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Abstract
Species–environment relationships have been extensively explored through species 
distribution models (SDM) and species abundance models (SAM), which have become 
key components to understand the spatial ecology and population dynamics directed 
at biodiversity conservation. Nonetheless, within the internal structure of species' 
ranges, habitat suitability and species abundance do not always show similar pat-
terns, and using information derived from either SDM or SAM could be incomplete 
and mislead conservation efforts. We gauged support for the abundance–suitabil-
ity relationship and used the combined information to prioritize the conservation of 
South American dwarf caimans (Paleosuchus palpebrosus and P. trigonatus). We used 
7 environmental predictor sets (surface water, human impact, topography, precipi-
tation, temperature, dynamic habitat indices, soil temperature), 2 regressions meth-
ods (Generalized Linear Models—GLM, Generalized Additive Models—GAM), and 4 
parametric distributions (Binomial, Poisson, Negative binomial, Gamma) to develop 
distribution and abundance models. We used the best predictive models to define 
four categories (low, medium, high, very high) to plan species conservation. The best 
distribution and abundance models for both Paleosuchus species included a combina-
tion of all predictor sets, except for the best abundance model for P. trigonatus which 
incorporated only temperature, precipitation, surface water, human impact, and to-
pography. We found non-consistent and low explanatory power of environmental 
suitability to predict abundance which aligns with previous studies relating SDM-
SAM. We extracted the most relevant information from each optimal SDM and SAM 
and created a consensus model (2,790,583 km2) that we categorized as low (39.6%), 
medium (42.7%), high (14.9%), and very high (2.8%) conservation priorities. We identi-
fied 279,338 km2 where conservation must be critically prioritized and only 29% of 
these areas are under protection. We concluded that optimal models from correlative 
methods can be used to provide a systematic prioritization scheme to promote con-
servation and as surrogates to generate insights for quantifying ecological patterns.
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1  |  INTRODUC TION

The functioning of ecosystems depends on both species' presence 
and structure of local population dynamics within the species dis-
tribution range (Waldock et  al.,  2022). Thus, the incorporation of 
local abundance patterns provides fundamental information to 
understand and predict ecological processes aimed at biodiversity 
conservation (Cavalcante et al., 2022; Zurell et al., 2022). In spatial 
ecology, occurrence-based methods (Species Distribution models 
(SDM)) have been extensively explored to predict environmen-
tal suitability and occupied distribution areas (Guisan et  al.,  2017; 
Guisan & Zimmermann,  2000; Peterson et  al.,  2011). In contrast, 
abundance-based methods (Species Abundance Models [SAM]) are 
scarcer as abundance data, are more difficult to obtain due to eco-
nomic and temporal cost-effective challenges, and thus, remained 
limited or elusive for most taxa (Araújo & Williams, 2000; Carrascal 
et al., 2015; Sagarin et al., 2006; VanDerWal et al., 2009).

Although SAM are less common than SDM, the “abundance–
suitability” relationship has been reviewed previously using the 
“niche” concept as the sets of environmental states inside a multi-
dimensional hypervolume space, within which a species can survive 
(Hutchinson, 1957). Under this framework, environmental conditions 
are assumed to affect the species' habitat suitability and the proba-
bility of occurrence, with more favorable environmental conditions 
driving population dynamics to higher species abundance (Araújo 
& Williams, 2000; Osorio-Olvera et al., 2020). However, empirical 
evidence showed that abundance data are not entirely constrained 
by the properties of niche theory and rather other ecological fac-
tors (e.g., transitory states of population, demographic stochastic-
ity, suitability spatial heterogeneity, and Allee effects) can affect 
local population dynamics and interfere with the expected abun-
dance–suitability relationship (Osorio-Olvera et al., 2019; Waldock 
et al., 2022). Consequently, assessments of the abundance–suitabil-
ity relationship have failed to detect consistent correlation, suggest-
ing that these patterns are not constrained by the same underlying 
ecological processes (Dallas & Hastings, 2018; Johnston et al., 2015; 
Mi et  al.,  2017). In this context, efforts to identify areas to prior-
itize species conservation incorporating relevant information from 
both SDM and SAM must be done so that models are more reflec-
tive of the interaction between these two population attributes (Mi 
et al., 2017; Waldock et al., 2022).

Robust regression-based methods such as Generalized Linear 
Models (GLM) and Generalized Additive Models (GAM) have been 
developed and improved to make ecological inferences based on 
species' environmental requirements and address some of the major 

biodiversity shortfalls (Guisan et  al.,  2002; Pollock et  al.,  2020; 
Qiao et al., 2015). GLM are model-driven as the response variable 
is expected to follow a parametric distribution along the predictors 
(e.g., Binomial, Poisson, Negative binomial, Gamma), whereas GAM 
are data-driven analysis that apply smaller non-parametric smooth-
ing functions (basis functions) to each predictor and additively 
estimates the component response (Guisan et al., 2017). GAM con-
stitute semi-parametric extensions of GLM, and both use link func-
tions to establish a relationship between predictors and response 
variables (Wood, 2017; Zuur et al., 2009). Both GLM and GAM have 
been extensively utilized to predict habitat suitability and, to a lesser 
extent, abundance patterns, providing information on modeling ca-
pabilities (e.g., Guisan et al., 2002; Kosicki, 2020; Oppel et al., 2012; 
Potts & Elith, 2006) and quantifying general relationships between 
abundance and suitability patterns (Thuiller et al., 2014; VanDerWal 
et al., 2009; Weber et al., 2017).

Since protocols to estimate relative abundances have been 
well standardized for many crocodylian species (Balaguera-Reina 
et al., 2017; Grigg & Kirshner, 2015; Rodriguez-Cordero et al., 2019; 
Seijas & Chávez, 2000; Zucoloto et al., 2021), these taxa represent 
a promising group for implementing correlative modeling to as-
sess the spatial ecology of each species. Among the smallest South 
American crocodylians, both Cuvier's dwarf caiman (Paleosuchus 
palpebrosus) and the Smooth fronted caiman (Paleosuchus trigo-
natus) have historically been given marginal attention since they 
have no commercial value (Ergueta & Pacheco,  1990; Pacheco & 
King, 1995). Consequently, even though these species are listed as 
“Least Concern” by the IUCN Red List of Threatened Species and 
local populations are reported as apparently healthy and abundant 
throughout their range, much of their spatial ecology, complex 
habitat use patterns, and quantitative population trends remain 
relatively unknown (Campos et  al.,  2019; Magnusson et  al.,  2019; 
Marioni et al., 2022).

To address these limitations and to improve our understanding 
of the spatial ecology of both dwarf caiman species, the main ob-
jectives of this research were to: (1) estimate optimal distribution 
and abundance models to categorize and prioritize conservation 
areas for the Paleosuchus species across their distribution range, 
(2) assess whether there is a consistent (either positive or nega-
tive) and significant relationship between habitat suitability and 
species abundance, and (3) define a method to reconcile distribu-
tion and abundance models so this information can be integrated 
to prioritize conservation areas for both Paleosuchus species. We 
hypothesized that optimized structures and specifications of GLM 
and GAM would yield a consistent spatial abundance–suitability 
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correlation with a high explanatory capability of suitability to pre-
dict species abundance. Furthermore, we expected an agreement 
between the areas predicted as both highly suitable and abundant 
that may warrant protection and that can be used as surrogates 
to promote effective long-term species conservation planning of 
the species.

2  |  METHODOLOGY

2.1  |  Distribution model data acquisition

We compiled an initial occurrences dataset for distribution mod-
eling from published literature, non-published databases, the 
most recent IUCN Red List assessments for the species (Campos 
et al., 2019; Magnusson et al., 2019), and the Global Biodiversity 
Information Facility (GBIF) (www.​gbif.​org; Appendices  S1 and 
S2). GBIF records were obtained via rgbif package (Chamberlain 
et al., 2023) in R version 4.2.1 (R Core Team, 2022), selected based 
on record type (human observations, living specimen, preserved 
specimen, and material sample) and metadata completeness 
(country, administrative area, reference, year, event date, respon-
sible of specimen record and identification, locality, latitude, lon-
gitude, accepted scientific name, uncertainty, counts, and dataset 
key). We improved the spatial and temporal reliability of our oc-
currence dataset by excluding duplicated occurrences, records 
older than 1979, records with an uncertainty higher than 10 km, 
erroneous coordinates, coordinates out of the natural range, and 
records with incongruences between specific locality and location 
coordinates (Anderson et al., 2016; Balaguera-Reina et al., 2017; 
Panter et  al.,  2020; Zizka et  al.,  2020). Finally, we reduced spa-
tial clustering by overlapping filtered records with a 1 km2 raster 
layer, selected pixels with at least one record, and estimated the 
centroid of each selected pixel (Anderson & Gonzalez, 2011; Beck 
et al., 2014; Boria et al., 2014; Veloz, 2009).

We defined the calibration area (geographical extension used for 
background pseudo-absences sampling; Phillips et al., 2017) of each 
species by (1) calculating a convex hull based on peripheral occur-
rences that were within a distance of 800 km for P. palpebrosus and 
700 km and for P. trigonatus, respectively, concentrating the back-
ground sampling area around occurrence locations (“background 
thickening”) and avoid substantial overestimate of the species dis-
tribution range (Burgman & Fox,  2003; Vollering et  al.,  2019), (2) 
buffering P. palpebrosus and P. trigonatus hulls 40 and 20 km, respec-
tively, assumed as the maximum annual range movement of each 
species estimated from daily average movement reports (Marioni 
et  al.,  2022); and (3) combining previously buffered hulls with the 
current distribution extent defined reported by the IUCN Red List 
for each species (Campos et  al.,  2019; Magnusson et  al.,  2019; 
Figure 1a,b). Finally, we selected a modeling background based on 
10,000 randomly defined pseudo-absences within the species cal-
ibration area without including locations of species occurrences 
and without selecting the same pseudo-absence location more than 

once. This pseudo-absence selection method has been shown to 
produce the most accurate models when implemented within GLM 
and GAM and evaluated via the True Skill Statistics (TSS) (Barbet-
Massin et al., 2012).

2.2  |  Abundance model data acquisition

We conducted an initial peer-review literature search via Google 
Scholar using the following search terms: “Paleosuchus palpebrosus”, 
“Paleosuchus trigonatus”, “distribution model”, and “relative abun-
dance” (in English, Spanish, and Portuguese). Within the reference 
section of the previously selected publications, we further searched 
for unpublished reports and theses and attempted to find them on-
line and through requisition from author/s or University repositories 
(Tables S1 and S2).

Within the available literature, we then searched for stan-
dardized spotlight surveys that were used to estimate the num-
ber of caimans observed per kilometer of surveyed transect (ind/
km) (Bayliss,  1987; Chabreck,  1966; Magnusson,  1982; Messel 
et al., 1981; Wood et al., 1985). We compiled any available spatial 
information associated with abundance reports, such as maps or 
initial and final survey coordinates. Unrectified transects in maps 
were digitized and orthorectified based on initial and final survey 
coordinates, georeferenced imagery, and topographic base-map 
layers available in ArcMap v10.8.2 (ESRI,  2021). We did this to 
reconstruct the potential sampling routes based on historical im-
agery available in Google Earth Pro v7.3.6.9345 (Google Earth 
Pro,  2022). We overlapped each digitized transect with a 1 km2 
raster layer and assigned the corresponding abundance value to 
each intersecting pixel, as well as its longitudinal and latitudinal 
centroid coordinates. We excluded both animals classified as 
“Class I” (referring to hatchlings and neonates) as they vary highly 
across seasons and years due to the low survival rates (Da Silveira 
et  al.,  2008; Waddle et  al.,  2015), and “eyes only” to avoid spe-
cies misidentification with other sympatric species within our 
study area (Marioni et al., 2013) (Appendix S2). Unlike distribution 
models that estimated the probability of species' occurrence con-
ditioned to environmental predictors (Phillips et al., 2009), abun-
dance models were calibrated without background points since 
they quantified the relationship between species abundances and 
environmental conditions (Potts & Elith, 2006).

2.3  |  Ecological predictors

We considered ecologically relevant and freely available continu-
ous predictors that describe the primary physical environmen-
tal regimes (climate, terrain, soil factors, and nutrient availability) 
(Franklin,  2009) and terrestrial human footprint (Mu et  al.,  2022). 
The 69 selected predictors comprised variants of: (1) global sur-
face water (Pekel et  al.,  2016), (2) human impact on the envi-
ronment (Center for International Earth Science Information 

http://www.gbif.org
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Network—CIESIN—Columbia University,  2018; Mu et  al.,  2022; 
Wildlife Conservation Society—WCS,, & Center for International 
Earth Science Information Network—CIESIN—Columbia 
University,  2005), (3) topography (Amatulli et  al.,  2018; Lehner 
et al., 2008), (4) precipitation, (5) temperature (Karger et al., 2017), (6) 
dynamic habitat indices (Hobi et al., 2017), and (7) soil temperature 
(Lembrechts et al., 2021; van den Hoogen et al., 2022) (Table S3). 
Predictors were used at ~1 km2 resolution and clipped based on the 
calibration area for each Paleosuchus species.

We estimated environmental heterogeneity within the species 
calibration area based on all 69 ecological predictors. We selected 
uncorrelated variants (Pearson correlation coefficient r < |.7|) 
within the calibration area of each Paleosuchus species via the “vi-
fcor” function (using 1000,000 random raster cell values) within 
the “usdm” R package (Naimi et al., 2014) (Table S4). We spatially 
rarefied distribution data previously selected as pixel centroids at 
1, 3, and 5 km based on high, medium, and low environmental het-
erogeneity to reduce geographic clustering (Rodriguez-Cordero 
et  al.,  2022) via SDMtoolbox v2.0 (http://​www.​sdmto​olbox.​org; 
Brown et al., 2017). We did not rarify abundance data due to the 
low number of records.

2.4  |  Modeling framework

Model complexity was defined by modifying two parameters: (1) struc-
ture (selection of ecological predictors) and (2) specification (selection 
of alternative modeling parameterization) (Potts & Elith, 2006). For the 
former, we constructed models using individual and a gradual com-
bination of ecological predictors (Regos et  al.,  2019), resulting in 12 
sets, each with a different number of predictors, and thus, increased 
the model calibration complexity as the number of predictors in-
creased. We ran Pearson pairwise comparisons in each complexity set 
to avoid collinearity among predictors and identified predictor pairs 
with a linear correlation greater than |.7| (Dormann et al., 2013). We 
excluded the predictor with the highest Variation Inflation Factor (VIF) 
(Chatterjee & Hadi, 2006) from each highly correlated pair via the “vif-
cor” function within the “usdm” R package (Naimi et al., 2014). We built 
an extra ecological predictor set (S13) that initially included all 69 pre-
dictors and made two correlation analyses to avoid collinearity by first 
excluding predictors independently by type, and second, by exclud-
ing the highly correlated predictors from the previously selected set 
(Figure 1c). Considering the latter parameter, we used two regression 
methods (GLM and GAM) and four parametric distributions: binomial 

F I G U R E  1 General framework implemented in this study to assess suitability-abundance relationships and define high-priority 
conservation areas for Cuvier's dwarf caiman (Paleosuchus palpebrosus) and Smooth fronted caiman (P. trigonatus). (a) and (B) abundance 
records, occurrences, and calibration area. (c) Definition of modeling “structure” by selecting different complexity sets of ecological 
predictors regarding their type and number of variants used during model fitting. The first number of uncorrelated predictors refers to 
P. palpebrosus, and the second number to P. trigonatus, both calculated within the calibration area, using a Pearson correlation coefficient 
greater than |.7| to define highly correlated predictors. (d) Definition of modeling “specification” using Generalized Linear Models (GLM) 
and Generalized Additive Models (GAM) to define distribution (suitability and presence/absence maps) and abundance patterns, establish 
abundance–suitability relationships, and estimate high-priority conservation areas for both caiman species throughout their potential 
distribution range.

http://www.sdmtoolbox.org
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(for distribution models), Poisson, Negative binomial, and Gamma (for 
abundance models) to comparatively assess the effect of different 
model specifications (Potts & Elith, 2006). We incorporated the two-
step approach by first modeling distributions with a binary response 
(e.g., presence/absence), and then, modeling abundances conditional 
to the binary distribution models (Barry & Welsh, 2002), excluding pre-
dictions outside the regions classified as “presence” (Figure 1d).

2.5  |  Estimating distribution and abundance 
through GLM and GAM

Initially, GLM and GAM were constructed using all uncorrelated 
predictors with each of the 13 predictor sets. Then, GLM complex-
ity was reduced by sequentially excluding predictors until reaching 
the minimum Akaike Information Criteria (AIC) (Zuur et al., 2009), 
using the “step” function from the “stats” package (version 4.2.2). 
For GAM, the selection of the smooth component and predictor 
selection was achieved using the “double penalty shrinkage ap-
proach” (Marra & Wood,  2011), by selecting the argument “se-
lect = TRUE” in the “gam” function from the “mgcv” package (version 
1.8.2) (Wood, 2017).

We produced species distribution models (suitability and pres-
ence/absence) based on the outputs from the GLM using a bino-
mial error distribution and a “logit” link, via “glm” function from the 
“stats” package. For GAM we used a binomial parametric distribution 
using the restricted maximum likelihood (REML), low-rank thin-plate 
splines (bs = “tp”) via the “gam” function from the “mgcv” package 
(Marra & Wood, 2011; Wood, 2017), and a basis complexity (k) = 4 as 
it approximates to a third-degree polynomial as suggested by Guisan 
et al. (2017) and Hastie et al. (2017). For all our distribution models, 
we applied an internal iteratively 5-fold cross-validation analysis, ran-
domly selecting 80% of occurrences for calibration and the remaining 
20% for model evaluation, via the “crossvalSDM” function from the 
“mecofun” package (Zurell, 2020). We evaluated model performance 
using minimum reliable predictability values for the receiver operator 
characteristics (ROC) of the area under the curve (AUC = 0.7), and true 
skill statistics (TSS = 0.4) (Araújo et al., 2005; Ruete & Leynaud, 2015). 
Lastly, we estimated binary responses (presence/absence) using the 
threshold that maximized the model TSS (sensitivity + specificity −1) 
(Allouche et al., 2006; Fielding & Bell, 1997).

For species abundance models, we estimated regression coeffi-
cients for both GLM and GAM by bootstrapping the data 1000 times 
using the “boot” function from the “boot” package approach (Canty & 
Ripley, 2021; Efron & Tibshirani, 1998). The bootstrapping approach 
allowed us to resample the modeling data and provide the least biased 
estimates of regression coefficients (Potts & Elith, 2006). We did this 
because of the low number of abundance records, which limited the 
obtention of an independent evaluation dataset for species abundance 
models. For GLM, each resample was fitted with a “logistic” link with 
Poisson and Gamma parametric distributions, via the “glm” functions 
from “stats” package (Davison & Hinkley, 1997), and Negative Binomial 
parametric distribution via the “glm.nb” function from “MASS” package 

(Venables & Ripley, 2002). For GAM, each resample was fitted using 
Poisson, Negative Binomial, and Gamma distributions with a “logistic” 
link, via the “gam” functions from “mgcv” package (Wood, 2017). We 
used transect length as an “offset” parameter when fitting both GLM 
and GAM to account for differences in length. The average of the 1000 
regression coefficients for each predictor was used to estimate GLM 
and GAM abundance values. We used Pearson's correlation coefficient 
(r > .7) as an indicator of agreement between observed (y-axis) and pre-
dicted (x-axis) values and fitted a simple linear regression to provide 
information on predictions' bias and consistency (Piñeiro et al., 2008; 
Potts & Elith, 2006).

We projected abundance estimations into the “presence” area 
defined by distribution models, conditioning the suitability response 
to the projected area where the species was predicted to be present 
(Barry & Welsh, 2002). Due to the skewed distribution of projected 
abundances as a result of the “logistic” link and extreme predictor 
values, we bootstrapped projected values 100 times to estimate the 
“inner fences”, defined as the minimum and maximum percentiles 
(25th percentile [Q1]-(1.5*inter-quartile range) and 75th percentile 
[Q3] + (1.5*inter-quartile range), respectively) based on Adjusted 
Boxplot, which is a robust method to detect outliers within skewed 
datasets (Hubert & Vandervieren, 2008; Seo, 2006). Outlier detection 
was done via “do” (“mosaic” R package) and “adjboxStat” (“robustbase” 
R package) functions (Maechler et al., 2023; Pruim et al., 2017). To ex-
plore the implications of different model projections, we constrained 
our predicted abundances to remain within the range of the minimum 
and maximum percentiles via two methods: (1) “no extrapolation” by 
discarding values outside the range of the minimum and maximum 
percentiles and (2) “extrapolation and clamping” by replacing values 
that were greater or less than the maximum and minimum percentile 
with the respective limit values (Cobos et al., 2019; Elith et al., 2011).

Additionally, as suggested by Liu et  al.  (2019), the relative im-
portance of ecological predictors driving species abundances was 
analyzed via the loss of predictive power excluding each ecological 
predictor at a time and calculating the mean explained deviance 
reduction. For distributional models, we used permutation-based 
variable-importance evaluation by applying the Pearson correlation 
between the original predictions and predictions where one variable 
has been 100 times randomly permutated (i.e., if the correlation is 
high, the variable is not important for the model), via the “bm_Vari-
ablesImportance” function of the “biomod2” (version 4.2–5-2) R pack-
age (Thuiller et al., 2024).

2.6  |  Estimating abundance–suitability relationship

The abundance–suitability relationship was performed in two ways: 
(1) we related models that were constructed using the same ecologi-
cal predictors and (2) we selected the best distribution and abundance 
models independently of the ecological predictors used as inputs. For 
the former step, we selected optimal distributional models (AUC > 0.7 
and TSS > 0.4) restricting suitability estimations to the regions classified 
as “presence” by the binary predictions. For abundance, we selected 
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models with high consistency between observed and predicted values 
(Pearson's coefficient r > .7), clipped predictions to the region previously 
classified as “presence”, and rescaled abundances to continuous values 
from 0 to 1 (representing low to high abundances, respectively). Finally, 
suitable and abundance outcome maps were used to test for spatial cor-
relation (Pearson's correlation coefficient analysis) using 2,000,000 ras-
ter values for P. palpebrosus and 1,000,000 raster values for P. trigonatus, 
which correspond to ~10% of the total number of raster pixels in the 
“presence” extent. For the latter step, we used the region classified as 
“presence” by the distributional model to clip both suitability and abun-
dance outcome maps. We rescaled the abundance predictions (0–1) and 
tested for spatial autocorrelation which provided the significance and 
abundance variation explained by suitability predictions.

2.7  |  Conservation areas prioritization

We binarized the best continuous distribution and abundance mod-
els for each of the Paleosuchus species using the threshold that maxi-
mized the model TSS (sensitivity + specificity −1) classifying areas as 
“1” or “highly suitable” as well as classified areas above the median 
threshold (2nd quartile) as “1” or “highly abundant”, respectively. 
We then overlapped and summed both suitability and abundance 
binarized maps (Cavalcante et al., 2022) to create a consensus SDM-
SAM model that we categorized as low (1 = single species present), 
medium (2 = one species present with high predicted abundances, 
or both species present), high (3 = both species present with one 
of them predicted to be abundant), and very high (4 = both species 
present with high predicted abundances) conservation priorities. 
Subsequently, we identified critical areas where the conservation 
of Paleosuchus species should be highly prioritized by (1) calculating 
a minimum convex hull that connected all fragmented areas classi-
fied as “very high”, (2) selecting areas classified as “high” within the 
extent of the hull, and (3) combining both previously selected clas-
sified “high” and “very high” priority areas. We used this rationale as 
we focused on preserving areas where species can be considered 
in good conditions (both present and abundant), and maintain con-
nectivity to serve as refugia, as well as sources for sustaining viable 
subpopulations in other locations. Finally, we quantified how much 
of the critical areas are included within areas with any protection 
category defined by the United Nations Environment Programme 
and the International Union for Conservation of Nature categories 
system (www.​prote​ctedp​lanet.​net; UNEP-WCMC & IUCN, 2024).

3  |  RESULTS

3.1  |  Distribution and abundance through 
GLM and GAM

For distribution models, we initially collected 1697 occurrence records 
for Paleosuchus palpebrosus and 2055 for P. trigonatus, from which 405 
and 386 were selected after data cleaning, respectively (Figure 1a,b). 

With these data, we estimated 52 distributional binomial models for 
each Paleosuchus species based on identical modeling structures and 
specifications. A total of 23 (44.2%) models showed minimally optimal 
predictive performance (both AUC > 0.7 and TSS > 0.4) for P. palpebro-
sus, with the best distributional model achieved via GAM including 
all predictor sets (GAM-S13, AUC = 0.830, TSS = 0.548). For P. trigo-
natus, 18 (34.6%) models showed reliable AUC and TSS values with 
the highest predictive performance achieved via GAM and including 
all predictor sets (GAMsel-S12, AUC = 0.808, TSS = 0.490). We also 
found that optimal models for both Paleosuchus species were yielded 
when using combinations of ecological predictor sets. The single ex-
ception was for P. palpebrosus, where model S5 (“Temperature” [T] 
variants only) achieved optimal performance via GAM and GAMsel. 
Regarding model specification, our results showed that optimal distri-
butional GAM resulted in higher predictive performances than GLM, 
except for models S2 and S8 for P. trigonatus, where both GLM and 
GLMsel had higher predictive accuracy than their counterpart GAM 
and GAMsel (Figure 2; Tables S5 and S6).

For abundance models, we gathered 44 and 43 counting tran-
sects for P. palpebrosus and P. trigonatus, respectively. After overlap-
ping each digitized transect with a 1 km2 raster layer, we obtained 
670 abundance records within 272 intersecting pixels for P. palpe-
brosus and 942 abundance records within 276 pixels for P. trigona-
tus. We estimated 87 abundance models (42 GLM and 45 GAM) 
for P. palpebrosus and 71 models (35 GLM and 36 GAM) for P. trigo-
natus, based on the sets of predictors combinations that we used 
to construct minimally optimal distribution models (AUC > 0.7 and 
TSS > 0.4). Our results showed higher levels of abundance variations 
being explained via GAM than GLM, with predictive performance 
increasing as the number of predictors increased in the model struc-
ture. For P. palpebrosus, the average explained deviance was 71.3% 
for GLM and 78% for GAM, whereas for P. trigonatus, the average 
explained deviance was 62.1% for GLM and 66.8% for GAM. Despite 
the higher levels of deviance explained by GAM than GLM, the for-
mer algorithm showed higher discrepancies between predicted and 
observed abundances (Pearson's correlation r < .7). Thus, 22 (48.9%) 
and 25 (69.4%) GAM models were excluded for P. palpebrosus and 
P. trigonatus, respectively, whereas only 2 GLM (5.7%) were excluded 
for P. trigonatus. Furthermore, GLM showed a higher average cor-
relation between predicted and observed abundances (r = .92 for 
P. palpebrosus and r = .78 for P. trigonatus) than GAM (r = .89 for P. pal-
pebrosus and r = .77 for P. trigonatus). The highest consistency be-
tween observed and predicted values was obtained via Poisson GLM 
using all predictors sets (GLMsel-S12, r = .95) for P. palpebrosus, and 
via Poisson GAM using temperature, precipitation, water, human 
impact on the environment, and topography variants (GAMsel-S10, 
r = .85) for P. trigonatus (Figure 3a; Tables S7 and S8).

3.2  |  Abundance–suitability relationship

The assessment of the relationship between distribution and abun-
dance models that used the same ecological predictor inputs was 

http://www.protectedplanet.net
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restricted to 110 optimal models. Our results showed low Pearson 
correlation coefficients (|r| < .7) and yielded mixed evidence between 
positive and negative abundance–suitability relationships. Regarding 
the analysis using abundance predictions via the “no extrapolation” 
method, we found four non-significant relationships, whereas 37 
and 69 models had significantly positive and negative abundance–
suitability relationships, respectively. Considering the “extrapolation 
and clamping” method, we found one non-significant relationship, 
42 had positive and 67 had negative correlations (Figure 3b).

We found similar results when restricting the analysis to the best 
predictive performance models in terms of non-consistent and low ex-
planatory power between abundance and suitability. For P. palpebrosus, 
the best distributional model (GAM-S13; AUC = 0.830, TSS = 0.548) 

and abundance (Poisson GLMsel-S12; r = .949) models were con-
structed using a combination of all predictor types. For the former 
model, we found that “elevation” and “precipitation seasonality” pre-
dictors were most critical, whereas for the latter, “mean monthly 
precipitation amount of the warmest quarter” and “soil temperature 
seasonality”, were the most important predictors that affected spe-
cies occurrence. The correlation between the best distributional and 
abundance models (GAM-S13 and Poisson GLMsel-S12, respectively) 
was significantly positive for both “no extrapolation” (r = .009, p < .001, 
CI 95% = 0.007 and 0.011) and “extrapolation and clamping” (r = .094, 
p < .001, CI 95% = 0.091 and 0.095) methods (Figure S2).

For P. trigonatus, the best distributional model (GAMsel-S12; 
AUC = 0.809, TSS = 0.493) included a combination of all 

F I G U R E  2 Evaluation of distribution model performances measured by the Akaike Information Criteria (AIC), receiver operator 
characteristics of the Area Under the Curve (AUC), and the True Skill Statistics (TSS). Sets of predictors (x-axis) are ordered by increasing 
complexity regarding the number of predictor variants from left to right, accounting for individual predictor types (models S1–S7) and 
a gradual combination of different predictor types (models S8–S13). AIC shows how informative the model is based on the number of 
parameters and complexity. The lower the AIC, the better the model fits the data. AUC and TSS correspond to independent-threshold 
and dependent-threshold metrics, respectively. The blue line corresponds to the minimum levels of reliability for model predictability 
performance based on the AUC (0.7) and TSS (0.4). Black and red lines correspond to linear fits for Generalized Linear Models (GLM) and 
Generalized Additive Models (GAM), respectively. Solid lines correspond to models that used all uncorrelated predictors in each predictor 
set (denoted as “GLM” and “GAM”), whereas dashed lines correspond to models that used uncorrelated predictors, from which most 
significant were selected to be fitted in each model (denoted as “GLMsel” and “GAMsel”).
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predictor types, with “isothermality” and “human footprint” 
being the most important predictors. The best abundance model 
(Poisson GAMsel-S10; r = .853) incorporated a combination of 5 
predictor types (temperature, precipitation, global surface water 
[excluded after variable selection], human impact on the environ-
ment, and topography) with “temperature seasonality” and “mean 
monthly precipitation amount of the coldest quarter” being the 
most influential predictor variants. The abundance–suitability 
correlation yielded significantly negative outcomes for “no ex-
trapolation” (r = −.013, p < .001, CI 95% = −0.015 and −0.011) and 
“extrapolation and clamping” (r = −.020, p < .001, CI 95% = −0.022 
and −0.018) abundance predictive methods (Figure S2). These re-
sults suggested that high habitat suitability and species abundance 
are not always congruent, and suitability has low explanatory 
power of abundance patterns. Variable importance and partial 

response curves of the selected distribution and abundance mod-
els are found in Appendix S1 (Figures S3–S7).

3.3  |  Conservation areas prioritization

Even though correlation analysis showed that distribution and abun-
dance models are not correlated, we extracted and combined the 
most relevant information from them to create a consensus model 
that allowed us to estimate areas to be prioritized for species conser-
vation. We estimated a potential distribution area of 1,993,865 km2 
for P. palpebrosus in which at least 50.3% are areas with highly abun-
dant populations of the species (1,003,578 km2). For P. trigonatus, the 
potential distribution was estimated at 1,368,089 km2 with a core 
area of 683,174 km2 (~49.9%) in which the species is predicted to be 

F I G U R E  3 (a) Top facets correspond to the amount of variation (percentage) explained by different ecological predictor sets with 
different specifications during model calibration. The bottom facets indicate the consistency between observed and predicted abundances 
via Pearson's correlation coefficient (r). Models with r < .7 were excluded from the analysis. Black and red lines correspond to loess smoother 
fits for Generalized Linear Models (GLM) and Generalized Additive Models (GAM), respectively. Solid lines correspond to models that used 
all uncorrelated predictors in each predictor set (“GLM” and “GAM”), whereas dashed lines correspond to models that used uncorrelated 
and significant selected predictors that were fitted into each model (“GLMsel” and “GAMsel”). (b) Correlation coefficients between optimal 
abundance and suitability models that had significant correlations (p < .05). Top facets correspond to abundance projections via the “no 
extrapolation method”, whereas bottom facets correspond to projections via the “extrapolation and clamping” method. The blue line 
represents the non-correlation value (0), above and below which correlations between suitability and abundance were significantly positive 
and negative, respectively. Sets of predictors (x-axis) are ordered by increasing complexity regarding the number of predictor variants from 
left to right, accounting for individual predictor types (models S1–S7) and a gradual combination of different predictor types (models S8–
S13). The set of predictors in models S1, S3, S4, and S6 were not included in the analysis since no distributional models achieved minimally 
optimal evaluation parameters (AUC > 0.7 and TSS > 0.4).

(a)

(b)
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highly abundant. We identified 2,790,583 km2 to be categorized into 
different levels of conservation priorities for the targeted taxa, with 
1,105,079 km2 (39.6%) classified as “low” (single species present), 
1,192,809 km2 (42.7%) as “medium” (one species present and abun-
dant or both species present), 414,674 km2 (14.9%) as “high” (both 
species present with one being abundant), and 78,021 km2 (2.8%) as 
“very high” (both species present and abundant) (Figure 4; Table 1). 
We delineated critical conservation areas encompassing 279,338 km2 
where the conservation of Paleosuchus species should be highly pri-
oritized, distributed within Brazil (165,622 km2, 59.3%), Venezuela 
(59,929 km2, 20.4%), Bolivia (14,721 km2, 5.3%), Peru (12,397 km2, 
4.4%), Suriname (10,054 km2, 3.6%), Colombia (6548 km2, 2.3%), 
Guyana (6101 km2, 2.2%), French Guiana (5344 km2, 1.9%), and 
Ecuador (1623 km2, 0.6%). We showed that 29% (81,684 km2) of 
critical conservation areas are under protection, whereas 71% 
(197,653 km2) are found outside protected areas (Figure 5).

4  |  DISCUSSION

Our study is the first attempt to identify conservation priorities for 
two crocodylian species with low knowledge of their spatial ecology, 
relying on robust distribution models and predicting abundances 

conditional to species presence. Due to the underdevelopment of 
abundance-based models relative to occurrence-based models, 
guidance on modeling abundance spatial variation (varying both 
model structure and regression analysis specifications) remains 
scarce (Waldock et al., 2022), and was not tested thoroughly for any 
crocodylian species besides this current study. Thus, the robustness 
of our approach constitutes a useful tool for managers and conser-
vation practitioners that can guide future conservation planning and 
provide insights in spatial ecology and biogeography.

Our prioritization approach was restricted to the best distri-
butional and abundance models. For Paleosuchus palpebrosus, we 
selected GAM-S13 for distribution and Poisson GLMsel-S12 for 
abundance. Both models used a combination of all predictor types 
as inputs (temperature, precipitation, global surface water, human 
impact on the environment, topography, dynamic habitat indices, 
and soil temperature). For P. trigonatus, GAMsel-S12 optimized distri-
bution predictions and included a combination of all predictor types, 
whereas Poisson GAMsel-S10 was selected as the best abundance 
model, which incorporated a combination of 4 predictor types (tem-
perature, precipitation, human impact on the environment, and to-
pography). From this perspective, we estimated 2,790,583 km2 that 
were categorized as low (39.6%), medium (42.7%), high (14.9%), and 
very high (2.8%) conservation priorities, and identified 279,338 km2 

F I G U R E  4 Geographic projection of the prioritization of conservation areas for Paleosuchus palpebrosus and P. trigonatus estimated via 
selecting and then combining the best predictive performance distributional and abundance models. Regions predicted as “Highly suitable” 
(in blue) correspond to areas classified as “presence” based on Binary dependent-threshold models that maximized the True Skill Statistic 
(TSS). Regions where the species are predicted to be “highly abundant” (in green) were obtained from continuous species abundance models 
that were binarized using the median (2nd quartile) as a classifier threshold. Conservation priorities correspond to the number of binarized 
models that agreed on highly suitable habitats and where the species is predicted to be highly abundant, with values of low (single species 
present), medium (one species present with high predicted abundances or both species present only), “high” (both species present with one 
of them predicted to be highly abundant), and “very high” (both species present with high predicted abundances). Left: P. palpebrosus; Right: 
P. trigonatus. Photo credit: Andre Rocha.
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where conservation effort for Paleosuchus species should be highly 
prioritized, distributed in Brazil (59.3%), Venezuela (20.4%), Bolivia, 
Peru, Suriname, Colombia, Guyana, French Guiana, and Ecuador 
(20.3%) where the conservation of the targeted taxa should be 
highly prioritized.

We argue that biodiversity conservation is best met by manag-
ing single species instead of entire ecosystems since this method 
provides explicit analytical and monitoring data to assess the suc-
cess of conservation efforts (Mace et  al.,  2007). However, the in-
formation used for analyzing conservation efforts must be robust 
and descriptive of the species' natural conditions or at least the un-
certainty of the metric must be understood. For instance, a study 
on prioritization models and assessment of protected areas' effec-
tiveness in the conservation of worldwide crocodylians suggested 
that both Paleosuchus species are well represented within protected 
areas (Lourenço-de-Moraes et  al.,  2023), which implies that there 
is no need for conservation efforts in this regard for these species. 
However, our study showed that around 71% of the areas where 
the species can be considered in good condition based on habitat 
suitability and abundance modeling are outside of any category of 
protection and do not have any type of regularized protection to 
ensure their conservation. In this example, the broad differences be-
tween Lourenço-de-Moraes et  al.  (2023) and our analysis derived 
from the quality of the data used as the former study relied con-
clusions on IUCN Red List distribution polygons which are highly 
inaccurate to describe the actual species distribution and has no 
consideration of any other population attribute, whereas the latter 
used a robust method that accurately defined what could be de-
scribed as the distribution of both species based on presence and 
abundance. Thus, since conservation efforts need evidence-based 
planning, we emphasize the importance of the development of finer-
scale strategies and incorporating relevant species-specific data in 
consensus models to prioritize the allocation of flexible funding to 
promote species conservation efforts and minimize biodiversity loss 
(Brooks et al., 2006). Furthermore, crocodylians are considered flag-
ship and umbrella species, and thus, efficient conservation actions 
might protect a large number of coexisting species and their local 
environments (Lourenço-de-Moraes et al., 2023).

In our study, we also explored the capacity of suitability hab-
itat models to predict abundance patterns within the species dis-
tributional range focused on developing a finer-scale conservation 
strategies framework. However, we failed to detect a consistent 
relationship between abundance and suitability since regardless of 
the use of GLM, GAM, and the individual or gradual combination 
of ecological predictor types yielded mixed evidence between weak 
positive and negative relationships. These results were not affected 
by whether spatial correlation was assessed between single inde-
pendent abundance and suitable models with the best predictive 
performance. Consequently, our findings support that environ-
mental suitability and spatial abundance are not always congruent 
(Waldock et al., 2022), cannot be considered reliable surrogates for 
one another (Dallas & Hastings, 2018), and independently incorpo-
rate relevant information to better understand the spatial ecology TA
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and population dynamics towards the improvement of systematic 
conservation planning.

Similarly to most vertebrate taxa around the world, we were 
confronted with limited data and had a lower geographic represen-
tation of abundances compared with species occurrence (Araújo & 
Williams,  2000). Although abundance in crocodylian populations 
has been collected based on standardized methods (Bayliss, 1987; 
Chabreck,  1966; Magnusson,  1982; Messel et  al.,  1981; Wood 
et  al.,  1985) and have been improved based on new technolo-
gies, specific habitats, and ecological information required (e.g., 
Balaguera-Reina et al., 2018; Fujisaki et al., 2011; Fukuda et al., 2013; 
Pacheco, 1996; Sai et al., 2016; Thorbjarnarson et al., 2000), non-
commercially valuable species such as the dwarf caimans have only 
been given marginal attention (Ergueta & Pacheco, 1990; Pacheco & 
King, 1995). Consequently, since small sample sizes may yield errone-
ous density estimations (Yañez-Arenas et al., 2014) or estimate over-
confident models (Waldock et al., 2022), the scarcity of abundance 

data for crocodylian species that are not subject to management and 
sustainable use programs constitutes a major constraint to filling 
knowledge gaps on species abundance distribution patterns.

To overcome this shortcoming, we implemented the method 
suggested by Welsh et  al.  (1996) and Barry and Welsh  (2002) 
where distributional patterns were initially modeled, followed by 
abundance estimation conditional to the presence of the species. 
Although this strategy might be useful to reduce uncertainty, we 
emphasize the need to further explore the effect of sample size 
on abundance-based models. For example, these caveats could 
be explored with future studies that include other species from 
the Alligatoridae family whose abundances have been better 
monitored, such as Caiman yacare (Campos et al., 2020), Caiman 
crocodilus (Balaguera-Reina & Velasco,  2019), or Alligator missis-
sippiensis (Elsey et al., 2019). We highlight the relevance of assess-
ing entire assemblages (Hidasi-Neto et  al.,  2020), to account for 
ecological constraints of estimation methods, and incorporate a 

F I G U R E  5 Geographic projection of critical conservation areas that are currently under protection (in brown) and that are found outside 
protected areas (in red) based on the United Nations Environment Programme and the International Union for Conservation of Nature 
Protected Areas categories system (in green) (www.​prote​ctedp​lanet.​net; UNEP-WCMC & IUCN, 2024).

http://www.protectedplanet.net
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thorough integrative analysis to obtain comparable data to un-
derstand species distribution and abundances patterns (Araújo 
& Williams, 2000; Balaguera-Reina et al., 2018). Furthermore, we 
highlight the need to continue the collection of abundance data 
or explore potential methods to reduce bias when making density 
estimations (e.g., Yañez-Arenas et al., 2014). Future research and 
conservation efforts could be improved by incorporating major 
threats not only to crocodylian species but also to other wildlife, 
such as climate change and habitat degradation. Nonetheless, 
this approach would only be useful if both current ecological pre-
dictors and threats could be accurately predicted into the future 
(Araújo et al., 2002).

Our findings showed that individual sets of predictors led to 
low predictive performances, whereas the gradual combination 
of different sets of predictors and the increase of predictor vari-
ants consistently increased the accuracy of distributional models 
(Figure 2). As expected, our results are consistent with studies that 
showed significant effects of model structure and the choice of ex-
planatory variables on model performance and transferability (Pratt 
et  al.,  2022; Zarzo-Arias et  al.,  2022). Interestingly, many studies 
that implemented distribution models used the same sets of predic-
tors without assessing the effects of different combinations (Regos 
et al., 2019). To ensure the ecological significance and transferability 
success of Species Distribution Models (SDM) and Ecological Niche 
Models (ENM), the selection of predictors needs to avoid the as-
sumption of a fitted equilibrium (Guisan & Theurillat, 2000; Jones 
et  al.,  2016), and account for both direct and indirect contingent 
nature of species-predictor relationships (Austin,  2007; Gillson 
et al., 2013).

Overall, we found that both GLM and GAM increased their pre-
dictive performance when gradually combining different sets of 
predictors. Moreover, it would be expected that GAM would yield 
better predictions than GLM because even though they are both 
parameterized to fit a linear parametric distribution, GAMs automat-
ically select the polynomial transformation via “smoothers” applied 
to some predictors (Guisan et al., 2002). Nonetheless, for distribu-
tion models, we found that GAM had higher discriminatory power 
between areas of presence and absence (lowest AIC and highest 
AUC and TSS) (Figure 2; Tables S5 and S6), whereas GLM performed 
consistently better for abundance models, yielding higher correla-
tions between observed and predicted values (Figure 3; Tables S7 
and S8). Similar patterns were found in other studies, suggesting 
that GLMs could estimate abundance patterns more accurately 
than GAM (Waldock et al., 2022; Yu et al., 2013). However, Oppel 
et al. (2012) found opposite results, indicating better performance of 
GLM for distributional data and GAM for abundance data. We sug-
gest that this difference might be due to the targeted species (migra-
tory seabird Puffinus mauretanicus), ecosystem (Balearic archipelago 
in the western Mediterranean), and ecological predictors (dynamic 
oceanographic data) used by Oppel et al. (2012). Consequently, we 
can conclude that depending on the distributional patterns of the 
species records (e.g., occurrences and abundance locations), the 
optimal modeling method (structure and specification) might differ 

depending on the target species and ecological predictor selection 
(Yoon & Lee, 2021; Zarzo-Arias et al., 2022).

We found that the selection process of uncorrelated predictors 
and identification of significant predictors while model fitting were 
important considerations to increase the predictive ability for both 
GLM and GAM. Nevertheless, studies have shown that high accu-
racy produced by the increase in the number of predictors might 
result in overfitting models, variable redundancy, and increased un-
certainty (Beaumont et al., 2005; Synes & Osborne, 2011). These ef-
fects might be problematic when the main objective of the models is 
the extrapolation of distributions to novel environmental conditions. 
To overcome these issues, we recommend using other evaluation 
parameters besides the AUC (e.g., calculate omission and commis-
sion errors separately) (Synes & Osborne, 2011) or to evaluate model 
performance against independent data (e.g., occurrences and envi-
ronmental conditions not included during model calibration) (Araújo 
et al., 2005). Although these suggestions may be included in future 
studies, herein, however, we attempted to make an exploratory anal-
ysis comparing the trade-off between different model structures 
and specifications using the same current available occurrence and 
abundance dataset.

This study was able to find evidence to support our hypothesis 
that the incorporation of additional predictors besides commonly 
used temperature and precipitation would improve the prediction 
accuracy of the species realized niche within the limits of the calibra-
tion dataset. Nevertheless, complexity might decrease the model's 
predictive performance within novel environments, and thus af-
fect the interpretability of distribution and abundance estimations. 
Therefore, the degree of complexity for distribution and abundance 
models must balance out both calibration accuracy and performance 
of predictions (interpretability; Venables & Dichmont,  2004). For 
distribution models, we suggest the incorporation of more relevant 
predictors when using GLM and GAM if both the amount and repre-
sentativeness of sampling locations are appropriate. For abundance 
models, we suggest using GLM for inferences when dealing with 
scarcity of data and novel environments, since our results showed 
uniform estimations regardless of model structure and specifica-
tions. Future studies including a detailed assessment of regression 
models' performance and transferability to novel environments is 
also warranted, incorporating species and entire assemblages with 
high-quality abundance estimates.

Finally, this work supports previous studies in that presence-
based distribution and abundance models should systematically 
guide sustainable management planning and conservation prior-
itization efforts (Cavalcante et  al.,  2022; Lourenço-de-Moraes 
et al., 2023; Pollock et al., 2020; Waldock et al., 2022), not only to 
protect crocodylian species but to prevent widespread loss of con-
current biodiversity and their habitats. Although our findings and 
datasets are directly related to both Paleosuchus species, the same 
principles should be relevant for other crocodylian species and even 
other vertebrates, assuming that the amount, quality, and repre-
sentativeness of predictors are minimally optimal for these assess-
ments. Having considered our research's strengths and limitations, it 
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is important to emphasize that spatial biodiversity models constitute 
a critical tool to potentially overcome shortfalls that are yet to be 
explored (e.g., scarcity of data and sampling gaps across the taxon's 
geographic distribution extent).
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