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Age-related epithelial defects limit thymic 
function and regeneration

A list of authors and their affiliations appears at the end of the paper

The thymus is essential for establishing adaptive immunity yet undergoes 
age-related involution that leads to compromised immune responsiveness. 
The thymus is also extremely sensitive to acute insult and although capable 
of regeneration, this capacity declines with age for unknown reasons.  
We applied single-cell and spatial transcriptomics, lineage-tracing and 
advanced imaging to define age-related changes in nonhematopoietic 
stromal cells and discovered the emergence of two atypical thymic epithelial 
cell (TEC) states. These age-associated TECs (aaTECs) formed high-density 
peri-medullary epithelial clusters that were devoid of thymocytes; an 
accretion of nonproductive thymic tissue that worsened with age, exhibited 
features of epithelial-to-mesenchymal transition and was associated with 
downregulation of FOXN1. Interaction analysis revealed that the emergence 
of aaTECs drew tonic signals from other functional TEC populations at 
baseline acting as a sink for TEC growth factors. Following acute injury, 
aaTECs expanded substantially, further perturbing trophic regeneration 
pathways and correlating with defective repair of the involuted thymus. 
These findings therefore define a unique feature of thymic involution linked 
to immune aging and could have implications for developing 
immune-boosting therapies in older individuals.

Thymic T cell differentiation requires the close interaction between 
thymocytes and the supporting stromal microenvironment, which is 
composed of highly specialized TECs, endothelial cells (ECs), mesen-
chymal cells like fibroblasts (FBs), dendritic cells, innate lymphoid cells 
and macrophages1; however, thymic function is not static over lifespan 
with a well-described decline in function that accelerates upon puberty 
and is characterized by tissue atrophy, disrupted stromal architec-
ture, reduced export of new naive T cells and, ultimately, diminished 
responsiveness to new antigens2. In addition to its chronic functional 
decline with age, the thymus is also extremely sensitive to acute damage 
induced by routine insults such as stress and infection, but also more 
severe damage such as that caused by common cancer therapies such 
as cytoreductive chemo- or radiation therapy2,3. Although the thymus 
harbors tremendous capacity for endogenous repair, this regenera-
tive capacity also declines with age2,3. This deficiency manifests most 
prominently after the thymic damage caused by the conditioning regi-
mens required for hematopoietic cell transplantation (HCT), which 

leads to prolonged T cell lymphopenia, an important contributor 
to transplant-related morbidity and mortality due to infections and 
malignant relapse2,3. In fact, both pre- and post-transplant thymic func-
tion can be positive prognostic indicators of HCT outcomes4. Recent 
advances in single-cell technology have provided new insights into 
the heterogeneity of TECs in young and aged mice and in humans5–20; 
how TECs orchestrate T cell differentiation and how dysfunction in 
these processes is linked to autoimmunity and immunodeficiency; 
however, perhaps as a consequence of this complexity, the mechanisms 
underlying thymic involution and regeneration after damage remain 
poorly understood2,3.

Using single-cell and spatial transcriptomics, lineage-tracing 
and advanced imaging, we report here the age-associated emergence 
of unique TEC states linked with tissue degeneration. aaTECs formed 
atypical high-density epithelial clusters that were devoid of thymo-
cytes; an accretion of nonfunctional thymic tissue that worsened 
with age and exhibited features of partial epithelial-to-mesenchymal 
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all ECs showed enrichment for lymphatic markers (Supplementary 
Fig. 3c), consistent with the scarcity of lymphatic ECs observed in sec-
tions or flow cytometric analysis of thymi from adult mice28. Expression 
of Plvap and Cldn5 delineated capEC29, whereas vECs demonstrated 
the highest expression of Vwf and Vcam1 (Fig. 1c,d, Extended Data 
Fig. 2c and Supplementary Table 1), genes that correlate with the ves-
sel diameter. Venous ECs expressed high levels of P-selectin (Selp) 
(Fig. 1c,d, Extended Data Fig. 2c and Supplementary Table 1), indica-
tive of thymic portal ECs (TPECs), which have been linked to homing 
of hematopoietic progenitors in the thymus30. Notably, Bmp4, which 
is produced by thymic ECs and is involved in regeneration after acute 
insult31, was expressed highest by vECs (Fig. 1c,d, Extended Data Fig. 2c 
and Supplementary Table 1).

Finally, TEC clusters were annotated based on the nomenclature 
and signatures derived from previously reported studies5–8,10–18 and 
mapped to ten subsets (Fig. 1c,d, Extended Data Fig. 2d and Supple-
mentary Table 1): cTEC (based on, among others, expression of Prss16, 
Psmb11 and Ly75), mTEC1 (Ccl21a, Itgb4 and Ly6a), a proliferating mTEC 
subset (mTECprol; Ccnd2) and mTEC2 (Aire). A distinct subset with simi-
larities to mTEC1 cells could also be identified that exhibited a gene 
signature consistent with a recently identified ‘early’ TEC progenitor 
(earlyprog)8. We could also identify recently described mimetic popula-
tions13,14 with basal (TECbasal, Ly6d and Spink5), neural (TECneuro and Car8), 
tuft (TECtuft; Avil and L1cam), goblet (TECgoblet; Spink5 and Wfdc2) and 
microfold (M)-like cells of the small intestine (TECM-cell; Ccl20) (Fig. 1c,d, 
Extended Data Fig. 2d and Supplementary Table 1).

Comparison of the populations from young (2-mo) and aged 
(18-mo) mice revealed considerable overlay, with no major new 
cell populations emerging with age in the endothelial or fibroblast 
compartments, although transcriptional differences were observed 
within existing cell populations suggesting an age-associated change 
in cell state rather than cell type (Fig. 1e and Supplementary Table 2). 
In contrast, within the TEC compartment we observed two distinct 
age-associated epithelial cell types, referred henceforth as aaTEC1 
and aaTEC2 (Fig. 1e). These were apparent only in samples from 18-mo 
mice and mapped to only one previously published dataset12, likely due 
to the age and cell selection protocols used (Extended Data Fig. 3b). 
Assessing quantitative changes in cell subsets with age, we found that 
the two aaTEC populations exhibited the greatest changes with age, 
but we also observed a considerable increase in earlyprog (Fig. 1f). Using 
our sequencing dataset as well as previous publications to design 
flow cytometry panels to examine these stromal populations6, we 
found little change in the frequencies of EC subsets or their number 
with age, although there were increased numbers of medFBs, PCs 
and vSMCs (Extended Data Fig. 4a–c). This age-related increase in 
mesenchymal-lineage cells may reflect that observed in other tis-
sues where fibrosis is a key driver of functional decline32. Within the 
epithelial compartment, we observed decreases in all mTECs, includ-
ing TECtuft cells, but in contrast we observed a marked increase of 
an atypical TEC population with age that expressed EpCAM but was 
negative for Ly51 and UEA1 (features of cTECs or mTECs, respectively) 
(Fig. 1g), consistent with the loss of mTEC- or cTEC-specific mark-
ers within the aaTEC1 subset. This population of Ly51/UEA1 double 
negative (DN)-TECs gradually emerges and expands across lifespan 
(Fig. 1h and Extended Data Fig. 4d). Differential expression analysis 
between each aaTEC subset versus all other TECs identified claudin-3 
(Cldn3) and podoplanin (Pdpn) as potentially distinctive, in conjunc-
tion with established markers (Fig. 1i and Extended Data Fig. 4e). Flow 
cytometric analysis confirmed their utility, resolving populations 
of both aaTEC1 (Epcam+MHCII+Ly51−UEA1−Cldn3+) and aaTEC2 (Epc
am−MHCII+PDGFRa−Pdpn+) subsets that increased with age (Fig. 1j,k 
and Extended Data Fig. 4f). Overall, these data reveal that the most 
prominent shift among stromal cell types during thymic involution 
was the emergence of two unique epithelial cell types that lack typical  
TEC features.

transition (EMT). The accumulation of aaTECs in the involuted thymus 
was exacerbated by acute injury and was associated with diminished 
regenerative capacity compared to young mice. We found evidence 
that aaTECs drew tonic signals away from other TECs, acting as a ‘sink’ 
for epithelial regeneration cues such as FGF and BMP signaling. These 
structural and functional changes to the thymic epithelium could 
be linked to molecular changes in the fibroblast compartment and 
specifically, their age-related upregulation of programs associated 
with inflammaging. These data define a key feature of the involuted 
thymus that limits organ function and restricts regenerative capacity 
after acute injury; findings that may have important implications for 
the development of therapeutic strategies to improve thymic function 
in aged individuals.

Emergence of atypical epithelial cell populations 
with age
Consistent with its well-described decline in function over lifespan2,3,21,22, 
we found that total thymic cellularity declined in female mice across 18 
months of age (Extended Data Fig. 1a) coincident with morphological 
changes, such as a relative decrease in the cortical-to-medullary ratio 
(Extended Data Fig. 1b,c). Quantification of the major structural cell 
lineages (TECs, ECs and FBs) by flow cytometry revealed little altera-
tion in ECs or FBs, but a diminished TEC compartment that mirrors the 
overall loss of thymic cellularity, with a more severe loss in medullary 
TECs (mTECs) compared to cortical TECs (cTECs) despite the observed 
cortical thinning (Extended Data Fig. 1b–d).

Recent reports have resolved the remarkable heterogeneity of 
stromal subsets5–7,13,20,23,24. To investigate the stromal changes in the 
thymic microenvironment associated with age-related thymic invo-
lution, we performed single-cell sequencing of nonhematopoietic 
stromal cells from 2-month-old (2-mo) or 18-month-old (18-mo) female 
mice (22,932 CD45− cells). To define various cell compartments and 
subsets, gene signatures of published thymic single-cell sequencing 
datasets were mapped to our combined 2-mo and 18-mo steady-state 
dataset (Fig. 1a, Extended Data Fig. 2 and Supplementary Fig. 1)5–8,13. We 
also integrated this with all published thymic sequencing datasets and 
generated a tool called ThymoSight (www.thymosight.org) that allows 
for their interrogation (Fig. 1b and Extended Data Fig. 3a)5–18.

Primary stromal cell lineages were defined based on transcrip-
tion of lineage-specific genes: TECs with Epcam, H2-Aa; ECs with 
Pecam1, Cdh5; FBs with Pdgfra, alongside less abundant stromal cell 
types, including mesothelial cells (MECs) (Upk3b and Nkain4); vas-
cular smooth muscle cells (vSMCs) (Acta2 and Myl9); pericytes (PCs) 
(Myl9 and Acta2) (Fig. 1a and Extended Data Fig. 2a); and extremely 
rare nonmyelinating Schwann cells (nmSCs) (Gfap, Ngfr (p75) and 
S100b)25. To more precisely define the heterogeneity of the major CD45− 
structural compartments (epithelial, endothelial and fibroblast), we 
then subsampled and reanalyzed each major stromal cell population 
separately and used public subset signatures (Supplementary Table 1) 
provided collectively within ThymoSight to precisely define compart-
ment heterogeneity. Using this approach, we annotated steady-state 
clusters within each cell lineage with respect to publicly available data-
sets (Fig. 1c,d and Extended Data Fig. 2b–d). Unsupervised clustering 
analysis distinguished the Pdgfra-expressing mesenchyme into three 
main groups, two of which were consistent with mouse capsular or 
human interlobular FB signatures (capsFB; including but not limited to 
expression of Dpp4, Smpd3 and Pi16) and mouse medullary or human 
perilobular FBs (medFB; Ptn and Postn)9,23,26 (Fig. 1c,d, Extended Data 
Fig. 2b and Supplementary Table 1). We also identified an intermediary 
subset of FB (intFB) marked by Inmt and Gpx3, which did not map to the 
public gene signatures (Fig. 1c,d and Extended Data Fig. 2b).

Using gene signatures from an organ-wide murine EC atlas27, within 
the endothelium three main clusters were identified that could be 
mapped to arterial (aEC), capillary (capEC) or venous EC (vEC) (Fig. 1c,d, 
Extended Data Fig. 2c and Supplementary Table 1). Less than 1% of 
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aaTECs form high-density clusters of epithelial 
cells
To study epithelial structures in the involuted thymus, we created a 
reporter strain, Foxn1Cre × Rosa26nTnG (Foxn1nTnG), where all cells express 

a nuclear-localized tdTomato reporter, except those that have activated 
Foxn1 (a master transcription factor in TEC33), which instead, express 
a nuclear-localized green fluorescent protein (GFP) (Extended Data 
Fig. 5a). The nuclear localization of the Foxn1nTnG reporter enabled 
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Fig. 1 | Emergence of atypical epithelial populations with age. a, Uniform 
Manifold Approximation and Projection (UMAP) of 22,932 CD45− thymic cells 
from 2-mo and 18-mo female C57BL/6 mice, annotated by cell type subset and 
outlined by cell compartment (epithelial; fibroblast; endothelial; MEC; vSMC/PC; 
nmSC). b, ThymoSight integration of public data for murine nonhematopoietic 
thymic stromal cells, including our own dataset (n = 297,988) annotated by 
publication source and outlined by cell type and compartment. c, Violin plots 
highlighting key genes marking individual subsets within individual structural 
compartments (fibroblast, endothelium and epithelium). d,e, UMAPs of 
individual structural compartments color-coded by cell type subset (d) and age 
cohort (e). nEC = 1,661; nFB = 13,240; nTEC = 6,175. f, Scaled change in frequency 
for each individual structural cell subset with age. g, Gating strategy and 
quantities for cell populations within the epithelial lineage (based on previous 
work6) in 2-mo (n = 10) and 18-mo (n = 10) mice. First, based on a CD45−EpCAM+ 

parent gate, tuft cells were identified by expression of L1CAM, then all other 
TECs were assessed for expression of conventional TEC markers UEA1 and Ly51. 
Within the UEA1hiLy51lo mTEC population CD104+MHCIIlo cells were identified 
as mTEC1. Cells that were deemed as non-mTEC1 were then fractionated 
based on MHCII and Ly6D. h, Concatenated flow cytometry plots and graphs 
highlighting the frequency of Ly51−UEA1− (DN-TECs) across lifespan (gated 
on CD45−EpCAM+MHCII+ cells). i, Violin plots of aaTEC1 and aaTEC2 novel 
markers. j,k, Flow cytometry plots (j) and quantities (k) for aaTEC1 and aaTEC2 
populations in 2-mo (n = 15), 12-mo (n = 10) or 18-mo (n = 13) male and female 
C57BL/6 mice. Summary data represent mean ± s.e.m.; each dot represents 
an individual biological replicate. Statistics were generated using a two-tailed 
Mann–Whitney test comparing within individual subsets (g) or Kruskal–Wallis 
(k) test with Dunn’s correction.
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cellular resolution of TEC by light-sheet imaging of whole cleared 
thymic lobes from young and old mice. As expected, we observed a 
relatively low density of GFP+ cells in the thymic cortex compared to 
the subcapsular and medullary regions (Fig. 2a). At the whole-tissue 
level, the medulla formed a highly complex and interconnected struc-
ture in the young thymus that degenerated into isolated islets upon 
involution (Fig. 2b and Supplementary Video 1a,b). Another notable 
feature of the involuted thymus, entirely absent in the young, was the 
emergence of zones of very high-density GFP+ TEC (HD-TEC) clusters 

(Fig. 2a,b). These HD-TEC clusters formed band-like structures that were  
associated with the medulla of the involuted thymus (Fig. 2b, Extended 
Data Fig. 5b,c and Supplementary Video 1b). Although the volume 
of cortex and medulla, and the number of cTECs and mTECs (calcu-
lated from whole-tissue imaging) declined with age, HD-TEC clusters 
emerged to comprise a substantial volume and number of TECs (Fig. 2c).

Spatial transcriptomics using Visium comparing thymi from 2-mo 
to 18-mo mice demonstrated aaTEC1 and aaTEC2 signatures (generated 
from the 20 genes most differentially expressed within each subset 
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Fig. 3 | Age-associated TECs are derived from FOXN1-expressing cells.  
a, Representative flow cytometry plots from 12–18-mo male and female Foxn1nTnG 
mice at the indicated ages, gated on tdTom−GFP+ cells. tdTom−GFP+EpCAM+ cells 
were then assessed for expression of the conventional TEC markers UEA1 and 
Ly51. b, Claudin-3 and UEA1 expression on tdTom−GFP+EpCAM+ cells in Foxn1nTnG 
mice, and quantification of claudin-3 on UEA1+ mTEC and UEA1−Ly51− DN-TECs 
(n = 4 biological replicates representing individual mice). c, Podoplanin (Pdpn) 
and PDGFRa expression on tdTom−GFP+EpCAM− cells (n = 4 biological replicates 
representing individual mice). d, Number of GFP+EpCAM+UEA1−Ly51−Cldn3+ 
aaTEC1 and GFP+EpCAM−PDPN+PDGFRα− aaTEC2 cells in 2-mo (n = 6) and 18-mo 
(n = 4) mice. e, scRNA-seq was performed on CD45− cells isolated from male 
and female 20-mo Foxn1tdTom and age-matched WT mice, and integrated into 
the epithelial data described in Fig. 1c–e. UMAP of 8,505 cells of the epithelial 
compartment in the integrated data showing the TEC annotated subsets (top) 
and overlaid expression of tdTomato (bottom). Scale represents log-transformed 
average expression of the tdTomato-WPRE element. f, RNA velocity on selected 
TEC populations in 2-mo (top) or 18-mo (bottom) mice. n2mo = 1,989; n18mo = 3,382. 

g, Vein plots describing the continuous transition of 18-mo earlyprog, mTEC1, 
mTECprol and aaTEC subsets to their predicted descendants (represented by 
diagonal flows) and the dynamic relative frequencies (vein width on the y axis) of 
these TEC subsets in the thymus over the binned pseudotime. h, Expression of 
thymocyte markers Thy1 and Lck overlaid on the 18-mo spatial transcriptomics 
dataset. Outline represents thymocyte-poor area overlaid onto heatmap showing 
aaTEC1 or aaTEC2 signatures. i, Two representative images in 12–18-mo male 
and female Foxn1nTnG mice showing tdTomato and GFP expression with HD-TEC 
areas highlighted, with few or no tdTomato+ cells. Scale bar, 50 μm. j, Human 
tissue sections from a 50-year-old woman. Shown are consecutive sections 
with H&E, cytokeratin or CD1a staining. k, aaTEC1 and aaTEC2 gene signatures 
(top 20 marker genes from our mouse data converted to human orthologs; 
Supplementary Fig. 3 and Supplementary Table 3) were overlaid on human 
thymic epithelial cells (nTEC = 40,144) from single-cell sequencing datasets 
generated and published elsewhere9,19,20. Summary data represents mean ± s.e.m. 
and each dot represents an individual biological replicate. Statistics were 
generated (b–d) using a two-tailed Mann–Whitney test.
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compared to all other TECs) formed clusters that were only detected 
in the involuted thymus and the medullary distribution (as assessed 
by hematoxylin and eosin (H&E) staining) of these signatures resem-
bled that of HD-TEC clusters (Fig. 2d and Supplementary Table 3). To 
determine whether the HD-TEC structures were composed of aaTECs, 
we surveyed the expression of keratin subunits distinguishing aaTEC 
from other TEC populations (Fig. 2e,f). We found that most GFP+ TEC 
in these regions were K5+, some were K8+ and none were K14+ (Fig. 2e,f). 
Notably, the prospective aaTEC1 marker claudin-3 was capable of 
clearly demarcating HD-TEC regions in the aged thymus (Fig. 2e,f ). 
Taken together, these data strongly suggest that the DN-TECs identified 
through flow cytometry, HD-TECs identified by imaging approaches 
and aaTECs identified through single-cell RNA sequencing (scRNA-seq) 
are the same cell populations.

aaTECs are derived from FOXN1-expressing 
epithelial cells
Given the paucity of expression of TEC genes by aaTECs, yet their clear 
association with other TEC populations (Fig. 1a), we sought to establish 
the lineage relationship between aaTECs and TECs. Flow cytometric 
analysis of Foxn1nTnG mice confirmed the emergence of two atypical GFP+ 
TEC-derived populations with age: one population that was EpCAM+ 
but lacked canonical cTEC or mTEC markers, mirroring the DN-TEC/
aaTEC1 population described above, and another that was EpCAM−, con-
sistent with the aaTEC2 phenotype (Fig. 3a). Further analysis of these 
populations in Foxn1nTnG mice confirmed that claudin-3 expression 
was increased in EpCAM+UEA1− cells in 18-mo mice, while podoplanin 
was capable of marking EpCAM− aaTEC2 (Fig. 3b–d). These findings 
were supported by single-cell sequencing analysis of 20-mo nonhe-
matopoietic thymic stroma from Foxn1Cre × R26-fl-Stop-fl tdTomato 
(Foxn1tdTom) reporter mice, in which tdTomato is expressed in all cells 
with a history of Foxn1 expression. Integration of scRNA-seq data of 
1,093 cells from 20-mo Foxn1tdTom TECs with the broader dataset of 7,412 
(18-mo and 20-mo) wild-type (WT) cells revealed that transcription of 
the tdTomato reporter was detected in all TEC clusters, including both 
aaTEC1 and aaTEC2 (Fig. 3e). Together, these orthogonal lineage-tracing 
approaches confirm the thymic epithelial origin of both aaTEC1 and 
aaTEC2 subsets. We next assessed the lineage relationships among TEC 
subsets by performing unbiased RNA velocity analysis. Consistent with 
previous reports, this approach demonstrated a clear lineage trajec-
tory in young mice stemming from the mTECprol and continuing into 
differentiated mTEC2 and mimetic cell lineages5,7 (Fig. 3f,g, Extended 
Data Fig. 2d and Supplementary Video 2a,b). This relationship was 
preserved in the involuted thymus, with the additional progression 
of mTEC1 and earlyprog cells into aaTEC1, whereas aaTEC2 were derived 
from earlyprog and aaTEC1 (Fig. 3f,g, Extended Data Fig. 2d and Sup-
plementary Video 2a,b)8. Although these data suggest that aaTECs are 
terminally differentiated subsets, given their expression of TEC pre-
cursor markers such as claudin-3 and Plet1 (Extended Data Fig. 4e), an 
alternative hypothesis is that aaTECs could instead represent a stalled 
progenitor cell differentiation stage.

aaTEC niches do not support T cell development
Closer inspection of our Visium sequencing data highlighted a marked 
lack of thymocyte transcripts in aaTEC zones (Fig. 3h). Consistent with 
this observation, HD-TEC clusters in the involuted thymus of Foxn1nTnG 
mice excluded other tdTomato+ cells (Fig. 3i, Extended Data Fig. 5b and 
Supplementary Video 3), which given its ubiquitous expression in all 
non-TECs, will largely mark thymocytes. These data suggest that aaTEC 
microenvironments were thymocyte ‘deserts’ that do not support thy-
mocyte differentiation and are deprived of thymic crosstalk factors. 
Notably, staining of sections of aged human thymus also reveals the 
presence of epithelial-rich thymocyte-poor regions (Fig. 3j), consist-
ent with previously published findings34. Finally, we found that aaTEC 
gene signatures were apparent in previously generated human TEC 
scRNA-seq datasets, but the utility of prospective markers such as 
claudin-3 and podoplanin for the identification of aaTECs on human 
tissue is still to be determined9,19,20 (Fig. 3k, Extended Data Fig. 5d–f and 
Supplementary Table 3).

aaTEC form microenvironmental ‘scars’ 
associated with EMT
We next sought to understand the molecular alterations that may under-
lie thymic involution and how these relate to aaTECs. Despite the pro-
found dysregulation that occurs during thymic involution, we found 
only relatively minor changes in the expression of key epithelial and 
thymocyte growth factors, largely restricted to fibroblasts (Extended 
Data Fig. 6a). cTECs are a crucial population involved with early thymo-
cyte development, as well as regulating thymic size via expression of 
Foxn1 and its downstream targets such as Dll4 (refs. 1,3,21,35). We did not 
observe any change in expression with age of Foxn1, Dll4 or other genes 
involved in cTEC identity and function, including Psmb11, Prss16, Enpep 
(which encodes Ly51) or Ly75 (which encodes CD205); although this is 
likely a technical limitation due to the low number of cTECs captured 
through single-cell sequencing of the whole CD45− compartment. To 
identify concerted age-dependent transcriptional changes within each 
stromal population, we used gene set enrichment analysis (GSEA)36,37 
coupled with network enrichment analysis using Cytoscape38 to integrate 
the GSEA results into networks sharing common gene sets. Pathways 
with significant enrichment across at least one population with age were 
broadly grouped into eight biological categories corresponding with the 
hallmarks of aging (Fig. 4a, Extended Data Fig. 6b and Supplementary 
Tables 4 and 5)39–41. Consistent with reports demonstrating a link between 
mitochondrial function, aging and senescence42,43, we found a broad 
decrease in the transcription of genes within pathways associated with 
mitochondrial function and metabolism across most cell populations and 
in fibroblasts upregulation of genes associated with immune function 
(including antigen processing and presentation). Together, these findings 
support the role of these cells and pathways in the induction of inflam-
maging or the senescence-associated secretory phenotype (SASP)44,45.  
Notably, changes in pathways associated with proteostasis were largely 
restricted to epithelial cell populations (Fig. 4a, Extended Data Fig. 6b 
and Supplementary Tables 4 and 5).

Fig. 4 | Age-associated TEC regions are non-functional and associated 
with EMT. a, GSEA pathway analysis was performed for each subset based on 
differentially expressed genes in 18-mo versus 2-mo mice (Supplementary  
Tables 4 and 5) and Cytoscape network analysis was used to integrate enriched 
pathways (false discovery rate (FDR) ≤ 0.05) sharing a core set of genes. Dotplot 
of top five pathways within each category (Supplementary Table 5). b, GSEA 
pathway enrichment within aaTEC1 or aaTEC2 subsets (generated by comparing 
aaTEC1 and aaTEC2 to all other TECs; Supplementary Table 6). c, Heatmap of 
8,795 genes within cTEC, mTEC1, aaTEC1, aaTEC2 and medFB subsets ranked by 
cadherin-1 (encoded by Cdh1) expression. d, Scatter-plot of Cdh1 and Vim with 
cTEC, mTEC1, aaTEC1, aaTEC2 and medFB subsets. e, Scatter-plot of Cdh1 and Vim 
transcription overlaid with expression of epithelial and mesenchymal genes and 
EMT known regulators. f, Expression of key epithelial genes and thymopoietic 

factors by various 18-mo TEC subsets, including aaTECs. g, Heatmap of AIRE- 
(left) and FEZF2-dependent/independent (right) genes reported previously49. 
Heatmap shows scaled normalized gene expression. h, CellChat interaction 
overview summarizing number of interactions between grouped populations 
in 2-mo and 18-mo mice. i, CellChat interaction analysis between stromal cell 
populations with earlyprog, mTEC1, aaTEC1 or aaTEC2 as cellular receivers (see 
also Extended Data Fig. 8b). Matrix represents all significantly enriched pathways 
targeting either earlyprog, mTEC1, aaTEC1 or aaTEC2 (color-coded by the receiver 
population) and split by the type of CellChat signaling (secreted, cell–cell and 
ECM). j, Levels of PTN and MK in thymus at 2-mo (n = 5), 12-mo (n = 5) or 18-mo 
(n = 5) female C57BL/6 mice. Summary data represents mean ± s.e.m. and each 
dot represents an individual biological replicate. Statistics for j were generated 
using the Kruskal–Wallis test with Dunn’s correction. ECM, extracellular matrix.
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Because the approach above involved direct comparison of cell 
populations from young and aged mice, aaTECs (which are not present 
in significant numbers in young mice) could not be assayed. Therefore, 
we inspected enriched pathways of aaTECs versus all other TECs within 
the aged setting. GSEA revealed loss of antigen presentation within 
aaTEC1s (Fig. 4b and Supplementary Table 6), consistent with the 
progressive loss of thymic epithelial function upon differentiation 
into aaTECs. For aaTEC2s, one of the most highly enriched pathways 
was the hallmark EMT gene signature (Fig. 4b and Supplementary 
Table 6). Analysis of gene expression across 8,795 EMT-related genes 
in descending order according to expression of E-cadherin (Cdh1), 
as previously described46, further suggested that aaTEC2 lay in a 
liminal zone between epithelial and mesenchymal identity (Fig. 4c). 
Scatter-plots based on E-cadherin (Cdh1) and vimentin (Vim) tran-
scriptional expression (as prototypical epithelial and mesenchymal 
markers, respectively) overlaid with expression of archetypal epithelial 
or mesenchymal genes, further suggested that aaTEC2 lost epithelial 
features and partially gained mesenchymal traits (Fig. 4d,e). These 
observations are consistent with a partial EMT (pEMT) state that paral-
lels a senescence-associated pEMT tubular epithelial population identi-
fied in kidney fibrosis47, although we do not exclude the possibility that 
some aaTEC2s undergo a full EMT48.

The unusual morphology and microenvironment formed by 
aaTECs prompted us to further assess their function relative to typical 
TECs. Consistent with scRNA-seq analyses, imaging and flow cytometry 
confirmed that aaTECs did not represent prominent, known mimetic 
cells, lacking expression of markers of tuft cells, M cells or corneocytes 
(Extended Data Fig. 7a–c). We found that aaTECs expressed low levels 
of key TEC mediators of T cell differentiation, including Dll4, Psmb11, 
Kitl, Ccl25, Cxcl12 and Il7 (Fig. 4f). Neither aaTEC populations expressed 
Fezf2, Aire, key NF-κB target genes or the receptors Tnfrsf11a (which 
encodes RANK), Ltbr or Cd40, which are associated with driving mTEC 
differentiation (Fig. 4f and Extended Data Fig. 7d,e). Accordingly, we 
found little or no expression of AIRE-dependent or FEZF2-dependent 
tissue-restricted antigen (TRA) expression49 in aaTEC1s or aaTEC2s, 
being largely restricted to mTEC2 and mTECprol populations (Fig. 4g 
and Extended Data Fig. 8a).

Using CellChat50 to identify cell–cell interactions between stromal 
populations, we found a clear shift with age where signals were redis-
tributed with the emergence of the two aaTEC populations (Fig. 4h). 
Focusing on specific signaling pathways influencing aaTEC1s and 
aaTEC2s, as well as their putative upstream mTEC1s and earlyprog precur-
sors (as well as their sources), we found enrichment for growth factors 
such as FGF, BMP and EGF, as well as factors associated with promot-
ing EMT such as PTN (pleiotrophin), MDK (midkine) and ANGPTL 
(angiopoietin-like) coming from across the stromal compartment 
(Fig. 4i and Extended Data Fig. 8b)51–56. Consistent with this observa-
tion, the amounts of PTN and MDK increased in the thymus with age 
(Fig. 4j) and, along with many other TECs, aaTECs expressed abundant 
EMT-related integrins and Sdc4, which can act as a receptor for PTN, 
MDK and ANGPTL4 (ref. 57) (Extended Data Fig. 8c). Given the link 
between EMT, fibrosis and senescence, and the well-described loss of 
TRA expression with age5, these data suggest that aaTECs form unique 
nonfunctional microenvironments in the involuted thymus associated 
with senescence and EMT32,58,59. Although not fibrotic themselves, these 
aberrant high-density aaTEC ‘scars’ mirror the mesenchymal scarring 
found in other tissues with age and may be responsible for diminishing 
overall thymic function32,41.

aaTECs limit thymic repair following acute injury 
in aged mice
The thymus is extremely sensitive to injury but has substantial capac-
ity for repair. The ability of the thymus to regenerate is thought to 
decline with age yet the mechanisms of this deficit are poorly under-
stood2,3,60. We found that 1–2-mo mice subjected to sublethal total 

body irradiation (TBI) had fully recovered thymic cellularity by day 
28 after TBI (Fig. 5a). By contrast, aged mice exhibited a significant 
delay in the restoration of thymic cellularity and did not approach 
pre-damage levels until approximately day 42 (Fig. 5a). Plotting thymic 
size after damage relative to baseline cellularity showed that restora-
tion of thymic cellularity during the regenerative phase was impaired in 
aged mice (Fig. 5b). Histomorphological analysis correlated with these 
findings, showing similar depletion of thymocytes, accumulation of 
cellular debris and granulation tissue formation observed 1 day after 
injury in both cohorts, but evidence of sustained fibrosis, dystrophic 
calcification and occasional dyskeratotic epithelial cells only in 18-mo 
mice, suggesting a relative dysfunction in the regenerative process 
with age (Extended Data Fig. 9a). To assess the stromal compartments 
that orchestrate thymic regeneration, we performed flow cytomet-
ric analysis of endothelial, mesenchymal and epithelial stromal cell 
populations before and after regeneration. Although there were few 
major differences in the early response of young versus aged mice in 
most populations (Extended Data Fig. 9b), one notable exception was 
the re-emergence of EpCAM+MHCII+Ly51−UEA1− DN aaTEC1s and EpC
AM−MHCII+PDGFRα−PDPN+ aaTEC2s, which are depleted but rapidly 
restored as a prominent feature of the regenerated thymus of aged mice 
(Fig. 5c,d and Extended Data Fig. 9b). Similarly, whole-organ imaging 
analysis of aged Foxn1nTnG mice 28 days after TBI revealed prominent 
high-density aaTEC regions after damage (Fig. 5e and Supplementary 
Video 4). Quantification revealed that, despite the thymus remaining 
smaller than pre-damage, aaTECs comprised an increased volume and 
number, indicating a substantial preferential increase in aaTECs coin-
cident with the impaired thymic regeneration of aged mice (Fig. 5e,f).

To explore comprehensively the mechanisms of the damage 
response and impaired regeneration in aged thymic stroma, we ana-
lyzed 58,309 CD45− nonhematopoietic cells from the thymus of 2-mo 
and 18-mo by scRNA-seq at days 1, 4 and 7 after TBI and annotated them 
based on steady-state (day 0) subset signatures before integration 
(Fig. 5g–i, Extended Data Fig. 10a, Supplementary Fig. 1 and Supplemen-
tary Table 3). Age-associated TEC populations remained a major feature 
of the aged thymus after damage (Fig. 5j). RNA velocity analysis implied 
that, in 2-mo mice, the re-emergence of differentiated conventional 
mTEC populations (mTEC2, mimetic cells) stemmed largely from the 
mTECprol populations (Fig. 5k). In contrast, after damage in 18-mo mice 
there was a skewing in the inferred direction and rather than mTECprol 
cells driving differentiation toward conventional differentiated mTECs, 
mTEC1 and earlyprog cells drove differentiation toward aaTEC1 and 
aaTEC2 (Fig. 5k), consistent with findings by others5. Therefore, the 
emergence of aaTECs may perturb normal TEC differentiation in the 
early stages of regeneration.

aaTECs co-opt growth signals at baseline and 
during repair
After acute damage, we and others have demonstrated the importance 
of epithelial growth factors such as BMP4 and keratinocyte growth fac-
tor (KGF) for endogenous thymic repair31,61. Indeed, we found a broad 
upregulation of endogenous epithelial regenerative factors after dam-
age such as Fgf7, Fgf10, Fgf21 and Bmp4, as well as thymopoietic fac-
tors such as Flt3l and Kitl (Fig. 6a and Supplementary Tables 7–10). In 
contrast, stroma from aged mice did not upregulate these regenerative 
programs to the same extent or, in many instances, at all (Fig. 6a and 
Supplementary Tables 7–10). cTECs are crucial as targets for epithelial 
regenerative cues via expression of proteins such as FOXN1 and its 
downstream targets such as Dll4, Ccl25 and Cxcl12 (ref. 31). Consistent 
with this, Foxn1 expression increased in cTECs after damage, which was 
maintained in aged mice, which was also reflected in its downstream 
chemokine targets Ccl25 and Cxcl12 (Fig. 6a,b and Supplementary 
Tables 7–10). In contrast, increased expression of the key regenera-
tion mediator Dll4 and Psmb11 (a gene encoding for β5t, a proteasome 
subunit critical for CD8+ T cell selection), were abrogated or decreased, 
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respectively, in aged mice (Fig. 6b and Supplementary Tables 7–10). 
Receptors for epithelial growth factors were broadly expressed across 
TEC subsets, including both aaTEC1s and aaTEC2s (Fig. 6c); however, 
using CellChat50 to infer interactions based on expression of receptor–
ligand pairs, as well as downstream signaling effectors, demonstrated a 
clear skewing of interactions with age toward aaTECs for two prominent 
growth cues for TECs: FGF and BMP signaling (Fig. 6d). These data sug-
gest that aaTECs draw these pro-growth factors away from conventional 
TECs with age. This was supported by active signaling through FGF 
receptors in response to KGF in cTECs, mTECs and aaTECs, but not 
fibroblasts, which should not respond to KGF (Fig. 6e).

Reduction in FOXN1 activity favors aaTEC 
differentiation
FOXN1 is the master regulator of thymic epithelial lineage, crucial 
for TEC differentiation and function. It is also important for thymic 
regeneration after damage, acting as a key target downstream of these 
regeneration pathways2,3. FOXN1 protein could be readily detected 
in cTEC and mTEC populations but not aaTEC1s or aaTEC2s (Fig. 7a). 

Consistent with this, there was little transcription of Foxn1 by aaTEC 
subsets compared to putative precursor populations (cTEC, earlyprog 
and mTEC1; Figs. 4f and 7b,c). Using Dynamo62 to predict the differ-
entiation potential (negative stem cell potential) of cells within the 
18-mo TEC dataset, we found that Foxn1 expression correlated only 
with differentiation away (and not toward) aaTECs (Fig. 7d,e).

To reveal quantitative insights into the regulatory capacity of 
Foxn1, we first computed the RNA Jacobian using Foxn1 as both regu-
lator and target gene (Fig. 7f). The response heatmap showed that 
self-activation of Foxn1 followed an almost linear trend with few inter-
mediate plateaus, suggesting endogenous Foxn1 self-induction and 
differential regulation of Foxn1 targets based on expression level, 
consistent with previously published reports of the self-regulation 
of FOXN1 (ref. 63). Next, we applied in silico perturbation analysis of 
Foxn1 to assess the impact of this major regulator on cell fate outcomes. 
We first simulated the impact of Foxn1 deactivation and found that it 
diverted differentiation away from mTECprol and mTEC2 subsets and 
toward the aaTECs (Fig. 7g). In contrast, computationally activating 
Foxn1 expression reinforced the transition of cTEC, earlyprog and mTEC1 
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subsets toward the normal differentiation trajectory and away from 
the aaTEC compartment (Fig. 7g). To test these in silico perturbation 
predictions, we turned to the Foxn1Z/Z mouse model expressing a hypo-
morphic allele that causes early loss of Foxn1 in TECs and premature 
thymic involution64. scRNA-seq of TECs from 6-mo Foxn1Z/Z mice and 
controls was integrated and compared to our 2-mo and 18-mo datasets. 
The TEC subset frequency in 6-mo Foxn1WT/WT mice was comparable 
to 2-mo WT mice for the majority of populations, with the emergence 
of small but detectable populations of aaTEC1 and aaTEC2 subsets 
(Fig. 7h and Extended Data Fig. 10b); however, in 6-mo Foxn1Z/Z mice 
we observed a large expansion of aaTEC1s and aaTEC2s collectively 
composing approximately 50% of TEC; an expansion even greater than 
18-mo WT mice (Fig. 7h and Extended Data Fig. 10b). Collectively, these 
data suggest that loss of FOXN1 expression in TECs favors differentia-
tion into an aaTEC fate.

Discussion
Here, we define age-associated changes to the thymic microenviron-
ment in the involuting thymus that impairs function in two ways. First, 
atypical aaTECs form high-density epithelial clusters, devoid of thy-
mocytes. The accretion of aaTEC regions directly contributes to the 
loss of functional thymic tissue with age and, given that these regions 

expand after damage, exacerbates injury-induced atrophy. Second, we 
found evidence that the emergence of aaTECs perturbs the network 
of growth factors supporting stromal cell function and thymocyte dif-
ferentiation, likely constituting an additional impediment to thymic 
function. Notably, similar features of epithelial-rich, thymocyte-devoid 
regions can also be observed in the human thymus34 and our data offer 
strategies for further interrogation of aaTECs, including the validation 
of claudin-3 expression by aaTEC1s and podoplanin by aaTEC2s.

Despite the relatively early emergence of aaTECs, their genesis 
seems to be linked to hallmarks of aging. Genetic approaches demon-
strated that aaTEC populations were derived from Foxn1+ precursors, 
yet both had lost expression of canonical markers of cTECs and mTECs. 
RNA velocity analysis suggest that both aaTEC1s and aaTEC2s derive 
from mTEC1s, consistent with its progenitor-like phenotype5,7,65, as well 
as a mTEC1-like cell that shares a signature with a recently described 
progenitor8; however, more sophisticated lineage-tracing approaches 
will be required to more directly test the precursor–progeny relation-
ships. Nevertheless, our data strongly suggest that loss of FOXN1 is a key 
driver for the emergence of aaTECs. FOXN1 is crucial for many aspects 
of TEC biology including their generation, maintenance and regenera-
tion33. FOXN1 expression declines with age, a process that has been 
implicated in contributing to thymic involution33,64. Age-associated 
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TECs do not express FOXN1 nor its downstream targets. Moreover, 
in mice expressing a FOXN1 hypomorph64 we found that accelerated 
emergence of aaTECs accompanies early thymic atrophy; however, 
although our velocity analysis suggests that aaTECs are the down-
stream products of differentiation from mTEC1s and earlyprog and 
may represent end-stage epithelial cells arising and accumulating in 
the involuted thymus, an alternative hypothesis could be that aaTECs 
are progenitor cells that have become blocked. In fact, expression of 
markers known to be expressed by TEC precursors such as claudin-3 
and Plet1 could support this alternative interpretation and further 
studies will be needed to test these hypotheses66–68.

The molecular drivers of aaTECs likely also involve additional 
factors. For instance, we found considerable changes in the stromal 
microenvironment beyond TECs, including significant changes in fibro-
blasts that mirror many of the main hallmarks of aging39,41, reflected 
by a loss in mitochondrial, metabolic and proteostasis programs, and 
increase in pathways associated with inflammaging or the SASP39. This 
latter finding likely also reflects the broader role of inflammaging and 
SASP in driving EMT in aged tissues58,59. This link is especially notable 
given that one of the main features of the aging thymus is the replace-
ment of functional tissue with fat69,70, which can directly drive loss of 
thymic function71. Furthermore, there is evidence that the emergence 
of fat in the human thymus may be triggered by EMT72. These data also 
support recent observations that age-associated changes in tissues are 
organ- and cell-lineage specific (for example senescence-associated 
inflammaging impacting on muscle regeneration)32,39,40. Our findings 
are therefore consistent with the concept that aaTECs represent a 
thymus-specific manifestation of these programs, and that age-related 
changes in other cells of the thymic microenvironment, in particu-
lar fibroblasts, could also contribute to aaTEC emergence; however, 
our data also suggest that the emergence of aaTECs impairs thymic 
function beyond the replacement of functional tissue, by compet-
ing with conventional TECs for growth signals. This effect seemed 
especially important after acute damage where expansion of aaTECs 
correlated with impairment to thymic regeneration, a significant clini-
cal problem given the relationship between T cell reconstitution and 
clinical outcomes following HCT4. Notably, there is also evidence of 
epithelial-rich areas devoid of thymocytes in human thymus found 
only in aged and dysregulated tissue (such as myasthenia gravis)34; 
however, without a direct way to deplete these cells (or block their 
emergence to begin with) further studies will be needed to elucidate 
the specific contributions of aaTECs in thymic aging and responses  
after damage.

These observations suggest that the defective response and recov-
ery to acute damage with age could be due to: (1) failure of aged stro-
mal subsets to orchestrate regenerative programs; (2) upregulation 
of a partial EMT program leading to expansion of aaTEC; and (3) the 
co-opting of regenerative factors by aaTEC from typical differenti-
ated mTEC subsets. These features seem to be at least partially driven 
by changes within the fibroblast compartment, and particularly their 
upregulation of genes associated with inflammaging/SASP. In sum-
mary, these studies highlight unique stromal cell responses to age- and 
stress-related thymic atrophy. Furthermore, the discovery of aaTECs, 
along with the functional changes in fibroblasts with age consistent 
with inflammaging/SASP, provide therapeutic targets for improving 
T cell immunity more broadly. Age-associated TECs therefore con-
stitute a nexus of stromal cell dysfunction in thymic involution and 
impaired regeneration.
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Methods
Experimental methods
Tissue collection. Inbred male and female C57BL/6J mice  
were obtained from The Jackson Laboratories or through the  
National Institute of Aging mouse colony. Foxn1tdTomato mice were  
generated by crossing Foxn1-cre ( Jax 018448) with B6.Cg-Gt(ROSA) 
26Sortm14(CAG-tdTomato)Hze/J mice ( Jax 007914). Foxn1nTnG mice were gen-
erated by crossing Foxn1-cre ( Jax 018448) with ROSAnT-nG mice ( Jax 
023537). Foxn1z/z mice were generated as previously described64. 
As a model of thymic injury, mice were given a sublethal dose of TBI 
(550 cGy) with a Cs-137 γ-radiation source. Mice were maintained at 
The Memorial Sloan Kettering Cancer Center, Fred Hutchinson Cancer 
Center, Walter and Eliza Hall Institute or University of Georgia animal 
houses. All experiments were performed according to Institutional 
Animal Care and Use Committee guidelines.

Human thymus tissue was obtained from the archives of the Duke 
University Department of Pathology as formalin-fixed paraffin-embedded 
sections. All tissues were used anonymously, only recording patient age, 
sex and surgical diagnosis. We show images from one 50-year-old female 
patient. All human tissues were collected according to a protocol 
approved by the Duke University Institutional Review Board.

Isolation of cells and flow cytometry. The thymus was enzymati-
cally digested following an adapted protocol73,74. In brief, thymi were 
mechanically dissociated into 1–2-mm pieces. Tissue pieces were incu-
bated with a digestion buffer (either RPMI with 10% FCS, 62.5 μm ml−1 
liberase TM, 0.4 mg ml−1 DNase I; or RPMI with 25 mM HEPES, 20 μg μl−1 
DNase1 and 1 mg ml−1 collagenase/dispase). Between incubation steps, 
supernatant containing dissociated cells were transferred to tubes 
equipped with a 100-μm filter. Cells were pelleted by centrifugation at 
400g for 5 min. All steps were performed at 4 °C unless indicated. For 
sequencing experiments, cell pellets were incubated with anti-mouse 
CD45 microbeads and CD45+ cells were depleted from cell suspension 
using magnetic-associated cell sorting (MACS) on LS columns accord-
ing to the manufacturer’s protocol. Following red blood cell lysis using 
ACK buffer, the CD45-depleted cell fraction was incubated with an 
antibody cocktail for 15 min at 4 °C and cells of interest were purified 
by fluorescent-associated cell sorting (FACS) on a BD Biosciences Aria 
II using a 100-μm nozzle. Cells were sorted into tubes containing RPMI 
supplemented with 2% BSA. FACS-purified cells were spun down at 
400g for 5 min and resuspended in PBS supplemented with 0.04% BSA 
for generation of single-cell suspensions.

For flow cytometry and cell sorting, surface antibodies against 
CD45 (30-F11), CD31 (390 or MEC13.3), TER-119 (TER-119), MHCII IA/
IE (M5/114.15.2), EpCAM (G8.8), Ly51 (6C3), PDGFRα (APA5), CD104 
(346-11A), L1CAM (555), Ly6D (49-H4), Gp38 (8.1.1), CD26 (H194-112), 
CD62P (RB40.34), podoplanin (8.1.1), CD62P (RB40.34), CD9 (KMC8) 
and CD309 (Avas12a) were purchased from BD Biosciences, BioLegend 
or eBioscience. Ulex europaeus agglutinin 1 (UEA1) was purchased from 
Vector Laboratories. Antibody against phospho-AKT was purchased 
from Cell Signaling Technologies; claudin-3 and anti-rabbit secondary 
antibodies were purchased from Invitrogen (Thermo Fisher); DCLK1 
(aa690-720) was purchased from LSBio; GP2 (2F11-C3) was purchased 
from MBL Life Science; and anti-GFP (Aves GFP-1020) was purchased 
from AvesLabs. Anti-FOXN1 antibody was a gift from H.-R. Rodewald75. 
Flow cytometry was performed on a Fortessa X50 or Symphony A6 
(BD Biosciences) and cells were sorted on an Aria II (BD Biosciences) 
using FACSDiva (BD Biosciences). Analysis was performed by FlowJo 
(Treestar Software). Detail of specific vendors, fluorochromes, catalog 
numbers, lot numbers dilutions and gating can be found in Supple-
mentary Tables 11, 12.

Cells were isolated as described and depleted of CD45+ cells by 
MACS depletion (Miltenyi Biotech). CD45− cells were incubated for 
5 min with recombinant mouse KGF (100 ng ml−1) when phospho-AKT 
was assessed. For phospho-AKT staining, cells were fixed and 

permeabilized in 1.6% paraformaldehyde at 37 °C followed by 90% 
methanol at 4 °C. After thorough washing to remove all methanol, 
cells were stained for both intracellular and extracellular antigens 
simultaneously.

Thymic tissue clearing and immunofluorescence. After euthanasia, 
mice were transcardially perfused with PBS followed by 4% PFA. Thymi 
were dissected and post-fixed in 4% PFA for 4 h at 4 °C. For confocal 
imaging, fixed tissue was sectioned at 200 μm using a Leica VT1000 
S vibratome. Tissue clearing was performed as previously described76 
with some modifications. In brief, tissue was immersed in monomer 
buffer (4% acrylamide and 0.25% (w/v) azo-initiator (Wako Pure Chemi-
cal Industries) in PBS) and incubated at 4 °C overnight. The solution 
was transferred to a vacuum tube and bubbled with nitrogen gas for 
15 min. The gel was set for 3 h at 37 °C with gentle rotation, after which 
the tissue was transferred to clearing buffer (8% SDS and 50 mM sodium 
sulfite in PBS) and cleared at 37 °C until turning semi-transparent. To 
remove SDS, samples were transferred to the following buffers to wash 
for 1 h each with rotation: (1) 1% SDS, 0.5% Triton-X in PBS; (2) wash buffer  
(1% BSA and 0.5% Triton-X in PBS) for two washes; and (3) blocking 
buffer (4% normal serum, 1% BSA and 0.3% Triton-X in PBS) for two 
washes. Antibodies were diluted in blocking buffer at the dilutions 
indicated below. The antibodies used were rabbit anti-pan-cytokeratin 
(Dako, cat. no. Z0622), anti-K5 (BioLegend, cat. no. poly19055), rat 
anti-mouse K8/18 (Troma-1; Developmental Studies Hybridoma 
Bank), rabbit anti-K14 (Abcam, cat. no. EPR17350), rat anti-mouse AIRE 
(WEHI, clone 5H12), rabbit anti-human/mouse DCLK1 (LSBio, cat. no.  
LS-C100746) and biotinylated UEA1 lectin (Vector Labs, cat. no. B-1065). 
The secondary antibodies used were Alexa Fluor 647 donkey anti-rabbit 
IgG (H+L) (Invitrogen, cat. no. A31573), Alexa Fluor 647 goat anti-rat IgG 
(H+L) (Invitrogen, cat. no. A-21247) and Alexa Fluor 647 streptavidin con-
jugate (Invitrogen, cat. no. S21374). After staining, samples were washed 
in PBS with 0.3% Triton-X. For imaging, samples were incubated in EasyIn-
dex optical clearing solution (refractive index, RI = 1.46) (LifeCanvas 
Technology) at room temperature until turning fully transparent. A table 
of antibodies and vendors can be found in Supplemeentary Table 13.

Confocal microscopy imaging. Tissue sections were imaged on a Zeiss 
LSM 880 confocal microscope using a Plan-Apochromat ×25/0.8 
multi-immersion objective at a voxel size of 0.22 μm in XY and 2 μm in Z.

Light-sheet microscopy imaging. Whole thymic lobes were scanned 
using a Zeiss Z.1 Light-sheet microscope. The detection objective was 
an EC Plan-Neofluar ×5/0.16. Stacks were acquired at a resolution of 
0.915 μm in XY and approximately 4.9 μm in Z. Dual-side images were 
fused using the maximum intensity option.

Image presentation. All images shown are processed using Imaris v.9.7.1 
(Bitplane). Regions of interest in tissue sections are presented as 10-μm 
Z-projections.

Volume calculation of thymic regions. The total volumes of entire 
right thymic lobes were calculated using Imaris by generating the 
lobe surface from the tdTomato channel. Medullary regions were 
defined by high GFP+ cell density and Krt14+ and HD-TEC regions in 
aged thymus were defined by compacted GFP+ TECs. To identify med-
ullary and HD-TEC regions in the images, we developed a pipeline 
in ImageJ (v.2.3.0/1.53f)77. For medulla, GFP and keratin 14 channels 
were combined. For HD-TEC regions, only the GFP+ channel was used. 
The images were filtered using two-dimensional (2D) median and 
three-dimensional (3D) Gaussian filtering and then binarized using 
a 2D min–max filter with thresholds set according to fluorescence 
intensity. The resulting image was used to extract the medullary or 
HD-TEC surface. The cortical volume was calculated as total thymic 
lobe volume minus the medullary and HD-TEC volume.
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Segmentation of TEC nuclei. TEC nuclei were identified in confocal 
images of thymus sections using the spot detection function in Imaris. 
Total TEC spots were filtered and then TEC subsets were segmented 
according to the shortest distance to the indicated surface or the 
section edge. Medullary or HD-TECs were defined by the shortest 
distance to indicated surface ≤0 μm, subcapsular TECs were defined 
as shortest distance to section edge ≥−25 μm and the remaining spots 
were defined as cTECs.

Mean cell density was calculated by dividing the number of specific 
TEC subsets to the volume of different thymic regions.

Quantification of TECs. The number of nuclei in the various TEC subsets 
in the right lobe was calculated by multiplying the mean cell densities 
ascertained by confocal analysis of the slices from the left lobe by the 
volumes determined by light-sheet imaging of the right lobe.

Tissue preparation for sequencing. The scRNA-seq of FACS-sorted 
cell suspensions was performed on Chromium instrument (10x Genom-
ics) following the user-guide manual (CG00052 Rev E) and using the 
Single Cell 3′ Reagent kit (v2). The viability of cells before loading onto 
the encapsulation chip was 73–98%, as confirmed with 0.2% (w/v) 
Trypan blue stain. Each sample, containing approximately 8,000 cells, 
was encapsulated in microfluidic droplets at a final dilution of 66–70 
cells per μl (a multiplet rate ~3.9%). Following a reverse transcription 
step, the emulsion droplets were broken, barcoded cDNA purified 
with DynaBeads and amplified by 12 cycles of PCR: 98 °C for 180 s, 12× 
(98 °C for 15 s, 67 °C for 20 s, 72 °C for 60 s) and 72 °C for 60 s. The 50 ng 
PCR-amplified barcoded cDNA was fragmented with the reagents pro-
vided in the kit, purified with SPRI beads and the resulting DNA library 
was ligated to the sequencing adaptor followed by indexing PCR: 98 °C 
for 45 s; 12 × 98 °C for 20 s, 54 °C for 30 s, 72 °C for 20 s and 72 °C for 
60 s. The final DNA library was double-size purified (0.6–0.8×) with 
SPRI beads and sequenced on an Illumina NovaSeq platform. Sequenc-
ing for Foxn1lacz and Foxn1tdTom was performed on an Illumina NextSeq.

Visium spatial gene expression slides were permeabilized at 37 °C 
for 12–18 min and polyadenylated. Messenger RNA was captured by 
primers bound to the slides. Reverse transcription, second-strand syn-
thesis, cDNA amplification and library preparation proceeded using the 
Visium Spatial Gene Expression Slide and Reagent kit (10x Genomics, PN 
1000184) according to the manufacturer’s protocol. After evaluation by 
real-time PCR, cDNA amplification included 11–12 cycles; sequencing 
libraries were prepared with eight cycles of PCR. Indexed libraries were 
pooled equimolar and sequenced on a NovaSeq 6000 in a PE28/120 run 
using the NovaSeq 6000 S1 Reagent kit (200 cycles; Illumina).

Library preparation and sequencing. After preparing our single-cell 
suspension solution, we utilized the library preparation and 
next-generation sequencing services offered by the University of Geor-
gia’s Genomics and Bioinformatics Core to generate our scRNA-seq 
library. Ten thousand thymic stromal cells were loaded onto a 10x 
Genomics Chromium 3′ Single Cell Gene Expression Solution v3 micro-
fluidics chip (10x Genomics) to generate an Illumina sequencer-ready 
library. Sequencing was then performed on an Illumina NextSeq 
500/550, using four flow lanes that resulted in four BCL files that were 
shared with us using Illumina’s Basespace online platform.

Computational analysis
Mapping of single-cell and spatial transcriptome libraries. The 
scRNA-seq FASTQ files were processed with Cell Ranger (v.7.0.1) and 
Visium libraries were processed with Space Ranger (v.1.3.1) from 10x 
Genomics. All samples were mapped to the mouse mm10-2020-A 
genome assembly, except for the Foxn1tdTom dataset that was mapped to 
a custom mouse mm10-2020-A, including the sequences for the tdTo-
mato gene and WPRE element (custom genome FASTA and index files 
for the tdTomato-WPRE sequence were downloaded from GSE125464).

Single-cell RNA-seq and spatial transcriptomics quality control and 
initial analysis. The Cell Ranger and Space Ranger-generated filtered_
feature_bc_matrix.h5 files were processed following the guidelines on 
the shunPykeR GitHub repository78, an assembled pipeline of publicly 
available single-cell analysis packages put in coherent order, which 
allow data analysis in a reproducible manner and seamless usage of 
Python and R code. Genes that were not expressed in any cell, and also 
ribosomal and hemoglobin genes, were removed from downstream 
analysis. Each cell was then normalized to a total library size of 10,000 
reads and gene counts were log-transformed using a pseudo-count of 1. 
Principal-component analysis (PCA) was applied to reduce noise before 
data clustering. To select the optimal number of principal components 
to retain for each dataset, the knee point (eigenvalues smaller radius of 
curvature) was used as a guide. Leiden clustering79 was used to identify 
clusters within the PCA-reduced data.

CD45− TBI series. The quality of the single cells was computationally 
assessed based on total counts, number of genes and mitochondrial 
and ribosomal fraction per cell, with low total counts, low number of 
genes (≤1,000) and high mitochondrial content (≥0.2) as negative 
indicators of cell quality (Supplementary Fig. 1). Cells characterized by 
more than one negative indicator were considered as low-quality cells. 
Although cells were negatively sorted before sequencing for the CD45 
marker, a small number of CD45+ cells (expressing Ptprc), and also a few 
parathyroid cells (expressing Gcm2), were detected within our dataset 
(Supplementary Fig. 1). To remove bad-quality cells and contaminants 
in an unbiased way, we assessed the metrics at the cluster level rather 
than on individual cells. Leiden clusters with a low-quality profile and/
or a high number of contaminating cells were removed. Finally, cells 
marked as doublets by scrublet80 were also filtered out. Overall, a total 
of 12,497 cells, representing 13.3% of our data, were excluded from 
further analysis (Supplementary Fig. 1).

After removal of low-quality and doublet cells, PCA (ncomps=45) 
and unsupervised clustering analysis was applied to the steady-state 
CD45− slice of the data using top highly variable genes (nhvgs = 3,500) 
and using Leiden (resolution = 0.3). Batch effect correction was per-
formed using harmony81 with default parameters and using sample 
(Supplementary Fig. 1) as the batch key. Major cell lineages (epithe-
lium, endothelium and fibroblast) were annotated based on canonical 
markers (Extended Data Fig. 2). Each major lineage was then sliced and 
reanalyzed in a similar fashion (epithelium, nhvgs = 3,500, ncomps = 50, 
harmony_key = ‘sample’, resolution = 1.4; endothelium, nhvgs = 3,500, 
ncomps = 30, harmony_key = ‘sample’, resolution = 0.1; fibroblast, 
nhvgs = 3,500, ncomps = 50, harmony_key = ‘sample’, resolution = 0.5) to 
interrogate these linages heterogeneity to a higher degree (Fig. 1a,c). 
Similarly for the steady-state CD45− data, the TBI CD45− slice of the 
data (nhvgs = 3,500, ncomps = 65, harmony_key = ‘sample’, resolution = 0.7) 
and their subsequent epithelial (nhvgs = 3,500, ncomps = 35, harmony_
key = ‘sample’, resolution = 1.3), endothelial (nhvgs = 3,500, ncomps = 35, 
harmony_key = ‘sample’, resolution = 0.2) and fibroblast (nhvg s= 3,500, 
ncomps = 30, harmony_key = ‘sample’, resolution = 0.4) lineages were 
reanalyzed and annotated separately (Extended Data Fig. 10); however, 
when highly variable genes were calculated in the TBI setting, the day 1 
TBI part of the data was excluded from the calculation due to the pres-
ence of a high number of inflammatory response genes. Finally, the 
steady-state and TBI slice annotations were transferred on the complete 
dataset (nhvgs = 3,500 (no day 1), ncomps = 65, harmony_key = ‘sample’) 
shown in Fig. 5i.

Foxn1tdTom data. The quality of the single cells was computationally 
assessed as described for the CD45− TBI series (nhvgs = 3,500, ncomps = 25, 
harmony_key = ‘sample’). A total of 4,062 cells, representing 23.0% 
of the data were excluded from further analysis. The epithelial cell 
lineage was sliced and reanalyzed further (nhvgs = 3,500, ncomps = 45, 
harmony_key = ‘sample’) to allow identification of smaller epithelial 
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cell populations present in the epithelial compartment of the CD45− 
TBI series.

Foxn1LacZ data. The quality of the single cells was computationally 
assessed as described for the CD45− TBI series (nhvgs=3,500, ncomps = 35, 
harmony_key = ‘sample’). A total of 5,594 cells, representing 40.0% 
of the data, were excluded from further analysis. The epithelial cell 
lineage was sliced and reanalyzed further (nhvgs = 3,500, ncomps = 45) to 
allow identification of smaller epithelial cell populations present in 
the epithelial compartment of the CD45− TBI series.

Differential expression analysis. Differential expression analysis 
for comparisons of interest was performed using the sc.tl.rank_gene_
groups() function from scanpy82 with the Wilcoxon rank-sum method83. 
In all cases, differentially expressed genes (DEGs) were considered 
statistically significant if the FDR-adjusted P value was ≤0.05. No fold 
change threshold was applied.

Generation of public gene signatures to characterize our 
steady-state subsets. We used the sc.tl.score_genes() function from 
scanpy81 (that calculates averaged scores based on cluster specific 
genes; scores are subtracted with a randomly sampled reference gene 
set) to generate gene signatures based on markers provided in the lit-
erature23,26,27 (Extended Data Fig. 2 and Supplementary Table 1) to assist 
annotation of our steady-state epithelial, endothelial and fibroblast 
subsets in the CD45− TBI series data (Supplementary Fig. 3).

Mapping of our steady-state subsets onto the TBI, Foxn1tdTom and 
Foxn1LacZ data. We used scanpy’s sc.tl.score_genes() function with 
the top 20 DEGs from the steady-state defined subsets (Wilcoxon, 
FDR ≤ 0.05, sorted in descending order by Wilcoxon z-score; Supple-
mentary Table 3) to generate unique cell type subset signatures, which 
we mapped to the respective lineage subsets in the TBI (days 1, 4 and 7; 
Extended Data Fig. 10), Foxn1tdTom and Foxn1LacZ data.

Public datasets reanalysis. Re-analysis of single-cell transcrip-
tome datasets from public nonhematopoietic mouse and human 
thymic samples (CD45− populations) were processed as described 
in the ‘Single-cell RNA-seq and spatial transcriptomics analysis’ sec-
tion of the Methods. The Data Availability section provides a com-
plete list of the raw count data files used as the entry point for each  
dataset reanalysis.

ThymoSight. ThymoSight is an R Shiny app that we have developed to 
allow interactive exploration of all mouse and human publicly avail-
able single-cell datasets of the nonhematopoietic thymic stroma. 
Mouse datasets included are from refs. 5–7,10–18 and our own data 
are from this manuscript. Human datasets included are from refs. 
9,19,20. ThymoSight also provides dataset metadata fields (if available/
applicable) such as tissue, age, stage, sorted cell population, gender, 
genotype, treatment, linked publication, mapped annotation based 
on our own subset signatures and original annotation. The app.R code 
that launches the app together with the Python notebooks used to 
create consistent annotation fields, reanalyze and integrate the public 
datasets with ours have been submitted on GitHub (https://github.com/
FredHutch/thymosight). The server hosting the interactive app can be 
accessed at www.thymosight.org.

Single-cell RNA-seq meta-analysis. Integration of CD45− steady-state 
data with the Visium data. We used scanorama (v.1.7.2)84 to integrate our 
scRNA-seq datasets with our spatial transcriptomic data. Integration 
was performed between age-matched data at steady state and with 
default parameters using scanpy’s example tutorial (https://scanpy.
readthedocs.io/en/stable/tutorials/spatial/integration-scanorama.
html#integrating-spatial-data-with-scrna-seq-using-scanorama).

RNA velocity analysis. Velocyto (v.0.17.17)85 was used to generate loom 
files, which we subsequently merged with our already-annotated 
single-cell object. We performed RNA velocity analysis within the 
thymic epithelium compartment of our data using scVelo (v.0.2.4)86 
in stochastic mode.

Pseudotime analysis. We used Dynamo’s (v.1.4.0)62 VectorField()  
function with the given parameters (basis = ‘umap’, M = 1,000,  
MaxIter = 170, pot_curl_div = True) to calculate the vector field and to 
estimate the negative of the single-cell potential (ddhodge potential; 
Dynamo’s version of pseudotime) of the thymic epithelia in 18 mo mice at  
steady state.

Cell fate prediction analysis. We used Dynamo’s topography 
(basis = ‘umap’) and fate (interpolation_num = 100, direction = ‘for-
ward’, inverse_transform = false, average = false) functions to create 
fate prediction animations for our 18-mo epithelial dataset at steady 
state, setting each of our epithelial subsets as the progenitor popula-
tion each time. To visualize the fate transition animation results in 
a static format we leveraged CellRank’s (v.2.0.3.dev10+g4ae88b9)87 
built plot_single_flow() module using the already-calculated Dynamo’s 
ddhodge potential (binned) to create vein plots resembling fate transi-
tion and relative frequency of the epithelial subsets.

Pathway enrichment analysis. Pathway enrichment analysis was per-
formed with GSEA (v.4.3.2)37 according to the gene list and rank metric 
provided. The GSEA preranked module was used to predict pathway 
enrichment in threshold-free comparisons: (1) 18-mo versus 2-mo 
subsets at steady-state and (2) aaTEC1s and aaTEC2s versus other TECs. 
We created rankings for all DEGs using the Wilcoxon z-score in descend-
ing order. Predicted pathways with an FDR ≤ 0.05 were considered 
significantly enriched.

Network analysis. Network analysis of the significantly enriched 
GSEA pathways from comparisons of interest was performed using 
Cytoscape (v.3.10.0)38. We used the EnrichmentMap() function to 
organize enriched pathways (FDR ≤ 0.05) with a high overlap of genes 
(default cutoff similarity of 0.375) in the same network allowing for 
a simplified and intuitive visualization of the distinct processes that 
are significantly represented in each subset at steady state. This facili-
tated interpretation of the enriched pathways from the plethora of 
comparisons and allowed categorization of all resulting pathways 
into networks based on the overlap of the genes contributing to the 
pathway’s enrichment (Supplementary Table 5). Manual inspection of 
the resulting networks allowed allocation of network-related annota-
tions. Individual pathways that were not part of an existing network 
were manually annotated to the existing categories based on their 
biological function or grouped under ‘singlet’.

Cell–cell interaction analysis. CellChat (v.1.4.0)50 was used with default 
parameters to predict cell–cell interactions between all CD45− subsets 
within the 2-mo and 18-mo cohorts at steady state and at days 1, 4 and 7 
after damage against the complete CellChat database. Cell subsets with 
fewer than 20 cells were excluded from the interactome analysis. For 
comparisons between the individual TBI time points and age cohorts, 
individual CellChat objects were integrated using the mergeCellChat() 
function. For the circus plots shown in Fig. 4h, some of the cell type 
subsets were grouped together: ECs (aEC, capEC and vEC), FBs (capsFB, 
intFB, medFB, nmSC and Fat), mTECprol/mTEC2s and mimetic (basal, 
tuft, neuro, goblet and M cell).

CD45− bulk RNA-seq preprocessing and downstream data analy-
sis. Quality control, alignment and gene count quantification. Quality 
control of the raw read files (FASTQ) was performed using the FastQC 
tool88. Low-quality reads and adaptor contaminants were removed 
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using Trimmomatic89 (default parameters for paired-end reads) and 
post-trimmed reads were reassessed with FastQC to verify adap-
tor removal and potential bias introduced by trimming. The quality 
control-approved reads were aligned to the GRCm38.p5 (mm10) mouse 
genome assembly (GENCODE; M12 release) with STAR90 aligner using 
default parameters and–runThreadN set to 32 to increase execution 
speed. The STAR-aligned files were then used as input to the feature-
Counts91 tool (default parameters) to quantify gene expression levels 
and construct the count matrix.

Low gene count removal and library size normalization. The raw count 
matrix was converted to a DGEList object in R using the readDGE() func-
tion from the edgeR92 package. Lowly expressed genes were removed 
using the filterByExpr() function for the groups of interest before 
comparison with the scRNA-seq datasets.

Bulk RNA-seq versus scRNA-seq. scRNA-seq sample reproducibility 
was verified using bulk RNA-seq data for the CD45− sorted popula-
tions. Comparison between bulk and scRNA-seq CD45− transcrip-
tional profiles was performed by computing Pearson’s correlation 
between log10-transformed raw bulk counts (per biological replicate) 
and log10-transformed averaged raw single-cell counts (per tech-
nical replicate) for the relevant datasets across the TBI timeframe  
(Supplementary Fig. 2).

Statistics and reproducibility. All statistics were calculated, and 
display graphs were generated, in GraphPad Prism.

Specific statistical tests used have been highlighted in the figure 
legends but briefly, statistical analysis between two groups were per-
formed on biological replicates (individual mice) with a two-tailed 
Mann–Whitney or two-tailed t-test and, where appropriate, a two-tailed 
paired t-test. Statistical comparison between three or more groups 
was performed on biological replicates (individual mice) with a 
Kruskall–Wallis test with Dunn’s correction, one-way analysis of vari-
ance with Dunnett’s correction or two-way analysis of variance with 
Šídák correction.

The imaging studies in Fig. 2a,b were performed independently 
three times (n = 1–3 mice per experiment). For the images in Fig. 2e, 
PanK was performed independently three times (n = 1–3 mice per 
experiment), Krt5 was performed independently four times (n = 1–3 
mice per experiment), Krt8 was performed once (n = 2 mice), Krt14 
was performed independently seven times (n = 1–3 mice per experi-
ment) and claudin-3 was performed independently four times (n = 1–4 
mice per experiment); with one section imaged for each mouse. The 
studies described in Fig. 3i were performed independently ten times 
(n = 1–3 mice per experiment) with one section imaged per animal. 
Figure 3b was performed independently three times (n = 4 per group). 
In Extended Data Fig. 7b, staining for FOXN1 was performed indepen-
dently twice (n = 7 per experiment). In Extended Data Fig. 9a, DCLK 
and UEA1 were performed once (n = 2 mice per experiment) with one 
section imaged per animal.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data generated in this study have been deposited in 
NCBI’s Gene Expression Omnibus and can be accessed through the 
SuperSeries accession number GSE240020. For ThymoSight, acces-
sion numbers for the publicly available raw count data that have been 
reanalyzed for this study are provided here. For public mouse data, 
please see Kernfeld et al. (2018) (GSE107910)10; Bornstein et al. (2018) 
(GSE103967)6; Dhalla et al. (2019) (https://www.ebi.ac.uk/biostudies/ 
arrayexpress/studies/E-MTAB-8105#)7; Baran-Gale et al. (2020) 

(https://bioconductor.org/packages/release/data/experiment/html/
MouseThymusAgeing.html)5; Wells et al. (2020) (GSE137699)11; Rota 
et al. (2021) (GSE162668)12; Nusser et al. (2022) (GSE106856)8; Michelson  
et al. (2022) (GSE194253)13; Klein et al. (2023) (GSE215418)15; Farley et al. 
(2023) (GSE232765)16; Givony et al. (2023) (GSE236075)17; Michelson 
et al. (2023) (GSE225661)14; and Horie et al. (2023) (GSE228198)18. For 
public human data please see Park et al. (2020) (https://zenodo.org/
records/3711134)9; Bautista et al. (2021) (GSE147520)19; and Ragazzini 
et al. (2023) (GSE220830, GSE220206 and GSE220829)20. Re-analyzed 
public datasets with added metadata can be accessed at Zenodo at 
https://doi.org/10.5281/zenodo.12516405 (ref. 93).

Code availability
The shunPykeR adapted Jupyter notebooks, R notebooks and the 
assorted conda and renv files to reproduce analyses and figure crea-
tion for this manuscript can be found on GitHub at https://github.
com/kousaa/Kousa-et-al-2024-NI. The app.R code that launches the 
ThymoSight app, together with the Python notebooks used to create 
consistent annotation fields, reanalyze and integrate the public data-
sets with ours have been submitted on GitHub at https://github.com/
FredHutch/thymosight. The server hosting the interactive app can be 
accessed at www.thymosight.org.
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Extended Data Fig. 1 | General stromal features of thymic aging. a, Thymic 
cellularity of female C57BL/6 mice at 2, 6, 9, 12 or 19+ months of age.  
b-c, Representative images of hematoxylin and eosin (H&E) stained mouse 
thymi from 2, 6, 8-9, 13, and 19+mo female C57BL/6 mice (b) used to calculate 
ratio of cortical (dark) to medullary (light) region (c). In (c), each dot represents 
a biological replicate. d, Flow cytometric analysis of enzymatically digested 

thymus and absolute cell numbers for major cell types (TECs; cTECs and mTECs; 
ECs and FBs) in 2, 6, 9, 12, and 18+ mo female C57BL/6 mice. Summary data 
represents mean ± SEM; each dot represents an individual biological replicate; 
statistics were generated for a, c, and d using one-way ANOVA with the Dunnett 
correction for multiple comparisons.
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Extended Data Fig. 2 | Mapping of pre-existing thymic stromal sequencing 
datasets. a, Broad structural cell subsets were annotated based on expression 
of canonical markers such as Pdgfra, Epcam, H2-aa, Pecam, and Cdh5. b, Leiden 
clustering of our fibroblast population (nFB=13,240) and signatures for murine 
capsular-medullary and human perilobular-interlobular fibroblasts based 

on previously published datasets9,26. c, Leiden clustering of our endothelial 
population (nEC=1,661) and signatures for arterial, capillary, venular, and 
lymphatic endothelial cells based on previously published datasets27. d, Leiden 
clustering of our thymic epithelial population (nTEC=6,175) and signatures of 
previously published literature and overlaid on our sequencing dataset5–7,13.
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Extended Data Fig. 3 | Thymosight: Integration of thymic sequencing 
datasets. a-b, UMAPs of (a) all mouse non-hematopoietic thymic stroma cells 
(ThymoSight integration of public data5–18 and ours; n = 297,988) annotated 

by age and sequenced population, and (b) all mouse thymic epithelial cells 
(n = 205,625; subset of CD45− ThymoSight data) annotated by publication source, 
sequenced population, and TEC subset.
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Extended Data Fig. 4 | Quantification of non-epithelial stromal cells subsets 
and aaTEC gating. a–c, Concatenated flow cytometry plots and quantities for 
cell populations within the fibroblast (a), endothelial (b), and “other” (c) cell 
lineages in 2-mo (n = 10) and 18-mo (n = 10) mice. c, Concatenated flow cytometry 
plots and quantities for pericytes (PC), vascular smooth muscle cells (vSMC) 
and mesothelial cells (MEC) (n = 10/age). d, Frequency and numbers of DN-TEC 
across lifespan: 2-mo (n = 14), 6-mo (n = 5), 9mo (n = 15), 12-mo (n = 5), and 18+mo 
(n = 18). e, Violin plots with extensive list of aaTEC1 and aaTEC2 markers. f, Gating 
strategy for aaTECs. aaTEC1 were first gated on CD45−TER119− then PDGFRα-

CD31− cells. EpCAM+MHCII+ cells were gated as the whole TEC compartment, 
then mTECs and cTECs were excluded by taking the UEA1−Ly51− double negative 
fraction and gating on CLDN3. aaTEC2 were also first gated on CD45−TER119− then 
PDGFRα-CD31− cells. EpCAM−MHCII+ cells were then gated and PDPN+PDGFRβ- 
were classed at aaTEC2. Summary data represents mean ± SEM; each dot 
represents an individual biological replicate. Statistics for a–c were generated 
using two-tailed Mann–Whitney tests comparing within individual populations 
and for d using the Kruskal–Wallis test with Dunns correction.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Validation of aaTEC identification and imaging.  
a, Generation of Foxn1nTnG mice. ROSAnT-nG (nT/nG) mice73 were intercrossed with 
Foxn1Cre mice74. Representative flow cytometric plots of TEC from 11 weeks old 
WT, nT/nG and Foxn1nTnG show specific detection of GFP in nearly all TEC only in 
the latter strain. Quantification of the relative proportions of TEC expressing the 
reporters are shown in the bar graph on the right (n = 2 to 3 from 2 experiments). 
b, Representative confocal images of thymic sections from 12-mo Foxn1nTnG 
mice with high-density TECs located in peri-medullary region. c, Representative 

confocal images of thymic sections from 12-mo Foxn1nTnG mice stained with anti-
pan-keratin, with high-density TEC regions highlighted. d, UMAPs integrating 
all human CD45− non-hematopoietic cells from published datasets9,19,20 
(ThymoSight) annotated by age and dataset (n = 115,536). e, UMAPs integrating 
all human thymic epithelial cells from public datasets9,19,20 (ThymoSight) 
annotated by age and dataset (n = 40,144). f, Signatures of our mouse epithelial 
cell subsets (Supplementary Table 3), including aaTEC, overlaid onto the 
integrated human TEC data derived from9,19,20.
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Extended Data Fig. 6 | Age related changes in gene expression in thymic 
stromal cells. a, Differential expression of key epithelial genes and thymopoietic 
factors with age. b, As in Fig. 4a, GSEA pathway analysis was performed for each 
subset based on differentially expressed genes within each population between 

2-mo and 18-mo mice (Supplementary Table 4-5) and Cytoscape network analysis 
was used to integrate enriched pathways (FDR≤0.05) sharing a core set of genes. 
Dotplot of top 5 pathways within each category. Individual pathways are listed.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Comparison of aaTECs with conventional TECs 
and mimetic cells. a, 3D reconstruction and representative images of high-
density TEC region from 12-mo Foxn1nTnG mice stained with DCLK1 or UEA1 
to highlight tuft cells and M-like cells, respectively. b, Flow cytometry plots 
showing proportion of selected mimetic cells (tuft, corneocyte and M-cells) in 
2-mo (n = 6) and 18-mo (n = 8) Foxn1nTnG mice. Mimetic cells were first gated on 
EpCAM+GFP+ cells, then mTECs (UEA1hiLy51lo) were assessed for the mimetic 
cell markers DCLK1 (tuft cells), GP2 (microfold cells), and Ly6D (corneocytes). 
Bar graph shows quantification of mimetic cell numbers. c, Flow cytometry 

plots showing mimetic cell frequency in 18-mo Foxn1nTnG mice (n = 8) gated on 
EpCAM+GFP+UEA1−Ly51− DN-TECs. Bar graph shows quantification of mimetic 
cells comparing mTECs (as in Extended Data Fig. 7b) and DN-TECs. d, Aire and 
Foxn1 expression in TEC subsets. e, Representative confocal images of thymic 
sections from 12-mo Foxn1nTnG mice stained with anti-AIRE, with the medulla 
or high-density TECs highlighted. Scale bar: 50μm. Summary data represents 
mean ± SEM; each dot represents an individual biological replicate. Statistics 
for b-c were generated using two-tailed Mann–Whitney tests comparing within 
individual mimetic cell subsets.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | aaTEC function and interactome with age. a, As in  
Fig. 4g, heatmap of AIRE- (left) and FEZF2- (right) dependent/independent genes 
from72. Heatmap shows scaled normalized gene expression. Individual genes are 
listed. b, As in Fig. 4i, CellChat chord diagrams showing outgoing signals from 
all stromal cell populations towards earlyprog, mTEC1, aaTEC1 or aaTEC2 cellular 

receivers. Chord diagrams are color-coded by the sender population and split 
by the type of CellChat signaling (secreted, cell-cell and ECM). Specific outgoing 
signals per sender are listed in color-matching boxes on the side of each plot.  
c, Violin plot of receptors for putative EMT factors Midkine and Pleiotrophin.
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Extended Data Fig. 9 | Acute thymic recovery following ionizing radiation.  
a, Morphologic alterations in the context of acute thymic involution after TBI and 
thymic reconstitution in 2-mo and 18-mo mice. Top and bottom rows represent 
low- and high-power images from each timepoint, respectively. Annotations: 
cortex (*), medulla (**), adipocytes (#), areas of dystrophic calcification (†), 
areas of dense fibrosis (arrowhead). b, Kinetics of recovery for the epithelial, 
endothelial and fibroblast defined subsets on day 0 (n = 10, 2-mo and 10, 18-mo), 

1 (n = 10, 2-mo and 10, 18-mo), 4 (n = 10, 2-mo and 10, 18-mo) and 7 (n = 10, 2-mo 
and 10, 18-mo) after TBI in 2-mo and 18-mo mice. Total cellularity for each subset. 
Statistics compare across ages for each timepoint. Asterisks denote when 
recovery in either age cohort on a specific timepoint was significantly different 
to the other cohort. Summary data represents mean ± SEM. Statistics for b were 
generated using a two-way ANOVA with Šídák correction.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Mapping of pre-existing thymic stromal sequencing 
datasets after acute damage. a, Broad structural cell subsets were annotated 
based on expression of canonical markers such as Pdgfra, Epcam, H2-aa, Pecam, 
and Cdh5 and steady-state subset signatures(top 20 marker genes). Leiden 
clustering and cell subset signatures derived from Supplementary Table 3 across 

endothelial, fibroblast and epithelial cells isolated at days 1, 4, and 7 after TBI.  
b, Stacked barplots comparing TEC subsets frequency in the 6-mo Foxn1Z/Z mice 
and controls to our own TEC subsets in 2-mo and 18-mo wild-type mice at steady 
state. ♀: female mice, ♂: male mice.
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