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Abstract: Bioremediation stands as a promising solution amid the escalating challenges posed by 

environmental pollution. Over the past 25 years, the influx of synthetic chemicals and hazardous 

contaminants into ecosystems has required innovative approaches for mitigation and restoration. The 

resilience of these compounds stems from their non-natural existence, distressing both human and 

environmental health. Microbes take center stage in this scenario, demonstrating their ability of 

biodegradation to catalyze environmental remediation. Currently, the scientific community supports a 

straight connection between biorefinery and bioremediation concepts to encourage circular 

bio/economy practices. This review aimed to give a pre-overview of the state of the art regarding the 

main microorganisms employed in bioremediation processes and the different bioremediation 
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approaches applied. Moreover, focus has been given to the implementation of bioremediation as a 

novel approach to agro-industrial waste management, highlighting how it is possible to reduce 

environmental pollution while still obtaining value-added products with commercial value, meeting 

the goals of a circular bioeconomy. The main drawbacks and challenges regarding the feasibility of 

bioremediation were also reported.  

Keywords: bioremediation; bioeconomy; agro-industrial waste; biorefinery; value-added products 

 

1. Introduction  

Rapid industrialization, urbanization, and constant population growth are threatening the 

environment because of the consequent increase in pollution levels, carbon footprint, and domestic 

and agricultural waste generation. Humans’ actions have been directly involved in pollution, ecological 

degradation, climate change, and other issues [1]. Environmental pollution is directly threatening the 

health and survival of all life forms and disturbing the ecological balance of the planet [2]. 

To mitigate this global issue, many physical, chemical, and biological approaches have been 

implemented so far [2,3]. While physicochemical methods have shown several disadvantages, such as 

sludge formation and disposal, low efficiency, and high treatment cost, as well as the potential to 

contribute to environmental pollution, biological treatments, particularly bioremediation processes, are 

currently gaining more and more interest from both industrial and scientific perspectives [4].  

Bioremediation is a process through which environmental pollutant concentration is reduced to a 

harmless value by applying biological mechanisms primarily carried out by specific wild-type or 

engineered microorganisms, to produce energy and biomass. Bacteria, fungi, and microalgae are 

widely distributed in the biosphere and are referred to as the main bio-remediators, due to their fast 

replication rate and ability to grow in a wide range of environmental conditions. These organisms can 

be employed as a single organism or in a consortium, being able to restore the original natural 

environment, preventing future pollution, and modulating the breakdown and conversion of toxins 

through enzymatic skills [5–7].  

Bioremediation techniques, mainly consisting of degradation, detoxification, mineralization, or 

transformation, depend on the type of pollutants (heavy metals, agrochemicals, dyes, hydrocarbons, 

plastics, greenhouse gases, sewage, wastewater, or agro-industrial waste) and can be applied ex situ 

and in situ [8,9]. Moreover, due to the straight relationship between bioremediation and microbial 

activities, process efficiency can be affected by the same parameters that affect microbial growth, such as 

aerobic or anaerobic conditions, nutrient concentrations, temperature, pH, and other abiotic factors [9,10]. 

Thanks to a multidisciplinary approach of molecular biology and genetic engineering techniques, 

genetically modified organisms can be obtained and employed to increase their bioremediation 

microbial ability, in order to reduce the environment’s toxic compounds. Thus, the implementation of 

these techniques will address economic and social benefits, reducing disease risks and waste 

management costs at the same time, for the achievement of ecological stability and a greener 

environment [11]. 

Currently, the scientific community supports the straight connection between biorefinery and 

bioremediation concepts to encourage circular bio/economy practices by enabling the production of 
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value-added-products carried out by microbial pathways addressed to “zero waste”, in comparison to 

classical waste management strategies [12,13]. 

Microbial biorefinery-based technologies could provide major breakthroughs in bio-based 

economies through the production of several market-based products such as biopolymers, biofuels, 

biochemicals, bio-additives, pigments, single-cell proteins, and single-cell oils, through “cascade” 

and/or “one-pot” fermentation approaches, according with the third type of bioeconomy proposed by 

Vivien et al. [14], who consider it a biomass-based economy. Suitable economic and scientific 

strategies in a multidisciplinary approach can support the development of sustainable biorefinery 

processes by addressing circular bioeconomy goals and bridging the gap between waste/pollution 

remediation and product recovery [15,16].  

This review aims to give a pre-overview on the state of the art regarding the main microorganisms 

employed in bioremediation processes applied for the most common causes of environmental pollution, 

highlighting the different approaches and the affecting factors, as well as reporting the main drawbacks 

and challenges. Moreover, a focus is given on the implementation of bioremediation as a novel 

approach to agro-industrial waste management. In this regard, the main techniques applied for reducing 

the negative environmental effects of agro-industrial waste are described, highlighting the importance 

of carrying out this kind of remediation in order to reduce environmental pollution while still obtaining 

value-added products with commercial value, meeting the goals of a circular bioeconomy. 

2. Microorganisms involved in bioremediation  

In recent years, bioremediation has garnered significant scientific interest, with mechanisms such 

as redox reactions, absorption, and alterations in the medium's properties playing crucial roles in the 

process. Microbial techniques for eliminating heavy metals [17–19], including biosorption-

bioaccumulation, oxidation-reduction, and biosurfactant production, have gained prominence. In this 

context, microorganisms are not only employed for heavy metal bioremediation but also for the 

removal of plastics, dyes, and petroleum-based contaminants [20–23]. 

As previously mentioned, microorganisms play a crucial role in heavy metal pollution reduction 

by absorbing these metals either actively (bioaccumulation) or passively (adsorption). For instance, 

lead, mercury, and nickel can be bioremediated by Saccharomyces cerevisiae, Lysinibacillus 

sphaericus CBAM5, and Cunninghamella elegans [24–26]. Pseudomonas fluorescens and P. 

aeruginosa can utilize Fe²⁺, Zn²⁺, Pb²⁺, Mn²⁺, and Cu²⁺ [17]. Lysinibacillus sphaericus is effective 

against cobalt, copper, chromium, and lead [26]. Additionally, Aspergillus versicolor, A. fumigatus, 

Paecilomyces sp., Trichoderma sp., Microsporum sp., and Cladosporium sp. are used for cadmium 

bioremediation [27], while Microbacterium profundis is employed for iron (Fe) [28]. Microorganisms 

have been effectively involved in dye bioremediation, demonstrating their capability to degrade 

various industrial colored-pollutants. B. subtilis strains NAP1, NAP2, and NAP4 have been utilized to 

remediate oil-based paints [29]. Myrothecium roridum IM 6482, Pycnoporus sanguineus, 

Phanerochaete chrysosporium, Trametes trogii, Nectriella pironii, and Aspergillus tamarii are 

employed for their ability to degrade industrial dyes [30,31]. Micrococcus luteus, Listeria denitrificans, 

and Nocardia atlantica have shown efficacy in treating textile azo dyes [32,33]. Additionally, Bacillus 

spp., P. aeruginosa, and Bacillus pumilus are involved in the bioremediation of textile dyes such as 

Remazol Black B, sulfonated di-azo dye, and reactive red HE8B, as well as RNB dye [34,35]. 
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Furthermore, Bacillus firmus, Bacillus macerans, Staphylococcus aureus, and Klebsiella oxytoca have 

been used for the bioremediation of vat dyes and textile effluents [21,36,37]. 

Many microorganisms can degrade petroleum-based hydrocarbons in contaminated soil, 

including bacteria, fungi, and microalgae [38–40]. Notable examples include Streptomyces sp., which 

can degrade n-alkanes (C6–C30), aromatic compounds, and polycyclic aromatic hydrocarbons (PAHs) 

up to 95% within 7 days [40]. Pseudomonas aeruginosa NCIM 5514 can degrade (up to 60.63%) crude 

oil (C8–C36) within 60 days [39]. Bacillus subtilis DM2 is capable of degrading (up to 53.92%) 

petroleum hydrocarbons (C12, C14, C15) within 4.7 days [41], while the BL-27 strain can degrade 

crude oil up to 65% within 5 days [42]. Aspergillus fumigatus Shu2 demonstrates degradation of total 

petroleum hydrocarbons up to 57% within 16 days [43]. Among microalgae, Chlorella sp. and 

Dunaliella salina can degrade diesel oil up to 52.1%–68.7% and 46.99%–60.3%, respectively, within 

9 days [23], and Chlorella vulgaris can degrade crude oil, targeting both light and heavy compounds 

up to 94.3% and 88.2%, respectively, within 14 days [38].  

Plastic pollution caused by polyethylene terephthalate (PET), polyethylene (PE), low-density 

polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), expanded polystyrene (EPS), 

polyvinylchloride (PVC), or polycarbonate, among others, is one of the most significant threats to the 

environment due to their non-degradable nature, with particular concern for microplastics, which have 

been linked to immediate fatalities in aquatic organisms upon ingestion [44,45]. Conventional physical 

and chemical methods for degrading plastic waste have been criticized for exacerbating environmental 

problems [46]. Due to that, microorganisms have emerged as a sustainable solution for the biological 

degradation (biodegradation) of plastics [22]. These microorganisms break down plastics by secreting 

metabolites, like polyhydroxyalkanoate depolymerases, facilitating an efficient, cost-effective, 

environmentally friendly, and sustainable degradation process. For instance, Pseudomonas fluorescens can 

degrade PE in 270 days, achieving a biodegradation efficiency of 18.0% [22]. Bacillus siamensis degrades 

(with an 8.46% biodegradation efficiency) LDPE in 90 days [47]. Aspergillus flavus achieves 5.5% of 

biodegradation efficiency for HDPE in 100 days [20]. Aspergillus nomius RH06 degrades 6.63% of 

LDPE in 45 days [48], and Bacillus cereus strain A5 degrades 35.72% of LDPE in 112 days [49]. 

Aspergillus oryzae strain A5 also degrades 36.4% of LDPE in 112 days [49], while Klebsiella 

pneumoniae CH001 achieved an 18.4% biodegradation of HDPE in 60 days [50]. 

As observed, microorganisms have been proven to be efficient solutions for bioremediation. 

Currently, the scientific community is focused on understanding the essential intramolecular 

mechanisms (enzymatic processes, metabolic pathways, redox reactions, among others) to optimize 

remediation by microbial degradation processes. Exploring the potential of microbial consortia for 

enhanced bioremediation efficiency is also a priority [51,52]. Furthermore, research efforts should also 

address challenges such as the scaling up process for bioremediation, envisioning practical applications, 

and assessing the impacts of microbial bioremediation strategies through comprehensive sustainable 

assessments, including life cycle and techno-economic evaluations to develop more effective and 

sustainable solutions for mitigating environmental pollution using microorganisms. 
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3. Engineering microorganisms  

The idea of employing genetically engineered microorganisms (GEMs) for bioremediation 

emerged from the middle and end of the 1980s and opened new perspectives in the manipulation of 

microorganisms to be applied in in situ bioremediation.  

In the development of GEMs, several key procedures are typically undertaken: 

1. Modification of protein expression and regulation: This involves altering the expression levels of 

enzymes involved in degradation pathways to optimize their activity. 

2. Pathway engineering and regulation: New metabolic pathways can be introduced, or existing 

pathways can be modified to enhance degradation capabilities. 

3. Bioprocess optimization, monitoring, and control: Techniques for optimizing bioremediation 

processes, as well as monitoring and controlling the activities of GEMs in the environment, are crucial 

for effective bioremediation. 

Essential genes in bacteria, those necessary for their survival and basic functions, are typically found 

on their single chromosome. However, genes encoding enzymes needed for the breakdown (catabolism) 

of specific or unusual substrates might be located on plasmids [53]. 

The ability to create recombinant microorganisms for bioremediation of toxic compounds in the 

environment has become a key goal in the pursuit of biosafety [54]. By manipulating the genetic 

makeup of microorganisms, scientists can enhance their ability to break down pollutants, thus offering 

a potentially more efficient and sustainable solution for environmental cleanup. One key aspect of this 

approach involves identifying and understanding the genes to achieve biodegradation of prominent 

pollutants within microorganisms. These genes, often located on large conjugative plasmids, encode 

enzymes and proteins that enable the breakdown of hydrocarbon molecules. Some recent examples are 

listed in Table 1. Through genetic engineering, researchers can modify these genes or introduce them 

into other microbial strains to enhance their degradation capabilities. However, despite the biochemical 

design of pathways and the introduction of specific genes, GEMs may not always perform as expected 

in real-world conditions. Factors such as environmental variability, competition with native 

microorganisms, and genetic stability can affect the efficiency and reliability of GEMs in 

bioremediation efforts. Additionally, the selection of plasmids and donor bacteria in wastewater 

treatment processes is a crucial consideration. Operators must carefully assess the compatibility and 

effectiveness of these components to ensure optimal performance and minimize potential risks 

associated with the release of genetically modified organisms into the environment.  

While the potential risks and uncertainties associated with GEMs must be carefully evaluated and 

managed, their ability to adapt and thrive in diverse environmental conditions can make them valuable 

tools as a first barrier against environmental pollution. Continued investments in research and 

development are essential for advancing bioremediation technologies to maximize their effectiveness 

as sustainable solutions for environmental remediation, minimizing potential risks for ecosystems and 

human health. Collaborations between scientists, environmental engineers, and regulatory authorities 

are essential to ensure the safe and effective deployment of genetically engineered microorganisms for 

pollution control and remediation [54–57]. 

Conventional genetic engineering has always played a crucial role in its prerogative of 

introducing genes into acceptor organisms. The reconfiguration of a complete metabolic pathway 

requires the introduction of many gene clusters [58]. Among the most recent genetic engineering 

techniques, some deserve mention, such as CRISPR and TALEN. These gene editing tools have been 
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studied for some time. In both cases, we are talking about molecular scissors. As the name suggests, 

both can be considered organic cut and sewing kits. CRISPR works thanks to the presence of three 

elements: a Cas9 enzyme, a guide RNA, and a DNA sequence that replaces the cut part. What CRISPR 

does is provide a DNA sequence that can replace the cut part, avoiding all those mechanisms that the 

cell would naturally implement to repair the damage. So, in practice, CRISPR allows to removal of a 

“sick” gene by correcting it with a healthy one, supplied directly to the cell. Like CRISPR, TALEN is 

another genetic engineering tool that acts like molecular scissors. TALEN can bind and recognize a 

specific DNA sequence. These codons scan the DNA in both directions, nucleotide by nucleotide, and 

when they have found the complementary sequence, the cut is made. A more effective system, but also 

much more expensive and more difficult to implement, is the Zinc-finger nucleases (ZFNs), which 

uses natural proteins that bind the DNA in a sequence-specific manner, allowing the nuclease to cut a 

specific location [59]. All these are essential tools in the field of genome editing. They allow precise 

alterations to the genomes of higher organisms by leveraging endogenous DNA repair mechanisms.  

It is widely known that environmental contaminations can occur directly or indirectly. Direct 

contamination happens through contact with sick individuals. Indirect contamination occurs when 

contaminants spread via vehicles like water, air, soil, food, and other animals. Additional elements of 

environmental contamination include the combustion of fossil fuels, waste dumping, mismanagement 

of waste, and activities like extraction and deforestation. The specific genetic modifications intended 

for the creation of GEMs are aimed to improve, and sometimes introduce ex novo, the ability to 

degrade polluting substances. They can be adapted to specific target contaminants more efficiently 

than naturally occurring microorganisms. The use of genetically modified microorganisms in polluted 

waters and soils plays an essential role in the bioremediation of heavy metals. These contaminants are 

persistent in the environment since they cannot be degraded or destroyed. When ingested through food, 

drinking water, or air, they can accumulate in living cells, potentially leading to toxicity [60]. They are 

responsible for neurological disorders, Parkinson's, Alzheimer's, depression, schizophrenia, cancer, poor 

nutrition, lack of hormone balance, obesity, abortion, and respiratory and cardiovascular diseases [61].  
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Table 1. Engineered bacteria and their function in bioremediation. 

Pollutants Bacteria Function References 

Arsenic Sphingomonas desiccabilis and 

Bacillus idriensis 

As-removal by bio-volatilization [57] 

Escherichia coli  Reducing As (III) and As (V) accumulation by chelating Metallothionein (fMT) [62] 

Escherichia coli Reducing As (III) by S-adenosylmethionine [63] 

Escherichia coli As-removal by metalloregulatory protein ArsR  [64] 

Rhizobium leguminosarum bv trifolii strain R3 As-methylation by As (III) S-adenosylmethionine(SAM)methyltransferase [65] 

Cadmium Bacillus subtilis BR151 (pTOO24) Luminescent sensors [66] 

Caulobacter crescentus JS4022/p723–6H Cd (II) sequestration by Hexa-histidine (6His) peptide [67] 

Pseudomonas fluorescens OS8 Luminescent sensors [68] 

Escherichia coli Cd-removal by phytochelatin synthase [69] 

Escherichia coli JM109 Cd-removal by metallothionein MT  [70] 

Pseudomonas putida 06909 Cd-binding by peptide EC20 [71] 

Mesorhizobium huakuii B3 Cd-removal by phytochelatin synthase (PCS) [72] 

Ralstonia eutropha MTB Adsorbing Cd (II) by chimeric MTb [73] 

Nickel Escherichia coli Overexpression of Serin acetyltransferase [74] 

Pseudomonas fluorescens 4F39 Nickel transport system [75] 

Kokuria flava, Desulfovibrio desulfuricans 

(immobilized on zeolite) 

Flavobacterium sp., Bacillus firmus, 

Micrococcus sp. 

Sulfate-reducing bacteria (SRB)-immobilized zeolite carriers [76] 

Escherichia coli SE5000 Nickel transport system and metallothionein [77] 

Continued on next page 
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Pollutants Bacteria Function References 

Copper, lead, 

chromium 

Kokuria flava, Desulfovibrio desulfuricans  

Flavobacterium sp., Bacillus firmus, 

Micrococcus sp. 

Sulfate-reducing bacteria (SRB)-immobilized zeolite carriers [77] 

Pseudomonas fluorescens OS8 Luminescent sensors [68] 

Escherichia coli Jm109  Cloning the human metallothioneins MT2A and MT3 into Escherichia coli Jm109 

to assess the removal and reduction of hexavalent chromium (CrVI) 

[78] 

Pesticides Escherichia coli (GEB)  Enzyme possessing the degradability to organochloride pesticides, 

organophosphorus pesticides, carbamates, and pyrethroid insecticides.  

[79] 

Sphingomonas sp. strain HJY  Interaction of endophyte plant capable of degrading chlorpyrifos (CP)   [80] 

Rhodopseudomonas palustris PSB-S  Pyrethroid detoxification by Est3385 protein  [81] 

Xenobiotics Burkholderia cepacia L.S.2.4  Phytoremediation of volatile organic xenobiotics by inserting the pTOM toluene-

degradation plasmid  

[82] 

Acinetobacter ADPWH_lux  Naphthalene degrading [83] 

Pseudomonas putida MC4 and Pseudomonas 

putida MC4-5222  

TCP-degrading strain by haloalkane dehalogenase from P. putida MC4  [84] 

Escherichia coli Cloning of laccase [85] 

Cyanobacterium synechocystis sp. PCC6803  Biphenyl degradation pathway   [86] 

 Rhizosphere bacteria  Horizontal transfer C230 genes for phenol degradation in soil  [87] 

Pseudomonas putida PaW85  Biodegradation of oil-polluted soil  [88] 

Agro-

industrial 

waste  

Paracoccus aminophilus CRT1 and Paracoccus 

kondratievae CRT2  

Carotenoid-producing strains of Paracoccus carrying a new plasmid pCRT01  [89] 

Escherichia coli Overexpression of Capsanthin/Capsorubin synthase from Capsicum annuum [90] 

Rhodosporidium toruloides  Genes for lipid and carotenoid production expression  [91] 

Saccharomyces cerevisiae  Expression of cassette carrying a cellulase gene from A. gigas Spix  [92] 

Saccharomyces cerevisiae  Improvement of lignocellulosic biomass conversion into ethanol  [93] 
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4. Factors affecting microbial bioremediation  

Bioremediation is a process that employs microorganisms, primarily bacteria or fungi, to facilitate 

the breakdown or transformation of harmful pollutants into less dangerous forms. In practical terms, 

the metabolic processes of microorganisms are leveraged for this purpose. These organisms serve as 

natural catalysts, aiding reactions that deactivate contaminants. However, for bioremediation to be 

effective, the environment must provide suitable conditions for microbial life. Microorganisms can 

only act on pollutants if they have access to various substances that provide the necessary nutrients 

and energy for their growth. In some instances, the natural conditions of a contaminated site can 

naturally support bioremediation without human intervention, a phenomenon known as intrinsic 

bioremediation [94].  

The microorganisms’ metabolism and the characteristics of contaminants they have to interact 

with influence the nature of the interaction. However, the specific outcome of this interaction is 

contingent upon the environmental conditions prevailing at the location where it occurs. In order to 

ensure the success of a bioremediation process, specific criteria must be addressed, encompassing the 

microbiological, chemical, and environmental conditions (such as soil type, temperature, pH, oxygen 

levels, and nutrient availability) of the site in question. 

The decomposition of organic compounds is largely affected by living organisms. This is 

facilitated by several processes, such as microbial competition for carbon resources, antagonistic 

interactions between microorganisms, and predation by protozoa and bacteriophages. The degradation 

rate of contaminants depends on their concentration and the presence of organisms that can metabolize 

them. Additionally, the production of specific enzymes influences the degradation rate. Other 

important factors include mutation, gene transfer, enzyme activity, and the interactions between 

various microbial communities [94–96].  

As will be detailed in the following sections, maintaining the appropriate oxygen levels in the soil 

is essential for enhancing bioremediation efficiency by either promoting or inhibiting specific 

microbial communities. However, the use of hydrogen peroxide is constrained due to its toxicity to 

microorganisms at high concentrations (above 100 ppm, or 1,000 ppm with proper acclimatization). 

Additionally, hydrogen peroxide quickly breaks down into water and oxygen in the presence of certain 

soil components. Anaerobic conditions can be employed to degrade highly chlorinated contaminants, 

although this process is inherently slow. Subsequent aerobic treatment can then be used to complete 

the biodegradation of partially dechlorinated compounds and other pollutants [96]. 

Pollutants need to be bioavailable to be suitable for biological degradation. This bioavailability is 

contingent upon both the physical form of the pollutant and the likelihood of effective interaction 

between microorganisms and pollutants. A high interface between microorganisms and pollutants will 

result in a better interaction among them [97].  

Polar contaminants that readily dissolve in water are inherently more accessible for biological 

processes. However, enhancing the interaction between microorganisms and hydrophobic 

contaminants may necessitate the use of surface-active agents. To understand how accessible a 

chemical compound to microorganisms is and its potential for biodegradation, it is necessary to know 

how it moves and if it is distributed in different chemical forms (dissolved, adsorbed, and volatile) in 

the environment. Bioavailability encompasses the combined impacts of various physical and chemical 
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factors that ultimately influence the microbial utilization of a compound, and consequently, its 

potential for biodegradation [98].  

Regulation of nutrient levels is essential to promote microbial growth and improve biodegradation 

efficiency. Optimizing essential nutrients such as nitrogen and phosphorus can increase biodegradation 

rates by adjusting the C:N:P ratio of bacteria [99]. Microorganisms depend on carbon, nitrogen, and 

phosphorus for their survival and metabolic activities, but low concentrations of these elements limit, 

for example, the degradation of hydrocarbons. An additional benefit of adding appropriate nutrients is 

the ability to increase microbial metabolic activity, especially in cold environments. Indeed, the 

availability of nutrients is a key factor limiting biodegradation in marine conditions [100]. In a similar 

manner to the nutritional requirements of other organisms, oil-consuming microorganisms also depend 

on nutrients for optimal growth and development. While these nutrients are present in the natural 

environment, they are typically present in low concentrations [101–103].  

Physical and chemical factors including redox potential (Eh), pH, ionic strength, solubility, the 

presence or absence of electron acceptors and donors, and temperature, are intricately linked and 

crucial for the success of bioremediation. Redox potential (Eh), ionic strength, and solubility are of 

paramount importance in the context of bioremediation. The redox potential affects the availability of 

electron donors and acceptors, with different conditions favoring specific microbial processes for 

contaminant degradation. Ionic strength influences contaminant mobility and microbial activity. It 

must be optimized for effective bioremediation. Solubility determines contaminant bioavailability, 

with strategies such as surfactant-enhanced solubilization used to improve microbial access. A 

comprehensive understanding and effective management of these factors is critical for efficient 

contaminant degradation in polluted environments [99,101,103]. 

Additionally, pH plays an important role in bioremediation efficiency. For instance, biosorption, 

an initial step in the removal of toxic metals by microorganisms, is heavily influenced by pH, which 

affects the isoelectric point of a solution, determining the net negative charge on microbial cell surfaces 

or changing the ionic state of ligands like carboxyl residues, phosphoryl residues, or S-H and amino 

acid groups. Additionally, pH levels impact the solubility of metal ions, which increases as the 

medium's pH decreases, thereby affecting their uptake by microbial cells [104]. 

Temperature is a critical factor for the survival of microorganisms and the degradation of 

hydrocarbons. In cold environments such as the Arctic, natural oil degradation processes are slow, 

hampering the ability of organisms to clean up oil spills. The subzero temperatures in these areas can 

cause microbial cells' transport channels to close or even freeze their entire cytoplasm, making most 

oil-degrading organisms metabolically inactive. The biodegradation of organic compounds depends on 

the optimal temperature requirements of the compounds involved and the metabolic turnover rates of 

the degrading organisms. In addition, the degradation of specific compounds is influenced by 

temperature [104]. 

Furthermore, alpine regions exemplify another environment with low temperatures that support a 

diverse array of microorganisms. These microorganisms play a crucial ecological role in Alpine 

ecosystems, participating in essential processes such as nutrient cycling. Over the past 20 years, many 

studies have demonstrated that Alpine microorganisms can efficiently degrade various hydrocarbons, 

including phenol, phenolic compounds, and petroleum hydrocarbons. Moreover, the potential for low-

temperature bioremediation of European Alpine soils by enhancing the degradation capabilities of 

native microorganisms has also been validated [105–107]. 
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5. Main bioremediation approaches 

Bioremediation frequently occurs in complex, multiphase, and heterogeneous environments, such 

as soils where contaminants are linked with soil particles, dissolved liquids, and gases. Due to this 

complexity, successful bioremediation necessitates a multidisciplinary approach, integrating expertise 

from microbiology, engineering, ecology, geology, and chemistry. 

Bioremediation can be managed through two distinct approaches, in situ and ex situ, depending 

on the specific conditions and needs of the situation. The former approach includes techniques such as 

bioventing, biosparging, and phytoremediation along with physical, chemical, and thermal processes. 

It circumvents the need to transport contaminants and minimizes the environmental impact. It is 

considered a practical and sustainable method to selectively destroy organic pollutants without 

harming flora and fauna and can be applied to pollutants present in low but environmentally significant 

concentrations [108]. Moreover, as stated beyond, a novel approach to bioremediation can be addressed 

by biomass waste biorefinery (Figure 1). 

 

Figure 1. Bioremediation approaches. 

5.1. In situ environment bioremediation 

5.1.1. Bioventing, biosparging, and bioslurping 

Bioventing involves enhancing the activity of native microorganisms in the subsoil by introducing 

atmospheric air (or oxygen) into the unsaturated zone of the subsoil via extraction or injection wells 

and adding nutrients as necessary. In general, compounds that can be degraded aerobically are treatable 

by bioventing. This method is particularly employed for removing medium-weight petroleum 

compounds, such as gasoline, kerosene, fuel oil, and lubricants, as lighter compounds (such as petrol) 
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tend to volatilize more readily and are removed more expeditiously by another technique such as soil 

vapor extraction (SVE). The bioventing technique employs a vacuum soil vapor extraction system, 

which creates a pressure gradient in the soil. Atmospheric oxygen then flows into the subsoil, initiating 

a contaminants aerobic decomposition process. In many cases, it is necessary to add supplements such 

as nitrogen salts, which can be spread as a nutrient solution on the soil or injected into the soil at the 

contaminated area [109]. Biosparging is a technique that involves the injection of atmospheric air into 

the aquifer. It can be employed in both saturated and unsaturated soil areas. This method is particularly 

effective for reducing the concentration of dissolved oil components in groundwater, capillary fringes, 

and absorbed into soil below the water table [8]. The main goal of this technique is to reduce energy 

consumption. The air injected into the aquifer creates small channels allowing the air to move toward 

the unsaturated zone of the soil [110,111]. To form the numerous branches needed in these channels, 

the air must be injected into the soil in pulses. The biosparging process facilitates the transport of 

volatile contaminants to the unsaturated zone, thus necessitating the concurrent use of soil vapor 

extraction to collect and treat volatile vapors at the surface. To ensure the effectiveness of biosparging, 

it is necessary to consider several factors. First, it is important to evaluate soil permeability and 

contaminant biodegradability. Petroleum compounds typically biodegrade in the presence of sufficient 

oxygen; however, a thorough analysis of soil layers is necessary to ascertain this. The presence of fine-

grained materials and soil heterogeneity can hinder the process by restricting airflow. Additionally, 

oxygen-induced iron precipitation can decrease permeability. It is also essential to assess bacterial 

growth rates, which depend on temperature and pH and vary with different microorganisms. 

Laboratory tests on soil samples are critical, as a minimum bacterial population of 10³ CFU/g is needed 

for biodegradation. If this threshold is not addressed, introducing microbial cultures and nutrients can 

enhance the process and support cell growth [112]. Feola [112] reported a case study of a site 

contaminated by polycyclic aromatic hydrocarbons (PAHs) and petroleum hydrocarbons (TPHs), 

where high abatement efficiencies were achieved in both soil and groundwater using biosparging.  

Bioslurping is a technique that is also employed to treat free product phases that are floating on 

the surface of groundwater. This technique utilizes a vacuum to extract soil vapor, water, and free 

products from the subsurface. Once extracted, these components are separated and treated. The 

economic advantage of this technique lies in the fact that only a small amount of groundwater and soil 

vapor is pumped out at a time, allowing the use of a smaller treatment plant [5].  

5.1.2. Phytoremediation 

Phytoremediation is an in situ technique that uses plants to remediate contaminated soils. Deep-

rooted trees, grasses, legumes, and aquatic plants are widely used in phytoremediation. The plants used 

should be as disease- and insect-resistant as possible [113]. Although phytoremediation can be carried 

out by most plants already present in a polluted site, in these environments, native plants may be 

bioaugmented by natural or anthropogenic plants, or a combination of both, as well as by endogenous 

or exogenous plant growth–promoting rhizobacteria (PGPR). PGPR have been reported to be able to 

increase the biomass production and tolerance of plants to soil pollutants as a consequence of the 

utilization of different compounds (sugars, fatty acids, growth factors, amino acids, etc.) released by 

plants' roots by the symbiotic microflora [1,8]. 
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5.2. Ex situ environment bioremediation 

5.2.1. Landfarming, biopiling, and bioreactor 

Ex situ remediation encompasses a range of methods, including landfarming, biopiling, and 

treatment using bioreactors, in addition to thermal, chemical, and physical processes. Although it is 

considered a more comprehensive reclamation technique, due to the associated costs including 

excavation and soil transport, in situ reclamation techniques are preferred. 

Landfarming is a process whereby contaminated soil is excavated and mechanically screened. 

The soil is then spread in layers no thicker than 0.5 meters. A synthetic barrier, cement or clay, is then 

applied to the soil, which is subsequently covered with a layer of soil. Oxygen is then introduced, and 

the soil is mixed by ploughing, harrowing, or milling. As required, nutrients can be added and moisture 

can be promoted to enhance the reclamation process, while the soil pH is maintained at a value close 

to 7.0 using crushed limestone or agricultural lime [112]. 

Biopiling is the most widely used bioremediation technique for the remediation of contaminated 

soils. The procedure involves the collection of contaminated soils and their subsequent treatment in 

structures called piles. In these piles, conditions such as oxygen concentration, soil moisture, nutrient 

concentration, and pH are controlled to optimize the growth and activity of the indigenous microbiota [114]. 

The intervention comprises the excavation of the contaminated soil, followed by the mixing of the soil 

with soil improvers and their transfer to a treatment area. The excavated soil is arranged in overlapping 

layers, alternating between perforated pipes for the distribution of air and nutrient solutions into the 

contaminated material and pipes for the extraction of air from the pile. This remediation technique 

stimulates the growth and multiplication of aerobic bacteria using oxygen by circulating air in the soil 

through pipes using extraction and injection techniques [5,115]. Nutrients such as mineral fertilizers 

or micro-organisms such as fungi, bacteria, or enzymes can also be added in combination [116]. 

A series of biological reactions takes place within a bioreactor, transforming raw materials into 

specific products. The use of a bioreactor to treat contaminated soil has numerous advantages over 

other techniques, such as obtaining a specific pH or the desired temperature, degree of aeration, and 

the right inoculum concentration. These advantages reduce time and optimize the bioremediation 

process [5]. 

5.3. Biomass waste biorefinery 

For a long time, the concept of biorefinery has been closely linked to energy production by 

biomass implementation for biofuel production and for allowing GHG emissions reduction [117]. 

However, the term biorefinery could be extended to other sectors at the industrial scale if products that 

can only be obtained from agro-industrial and foodstuffs are included [118]. Considering the 

environmental pollution caused by the landfill or burning of these biomasses, and the possibility of 

their valorization via biological treatments, it is logical to apply the concept of integrated biorefineries 

as the facilities that usually reduce waste management and wastewater treatment, considering different 

raw materials, transforming the biomass into human and animal food products, biomaterials, biofuel, 

and other value-added products, reducing the environmental pollution [118]. In this sense, the 
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municipal, agro-industrial, and food waste biorefinery carried out by employing microorganisms can 

be considered a bioremediation technique, based on the bioeconomy principles.  

6. Agro-industrial waste bioremediation for circular bioeconomy  

The agricultural crop processing, post-harvesting operations, and industrial processes by-products 

generate massive volumes of residues, which act as pollutants to the environment if disposed of and 

released untreated, affecting humans and other living beings [119]. Agro-industrial residues left unutilized 

contribute to waste generation, which is expected to reach 3.40 billion metric tons by 2050 [120,121].  

The chemical composition of the agro-industrial waste varies and depends on the processed 

starting material. Overall, they are rich in suspended solids, nitrogen, phosphorus, organic substances, 

high biological oxygen demand (BOD), and chemical oxygen demand (COD), which can cause 

environmental pollution [122]. 

The conventional methods of waste management via landfilling, open dumping, burning, or 

incineration of waste cause significant environmental problems with respect to air pollution and 

groundwater contamination [123,124]. Henceforth, the focus has shifted to waste valorization, which 

provides the dual benefit of sustainable production of value-added products and waste management [124], 

essential prerequisites for sustainable development, contributing to the attainment of the global 

sustainability goals (SDGs 12 and 13). 

Most technological agro-industrial waste valorization procedures are focused on the generation 

of biofuels or bioenergy [125,126]. They are currently being investigated as promising substrates for 

the production of several value-added products, including enzymes, platform chemicals, bioactive 

molecules, pigments, and so forth [127–130]. Moreover, these agro-industrial residues have been 

found to be suitable as nutrient support for microorganisms’ growth in order to produce value-added 

products such as single-cell protein (SCP) and single-cell oil (SCO) by both submerged and solid-state 

fermentation. This approach not only combats environmental problems but also provides a sustainable 

and cost-effective framework for developing a circular bioeconomy [119,131–134]. 

The valorization of these wastes will help to reduce environmental pollution and health hazards 

and, at the same time, develop economical bioprocess. In this regard, it is important to have an extended 

vision of bioremediation connecting it to agro-industrial waste biorefinery, embracing the updated 

concept of the process reported by Conteratto et al. [117] as “a physical, chemical, or biological process 

which purifies, separates, refines, or transforms elements constituting biological assets from the 

kingdoms Monera, Protista, Plantae, Animalia, or Fungi, originating from the terrestrial or oceanic 

environment, in bioproducts for final use or that serve as raw material for other bioproducts” (Figure 2). 
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Figure 2. Bioremediation bioeconomy-based outline. 

6.1. SCP and SCO production 

The sustainable bioremediation approach through microorganisms’ utilization of organic 

pollutants as nitrogen or carbon sources may yield protein- or oil-enriched biomasses, called single-

cell protein (SCP) or single-cell oil, respectively (SCO), reducing the organic pollutants from agro-

industrial waste [119,135–138] and representing a novel and environmentally benign technology [139]. 

SCPs are proteins of microbial origin obtained by pure or mixed cultures of bacteria, fungi, yeasts, 

or microalgae by submerged, semi-solid, or solid-state fermentation that can be used as protein 

supplements [140]. Their production from agro-industrial waste represents a promising microbial-

based technology that has recently gained increased interest due to their potential environmental 

benefits over traditional protein supplements [141]. SCPs show a massive spectrum of applications, 

from animal feed supplements to paper processing and novel packaging materials production [142]. 

Agro-industrial waste represents a well-investigated substrate for SCPs production by several 

microorganisms. Many fungal genera have been widely employed, including Saccharomyces, Candida, 

Rhodotorula, Aspergillus, Neurospora, Fusarium; among bacteria, the most appealing are 

Lactobacillus, Bacillus, Methylomonas, and Methylococcus; finally, among microalgae, the most 

employed are Spirulina, Chlorella, Dunaliella, Haematococcus, and Schizochytrium [139,142,143]. 
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SCOs are produced by oleaginous microorganisms, including yeast, fungi, bacteria, and 

microalgae, that are able to accumulate lipids to up to more than 20% of their biomass in the form of 

triglycerides (TGAs) and free fatty acids, showing a high percentage of essential fatty acids [136,138]. 

Among the oleaginous microorganisms, the potential candidates for their ability to metabolize low-

cost substrates as agro-industrial waste are filamentous fungi belonging to the genera Mortierella and 

Mucor [144]. SCOs are largely used both in food and feed industries as well as in the bioenergy sector 

for biodiesel production [138]. 

6.2. Bio-based energy production 

Bio-based energy, such as biofuels, biogas, hydrogen, and electricity, is renewable energy 

obtained from living organisms using agricultural wastes as fermentation substrates [119]. Bio-based 

energy production starting from agro-industrial waste will have a positive impact not only on 

decreasing environmental pollution but also on mitigating greenhouse gas emissions while replacing 

the implementation of fossil fuels with bioenergy [134]. 

Biofuel production from agro-industrial waste is one of the most popular alternative energy 

production pathways [126]. Biodiesel, biogas, bioethanol, and biomethane are the main biofuels 

produced by several microorganisms such as yeast, bacteria, fungi, and microalgae [145,146]. Among 

the biofuels, bioethanol is considered the most sustainable alternative to gasoline, which can be easily 

obtained by different fermentation methods such as direct fermentation (DF), separate hydrolysis and 

fermentation (SHF), and simultaneous saccharification and fermentation (SSF) [133] by applying 

different microorganisms, mainly belonging to Saccharomyces, Schizosaccharomyces, Candida, 

Torulopsis, and Escherichia coli [147,148]. 

Biogas production has been reported as the most used process for agro-industrial waste 

bioremediation [1]. This technology is based on the employment of specialized microbial populations, 

mainly belonging to the phyla Firmicutes, Actinobacteria, Bacteroidetes, Chloroflexi, and 

Proteobacteria, that are able to convert this waste to water, methane, and carbon dioxide through 

anaerobic digestion [149]. 

In recent years, anaerobic digestion has also been applied for microbial electrolysis cells (MEC) 

in order to increase the hydrogen yield from organic waste remediation [1,150], being called microbial 

remediation cell (MRC) in this case. The MEC technology consists of two electrodes: an anode, where 

the microorganisms degrade the feed, and a cathode, where hydrogen is produced. The most used 

microorganisms are obligate anaerobic bacteria belonging to Shewanella sp., Geobacter sp., 

Pseudomonas sp., Rhodoferax sp., Rhodopseudomonas sp., classified as hydrolyzing bacteria able to 

break down the polymers to monomers and electrochemically active bacteria that can also oxidize 

monomers into electrons and transfer them to the anode [151]. 

Finally, the employment of different agricultural wastes and wastewater for bioelectricity 

production in microbial fuel cells (MFCs) is gaining more attraction as a promising and alternative 

source of renewable energy generation [152,153]. The conversion of chemical energy into electrical 

energy in the MFCs majorly depends on the biodegradation efficiency of the solid organic agro-

industrial waste by the anodophilic microorganisms, mainly represented by wild-type and engineering 

Shewanella oneidensis, Comamonas, and Acinetobacter [147,154]. 
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6.3. Value-added products produced by agro-industrial waste bioremediation 

Recycling is the most important feature for product design and optimization in a circular 

bioeconomy. Waste outflows produced by food and sugar processing industries (i.e., plant oils, whey, 

glycerol, molasses, leftover coffee grounds, fruit wastes, and lignin-rich wastes) might be regarded as 

a suitable carbon substrate for biopolymers, surfactants, pigments, flavor and aroma compounds, and 

enzymes [123,124,155,156]. 

Today, searching for biodegradable “green plastics” obtained by microbial fermentations is one 

of the most important goals for sustainability. Microbial biopolymers are eco-friendly, 100% 

perishable, non-toxic, and biocompatible [157]. Those most produced are represented by 

polyhydroxyalkanoates (PHAs). Several studies have been reported on the implementation of agro-

industrial waste for PHAs production by using microorganisms such as Bacillus megaterium, Bacillus 

cereus, Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas putida, Halomonas campisalis, 

Pseudomonas fluorescens, Pseudomonas oleovorans, Ralstonia eutropha, Paracoccus sp. and 

Cupriavidus necator [155,158–161]. 

Agro-industrial waste can be used as a feedstock for natural pigment-producing microorganisms 

by applying both submerged and solid-state fermentation techniques [124]. Bacteria, yeast, fungi or 

microalgae are able to produce a diverse array of pigments (carotenoids, flavins, anthraquinones, 

violacein, and prodigiosin) as secondary metabolites, which can be used for different industrial 

applications such as pharmaceutical, food, feed, textile, cosmetics, sensors, and energy [119,124,162–164].  

Carotenoids, prodigiosin, tambjamines, melanins, quinones, and violacein are the most commonly 

pigments produced by bacteria such as Gordonia jacobaea, Serratia marcescens, Chromobacterium 

sp., Erwinia chrysanthemi, Corynebacterium insidiosum, Vogesella indigofera, Chryseobacterium sp., 

Hymenobacter sp., Micrococcus, Chryseobacterium artocarpi, Kocuria sp., Pseudomonas sp., Dietzia 

sp., Paracoccus sp., Bradyrhizobium sp., Brevibacterium sp., Agrobacterium sp., Streptomyces sp., 

and G. jacobaea [165]. 

Specifically, the yeasts Pichia, Rhodotorula, Xanthophyllomyces, Rhodosporidium, 

Sporobolomyces, and Sporidiobolus are also potent producers of various carotenoids and other 

pigments. The carotenoids most produced by yeasts include β-carotene, torulene, astaxanthin, and 

canthaxanthin [165]. Fungi belonging to the families Chlorociboriaceae, Monascaceae, Sordariaceae, 

Trichocomaceae, Chaetomiaceae, Nectriaceae, Xylariaceae, Hypocreaceae, Cordycipitaceae, 

Pleosporaceae, among others, are also reported as prominent pigment producers [166]. Finally, among 

microalgae, the genera Arthrospira, Chlorella, Dunaliella, Mychonasterotundus, Haematococcus, 

Nostoc, Phormidium, and Porphyridium are reported as the most implemented for carotenoid and 

phycobiliprotein production by using agro-industrial waste [167,168]. 

Overall, although agro-industrial waste bioremediation is a sustainable strategy for minimizing 

environmental contamination and simultaneous pigment production, it has shown major bottlenecks. 

One of the major challenges is the limited potential of natural pigment-producing wild-type 

microorganisms. Therefore, the implementation of genetic, metabolic, and biomolecular strategies 

may help in developing improved strains for pigment production by using agro-industrial waste [124]. 

The bioremediation of agro-industrial waste has been widely applied as a low-cost substrate for 

the microbial generation of biosurfactants, which can be implemented in further bioremediation 

processes such as the removal of heavy metals and hydrocarbons from soil, the enhancement of 

phytoremediation, and the improvement of the efficacy of pesticides and biopesticides [169–171]; 
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polylactate (PLA), bioplastic materials produced by agro-industrial residue lactic acid fermentation 

and mainly used for packaging [123]; and aroma and flavor compounds to be implemented as additives 

in food, cosmetic, and fragrance industries [172]. Finally, many studies have focused on producing 

enzymes representing high commercial-value products. In this regard, a solution for agricultural waste 

bioremediation is the implementation of microorganisms producing enzymes with industrial  

properties [156,172]. 

7. Bioremediation: green solution with hidden challenges 

Bioremediation is a sustainable and environmentally friendly solution for the treatment of 

environmental pollution caused by anthropological development and waste generated by industrial 

activities. This technique has gained increasing popularity as a cost-effective and viable alternative to 

traditional waste management methods [174]. However, despite the numerous benefits associated, 

several critical issues and challenges emerge during the bioremediation process. One of the primary 

challenges associated with bioremediation is the effectiveness of this method for specific types of 

pollutants [175]. While this approach has proven effective for a diverse range of contaminants, not all 

of them can be completely degraded by microorganisms. Some complex or highly toxic chemical 

pollutants may exhibit resistance to biological processes, necessitating the implementation of specific 

conditions or additional treatments to achieve effective neutralization [5,103]. Moreover, the success 

of bioremediation is contingent upon the prevailing environmental conditions at the site, including pH, 

temperature, and oxygen availability. The aforementioned factors can vary considerably between sites, 

rendering a universal approach impractical and necessitating significant adaptations to ensure 

treatment efficacy [8]. 
Another factor to be considered is the length of time required for the process to achieve the desired 

level of pollutant reduction. There are some critical issues in the application of bioremediation 

strategies; depending on the condition, many pollutants tend to escape the degrading action, mainly 

because of microbes’ inability to interact or attach them, resulting in an impossibility to convert them 

into harmless compounds [176]. Bioremediation can take weeks, months, or even years to be 

completed, which may cause problems for the industries that require rapid waste disposal and site 

remediation and have an adverse effect on the time and cost management of industrial operations. The 

success of bioremediation is contingent upon the implementation of a rigorous monitoring and control 

system. The necessity for continuous monitoring is driven by the need to ascertain the continued 

viability of the microorganisms and the efficacy of the pollutant's degradation process. This introduces 

a layer of complexity and potential costs to the process, as monitoring necessitates the deployment of 

human and technological resources for the regular assessment of site conditions and biological activity. 

Furthermore, there is a risk that bioremediation may not achieve complete degradation of all hazardous 

substances, resulting in the formation of residual, potentially harmful intermediates. In the event of 

incomplete degradation, additional intervention or treatment may be necessary, which would result in 

increased overall costs and complexity [177]. 
The ecological impact of bioremediation is another critical factor that must be considered. The 

introduction of non-native microorganisms or large quantities of naturally occurring organisms can 

disturb local ecosystems. Therefore, the ecological impact of such interventions must be carefully 

evaluated and managed to avoid negative effects on biodiversity and ecosystem health. Furthermore, 
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the metabolic activities of microorganisms used in bioremediation may sometimes produce secondary 

pollutants, which may require further treatment.  

Some soil contaminants, recalcitrant to microbial action, could enter the food chain through the 

consumption of plants by animals [176]. The production of potentially harmful by-products must be 

carefully monitored and managed to avoid further environmental contamination [178]. 

The technical and logistical challenges inherent to bioremediation represent an additional obstacle 

to overcome. The design and implementation of a bioremediation strategy can be a complex process 

that requires the input of specialists with a specific skill set. This may entail pilot studies, feasibility 

assessments, and bespoke solutions tailored to specific waste types and site conditions. Technical 

complexity can act as a barrier to the widespread adoption of bioremediation, particularly for small 

and medium-sized enterprises with limited resources. While bioremediation is typically cost-effective, 

it still necessitates some infrastructure, expertise, and initial investment for the installation of 

biological treatment systems [179]. A lack of adequate infrastructures or experience in managing 

bioremediation may restrict the efficacy and uptake of the process. Additional challenges arise in the 

form of regulatory compliance and public acceptance. Ensuring that bioremediation practices comply 

with environmental regulations represents a significant challenge. It is possible that there may be 

rigorous requirements for monitoring, reporting, and maintaining safe levels of residual contaminants. 

Bureaucratic and regulatory procedures may potentially impede the implementation of bioremediation 

projects and increase overall costs [180]. Furthermore, public acceptance of bioremediation projects 

may vary. Concerns about the safety and effectiveness of using microorganisms to treat hazardous 

waste may lead to resistance or demands for more information and transparency [181]. Effective 

communication with the public and building trust are essential for the success of bioremediation 

projects. The practice of bioremediation represents a significant step toward the development of a more 

sustainable approach to industrial waste management. New ways are being devised to improve the 

bioavailability capacity of microbes and add value to the efficiency of bioremediation. Techniques 

such as waste solubilization by heat injection using hot air, steam or hot water washing, fracturing the 

underground matrix at high pressure, and adding surfactants are some of the preferred ways to improve 

existing technologies [176]. However, it is important to recognize that this process involves several 

complexities and challenges that require careful consideration. It is essential to strike a balance 

between enthusiasm for green technologies and a critical assessment of their practical applications. As 

we proceed with bioremediation, it becomes important to develop sustainable strategies for assessing 

its impact. To achieve the settled objectives, it becomes vital to encourage collaborations between the 

scientific community, industry, and regulatory authorities. Bioremediation offers an opportunity to innovate 

in harmony with natural processes for a cleaner and healthier future, in accordance with the 2030 Agenda 

for Sustainable Development and the Sustainable Development Goals (SDGs) “Goal 9: Build resilient 

infrastructure, promote inclusive and sustainable industrialization and foster innovation”, “Goal 12: 

Ensure sustainable consumption and production patterns” and “Goal 13: Take urgent action to combat 

climate change and its impacts”. Addressing these goals by the implementation of bioremediation 

techniques, with a particular regard to biorefinery processes, will allow environmental pollution to 

decrease by functionalizing the circular bioeconomy model. However, to achieve this, it is necessary 

to demonstrate knowledge, skills, and competences to conduct research and to be prepared for the 

major challenge represented by the capability to attract stakeholder’s investment [182]. 

Additionally, according to the Bioremediation Market Size, Share & Trends Report 2030 [183], 

the global bioremediation has been valued at USD 12.38 billion in 2021 and is expected to register a 
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compound annual growth rate (CAGR) of 9.93% from 2022 to 2030. The market is anticipated to 

witness growth due to rapid industrial development in recent years that has led to widespread 

contamination of several environmental landscapes, such as oceans, freshwater systems, forests, and 

agricultural lands. Similarly, mismanagement of plastic waste, crude oil spills, increasing production 

of greenhouse gases (GHG), and release of chemical pollutants, such as polycyclic aromatic 

hydrocarbons, bisphenol-A, pyrethroids pesticides, and dioxanes, have led to worsening environmental 

outcomes and are increasing the demand for bioremediation services. 

Because bioremediation is a new technology, a successful bioremediation program requires a 

multidisciplinary approach, integrating fields such as microbiology, engineering, geology, 

hydrogeology, soil science and project management [184]. Only through a deep understanding of the 

potential and limitations of this technology will it be possible to make the most of it and ensure that it 

contributes to a cleaner and healthier environment for future generations. 

8. Conclusions 

The increase in human population, waste generation, fossil reserves depletion, and land 

degradation justify the global interest to identify the most promising techniques for reducing 

environmental pollution, namely by applying a bioeconomy implementation. In this context, the line 

between bioremediation and biorefinery is very thin; the possibility of obtaining value-added products 

represents an important goal both from an environmental perspective, reducing pollution, and an 

economic point of view, due to the simultaneous production of market-value products. Thus, a waste 

bioremediation-circular bioeconomy approach may ensure a safe environment. 

Nevertheless, it is important to consider that, for exporting these innovative and ecofriendly 

bioprocesses to an industrial scale, many more efforts are required from the scientific community, as 

well as the implementation of supportive regulatory policies. 

This study highlights the microorganism's role in waste/pollution remediation and their significant 

contribution in managing waste, promoting sustainability, and addressing the transition to a circular 

bioeconomy. Nevertheless, more investigations are needed to better understand benefits and limitations 

in this field. The concept of bioremediation will be successfully addressed only through the 

implementation of optimized technologies and processes resulting from the evaluation of all techno-

economic limits. 
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