx = 2000 or 4000 person-years. Placebo HIV incidence λ0
Y  is assumed to be 3, 4.5, 

or 6 cases per 100 person-years, and exposure marker incidence λk
Z is generated based on the 

conditional distribution of λk
Z given λ0

Y  (see Supplementary Materials). Prevention efficacy 

is assumed to be 0.3, 0.6 or 0.75 and λk
Y = (1 − PE)λ0

Y . The number of HIV and exposure 

marker events, ncase
Y  and ncase

Z , follow binomial distributions with expectation nxλk
Y  and nxλk

Z, 

respectively. Incidences are estimated by λ1
Y = ncase

Y /nx, λ1
Z = ncase

Z /nx.

Estimation methods and performance measures—We apply maximum likelihood 

and working model estimation approaches, following the procedure listed at the end of the 

Methods section. We evaluate the average bias, empirical standard deviation, and coverage 

probability of nominal 95% confidence intervals (CIs) for counterfactual placebo incidence 

and prevention efficacy estimates across 5,000 simulations.
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Results

Simulation

Table 1 summarizes the performance of counterfactual placebo HIV incidence estimates 

across simulation scenarios. We show results with M = 10 and 20 for the working 

model, and M = 20 for likelihood-based estimation, as likelihood-based estimation requires 

sufficiently large M to ensure numerical stability. For both estimation approaches, we find 

high correlation between HIV and the exposure marker (ρ = 0.98) yields accurate and precise 

estimation, as evidenced by low bias, reasonably low standard deviation, and CIs with close 

to nominal coverage. Even with modest correlation (ρ = 0.5), low bias and nominal coverage 

rates are seen, although the standard deviation is larger than in the high correlation scenario. 

Performance is minimally impacted by the size of the trial’s active arm. Performance of 

the working model is comparable to that of likelihood-based estimation in settings with 

M = 20, while it performs worse for large M, with CIs that are overly conservative (results 

not shown). Bias and coverage rates are similar under a logit-link bivariate linkage model 

(see Supplementary Table S2).

The performance of estimates of prevention efficacy based on an active-controlled trial 

with nx = 2000 are shown in Table 2. When ρ is large, prevention efficacy can be estimated 

with low bias and CIs with near-nominal coverage, even with M = 10 external cohorts. For 

example, when PE is 0.6 against a 4.5 cases per 100 person-years placebo HIV incidence, 

with 10 external cohorts the bias is less than 0.01 and the nominal 95% CI for prevention 

efficacy has 93.2% coverage. However, with modest ρ, prevention efficacy is estimated 

with larger bias and CIs slightly under-cover with M = 10. Fixing M, modest ρ generally 

yields prevention efficacy estimates with larger standard deviation. With high ρ, prevention 

efficacy can be estimated with better precision when the placebo HIV incidence rate is 

higher, because incidences can be more precisely estimated when there are more events. 

With modest ρ, however, the standard deviation is larger when the placebo HIV incidence 

is 3 or 6 cases per 100 person-years compared to 4.5. This is because, with moderate ρ, 

the variability of the prevention efficacy estimate is largely dominated by the variability of 

the estimated counterfactual placebo HIV incidence, which is larger when the placebo HIV 

incidence is further from the mean HIV incidence across the external cohorts (illustrated 

in Figure 1). With M = 20, the standard deviations are similar for the working model and 

likelihood-based estimation approaches, although the CIs from the working model approach 

have slightly lower coverage in some cases. Similar performance is observed with logit-link 

functions (see Supplementary Table S3). Performance based on a smaller active-controlled 

trial with nx = 1000 person-years follow-up is shown in Supplementary Table S4; standard 

deviations are larger but coverage rates and bias are only minimally worse.

We evaluate power for testing prevention efficacy with this approach compared to a placebo-

controlled trial (see Supplementary Figures S1 and S2 for simulation results. Surprisingly, 

we find power for the counterfactual approach may exceed that obtained from a placebo-

controlled trial with the same active arm size. For example, 74% power to detect prevention 

efficacy of 0.6 can be obtained with 3 cases per 100 person-years placebo HIV incidence, 

active arm size of 2000 person-years, a highly correlated marker (ρ = 0.98) and 10 external 
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cohorts, while a standard 1:1 placebo-controlled trial with sample sizes of 2000 person-years 

for both experimental and placebo arms has less than 70% power. The reason is incidence 

of the exposure marker is much higher than that of HIV, so it can be estimated with better 

precision than HIV incidence. Therefore, with a highly correlated exposure marker, HIV 

incidence can be estimated more precisely by leveraging information in the higher-incidence 

exposure marker.

We evaluate scenarios where the conditional independence assumption in (4) is violated;the 

estimated incidences are correlated conditional on the true incidences. Performance is 

similar to that under the conditional independence model (4)(see Supplementary Materials). 

Further, we assess performance with external cohort data analyzed at the sub-cohort-level, 

reflecting that site-level data may be available for multi-center studies (Supplementary 

Tables S7). Given a fixed total sample size across external cohorts, more cohorts of smaller 

sizes are preferred to fewer cohorts of larger size.

Application

We apply the estimation to the DISCOVER trial, a randomised, double-blinded, double-

dummy, active-controlled trial that compared the efficacy of coformulated tenofovir 

alafenamide plus emtricitabine and tenofovir disoproxil fumarate plus emtricitabine for 

preventing HIV in men and transgender women who have sex with men.6 The US FDA 

approved tenofovir alafenamide plus emtricitabine for men and transgender women who 

have sex with men based on the trial results.36 Rectal gonorrhea infections were captured 

in both arms.37 Collectively, 1313 rectal gonorrhea cases were observed over 6243 person-

years, implying a rectal gonorrhea incidence of 21.0 cases per 100 person-years. Historical 

data suggest that oral anti-retrovirals do not have biological effects on rectal gonorrhea 

incidence.38

Table 3 contains point estimates and 95% CIs for counterfactual placebo HIV incidence 

using likelihood-based and working model estimation, assuming log and logit-link functions 

in the bivariate linkage model (2), based on previously-reported cohorts reporting both 

HIV and rectal gonorrhea incidence for men who have sex with men24 (see Supplementary 

Table S1). The estimated counterfactual placebo HIV incidences are approximately 7 cases 

per 100 person-years for both estimation approaches and link functions. A naive analysis 

that assumes an identity link and treats estimated HIV and rectal gonorrhea incidence 

rates as fixed and known, similar to what is done in the applied literature, gives a lower 

counterfactual HIV incidence estimate of 6.6 cases per 100 person-years.

We compare the results with those from15,39 who applied Bayesian approaches with 

Gamma-Copula models and case-cohort sampling adjustment to the DISCOVER study. 

Posterior estimates of counterfactual placebo HIV incidence from the two Bayesian 

approaches are much lower at 4.51 and 3.4 cases per 100 person-years. We conjecture that 

the lower estimates are due in part to the chosen prior HIV incidence rate (mean of 2.9 cases 

per 100 person-years) in,15 which was lower than the average incidence across the external 

cohort studies.
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Another difference in the latter estimate is its reliance on an additional data source, namely 

historical estimates of efficacy.

Given the estimated 0.16 HIV diagnosis cases per 100 person-years from the tenofovir 

alafenamide plus emtricitabine arm,6 the estimated prevention efficacy for tenofovir 

alafenamide plus emtricitabine vs. counterfactual placebo is 98.1% (95% CI: 96.4% to 

99.4%), based on the working model and log link, and 98.1% with the likelihood-based 

estimation (95% CI: 96.4% to 99.7%). This prevention efficacy inference is simple to 

interpret and supports tenofovir alafenamide plus emtricitabine effectiveness.

Conclusions

Advancing HIV prevention, and ultimately stemming the HIV pandemic, requires additional 

biomedical interventions. While active-controlled trials will likely be used in future trials 

evaluating candidate interventions, absolute efficacy of the experimental intervention cannot 

be evaluated based on the trial data alone. If a marker of HIV exposure is measured 

in the trial, and external data are leveraged to model the association between HIV and 

the exposure marker, under Assumptions 1–3 HIV incidence in a counterfactual placebo 

arm, and prevention efficacy of the experimental intervention relative to the counterfactual 

placebo, can be estimated reliably and precisely.

Importantly, we considered performance of the approach when Assumptions 1 and 3 hold, 

and Assumption 2 either holds or is slightly violated. These are strong and not fully 

testable assumptions that deserve careful attention. For one, correct specification of the 

model linking HIV incidence with the exposure marker is challenging. Mis-specification 

may be due to omission of covariates that modify the association, incorrect model form, 

or measurement error of variables. Recent work demonstrates that the rectal gonorrhea 

and HIV incidence association may differ across populations,40 and is difficult to model 

accurately across cohorts.14,29–31

While standard statistical methods may check for specific types of model mis-specification, 

with few external cohorts the power to detect model mis-specification is low. Given some 

of the assumptions are not fully testable, further research is needed into methods for 

incorporating uncertainty due to violation of these assumptions.

Our findings suggest that more cohorts of smaller size provide more precise inference 

than fewer cohorts of larger size. Accuracy and precision may be further improved 

with individual-level data. As well, with only study-level data from external cohorts the 

correlation between reported HIV and the exposure marker incidences in the external 

cohorts is rarely available. Accordingly, our estimation approaches assume conditional 

independence of HIV incidence and the exposure marker. Our simulation study suggests a 

degree of robustness to violation of this assumption, mainly because between-study variation 

dominated with-in study variation. Similar results were found for bivariate meta-analysis.41 

However, as discussed in,41 ignoring within-study correlation is expected to yield estimates 

with inferior statistical properties. Given individual-level data from external cohorts, 
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estimation of the conditional dependence parameter would be feasible and performance 

improved.

We call for additional research, with application held until such research is conducted. 

Evaluation of the approach’s performance in HIV prevention trials that included placebo 

arms is needed to gauge the ‘real world’ accuracy of the counterfactual placebo estimation. 

Individual- or trial-site-level data from recent HIV prevention trials, with incidence of other 

sexually transmitted infections captured, should be made public to enable further evaluation 

of the correlation between HIV and other sexually transmitted infections as potential 

exposure markers. Finally, HIV exposure markers that more readily satisfy the assumptions 

we detail should be pursued; markers more fundamentally linked to HIV exposure may be 

needed to realize the potential.

We did not find existing statistical frameworks that provided a good fit for our problem.42–44 

The exposure marker we considered is different from a surrogate marker for which the effect 

of the intervention on the surrogate reflects the effect of the intervention on the primary 

endpoint..42,45 The framework we developed may have application to other clinical contexts 

where a proxy outcome is associated with the clinical outcome under the control condition, 

but is not impacted by the intervention, and a body of data is available for estimating the 

association between proxy and clinical outcome under the control condition.
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Figure 1. 
Estimation of counterfactual HIV incidence based on an HIV exposure marker. Green solid 

and dashed curves correspond to the fitted model associating HIV and exposure marker 

incidences with an associated pointwise 95% confidence interval (CI), based on a set of 

external cohorts reporting HIV and exposure marker incidence rates (dark blue dots). Given 

the exposure marker incidence in the active-controlled trial (yellow dot), counterfactual 

placebo HIV incidence is estimated with use of the fitted model (red dot). The 95% CI 

for the counterfactual placebo incidence captures uncertainty due to the model fit and 

uncertainty in the exposure marker incidence.
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Table 1.

Bias, standard deviation, and empirical coverage for estimated counterfactual placebo HIV incidence, based on 

M external cohorts used to estimate the association between HIV and an exposure biomarker with correlation 

ρ. A total of nx person-years follow-up accrue in the active arm of the trial. Counterfactual placebo HIV 

incidence varies. Performance is shown for working model and likelihood-based estimation approaches, 

assuming log link function for marginal incidences.

ρ = 0.98 ρ = 0.5
HIV incidence (cases per 100 person-years) 3 4.5 6 3 4.5 6

Exposure marker incidence (cases per 100 person-years) 7.1 11.8 17.0 4.8 13.2 26.7

Working model approach

M = 10 nx = 2000 Bias × 100 −0.01 −0.02 −0.03 0.13 0.07 0.26

Standard deviation × 100 0.33 0.38 0.53 1.03 1.05 2.22

Coverage (%) 96.1 97.5 97.2 95.8 95.5 94.5

nx = 4000 Bias × 100 −0.01 −0.02 −0.02 0.11 0.09 0.25

Standard deviation × 100 0.30 0.36 0.49 1.00 1.09 2.12

Coverage (%) 95.4 96.5 96.8 95.4 95.4 95.7

M = 20 nx = 2000 Bias × 100 −0.01 −0.02 −0.03 0.05 0.02 0.11

Standard deviation × 100 0.27 0.31 0.39 0.64 0.71 1.39

Coverage (%) 95.2 96.0 97.3 95.0 95.9 95.1

nx = 4000 Bias × 100 −0.02 −0.02 −0.03 0.04 0.03 0.07

Standard deviation × 100 0.24 0.27 0.34 0.63 0.73 1.36

Coverage (%) 94.6 96.2 97.4 95.0 94.8 95.2

Likelihood-based approach

M = 20 nx = 2000 Bias × 100 0.03 0.02 0.04 0.11 0.08 0.20

Standard deviation × 100 0.26 0.31 0.40 0.65 0.71 1.39

Coverage (%) 95.5 95.4 94.4 94.5 94.2 93.7

nx = 4000 Bias × 100 0.02 0.03 0.05 0.10 0.10 0.21

Standard deviation × 100 0.22 0.26 0.35 0.64 0.71 1.42

Coverage (%) 95.1 95.2 93.5 94.3 94.3 93.1

Clin Trials. Author manuscript; available in PMC 2024 August 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 18

Table 2.

Bias, standard deviation, and empirical coverage for estimates of prevention efficacy (PE) based on M external 

cohorts used to estimate the association between HIV and an exposure biomarker with correlation ρ. A total of 

nx = 2000 person-years follow-up accrue in the active arm of the trial. Counterfactual placebo HIV incidence 

and true PE vary. Performance is shown for working model and likelihood-based estimation approaches, 

assuming log link function for marginal incidences.

M PE estimate ρ = 0.98 ρ = 0.5
HIV incidence (cases per 100 person-years) 3 4.5 6 3 4.5 6

Exposure marker incidence (cases per 100 person-years) 7.1 11.8 17.0 4.8 13.2 26.7

Working model approach

PE = 0.3 10 Bias × 100 −1.42 −0.83 −0.96 −3.72 −2.28 −4.88

nx = 2000 Standard deviation × 100 14.49 11.45 10.20 28.78 19.50 28.72

Coverage (%) 93.0 93.4 93.2 92.2 92.7 90.1

20 Bias × 100 −1.09 −0.77 −0.63 −1.93 −1.20 −1.88

Standard deviation × 100 13.55 10.58 9.20 19.89 14.38 18.24

Coverage (%) 92.5 93.4 93.1 93.0 94.4 92.7

PE = 0.6 10 Bias × 100 −0.70 −0.23 −0.53 −2.08 −1.11 −2.81

nx = 2000 Standard deviation × 100 10.03 7.97 7.03 17.51 12.04 16.99

Coverage (%) 93.3 93.1 93.8 92.6 93.6 90.8

20 Bias × 100 −0.46 −0.33 −0.42 −1.04 −0.44 −1.05

Standard deviation × 100 9.49 7.47 6.56 12.63 9.45 11.1

Coverage (%) 93.3 93.8 93.9 93.8 93.7 93.3

PE = 0.75 10 Bias × 100 −0.33 −0.21 −0.22 −1.14 −0.62 −1.19

nx = 2000 Standard deviation × 100 7.48 5.95 5.29 11.80 8.30 10.38

Coverage (%) 93.3 93.9 93.6 93.0 92.9 91.9

20 Bias × 100 −0.17 −0.17 −0.20 −0.53 −0.36 −0.48

Standard deviation × 100 7.18 5.80 5.03 8.91 6.65 7.49

Coverage (%) 93.4 93.7 93.7 94.0 94.3 93.6

Likelihood-based approach

PE = 0.3 20 Bias × 100 0.08 −0.11 0.04 −0.62 −0.64 −1.04

nx = 2000 Standard deviation × 100 12.36 9.90 8.90 18.55 13.83 18.02

Coverage (%) 94.9 95.0 93.9 93.8 94.3 92.8

PE = 0.6 20 Bias × 100 −0.20 −0.29 0.10 −0.31 0.04 −0.26

nx = 2000 Standard deviation × 100 8.83 7.27 6.30 11.80 9.06 10.92

Coverage (%) 95.3 94.8 94.5 94.3 94.6 93.0

PE = 0.75 20 Bias × 100 −0.16 0.00 −0.05 −0.20 −0.03 −0.54

nx = 2000 Standard deviation × 100 6.81 5.48 4.86 8.44 6.55 7.38
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M PE estimate ρ = 0.98 ρ = 0.5
Coverage (%) 95.3 95.5 95.1 94.7 94.3 94.4
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Table 3.

Estimated counterfactual placebo HIV incidence (cases per 100 person-years), and corresponding 95% 

confidence intervals (CIs) for the DISCOVER study. Uncertainty is quantified by 95% confidence intervals 

except for Bayesian estimates where *95% and +80% credible intervals (CrIs) are reported.

Link function Estimation approach Est. 95% CI (CrI∗+)

Log Likelihood-based 7.10 (5.02, 10.03)

Working model 7.06 (5.25, 9.49)

Logit Likelihood-based 6.94 (4.82, 9.88)

Working model 6.87 (5.08, 9.23)

Identity Naive approach24 6.60 n.a.

Bayesian Gamma-Copula15 4.51 (2.06, 7.36)∗

Bayesian case-cohort sampling39 3.4 (1.9, 5.9)+

Clin Trials. Author manuscript; available in PMC 2024 August 29.


	Abstract
	Introduction
	Methods
	Setting and notation
	Remark 1.

	Assumptions
	Assumption 1.
	Assumption 2.
	Assumption 3.
	Remark 2.

	Bivariate Linkage Model
	Simulation studies
	External cohorts
	Active-controlled trial
	Estimation methods and performance measures


	Results
	Simulation
	Application

	Conclusions
	References
	Figure 1.
	Table 1.
	Table 2.
	Table 3.

