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Abstract
This work introduces the English Sublexical Toolkit, a suite of tools that utilizes an experience-dependent learning frame-
work of sublexical knowledge to extract regularities from the English lexicon. The Toolkit quantifies the empirical regular-
ity of sublexical units in both the reading and spelling directions (i.e., grapheme-to-phoneme and phoneme-to-grapheme) 
and at multiple grain sizes (i.e., phoneme/grapheme and onset/rime unit size). It can extract multiple experience-dependent 
regularity indices for words or pseudowords, including both frequency indices (e.g., grapheme frequency) and conditional 
probability indices (e.g., grapheme-to-phoneme probability). These tools provide (1) superior estimates of the regularities 
that better reflect the complexity of the sublexical system relative to previously published indices and (2) completely novel 
indices of sublexical units such as phonographeme frequency (i.e., combined units of individual phonemes and graphemes 
that are independent of processing direction). We demonstrate that measures from the toolkit explain significant amounts 
of variance in empirical data (naming of real words and lexical decision), and either outperform or are comparable to the 
best available consistency measures. The flexibility of the toolkit is further demonstrated by its ability to readily index the 
probability of different pseudowords pronunciations, and we report that the measures account for the majority of variance in 
these empirically observed probabilities. Overall, this work provides a framework and resources that can be flexibly used to 
identify optimal corpus-based consistency measures that help explain reading/spelling behaviors for real and pseudowords.

Keywords Sublexical processing · Consistency norms · Phoneme-grapheme mapping · Reading · Spelling

Introduction

A fundamental component of the cognitive processes of 
reading and spelling relates to how the mental representation 
of phonological word forms are associated with their ortho-
graphic counterparts. This work introduces the English Sub-
lexical Toolkit, a suite of tools designed to support empiri-
cal investigations of the multimodal (e.g., orthographic and 
phonological) sublexical structures of the English language. 
As with previous researchers cited in this work, we simply 

use a set of corpus statistics reflecting the empirical reality 
of different sublexical units in the English lexicon. While 
we are not the first to highlight the importance of experience 
for developing sublexical knowledge, what is novel about 
the approach used to develop the toolkit is that it consid-
ers the implications of experience-dependence to a broader 
and deeper extent compared to previous work. In essence, 
the toolkit does not just provide consistency measures for 
a finite list of real words; rather, it is a whole framework 
for deriving measures of sublexical consistency (and fre-
quency) according to different assumptions about the under-
lying nature of sublexical representations, which can then 
be validated against empirical data by determining which 
assumptions most improve explanatory power. For example, 
considering the implications of experience-dependence more 
deeply lead us to introduce here the completely novel meas-
ure of “phonographeme frequency” (e.g., that 38 words in 
the corpus have the grapheme [CC] pronounced /k/ and only 
two have it pronounced /tʃ/), which we report explains sig-
nificant amounts of variance in reading behaviors, for both 
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real words and pseudowords. Altogether, we provide a novel 
operationalization of experience-dependence in the study of 
the statistical regularities of the sublexical system, and doing 
so allows us to consider novel implications of this old idea.

Questions about sublexical processes have most often been 
addressed in the context of reading, where a number of theo-
retical models have been proposed in the past decades (for a 
review, see Rayner & Reichle, 2010) – most prominent among 
them are two classes of models: localist “dual-route” models 
and connectionist “triangle” models. In dual-route approaches, 
such as the influential dual-route cascaded (DRC) model (Colt-
heart et al., 2001), access to phonological forms from ortho-
graphic input can proceed through either of two processes, 
known as the lexical and sublexical routes. Through the lexical 
route, also known as the “addressed” route (e.g., Patterson, 
1986; Coltheart et al., 1991), whole-word phonological repre-
sentations are accessed via recognition of whole-word ortho-
graphic representations, such as [CAT] to /kæt/ (specific mod-
els differ on whether or not they posit mandatory intermediate 
access through lexical semantics; see, e.g., Rapp et al., 2001). 
In contrast to the lexical route, the sublexical or “assembled” 
route allows for a process known as “spelling-to-sound” or 
“grapheme-phoneme” conversion, wherein access to phonol-
ogy is achieved not through associating unitary, holistic repre-
sentations of the whole word but rather through orthographic 
and phonological units of some grain size smaller than the 
whole word, such as [C] to /k/ followed by [AT] to /æt/.

Juxtaposed to dual-route models, triangle models eschew 
any distinction between lexical and sublexical processes, 
instead positing a network of interconnected orthographic, 
phonological, and semantic units (the three vertices of the tri-
angle). As a consequence, whereas dual-route models repre-
sent lexical knowledge (as opposed to sublexical) in discrete 
units, triangle models represent it as distributed across the 
connections between the processing units. While these two 
approaches to understanding reading exhibit fundamental dif-
ferences, one thing that they have in common is the concept 
of sublexical representations – orthographic and phonological 
units smaller than the whole-word – that are used to generate 
plausible pronunciations for previously unencountered words. 
Moreover, while these theories were developed in the context 
of reading, models of spelling function largely by analogy (on 
the relationship between reading and spelling, see for example 
Holmes & Carruthers, 1998; Rapp & Lipka, 2011; Shanahan, 
2016), and the ability to generate plausible spellings for novel 
words is also thought to be supported via these sublexical 
units. However, the exact nature of these sublexical represen-
tations is not well understood, even though they have been con-
sidered critical for learning to read and spell (e.g., Apel et al., 
2019; Gough & Tunmer, 1986), are implicated in deficits such 
as dyslexia and dysgraphia (e.g., Beeson et al., 2000; Monsell 
et al., 1992; Rapp et al., 2002), and are key to understanding 
cross-linguistic differences (e.g., the relative contributions of 

sublexical and lexical processing vary markedly across lan-
guages, e.g., Frost et al., 1987; Ziegler & Goswami, 2005).

Recently, there have been a number of efforts to more 
thoroughly characterize the inner workings of sublexical pro-
cesses and their relationship to lexical processes (e.g., Chee 
et al., 2020; Siegelman et al., 2020; Siew & Vitevitch, 2019). 
For example, the size of the representational units at work in 
the sublexical route has been examined from relatively fine-
grained, individual grapheme-phoneme mappings (e.g., [C] 
➔ /k/) to relatively coarse-grained mappings, such as the rime 
(e.g., [AT] ➔ /æt/) or oncleus (e.g., [CA] ➔ /kæ/). In English, 
for example, a wealth of previous research has indicated that the 
rime contains the most valuable information from an informa-
tion theory perspective (e.g., Treiman et al, 1995; Siegelman 
et al., 2020), and consequently consistency at the rime level 
has been a focus when accounting for behavior in both read-
ing and spelling tasks (e.g., Dich, 2014; Weekes et al., 2006; 
Burt & Blackwell, 2008). However, it is apparent both theoreti-
cally and empirically that the rime is not sufficient to account 
for the entirety of the sublexical process. For example, Burt 
& Blackwell (2008) reported instances of participants spell-
ing pseudowords with novel orthographic rimes, despite those 
pseudowords having extant phonological rhymes (e.g., /soʊb/ 
spelled SOAB, despite all rhyming words in English being 
spelled -OBE). Moreover, the mere fact that one can generate 
a spelling for a previously unattested rhyme in English (such 
as -/aɪtʃ/ perhaps spelled -ICHE or -YTCH) demonstrates that 
sublexical processes must operate, at least to some extent, at the 
lower level of individual phoneme-grapheme mappings.

The directionality of mappings has also been investigated 
because spelling consistency, p(G|P) (the probability of the 
graphemes given the phonemes), and reading consistency, p(P|G) 
(the probability of the phonemes given the graphemes) dissociate 
in languages like English. For example, given the letter X, the 
probability that it is pronounced /ks/ is very high (i.e., reading 
consistency p(P|G) is high). However, the reverse is not true: the 
spelling consistency p(G|P) for /ks/ spelled X is relatively lower 
because of the large number of alternative spellings – /ks/ may 
be spelled KS, or CKS, or CS, etc. (as in TREKS, PACKS, or 
EPICS). This phenomenon has been most extensively studied 
in the context of reading, where it is described as “feedforward” 
consistency from graphemes to phonemes; however, “feedback” 
spelling consistency (from phonemes to graphemes) has repeat-
edly been shown to affect behaviors such as naming latency and 
lexical decision (see e.g., Ziegler et al., 2008).

In order to better understand these various phenomena 
in written language processing (consistency effects, grain-
size, feedback, etc.), researchers need detailed measures of 
the units of sublexical representation – in particular, their 
consistency and frequency. While a number of options 
currently exist for researchers to collect such measures, 
they are limited in many ways. For example, the avail-
able databases are either in the form of lists of real words 
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with consistency measures (computed in different ways, 
depending on the database) or tables of correspondences 
(e.g., the consistency of the rhyme /oʊp/ spelled [OPE] 
versus [OAP]). Here, we present the English Sublexical 
Toolkit, a set of tools designed to quantify sublexical units 
in multiple ways, serving both practical and theoretical 
purposes. The central premise of the Sublexical Toolkit 
is that sublexical representations are primarily acquired 
through learning the associations between orthographic 
and phonological segments in the context of real words, 
not through an explicit system of “rules” for converting 
between letters and sounds or a consciously prescribed set 
of correspondences. Consequently, a full understanding of 
the mental representations subserving written language 
processing requires detailed measures that empirically 
examine the regularities within the lexicon. The current 
version of these tools provides both consistency and fre-
quency measures for two levels of granularity: low-level 
mappings between individual phonemes and individual 
graphemes, henceforth phonographemes, and higher-level 
mappings between onsets (syllable-initial consonants) and 
rimes (vowels plus syllable-final consonants). The consist-
ency measures are available in both the spelling p(G|P) 
and reading p(P|G) directions in the form of continuous 
measures, reflecting the probability that a given phoneme 
will be spelled with a certain grapheme (and vice versa), 
ranging from near 100% (e.g., /b/ is nearly always spelled 
[B]) to near 0% (/ɹ/ is rarely spelled [RH]).

There are three particularly novel aspects to this work: 
First, these measures are accessible in the form of toolkits 
that allow the user to input grapheme-phoneme/phoneme-
grapheme mappings to extract measures for any word, 
including pseudowords and misspellings. To the best of our 
knowledge, this is the first tool that provides a method for 
readily computing consistency measures for any string of 
letters and phonemes, not restricted to a finite list of real 
words. This capability in particular enables new opportuni-
ties for assessing behaviors with pseudoword tasks, scoring 
errors (misspellings/mispronunciations), and generating 
novel stimuli with desired properties.

Second, some of the measures themselves are entirely 
novel, a consequence of the experience-dependent, corpus-
based framework adopted in the current work. In particular, 
we present original measures of the frequencies of sublexi-
cal units, including multi-letter graphemes (e.g., [OUGH]) 
that are distinct from available unigram, bigram, or tri-
gram frequency measures, as well as “phonographeme” 
units –  the co-occurrences of individual phonemes and 
individual graphemes (e.g., [CH] pronounced /tʃ/ versus 
[CH] pronounced /k/). The term “phonographeme” is used 
throughout this work in a non-directional sense (e.g., it is 
not juxtaposed with a “graphophoneme”). The concept of 
a sublexical unit common to both reading and spelling is 

made clear by examining how consistency and frequency 
are computed (Eqs. 1–3):

The first two equations are specific to the reading and 
spelling processes and yet they share their numerator; it is 
only the denominator that distinguishes between reading and 
spelling consistency. This follows from the fact that when 
one experiences a word with a particular grapheme-phoneme 
mapping, one is simultaneously experiencing a word with 
the equivalent phoneme-grapheme mapping: for example, an 
instance of reading aloud the word “cat” entails both experi-
encing the grapheme-phoneme mapping [C] ➔ /k/ and the 
phoneme-grapheme mapping /k/ ➔ [C] – in other words, 
feedback processing ensues feedforward processing, and so 
the phonographeme frequency of the [C] ➔ /k/ mapping is 
the same as that of the /k/ ➔ [C] mapping: simply the num-
ber of occurrences of [C] ➔ /k/ (which are simultaneously 
occurrences of /k/ ➔ [C]).

Finally, the tools were made with specific theories of sub-
lexical representations in mind, and as such, we present in 
detail how they were constructed in terms of those underly-
ing theories. Doing so will better enable us to interpret the 
empirical data and draw inferences from the relative success 
or failure of the measures (relative to each other and rela-
tive to alternative measures developed by other research-
ers). Moreover, we are making the tools and codes openly 
available to researchers so that they can be adapted to test 
new hypotheses (e.g., alternative rules for syllabic parsing or 
theories of position coding), and/or extend their capabilities 
(e.g., to other grain sizes or to other languages).

The remainder of this paper is divided into three sec-
tions. The next section (Methods) details the methods used 
to construct the English Sublexical Toolkit, describing all 
of the procedures taken and decisions made when comput-
ing the various measures of consistency and frequency. The 
third section (Empirical validations) presents three sets of 
analyses to validate the toolkit measures (construct validity). 
It does so by: (1) exploring the similarity of our measures 
to some of the most commonly used consistency measures 
previously published in the literature; (2) assessing how well 
our measures explain naming and lexical decision data from 
the English Lexicon Project (ELP; Balota et al., 2007); and 
(3) presenting a novel analysis that accounts for the distribu-
tion of different pronunciations in response to a pseudow-
ord reading task. The paper concludes with a discussion 

(1)
Reading Consistency p(P|G) =

#of words with grapheme X mapped to phoneme Y

#of words with grapheme X

(2)
Spelling Consistency p(G|P) =

# of words with grapheme X mapped to phoneme Y

#of words with phoneme Y

(3)
Phonographeme Frequency = of words with grapheme X mapped to phoneme Y
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(General discussion) highlighting the current capabilities 
of the toolkit, its limitations, and future directions. A num-
ber of appendices are also provided, including vignettes that 
serve as practical guides for how to use the toolkit.

Methods

Determining the empirical regularities of the English written 
lexicon requires a large number of decisions about how to 
operationalize the measures. One contribution of the cur-
rent effort is to make those decisions explicit and to ground 
them in cognitive theory. It is challenging to identify all 
the decisions that must be made, given that they may be 
hidden by virtue of being based on implicit assumptions. 
Nonetheless, this section seeks to provide transparency into 
how the Toolkit was designed to develop a rigorous, coher-
ent system for quantifying English sublexical regularities. 
The goal is to articulate the theoretical underpinnings of 
the toolkit such that they generate specific, testable claims 
that can provide new insights into the underlying nature of 
sublexical representations in written language. Both the suc-
cesses and the failures of the toolkit in explaining empirical 
phenomena allow for testing the theories that informed how 
the measures were developed. Moreover, future versions of 
the toolkit can be created by making alternative decisions 
based on competing hypotheses, thereby allowing for empir-
ically derived support for one hypothesis relative to another. 
For example, the consistency measures could be recomputed 

after parsing words according to an alternative to the maxi-
mum onset principle (MOP; Kahn, 2015), and meaningful 
inferences could be drawn if it were found that the alterna-
tive resulted in the toolkit better fitting some type of read-
ing or spelling behavior. This type of future work includes 
many possibilities that will be returned to in the General 
discussion, including specific examples of how alternative 
or extended toolkits might be used. The remainder of this 
section describes each of the major decisions that were made 
in developing the toolkit, with specific attention paid to the 
theoretical implications.

Overview of the English Sublexical Toolkit

An overview of the sublexical processes as conceptualized 
in the Sublexical Toolkit at the phonographeme level is pre-
sented in Fig. 1, with an example of reading aloud the visu-
ally presented pseudoword BLEASE. The toolkit is available 
freely from the Open Science Foundation (OSF) at https:// 
osf. io/ e95qw/? view_ only= 167fb 28c48 42491 a885b 91435 
c57b2 f0. An overview of the onset/rime level is presented in 
Fig. 2. The distinction between the two regards the grain size 
of the representations under examination: at the lowest level, 
phonographemes (individual phoneme-grapheme mappings) 
are measured, and at the higher level the units are onsets 
(syllable-initial consonants, including clusters like CHR or 
PHL) and rimes (vowels plus following consonants, i.e., the 
syllabic nucleus and coda). Throughout the manuscript we 
focus on the reading process, but it should be noted that the 

[B] [L]

p(b|B)
1.0

p(i|EA_E)
0.82

/blis/

mean phonographeme

Reading Consistency p(P|G) = 81%

[S][EA_E]

p(l/L)
1.0

p(s|S)
0.43

[B] [L] [EA] [E]

p(b|B)
1.0

/bli seɪ/

mean phonographeme

Reading Consistency p(P|G) = 71%

p(i|EA)

0.66

[S]

p(l/L)
1.0

p(s|S) p(eɪ|E)

0.150.76

BLEASE /blis/ BLEASE /bli seɪ/

B.A.

Fig. 1  The sublexical system as conceptualized in the English Sub-
lexical Toolkit at the phonographeme level, here visualized dur-
ing the process of reading aloud the visually presented pseudoword 
BLEASE. A: given a monosyllabic parse with all of the orthographic 
vowels as a single grapheme (EA_E). B: given a disyllabic parse 
with EA in the first syllable and a non-silent E in the second sylla-
ble (BLEA-SE). The numeric values reflect the reading consistency 
for that segmental mapping p(P|G). For example, 82% of words with 

EA_E in the middle of a syllable are pronounced /i/. The mean con-
sistency is higher for the monosyllabic reading (81%) compared to 
the disyllabic (71%), averaging over all segments; this is largely due 
to the much lower minimum consistency (the single least-consistent 
segment) of the disyllabic reading (just 15% for word-final [E] pro-
nounced /eɪ/). Graphemes are represented in [brackets], phonemes in 
/slashes/. p(P|G) = reading consistency. Gray fill indicates alternative 
parsings/mappings (e.g., EA_E versus EA and non-silent E)

https://osf.io/e95qw/?view_only=167fb28c4842491a885b91435c57b2f0
https://osf.io/e95qw/?view_only=167fb28c4842491a885b91435c57b2f0
https://osf.io/e95qw/?view_only=167fb28c4842491a885b91435c57b2f0
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toolkit provides both reading consistency p(P|G) and spell-
ing consistency p(G|P) measures. It will be explicitly noted 
whenever the two directions of processing are importantly 
distinguished in terms of how the toolkit functions.

In general, computational models of English reading/
spelling must address both parsing of inputs and mapping 
to outputs (e.g., Gubian et al., 2022; Mousikou et al., 2017; 
Perry et al., 2007; Pritchard et al., 2012). Models such as 
the connectionist dual -route model of Perry and colleagues 
(CDP++, Perry et al., 2010) and the DRC model of Ras-
tle and Coltheart (Rastle & Coltheart, 2000) can gener-
ate pronunciations for pseudowords given letters as input 
by using heuristics to determine how the letters should be 
grouped into graphemes and what phonemes they should 
be paired with. The core work of the toolkit presented here 
is focused on the mappings of phonemes and graphemes 
but does not have a deterministic heuristic or algorithm that 
dictates how letters “should” be combined into graphemes or 
which phonemes should be used. Rather, given a predefined 
spelling-sound mapping, the toolkit extracts how consistent 
that choice is with the English lexicon (currently based on 
a sample of ≈14,000 words). This means that the toolkit’s 
user must provide both the graphemes and the phonemes, 
whereas the computational models of reading require only 
input graphemes to then generate a phonological output.

For example, presented with the pseudoword ADANE, 
most English speakers will pronounce it /æ 'deɪn/ (Mous-
ikou et al, 2017), indicating that the word was parsed as two 
syllables, A-DANE, with the final -E in the second syllable 
grouped with the preceding A as an A-silent-E; we refer to 

such mappings with an underscore, as in A_E. Given the 
input ADANE, the DRC model reads the string as /ə 'deɪn/ 
(Mousikou et al., 2017), differing in the pronunciation of 
the first letter but otherwise agreeing with the most com-
mon human response and the mapping of A_E ➔ /eɪ/. The 
toolkit does not strictly generate a single pronunciation, but 
rather can be used to measure the consistency of any given 
response. For the pseudoword ADANE, for example, at the 
onset/rime level the toolkit indicates that the most popular 
human pronunciation is indeed more consistent than is the 
DRC pronunciation: the mean p(P|G) at the onset/rime level 
of granularity is 77% for the human response, versus 73% 
for the DRC response. That is, given the orthographic parse 
A-DANE, the pronunciation /æ 'deɪn/ is more plausible than 
/ə 'deɪn/. The current version of the toolkit cannot be used to 
determine the probability of the parse itself, such as whether 
a disyllabic parsing A-DANE is more or less likely than 
a trisyllabic parsing A-DA-NE. However, it can say how 
consistent A-DA-NE pronounced /'æ də ˌneɪ/ is compared 
to another pronunciation with the same parsing such as /ə 
'dɑ ni/.

The toolkit operates under the self-evident assertion that 
the knowledge of sound–spelling mappings is grounded in 
experiential learning. This implies that the relative strength 
of these connections depends on the amount of experience 
individuals have with these representations, and this strength 
in turn can be estimated from the regularity with which sub-
lexical mappings of various grain sizes occur in the English 
lexicon. This assertion is supported by the preponderance of 
evidence that pseudoword responses vary greatly both across 
and within individuals (e.g., Coltheart & Ulicheva, 2018; 
Ulicheva et al., 2021). Importantly, this variability is much 
greater than would be expected if the sublexical system 
operated in a rule-based way that only considers mappings 
with a high probability, or that requires adherence to larger 
units such as rimes that are extant in the lexicon. There is 
clear evidence that individuals generate pseudoword spell-
ings that result in previously unattested rimes – for example, 
the pseudoword /snoʊb/ has been spelled SNOAB (Burt & 
Blackwell, 2008), despite the fact that all rhyming words 
in English are spelled -OBE (thus one expects the spelling 
SNOBE). We take such evidence as indication that phonog-
raphemes are productive units of representation, although 
their relative importance compared to higher level units like 
rimes remain an open question.1

Altogether, the toolkit quantifies the probability of 
spelling-sound mappings, both as consistency (the prob-
ability of the phoneme given the grapheme, or vice 
versa) and as frequency (the frequency with which that 

[B] [L] [EA_E] [S]

RimeRimeOnset

p(bl|BL) p(iz|EASE)
1.0 0.45

p(is|EASE)

/bliz/

BLEASE

/blis/

mean onset/rime

Reading Consistency p(P|G) = 73%

mean onset/rime

Reading Consistency p(P|G) = 77%

0.55

Fig. 2  The sublexical system as conceptualized in the English Sub-
lexical Toolkit at the onset/rime level, here visualized during the pro-
cess of reading aloud the visually presented pseudoword BLEASE, 
for two alternative phonemic assignments given the same ortho-
graphic parsing (/blis/ versus /bliz/). Gray fill indicates alternative 
parsings/mappings (e.g., the rime -EASE read /iz/ versus /is/). Graph-
emes are represented in [brackets], phonemes in /slashes/. p(P|G) = 
reading consistency

1 See section “Empirical Validations” for new evidence regarding 
this question.
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phonographeme is encountered in the lexicon). For exam-
ple, in Fig. 1, the p(P|G) reading consistency value 0.82 
refers to the proportion of words with EA_E in the syl-
lable medial position that are pronounced /i/. This was 
computed by dividing the number of words with that pro-
nunciation (e.g., PLEASE, RELEASE) by the total num-
ber of words with that or any other pronunciation (e.g., 
HEARSE, MILEAGE). The toolkit also offers frequency 
measures that are equivalent simply to the numerator of 
the consistency measure (i.e., the number of words with 
that mapping, without dividing by the total number of 
words with that or any alternative pronunciation). Fig-
ure 1 shows that the measures are position-specific: for 
the pronunciation /blis/ the word-final S ➔ /s/ consist-
ency is 0.43, whereas for the pronunciation /bli `seɪ/ the 
syllable-initial S ➔ /s/ consistency is 0.76, reflecting 
the fact that words ending in S are somewhat more often 
pronounced /z/, whereas syllables beginning S are most 
often pronounced /s/.

Just as the consistency of a mapping varies depending 
on its position in the word, consistency at the level of 
onsets and rimes can differ from the phonographeme level 
due to the idiosyncrasies of English spelling. One conse-
quence is that the most probable reading at one level may 
differ from that at another level. For example, the pseu-
doword BLEASE (Fig. 1) is most probably pronounced /
bliz/ when averaging over all phonographeme units, which 
is more probable than the pronunciation /blis/ because 
word-final S is more often pronounced /z/ than /s/ (57% 
versus 43%). However, the situation reverses at the level 
of the onset and rime, as the rime -EASE is more often 
pronounced -/is/ as in LEASE than -/iz/ as in PLEASE 
(55 vs. 45%). In this example, empirical behavioral data 
(Pritchard et al., 2012) indicates that English speakers 
have nearly a 2:1 preference for /bliz/ over /blis/, a result 
more in agreement with the phonographeme than the 
rime consistency. However, it is generally an open ques-
tion as to whether one or both of these levels determines 
behavior, and the extent to which it depends on individual 
differences or other properties of the stimuli (e.g., ortho-
graphic neighbors). Regardless, this is one example of 
how the toolkit can be used to probe such questions.

The remainder of this section describes how ortho-
graphic and phonological representations are conceptual-
ized in the toolkit, and the details of a number of specific 
decisions and assumptions necessary to operationalize 
this schema into a working tool.

Corpus

The most basic assumption of the work here is that sublexi-
cal knowledge (of sound–spelling mappings) derives from 
experience with lexical items – consequently, measures 

of consistency and frequency fundamentally depend upon 
which words are included in the corpus.

The initial version of the toolkit (version 1.0) is based 
on approximately 10,000 words, which has been expanded 
to over 13,000 in the latest update (version 1.1). The ini-
tial corpus was formed from three components: all of the 
monosyllabic words previously coded for Friends/Enemies 
measures (F/E; Plaut et al., 1996), in order to compare the 
English Sublexical Toolkit’s measures to the F/E measures; 
a list of several hundred words that were administered by 
the authors in other studies of spelling, selected for reasons 
unrelated to the Sublexical Toolkit; and the rest were the 
most frequent English words according to the SUBTLEX-
US database (Brysbaert & New, 2009). The version 1.1 cor-
pus adds an additional 2688 (the next most-frequent words 
per the SUBTLEX-US database). The automated R-code 
based on the version 1.0 corpus successfully parses 99.0% 
of the words added in version 1.1, which is an indication that 
even the smaller corpus generalizes to most unseen words. 
Further details regarding diagnostics of the sufficiency of the 
corpus are presented in Appendix 3.

Parsing

Perhaps the most fundamental issue to resolve when measur-
ing sublexical properties is how to segment the string into 
constituents (i.e., how does the lexical item decompose into 
sublexical units?). There are three aspects to this issue: pars-
ing the phonological word form into sublexical units, parsing 
the orthographic word form into sublexical units, and encod-
ing the position of these units within their respective strings. 
For phonological parsing, we adopted the Maximum Onset 
Principle (MOP, Kahn, 2015; see also Chee et al., 2020), 
which has the advantage of being well grounded in theories 
of phonology as well as being readily operationalized for 
the purposes of sublexical spelling-sound mappings. This 
principle determines the location of syllabic boundaries by 
placing consonants in the onset position (i.e., as the start of 
a new syllable) unless doing so would lead to a phonotacti-
cally illegal utterance in English. That phonotactic legality 
is determined by the sonority hierarchy, which allows con-
sonant clusters so long as they are patterned as follows: the 
initial phoneme is /s/, which may be followed by a stop such 
as /p/ or /n/, which may be followed by a liquid /l/ or /ɹ/, or 
by a glide /j/ or /w/. For example, LOBSTER is parsed as 
LOB-STER and not LO-BSTER, because the cluster BST 
would violate the sonority hierarchy (/b/ cannot precede /s/), 
nor LOBS-TER, because the S should begin the second syl-
lable (/s/ can precede /t/). Application of the MOP results 
in an internally consistent framework for parsing a string of 
phonemes (a lexical item) into syllables, and those syllables 
are defined by consonants (optionally) in the onset, a vowel 
(mandatorily) in the nucleus, and consonants (optionally) in 
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the coda. This also then determines the onsets and rimes, the 
latter being simply the concatenation of vowel in the nucleus 
and any following consonants in the coda (see Fig. 2). It 
is also worth highlighting that the earlier work of Hanna 
et al. (1966) and the updates to that work by Fry (2004) and 
Berndt et al. (1987), suffer from inconsistencies in how word 
forms were parsed into syllables – and these inconsistencies 
necessarily had an impact on the measures of spelling-sound 
consistency. For example, SATYR was parsed as SAT-YR, 
which not only fails to follow the MOP but also contradicts 
the parsing of MARTYR (parsed as MAR-TYR).

Position coding

While the MOP provides a clear guide to parsing the words’ 
phonology, it does not address how to determine equiva-
lency of sublexical positions. The question of letter position 
encoding has been highly researched yet remains unresolved 
(see, e.g., Baciero et al., 2022; Gomez et al., 2008; Grainger, 
2018; Grainger & Van Heuven, 2004). To the best of our 
knowledge, no parallel research has investigated the encod-
ing of position in the context of cross-modal mappings, i.e., 
between the position of graphemes and the position of pho-
nemes (or higher-level units). In the seminal work of Hanna 
and colleagues (1966), sublexical mappings were considered 
in three positions: syllable-initial, medial, or final. In the 
recent work of Chee and colleagues (2020), positions were 
measured in serial order from the first syllable (e.g., onset 
of the first syllable, onset of the second syllable, the third, 
etc.). These approaches have serious consequences when 
computing spelling-sound consistency. For example, the 
serial order position schema implies that the phonograph-
eme /tʃ/ ➔ CH in the word CHAIR is independent of the 
one in MA-CHETE, and both of those are independent of the 
one in O-VER-CHARGE (as they are the onset of the first, 
second, and third syllables, respectively). In the syllable-
initial/medial/final scheme, on the other hand, all of those /
tʃ/ ➔ CH mappings are treated as being in the same position 
(syllable-initial).

When mapping phonographemes, the English Sublexical 
Toolkit does not use the serial position schema, as there is 
currently no particular evidence to support that sound–spell-
ing mappings are represented in this way. Indeed, there 
are reasons to question the plausibility of a serial position 
schema, which would imply (among other things) that learn-
ing the /tʃ/ in WHICH is spelled CH does nothing to inform 
one about the potential spelling of the /tʃ/ in OSTRICH 
(simply because the former is the coda of the first syllable 
whereas the latter is the coda of the second). Instead, the 
Sublexical Toolkit adopts and extends the scheme of Hanna 
and colleagues (1966) from three to five categories: word-
initial, syllable-initial, syllable-medial, syllable-final, and 
word-final. The additional distinction is whether the syllable 

is the first or last in the word; this was done based on the 
empirical observation that certain mappings never occur 
word-initial/final but do occur syllable-initial/final if the syl-
lable is internal. This both-ends scheme has found support 
both in studies of letter position in reading (e.g., Fischer-
Baum et al., 2011) and spelling (e.g., Fischer-Baum et al., 
2010) and verbal working memory (e.g., Henson, 1999). For 
example, parsing the word HAPPY by the MOP results in 
syllabification as HA-PPY, and as such the /p/ maps to PP. 
Per the three-position syllabic schema of Hanna and col-
leagues, /p/ ➔ PP is legal for initial positions – however, 
it is immediately apparent this is not true for the start of a 
word. Therefore, in the Sublexical Toolkit the mapping /p/ 
➔ PP is possible for syllable-initial, but not word-initial, 
mappings.

An analogous distinction is made at the onset/rime level: 
onsets are either word-initial or syllable-initial (onset of a 
second or later syllable), and rimes are either word-final or 
syllable-final (rime of a penultimate or earlier syllable). This 
effectively addresses the issue of how to handle rhymes in 
multisyllabic words – monosyllabic words are all treated as 
having only a word-final rime, whereas multisyllabic ones 
are composed of one or more syllable-final rimes and a sin-
gle word-final rime.

Pronunciation

While a word’s correct spelling is not subject to debate 
(alternative spellings or American/British differences not-
withstanding), the same is not true of pronunciation. There 
are multiple sources of variability in speakers’ pronuncia-
tion, including regional differences, social class, gender, age, 
and education (Rickford, 1996). Any measure of English 
spelling-sound consistency must grapple with the challenge 
presented by the fact that there is no monolithic, universal 
English language. For example, the well-documented cot-
caught merger (e.g., Labov et al., 2006) entails that speak-
ers who pronounce such words identically must have less 
consistent sound–spelling mappings compared to those who 
do not have the merger, as the merger of the two vowels /ɑ/ 
and /ɔ/ is not reflected in orthography2. Indeed, an intrigu-
ing direction for future research is to determine the extent to 
which individual differences in reading/spelling are attrib-
utable to idiosyncratic pronunciation (i.e., person-specific 
“accents”), which may affect the degree to which English 
sound–spelling mappings are perceived as (in)consistent. 
Individuals whose internal phonological representations are 
more consistently reflected in standardized spelling may be 

2 That is to say, the vowel /ɑ/ must map onto both O and AUGH for 
speakers with this particular merge, whereas those who maintain the 
distinction may map /ɑ/ to AUGH and /ɔ/ to O.
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at an advantage for learning to read and spell, relative to 
those whose dialects are more opaquely related to spelling.

In any case, across-speaker variability in pronunciation 
limits the ability of any consistency measure to account for 
behavioral data to the extent that the population sampled 
will vary in how well it matches with the “canonical” pro-
nunciations used to inform the consistency measure. Indeed, 
this is a considerable limitation of the database of Hanna 
and colleagues (1966), as it is apparent that not all of the 
phonological representations in their corpus reflect contem-
porary standard American English. For example, the AY in 
yesterday was mapped to the same vowel as the Y in baby 
and the UI in guitar – but contemporary standard American 
pronunciation maps the AY ➔ /eɪ/, the Y ➔ /i/, and the 
UI ➔ /ɪ/. To address this issue, the work at hand adopted 
two primary sources for determining the underlying pho-
nology in the corpus data used to construct the consistency 
measures. Specifically, the Carnegie Mellon Pronouncing 
Dictionary (Weider, 2005) was used as the primary determi-
nant of lexical phonology, and in instances where there were 
multiple pronunciations, all were included in the corpus, 
regardless of whether the alternatives were homographs (as 
in BASS /beɪs/ versus /bæs/) or regionalisms (as in PECAN 
/pi kɑn/ versus /pɪ kæn/). In instances where there was an 
apparent error in the dictionary or a missing entry, the Cam-
bridge English pronouncing dictionary (American accent) 
was consulted (Jones, 2011).

Morphology

While we acknowledge the evidence that sublexical and 
lexical processes are interactive in nature, the measures pre-
sented here are designed to reflect sublexical processes inde-
pendent of lexical influences. In particular, the consistency 
measures do not consider morphological representations of 
any form, inflectional or otherwise. This is necessary when 
applying the MOP to parse the phonology, because the 
resulting syllabic boundaries will routinely be at odds with 
morphologically defined boundaries (e.g., the MOP parses 
EATER as EA-TER, whereas morphologically the boundary 
is EAT-ER).

It is certainly true that lexical knowledge, such as know-
ing a word’s part of speech, will influence performance on 
tasks that require sound–spelling mappings, but by definition 
it will not inform the sublexical processes that the toolkits 
are intended to reflect. For example, the heard-pseudoword 
/klaɪd/ presented as a past-tense verb (“She /klaɪd/ the toy 
on the ground.”) is more likely to be spelled ending in -ED, 
such as CLIED, than when presented as a noun (“She bought 
two pounds of /klaɪd/), such as CLIDE. We do not consider 
it a limitation of the toolkit that it does not integrate such 
information, because it is designed to reflect stages of pro-
cessing that occur prior to, or perhaps are encapsulated from, 

lexical influences. Future work will determine how mor-
phological, semantic, and syntactic representations impinge 
upon reading and spelling processes even during pseudow-
ord tasks, but this is beyond the scope of the current toolkit.

Graphemes

One fundamental assumption we make is that the sublexical 
system requires a one-to-one mapping of graphemes to pho-
nemes. It is obvious that English does not have a one-to-one 
mapping of letters to phonemes (e.g., consider the homo-
phones NIGHT and KNIGHT), which may be why there is 
the common conception of “silent letters” and many studies 
on how silent letters are “read” (e.g., Ehri & Wilce, 1982; 
Gingras & Sénéchal, 2019; Perry et al., 2014). However, we 
conceptualize the sublexical system as requiring that every 
grapheme be mapped to a pronunciation, and thus in this 
sense there are no “silent letters”, only graphemes whose 
pronunciations differ from those of their constituent letters. 
For example, in the word WEIGH there are just two pho-
nemes, /w/ and /eɪ/ – in the Sublexical Toolkit, the mappings 
are /w/ ➔ W and /eɪ/ ➔ EIGH. One alternative framework 
might map the GH as “silent”, but such a framework would 
face the serious challenge of how to determine which letters 
are pronounced and which are “silent”.

In the recent work of Chee et al. (2020), a relatively small 
inventory of consonant graphemes was used, with all other 
letters assigned to the vowel graphemes. For example, the 
only grapheme corresponding to /m/ is listed as M (Chee 
et al., 2020, Table 11) – it is unclear how this allows for 
accounting for words like COMMA, LAMB, or DAMN. In 
the earlier works of Fry (2004), Berndt et al. (1987), and 
Hanna et al. (1966), a larger inventory of graphemes was 
used, presumably on the original basis of the procedure of 
Hanna and colleagues that focused on spelling (i.e., given 
their corpus of ≈17,000 words, they listed all graphemes 
needed to spell the phonemes in that corpus). For example, 
/m/ corresponds to potentially M, MM, MN, and LM (Fry, 
2004). The Sublexical Toolkit began with the graphemic 
inventory originated by Hanna and colleagues (1966) but 
made parsimonious adjustments over the course of incor-
porating words into the corpus. Specifically, letters were 
assigned to graphemes such that the final inventory had as 
few unique graphemes as possible. For example, ROGUE 
could potentially be parsed in three ways:

(1) With /g/ ➔ GUE
(2) With /g/ ➔ G, and so consequently the vowel /oʊ/ ➔ 

O_UE
(3) With /g/ ➔ GU and /oʊ/ ➔ O_E
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The first option was employed by Hanna and colleagues 
and was restricted to syllable-final positions as in ROGUE 
and MORGUE. The second option is appealing because it 
allows the /g/ to have the most common spelling, G, but it is 
unappealing because it requires positing a grapheme made of 
noncontiguous letters (/oʊ/ ➔ O_UE). That problem would 
be exacerbated by encountering other vowel mappings in a 
similar context; for example, LEAGUE would require an 
EA_UE grapheme. Instead, the third option was adopted for 
the Sublexical Toolkit based on the principle of parsimony 
(Epstein, 1984), because it minimizes the total number of 
graphemes required. It does so because both the GU and 
O_E graphemes are necessary for other words – the GU as 
in GUESS (not included in the original Hanna et al., 1966 
nor the Berndt et al., 1987, but adopted by Fry, 2004) and 
the O_E as in GONE.

In other words, the third option allows for the words 
ROGUE, GUESS, and GONE to be represented with six 
graphemes total (R, O_E, GU, SS, G, and N), whereas the 
first option would require eight (R, O, GUE, G, UE, SS, 
O_E, and N) and the second option would require at least 
seven (R, O_UE, G, UE, SS, O_E, and N). This parsimoni-
ous approach was taken throughout the process of building 
the toolkit, keeping the number of graphemes to a minimum 
while also providing a principled heuristic for whether or 
not to adopt new graphemes. It is also worth noting that this 
principle did not necessarily result in grouping orthographic 
consonants and vowels together to form graphemes as with 
GU. For example, while QU is sometimes mapped to /k/, 
as in QUICHE, in other words the Q is mapped separately 
from the U, as in QUICK, where the U maps to /w/. That 
did not require positing an additional phonographeme, as 
the mapping of U to /w/ is not limited to the QU bigram, 
but also occurs in words like CUISINE, DISTINGUISH, 
and PERSUADE. All of the graphemes identified for the 
Sublexical Toolkit that occur at least 1% of the time and in at 
least two different word forms are presented in Appendix 1 
(for vowels) and Appendix 2 (for consonants), as a series of 
phoneme-grapheme correspondences (e.g., /f/ spelled F, FF, 
PH, or GH); all graphemes including those occurring very 
infrequently are accessible through the English Sublexical 
Toolkit itself available on OSF (https:// osf. io/ e95qw/? view_ 
only= 167fb 28c48 42491 a885b 91435 c57b2 f0).

Final E’s

One hallmark of English spelling is the prevalence of the 
“silent E”, referring to when the letter E appears after a con-
sonant but does not receive its own pronunciation. It has long 
been noted that this E tends to have an effect on the quality 
of the vowel, typically “lengthening” (see, e.g., Joshi et al., 
2008) – hence the distinction between BID /bɪd/ and BIDE 
/baɪd/. We prefer the term “final E” instead, to highlight the 

fact that these letter E’s do in fact convey information about 
pronunciation, and moreover, some are not silent in any 
sense but instead reflect a non-linear mapping between let-
ters and sounds. As such, there are two categories of final E: 
those traditionally called “silent E” and those we call “non-
linear E”. Instances of the first category are always referred 
to using underscores, as in the A_E of BAKE or O_E of 
POSE – these silent E’s modify the quality of a preceding 
vowel. Unlike the silent E’s, non-linear E’s do not modify 
a preceding vowel, but rather represent a vowel themselves, 
specifically either schwa /ə/ or /ʌ/. This second category of 
final E is very clearly seen when comparing words such as 
MUSCLE and MUSSEL. While they are pronounced identi-
cally, the /əl/ at the end of the words maps directly (linearly) 
onto the EL in MUSSEL, whereas the schwa /ə/ in MUSCLE 
maps onto the final, non-linear E as though the order of the 
phonemes were reversed (the phonological order is vowel + 
consonant, but the orthographic order is consonant + vowel). 
In some works, these are treated as syllabic consonants 
(including that of Hanna et al., 1966). Within the corpus 
used to build the toolkit, in addition to the common final -LE 
ending (TABLE, MAPLE, etc.) we also encountered less 
frequent but analogous instances of -RE (e.g., THEATRE). 
We further added to this category the idiosyncratic ONE 
and ONCE, including words in which they are affixed (e.g., 
SOMEONE). Consistent with the idea that no letter is truly 
silent, these E’s were treated as non-linear mappings of /ʌ/. 
For example, the phonology of ONE, /wʌn/, is mapped as 
/w/ ➔ O, /ʌ/ ➔ (non-linear) E, /n/ ➔ N.

The letter X

The letter X is unique in that it is the only instance (in Eng-
lish) of a single grapheme used to represent a consonant 
cluster, typically /ks/ or /gz/. A consequence of employ-
ing the MOP is that X is “divided” across syllables when 
appearing in multisyllabic words. For example, TAXI ➔ 
/'tæk si/ implies the X is represented both as the coda of the 
first syllable (/k/) and the onset of the second syllable (/s/). 
We adopt the same accommodation to the MOP as Chee 
et al. (2020) by including the letter X with the earlier syl-
lable, effectively parsing the word as TAX-I. An alternative 
would be TA-XI, which in fact may be predicted by alterna-
tive, orthographic-based, parsing rules – but it would suggest 
a phonotactically illegal English syllable, /ksi/.

We note that others, including the seminal work of Hanna 
and colleagues (1966), have at times mapped other graph-
emes onto phonological units consisting of more than one 
phoneme, most conspicuously /kw/ ➔ QU (as in QUICK 
or QUIET). This was never done in the English Sublexi-
cal Toolkit, as the phonographeme level of representation is 
defined to be the smallest plausible mapping, i.e., individ-
ual phonemes to individual graphemes – as such, the letter 

https://osf.io/e95qw/?view_only=167fb28c4842491a885b91435c57b2f0
https://osf.io/e95qw/?view_only=167fb28c4842491a885b91435c57b2f0
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X is the only exception. For example, the /kw/ ➔ QU of 
Hanna et al. (1966) was decomposed into /k/ ➔ Q and /w/ 
➔ U. This decision was also compatible with the criteria 
for deciding on the graphemic inventory (see “Grapheme 
inventory and grapheme parsing”), as some words with QU 
cannot be mapped to /kw/ (as in QUICHE), and some words 
require /w/ ➔ U even in the absence of Q (as in CUISINE).

Measures available in the English Sublexical 
Toolkit

The methods described above were used to construct a sys-
tem for extracting a number of sublexical regularities from 
the lexicon along phonological and orthographic dimensions. 
These methods were applied to a corpus of over 13,000 Eng-
lish words to compute their sublexical sound–spelling con-
sistency and frequency measures. For an analysis of the suf-
ficiency of the corpus size, see Appendix 3. Critically, these 
words also formed the basis for measuring the consistency/
frequency of any hypothetical string of letters mapped to any 
potential string of phonemes (or vice versa). For example, 
the rime -ASTE was found to be pronounced as -/eɪst/ in 
88% of words in the corpus (e.g., WASTE, TASTE) and as 
-/æst/ in 12% (e.g., CASTE). The Sublexical Toolkit can be 
used not only to look up the values for words included in the 
corpus, such as WASTE and CASTE, but also to compute 
the values for words not included in the corpus (regardless 
of their lexical status). This includes pseudowords such as 
DASTE, which would be most consistent if pronounced as 
/deɪst/ rather than as /dæst/ (but either pronunciation would 
be more consistent than, e.g., /dɪst/ or /dust/).

In total, there are ten measures offered by the toolkit: 
p(P|G) reading consistency, p(G|P) spelling consistency, 
phoneme frequency, grapheme frequency, and phonograph-
eme frequency, each at the phonographeme and the onset/
rime level. They are available both segmentally (e.g., the 
consistency of the word-final CH ➔ /k/ mapping in STOM-
ACH) and as summary statistics over the whole word (e.g., 
the mean consistency of STOMACH averaging across S ➔ 
/s/, T➔ /t/, O ➔ /ʌ/, etc., or the minimally or maximally 
consistent segment across the word). Currently, all of the 
measures are weighted by type, not token (e.g., there are 
two electronic formats of the toolkit, Excel worksheets and 
R code, which provide the same information but differ some-
what in their ease of use. In general, the R code Sublexical 
Toolkit is very fast both at processing words and searching 
for words or segments with desired properties, whereas the 
Excel worksheets better support detailed inspection of single 
words.

There are two particularly novel contributions of these 
tools. First, they can be used to compute the measures for 
any desired string, because there is no limitation to the 

corpus of ≈ 14,000 word; rather, those words form the basis 
on which any strings can be judged as consistent. This is 
similar to the correspondence tables of Hanna et al. (1966) 
and the updated versions from Fry (2014) and Berndt et al. 
(1987), except those have not been converted into digital 
tools. Moreover, those resources suffer from a number of 
errors and internal inconsistencies originating in the 1966 
work of Hanna and colleagues, as described throughout this 
Methods section. Second, the methods used to develop the 
measures are themselves novel – in particular, the frequency 
measures are unlike any previously published in the litera-
ture. While orthotactic unigram, bigram, and trigram fre-
quency measures are available elsewhere (as are analogous 
phonotactic measures), no database has quantified the fre-
quency of graphemes, which are conceptually distinct from 
those orthotactic units. The phonographeme frequency is 
also an entirely novel measure, as is the concept of non-
directional sublexical units. Finally, it is also worth noting 
that the phoneme frequency measure is novel relative to 
uniphone frequency measures available from phonotactic 
databases (see Vitevitch & Luce, 2004), because here the 
phonemes are coded according to the five-position schema 
(word-initial/final, syllable-initial/medial/final), which has 
not previously been used to investigate the effects of pho-
neme frequency.

We have included vignettes and video guides with further 
details and practical explanations of how to use the various 
components of the toolkit (both Excel-based and R-based) 
on OSF at: https:// osf. io/ e95qw/? view_ only= 167fb 28c48 
42491 a885b 91435 c57b2 f0.

Empirical validations

The following sections present a series of empirical vali-
dations of the toolkit measures: (1) a comparison of the 
toolkit’s measures with two other sets of measures available 
in the literature; (2) a series of stepwise regression analyses 
of English Lexicon Project data (ELP; Balota et al., 2007) to 
explore the contribution of the toolkit measures to explain-
ing variance in reading behaviors after controlling for sur-
face and lexical variables; and (3) a novel analysis of the 
pseudoword reading data of Pritchard et al. (2012) to assess 
the toolkit measures’ ability to account for the within-item 
variability in pseudoword pronunciations. An internal vali-
dation of the Sublexical Toolkit3, specifically the sufficiency 
of the corpus size to establish reliable measures, is also pre-
sented in Appendix 3.

3 N.B.: the results of the analyses in this section reflect version 1.0 
of the toolkit, whereas the internal validations presented in Appendix 
3 draw upon comparisons between version 1.0 and version 1.1 of the 
toolkit (e.g., to assess the stability of the measures as the corpus size 
increases).

https://osf.io/e95qw/?view_only=167fb28c4842491a885b91435c57b2f0
https://osf.io/e95qw/?view_only=167fb28c4842491a885b91435c57b2f0
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Comparisons with other consistency 
measures

Previous efforts to develop English sound–spelling consistency 
measures have varied considerably in their methods. Nonethe-
less, given that they have had some success in accounting for 
behavioral data with reaction time and accuracy in lexical deci-
sion and oral reading of real words, significant positive cor-
relations are expected between the various measures. Here, we 
examine the correlations between the set of toolkit measures 
with two other sets: the Onset and Rime consistency norms 
from Chee et al. (2020) and the Friends/Enemies (F/E) consist-
ency measures from Plaut et al. (1996). These correlations are 
useful for understanding the extent to which different meth-
odological choices impact the resulting consistency measures 
(e.g., how to account for syllabic position, how to parse the 
graphemes, etc.). In addition, they give indications as to how 
much consistency measures vary as a consequence of different 
grain sizes and different directions, p(P|G) and p(G|P).

Materials We first identified words that are coded in our 
database as well as those available in Chee et al. (2020) 
and F/E measures of Plaut et al. (1996). Of the words in the 
toolkit database, 9164 were also coded for rime consistency 
by Chee et al. (2020), and 9016 for onset consistency.4 We 
specifically used the “composite” measures from Chee et al., 
which are the mean values across all syllables in the word, 
and so the toolkit measures used for this purpose were also 
the mean values. For the F/E measure, which by definition 
corresponds just to the rime, 2861 words were coded in our 
database – this number is smaller because the F/E measure 
is computed only for monosyllabic words, whereas the other 
measures included in this analysis are for both monosyllabic 
and multisyllabic words.

Analyses The Pearson correlation between each set of meas-
ures was computed, without correction for multiple compari-
sons. As reported in Table 1, the vast majority of the cor-
relations that are significant have p values < 0.001, and so 
would survive even stringent corrections such as Bonferroni.

Results As shown in Table 1, most pairwise correlations 
between measures are significant and positive. Only five cor-
relations are non-significant, three of those being with the 
Sublexical Toolkit phoneme and grapheme frequency meas-
ures – this is not surprising, as there is no particular reason 
that phoneme or grapheme frequency should be correlated 
with consistency measures at the level of onsets or rimes. 

Table 1   Frequency = toolkit (log) frequency measures. p(G|P) = 
spelling consistency. p(G|P) = reading consistency. Highlighted cells 
indicate a conceptual match between measures, where the highest 

correlations are predicted (e.g., toolkit p(G|P) onset with Chee et al. 
(2020)’s p(G|P) onset consistency. *** p < 0.001, ** p < 0.01, ~ p < 
0.10

Onsets - Chee et al. (2020) 
(n = 9,016)

Rimes - Friends/Enemies 
(n = 2,861)

Rimes - Chee et al. (2020) 
(n = 9,164)

Frequency p(G|P) p(P|G) p(G|P) p(P|G) p(G|P) p(P|G)
Phonograp
hemes 0.156 *** 0.177 *** 0.364 *** 0.192 *** 0.339 *** 0.149 ***

Phonemes -0.117 *** 0.082 *** -0.016 0.075 *** 0.006 0.053 ***

Graphemes 0.085 *** -0.002 0.303 *** 0.080 *** 0.277 *** -0.046 ***

p(G|P) p(G|P) p(P|G) p(G|P) p(P|G) p(G|P) p(P|G)
Phonograp
hemes 0.405 *** 0.197 *** 0.459 *** 0.166 *** 0.425 *** 0.203 ***

Onsets 0.815 *** 0.309 *** 0.060 ** 0.034 ~ 0.037 *** 0.216 ***

Rimes 0.053 *** 0.108 *** 0.867 *** 0.249 *** 0.718 *** 0.236 ***

p(P|G) p(G|P) p(P|G) p(G|P) p(P|G) p(G|P) p(P|G)
Phonograp
hemes 0.189 *** 0.435 *** 0.125 *** 0.245 *** 0.098 *** 0.437 ***

Onsets 0.289 *** 0.667 *** 0.080 *** 0.011 0.056 *** 0.124 ***

Rimes 0.150 *** 0.175 *** 0.185 *** 0.594 *** 0.141 *** 0.695 ***

4 The discrepancy between the number of items coded for onset and 
for rime is due to 148 words with an empty onset position (i.e., all 
syllables are vowel-initial). It should be noted that for such words, 
the Sublexical Toolkit only provides Rime values. While Chee 
et  al. (2020) do compute onset values for vowel-initial syllables, it 
is unclear what those reflect, especially given the fact they all have 
one fixed value regardless of the underlying phonemes or graphemes 
(e.g., the onset consistency for the EA in EAT is identical to that of 
EA in EARTH and the EE in EEL).
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The phonographeme frequency measure is more highly cor-
related with the consistency measures than the phoneme or 
grapheme frequency measures, however. The implication 
is that more consistent spellings are associated with more 
frequent phonographeme units, which is nearly a tautology 
(although frequency and consistency are not the same, it 
stands to reason that more consistent mappings must gener-
ally be more frequent in the lexicon).

The cells highlighted in yellow in Table 1 draw atten-
tion to the correlations that logically should be the highest, 
as they represent a conceptual match between the meas-
ures: they are the correlations between measures matching 
in both direction and grain size. Indeed, these six cor-
relations are the highest overall, ranging from 0.594 (for 
p(P|G) rime consistency with the F/E measure) to 0.867 
(for p(G|P) rime consistency with the F/E measure). The 
other pattern of note is that the toolkit p(G|P) measures 
are generally more similar to the F/E p(G|P) measures, 
whereas the toolkit p(P|G) measures are generally more 
similar to the Chee et al. p(P|G) measures.

Summary Generally, the correlations between conceptually 
similar methods are high, although in some specific instances 
perhaps not as high as one might expect. It is worthwhile review-
ing the primary differences between the approaches that might 
account for the discrepancies. The F/E measure is based only on 
monosyllabic words, which necessarily limits how much it might 
correspond to any approach that also accounts for multisyllabic 
words. Moreover, the way in which multisyllabic words influ-
ence the consistency measures is different between the approach 
taken here and that of Chee et al. (2020), due to the way in which 
position is coded. The approach of Chee and colleagues uses a 
serial position coding scheme and consequently, although both 
monosyllabic and multisyllabic words contribute jointly to com-
puting consistency, it is only the first syllable of multisyllabic 
words that have an impact on the consistency values for mono-
syllabic words. This is unlike the toolkit approach, which uses a 
both-ends position coding scheme, and consequently it is both 
the first and the last syllable of multisyllabic words that have an 
impact on the consistency values for monosyllabic words. As 
a concrete example, this means that the rhyme -/ɪn/ as in KIN 
is treated as the same as that in KIN-DRED per the Chee et al. 
approach (both are first syllable rimes), whereas for the tool-
kits’ approach it is treated the same as that in NAP-KIN (both 
are word-final rimes). Which of these approaches is closest to 
psychological reality remains an open question.

Regression of ELP data

As a further validation of the toolkits, we conducted a 
series of stepwise multiple regression analyses using data 
from the English Lexicon Project (ELP; Balota et  al., 

2007). The goal of these analyses is both to confirm that 
the toolkit measures contribute significant unique vari-
ance in explaining behavioral data from real word reading 
tasks (naming and lexical decision), and to demonstrate 
a theoretical contribution of the various measures. Spe-
cifically, the stepwise procedure was used to ascertain the 
extent to which the theoretical order of precedence of the 
measures is reflected empirically in their relative impor-
tance. In addition, these analyses first control for a number 
of surface and lexical variables, which is a conservative 
approach to assessing the importance of the consistency 
measures.

To complement the stepwise regression, we also present 
the results of elastic net regression to uncover the rela-
tive importance of all the variables: surface, lexical, and 
sublexical, both the toolkit measures and those from Chee 
et al., 2020 (the F/E measures were not included as they 
are available only for monosyllabic words). Elastic net 
regression can be used to determine an optimized subset 
of predictors from a larger pool, without any a priori deci-
sions about the order in which variables should be tested, 
unlike stepwise regression. It also has advantages over 
other forms of regression in terms of dealing with collin-
earity, which is important here due to correlations between 
the various predictors (Tomaschek et al., 2018). Here we 
specifically use elastic net regression with repeated cross-
validation, splitting the data into training and testing sets 
in order to report a measure of the relative importance 
when maximally accounting for the behavioral data from 
the ELP.

Materials In total, 9164 words were both available in the 
ELP data set (Balota et al., 2007) and the toolkit corpus. 
In the instance of homographs, the pronunciation with the 
higher consistency was selected for the toolkit measures. 
Both the Naming and Lexical Decision data were extracted 
from the ELP, and both reaction time (RT) and accuracy 
were modeled, resulting in a total of four separate stepwise 
regressions. In addition to the toolkit measures, the follow-
ing surface and lexical variables were also retrieved from 
the ELP database (or elsewhere, as noted in the follow-
ing): Length (in letters), Ortho_N (number of orthographic 
neighbors), Phono_N (number of phonological neighbors), 
Freq_N (mean frequency of orthographic neighbors), Freq_
Phono_N (mean frequency of phonological neighbors), OLD 
(mean Levenshtein distance to the 20 closest orthographic 
neighbors), OLDF (sum frequency of those neighbors), 
PLD (mean Levenshtein distance to the 20 closest phono-
logical neighbors), PLDF (sum frequency of those neigh-
bors), NSyll (number of syllables), NMorph (number of 
morphemes), and LgSUBTLWF (log word frequency, Sub-
tlexUS database; Brysbaert & New, 2009). For the elastic net 
regression only, all of the consistency measures from Chee 



6838 Behavior Research Methods (2024) 56:6826–6861

et al. (2020) were also included (consistency of the Onset, 
Nucleus, Coda, Oncleus [onset+nucleus], and Rime, in both 
the reading and spelling directions). For all of the sublexical 
measures the mean value, across all segments in the word, 
was entered, rather than the minimum (or the sum, which is 
confounded with word length).

Stepwise regression analyses Multiple linear regression 
models were computed in a stepwise fashion, similar to the 
approach of Chee et al. (2020), in six steps. At each step 
past the first, sublexical variables were entered both as main 
effects and as interactions with word frequency (LgSUB-
TLWF), in consideration of the well-established interaction 
between lexical frequency and sublexical measures like con-
sistency (e.g., Andrews, 1982; Cortese & Simpson, 2000). In 
addition, multicollinearity was assessed at each step by the 
use of variance inflation factors (VIF), computed with the R 
package car (version 3.1-0; Fox and Weisberg, 2019). All of 
the sublexical variables had VIF scores < 10 when entered 
at their respective steps in the model5.

Step one: The base model included all surface and lexi-
cal variables listed above in Materials plus two toolkit 
measures, Phoneme_LgFreq and Grapheme_LgFreq. 
This order of entry is arguably a conservative test of the 
value of the consistency measures, as it is not clear that 
lexical variables impinge upon outcome outcomes such 
as naming latency prior to sublexical variables. Nonethe-
less, these variables were entered first, as the focus is on 
determining the unique contribution of the various toolkit 
measures to explaining variance in the ELP behavioral 
data.
Step two: The Phonographeme_LgFreq measure was 
entered second, on the basis that graphemic parsing and 
phonemic assignment occur early in the reading process 
(see Fig. 1). This measure does not reflect consistency 
and as such is not specific to either the reading or spell-
ing direction.
Step three: Phonographeme p(P|G) reading consistency 
was entered third, given the hypothesis that consistency 
at lower-level units takes precedence over high levels, 
although a reasonable case could be made for the reverse.
Step four: Onset/Rime p(P|G) reading consistency was entered 
fourth, reflecting the higher-level nature of those units.
Step five: Phonographeme p(G|P) spelling consistency 
was entered fifth, considering that feedback from pho-
nological processing should arise only after feedforward 
processing begins.

Step six: Onset/Rime p(G|P) spelling consistency was 
entered last, again considering that feedback and higher-
level units might be expected to affect behavior last.

Table 2 reports the beta coefficients, associated p values, 
and the change in adjusted R2 (∆R2) for each variable when 
first entered in its respective stepwise model (e.g., the reported 
beta coefficient for Phonographeme p(P|G) reflects the magni-
tude and direction of its effect on the outcome measure when 
entered in step 3, not its value in the final model of step 6). We 
also report, in Table 3, the Bayesian information criterion (BIC) 
for each stepwise model; the BIC reflects a more conservative 
approach to identifying the best model, as it applies a greater 
penalty for model complexity and thus will tend to select a 
model with fewer variables. We adopt the common interpreta-
tion that a change in BIC (∆BIC) < 2 provides essentially no 
support, ∆BIC of 4–7 provides considerable support, and ∆BIC 
> 10 provides substantial support for the more complex model 
relative to the less complex one (Burnham & Anderson, 2004). 
The regression models, R2, and BIC values were all computed 
in R with the base stats package (version 4.2.1; R Core Team, 
2022). Significance of the ∆R2 was assessed with F-statistics 
provided by the anova function in the stats package.

Stepwise regression results 

Step one: As shown in Table 2, the surface and lexical 
variables entered together in step one explained significant 
variance: total R2 = 0.41 for Naming RT, 0.18 for Naming 
Accuracy, 0.51 for Lexical Decision RT, and 0.33 for Lexi-
cal Decision Accuracy. With respect to the toolkit measures 
in this base model, first of all Phoneme_LgFreq was a sig-
nificant predictor of both Naming RT and Accuracy such 
that words with more frequent phonemes were read more 
slowly (p < 0.001) and less accurately (p < 0.05) relative to 
words with less frequent phonemes. Because the direction 
of these effects is opposite what one might expect, we exam-
ined the first-order correlations between Phoneme_LgFreq 
and Naming RT and Accuracy to determine whether there 
might be a suppression effect in the multiple regression. This 
revealed that the association with RT was positive even with-
out controlling for the other variables in step one, whereas 
the association with Accuracy was indeed reversed6. There 
was no significant relationship between Phoneme_LgFreq 
and Lexical Decision RT or Accuracy.
Second, Grapheme_LgFreq was a significant predictor of 
all four outcomes (p’s < 0.05), such that responses were 

5 The step one model, with only surface and lexical variables, had a 
VIF ≈ 10.5 for OLD.

6 As a further verification of the Toolkit’s Phoneme_LgFreq meas-
ure, we also assessed the correlation between Naming RT and Accu-
racy and the phonotactic measures of Vaden et  al. (2009). Those 
phonotactic measures showed the same pattern of association as the 
Toolkit’s: slower RT but higher accuracy for words with higher com-
pared to lower phonotactic probability.
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both faster and more accurate for words with relatively 
more frequent graphemes.
Step two: The effect of Phonographeme_LgFreq was 
significant for all four outcome measures (p’s < 0.001), 
as were the interactions with word frequency. For both 
Naming and Lexical Decision, words with frequent pho-
nographemes were responded to more quickly and more 
accurately. This effect was attenuated for high- compared 

to low-frequency words for Naming RT, Naming accu-
racy, and Lexical Decision accuracy. The reverse was true 
of Lexical Decision RT (the effect was attenuated for low- 
compared to high-frequency words), although this p value 
was less robust (p ≈ 03, compared to p ≈ 0.009 for Lexi-
cal Decision accuracy and < 0.001 for Naming RT and 
accuracy). The ∆R2 was significant for all four outcome 
measures, explaining an additional 1.14% for Naming RT, 

Table 2  Results of the stepwise regression of English Lexicon Project 
(ELP) Naming and Lexical Decision data, both reaction time (RT) 
and accuracy. Bolded values refer to R2 values, all other values refer 

to beta coefficients. *** p < 0.001, ** p < 0.01, * p < 0.05, ~ p < 
0.10. RT = reaction time

Naming Lexical Decision

RT Accuracy RT Accuracy

Surface and lexical variables
Length 0.0455*** –0.0013 0.0108*** 0.0083***
Ortho_N – 0.0030** 0.0006* 0.0027** 0.0001
Phono_N – 0.0005 – 0.0003* 0.0017*** –0.0008**
Freq_N 0.0001 0.0000 0.0028** – 0.0008~
Freq_N_P 0.0005 – 0.0003 0.0034*** – 0.0008~
OLD 0.0425*** 0.0003 0.1002*** – 0.0281***
OLDF 0.0392*** – 0.0069*** 0.0286*** –0.0175***
PLD 0.0418*** –0.0067*** 0.0313*** – 0.0014
PLDF 0.0348*** – 0.0061*** 0.0286*** – 0.0155***
NSyll 0.0387*** – 0.0116*** 0.0706*** – 0.0149***
NMorph – 0.0916*** 0.0174*** – 0.0632*** 0.0317***
Phoneme_LgFreq 0.2153*** – 0.0110* – 0.0001 0.0132
Grapheme_LgFreq – 0.1526*** 0.0252*** – 0.0543*** 0.0174*
LgSUBTLWF – 0.1160*** 0.0219*** – 0.1766*** 0.0711***
Adjusted R2 0.4095 0.1765 0.5125 0.3338
Consistency variables
Phonographeme_LgFreq – 0.0757*** 0.0199*** – 0.0312*** 0.0160***
interaction with LgSUBTLWF 0.0086*** – 0.0049*** – 0.0041* – 0.0024**
Adjusted R2 0.4209 0.2024 0.5145 0.3365
∆R2 0.0114*** 0.0259*** 0.0021*** 0.0028***
Phonographeme p(P|G) – 0.0054 0.0041** – 0.0135* 0.0052~
interaction with LgSUBTLWF 0.0225*** – 0.0043*** 0.0028 0.0021*
Adjusted R2 0.4270 0.2083 0.5148 0.3369
∆R2 0.0061*** 0.0059*** 0.0003* 0.0004*
Onset/Rime p(P|G) – 0.0354*** 0.0058*** – 0.0122*** 0.0056***
interaction with LgSUBTLWF 0.0180*** – 0.0034*** 0.0006 – 0.0025~
Adjusted R2 0.4352 0.2140 0.5155 0.3379
∆R2 0.0082*** 0.0057*** 0.0007*** 0.0009***
Phonographeme p(G|P) 0.0318*** – 0.0087*** 0.0323*** – 0.0075**
interaction with LgSUBTLWF 0.0238*** – 0.0040*** 0.0063* 0.0007
Adjusted R2 0.4411 0.2206 0.5178 0.3384
∆R2 0.0059*** 0.0066*** 0.0023*** 0.0005*
Onset/Rime p(G|P) – 0.0086* 0.0001 – 0.0006 0.0010
interaction with LgSUBTLWF 0.0097** – 0.0018* 0.0045 – 0.0019
Adjusted R2 0.4417 0.2209 0.5178 0.3383
∆R2 0.0007** 0.0003~ 0.00001 – 0.00002
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2.49% for Naming Accuracy, 0.21% for Lexical Decision 
RT, and 0.28% for Lexical Decision Accuracy.
Step three: The effect of Phonographeme p(P|G) consist-
ency was significant for Naming accuracy (p < 0.01) and 
for Lexical Decision RT (p < 0.05). While it was not sig-
nificant for Naming RT or Lexical Decision accuracy, the 
interactions with lexical frequency were significant for all 
but Lexical Decision RT (p’s < 0.05). Specifically, For 
Naming, words with higher reading consistency were read 
more quickly and more accurately, and these effects were 
significantly greater for low-frequency compared to high-
frequency words. For Lexical Decision, words with higher 
reading consistency were responded to more quickly and 
more accurately, but in the case of accuracy the effect was 
greater for high- compared to low-frequency words. The 
∆R2 was significant for all four outcome measures (p’s < 
0.001), explaining an additional 0.61% for Naming RT, 
0.59% for Naming Accuracy, 0.03% for Lexical Decision 
RT, and 0.04% for Lexical Decision Accuracy.
Step four: The effect of Onset/Rime p(P|G) consist-
ency was significant for all four outcome measures (p’s 
< 0.001), with responses being both faster and more 
accurate for words with greater reading consistency. 
The interaction with word frequency was significant for 
both Naming outcomes (p’s < 0.001) but neither of the 
Lexical Decision outcomes (p’s > 0.05). For Naming, the 
effects of onset/rime reading consistency were greater for 
low- compared to high-frequency words. The ∆R2 was 
significant for all four outcome measures (p’s < 0.001), 
explaining an additional 0.82% for Naming RT, 0.57% for 
Naming Accuracy, 0.07% for Lexical Decision RT, and 
0.09% for Lexical Decision Accuracy.

Step five: The effect of Phonographeme p(G|P) spelling 
consistency was significant for all four outcome meas-
ures (p’s < 0.001 except for Lexical Decision Accuracy, 
p < 0.01). The interaction with word frequency was sig-
nificant for both Naming outcomes (p’s < 0.001) and for 
Lexical Decision RT (p < 0.05) but not Lexical Decision 
Accuracy (p < 0.10). Interestingly, for Naming, words 
with higher spelling consistency were read more slowly 
and less accurately, and these effects were significantly 
greater for high-frequency compared to low-frequency 
words. For Lexical Decision, as with Naming words 
with higher spelling consistency were responded to more 
slowly and less accurately, and this effect on RT was 
again greater for high- compared to low-frequency words. 
These findings may indicate interference/competition due 
to feedback. The ∆R2 was significant for all four outcome 
measures (p’s < 0.001 except for Lexical Decision Accu-
racy, p < 0.05), explaining an additional 0.59% for Nam-
ing RT, 0.66% for Naming Accuracy, 0.23% for Lexical 
Decision RT, and 0.05% for Lexical Decision Accuracy.
Step six: The effect of feedback Onset/Rime p(G|P) spell-
ing consistency was significant only for Naming RT (p 
< 0.05), and the interaction with word frequency was 
significant for both Naming RT (p < 0.01) and Naming 
Accuracy (p < 0.01); no significant effects were found 
for Lexical Decision RT (p’s > 0.10). For Naming RT, 
words with consistent mappings were read more quickly, 
and this effect was significantly greater for low-frequency 
compared to high-frequency words. For Naming Accu-
racy, the significant interaction of consistency by word 
frequency indicated that low-frequency words relative to 
high-frequency words were read more accurately if the 

Table 3  BIC and ∆BIC for each regression model. ∆BIC < 2 provides essentially no support, ∆BIC of 4–7 provides considerable support, and 
∆BIC > 10 provides substantial support for the more complex model relative to the less complex one. RT = reaction time

Naming Lexical decision

RT Accuracy RT Accuracy

Model BIC ∆BIC BIC ∆BIC BIC ∆BIC BIC ∆BIC

Surface and Lexical Variables – 575 – 26899 – 1943 – 14800
+ Phonographeme_LgFreq – 728 – 153 – 27073 – 175 – 1970 – 27 – 14824 – 24
× LgSUBTLWF – 738 – 10 – 27175 – 102 – 1966 4 – 14822 2
+ Phonographeme p(P|G) – 729 9 – 27173 2 – 1962 3 – 14816 5
× LgSUBTLWF – 819 – 89 – 27227 – 54 – 1955 7 – 14811 5
+ Onset/Rime p(P|G) – 901 – 82 – 27259 – 32 – 1961 – 6 – 14813 – 2
× LgSUBTLWF – 934 – 33 – 27276 – 17 – 1952 9 – 14808 5
+ Phonographeme p(G|P) – 963 – 29 – 27317 – 40 – 1984 – 32 – 14807 0
× LgSUBTLWF – 1014 – 51 – 27338 – 21 – 1979 4 – 14798 9
+ Onset/Rime p(G|P) – 1009 5 – 27329 9 – 1970 9 – 14789 9
× LgSUBTLWF – 1009 0 – 27325 4 – 1963 7 – 14782 8
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mapping was consistent. The ∆R2 was significant only for 
Naming RT (p < 0.01) and marginally so for accuracy (p 
< 0.10), explaining an additional 0.07% for Naming RT 
and 0.03% for accuracy.

The BIC values are reported in Table 3 for each stepwise 
regression, reporting main effects prior to interactions. Neg-
ative ∆BIC indicates support in favor of the more complex 
model and positive ∆BIC indicates support against the more 
complex model. Naming RT: all but two measures have sub-
stantial support for improving model fit. The first exception 
is Phonographeme p(P|G), which has considerable support 
against being included, however there is substantial support 
in favor of its interaction with word frequency. This sug-
gests that reading consistency’s effects on Naming are par-
ticularly tied to lexical frequency (e.g., only low-frequency 
words benefit from having consistent mappings). Second, 
there is moderate evidence against including Onset/Rime 
p(P|G), and no evidence in support of it interacting with 
word frequency. Naming Accuracy: the pattern of results 
mirrors that for Naming RT. Lexical Decision RT: only 
Phonographeme_LgFreq, Onset/Rime p(P|G) reading con-
sistency, and Phonographeme p(G|P) spelling consistency 
receive considerable or substantial support. There is con-
siderable support against including any of the interactions 
with word frequency as well as against Onset/Rime p(G|P) 
spelling consistency. Lexical Decision Accuracy: there is 
substantial support only for Phonographeme_LgFreq, and 
considerable support against most of the other measures (no 
evidence either way for Phonographeme_LgFreq interacting 
with word frequency, Onset/Rime p(P|G), or Phonograph-
eme p(G|P)) .

Stepwise regression summary The results of the stepwise 
regression analyses in Tables 2 and 3 confirm that the toolkit 
measures explain significant amounts of unique variance 
after controlling for surface and lexical variables. The direc-
tions of the effects are generally as expected, with greater 
consistency/frequency associated with faster and more accu-
rate responses. Similarly, interactions with word frequency 
typically indicate greater effects for low-frequency relative 
to high-frequency words. However, in some instances the 
effects of p(G|P) spelling consistency, which can be con-
sidered as feedback in the context of reading tasks, were 
opposite those of p(P)G) reading consistency. The pattern of 
reverse effects for feedback relative to feedforward consist-
ency was also observed in some of the analyses of ELP data 
conducted by Chee et al., (2020), and previously observed 
in Yap and Balota (2009). In those studies, the apparently 
inhibitory effects arising from feedback were linked specifi-
cally to onset consistency; here, we did not separately model 
onset and rime consistency but rather only the composite of 
the two. Instead, here the inhibitory effects were found for 

Phonographeme p(G|P) spelling consistency, which may or 
may not be driven by the onsets in particular.

The BIC analyses (Table 3) present a more parsimonious 
account, in particular suggesting a much smaller role for 
consistency in Lexical Decision compared to Naming, and 
then only for consistency at the phonographeme level, not 
onset/rime. The BIC approach indicates that the difficult-
to-interpret interaction between phonographeme reading 
consistency and word frequency in the context of Lexical 
Decision RT (Table 2, p ≈ 0.03) is quite possibly spurious, 
as the evidence goes against it (ΔBIC 7). It also presents 
substantial evidence against the possibility that feedback 
from the level of the onset/rime p(G|P) plays a role in either 
Naming or Lexical Decision, although these results might 
differ if the stepwise procedure entered variables in a dif-
ferent order.

Elastic net regression analyses To address the possibility 
that the selected order of variables biases the results pre-
sented here, we also conducted an elastic net regression. 
This approach provides a method of determining the rela-
tive importance of the variables in an unconstrained fashion 
(i.e., without specifying an order of entry as in stepwise 
regression). Elastic net regression (Zou & Hastie, 2005) 
combines the benefits of the least absolute shrinkage and 
selection operator (LASSO) method, which supports vari-
able selection by setting the coefficients of less important 
ones to zero (Tibshirani, 2011), and ridge regression, which 
outperforms LASSO regression in the case of highly cor-
related variables (Hastie, Tibshirani, & Friedman, 2009). 
Importantly, this has an effect of protecting “the estimates 
for the coefficients against collinearity-induced enhance-
ment” (page 263; Tomaschek et al., 2018), essentially taking 
into account correlations between the predictors.

All of the surface, lexical, and toolkit measures 
included in the stepwise regression models were included 
in the elastic net regression, as well as the ten consistency 
measures from Chee et al. (2020): Onset, Nucleus, Coda, 
Oncleus, and Rime consistency in both the reading and 
spelling directions. The R package glmnet (version 4.1-4; 
Friedman et al., 2010) was used to fit the elastic net regres-
sion, and variable importance was obtained from the pack-
age caret (version 6.0-93; Kuhn, 2022), function varImp. 
Repeated tenfold cross-validation was used with 20 repeti-
tions, separately for each of the four outcome measures: 
Naming RT, Naming Accuracy, Lexical Decision RT, and 
Lexical Decision Accuracy. The primary results of interest 
are the variable importance metrics, reflecting the absolute 
value of the scaled coefficients. Specifically, all variables 
were Z-scored prior to entry in the elastic net regression, 
and Fig. 3 depicts the variable importance as relative to 
the predictor with the largest coefficient (which was word 
frequency, for all outcome measures).
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Fig. 3  Variable importance from elastic net regressions. Toolkit measures in bold, consistency measures from Chee et al. (2020) in italics. RT = 
reaction time
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Elastic net regression results Figure  3 reports variable 
importance relative to the predictor with the largest coeffi-
cient, which was word frequency for all outcome measures. 
Naming RT (Fig. 3, top left): Of the 14 consistency measures 
(ten from Chee et al., 2020, and four from the toolkits), the 
most important was Chee and colleagues’ Onset reading con-
sistency (25% as important as word frequency, ranked  8th), 
followed by the Sublexical Toolkit’s Phonographeme spell-
ing consistency (20%, ranked  11th) and Onset/Rime read-
ing consistency (16%, ranked  12th). However, the toolkit’s 
Phonographeme_LgFreq measure was more important than 
any of the consistency measures (52%, ranked  4th), as was 
its measure of phoneme frequency (Phoneme_LgFreq, 56%, 
ranked  3rd). The only consistency measure with importance 
less than 1% of that of word frequency was Chee and col-
leagues’ Oncleus reading consistency (1%, ranked  31st).

Naming Accuracy (Fig. 3, top right) The most important con-
sistency measure was the toolkit’s Phonographeme spelling 
consistency (28%, ranked  5th), followed by Chee and col-
leagues’ Rime reading consistency (15%,  10th) and Oncleus 
reading consistency (13%, ranked  13th). However, as with 
Naming RT, both the toolkit’s Phonographeme_LgFreq 
(63%, ranked  2nd) and Phoneme_LgFreq (45%, ranked  3rd) 
measures from the were more important. Two consistency 
measures had less than 1% of the importance of word fre-
quency: Chee and colleagues’ Rime spelling consistency 
(0.3%, ranked  32nd) and the toolkit’s Onset/Rime spelling 
consistency (1%, ranked  30th).

Lexical Decision RT (Fig. 3, bottom left) The most impor-
tant consistency measure was the toolkit’s Phonographeme 
spelling consistency (13%, ranked  11th), followed by its Pho-
nographeme reading consistency (7%,  16th) and Chee and 
colleagues’ Oncleus reading consistency (7%, ranked  19th). 
Both the toolkit’s Grapheme_LgFreq (16%, ranked  6th) and 
Phoneme_LgFreq (16%, ranked  7th) measures were more 
important. The only consistency measure with importance 
less than 1% of that of word frequency was Chee and col-
leagues’ Onset spelling consistency (0%, ranked  33rd).

Lexical Decision Accuracy (Fig. 3, bottom right) The most 
important consistency measure was Chee and colleagues’ 
Oncleus reading consistency (6%, ranked  14th), followed 
by their Nucleus spelling consistency (5%,  15th) and the 
Sublexical Toolkit’s Phonographeme spelling consistency 
measure (5%, ranked  17th). However, the three frequency 
measures from the Sublexical Toolkit all ranked as more 
important: Phonographeme_LgFreq (9%, ranked  9th), 
Grapheme_LgFreq (9%, ranked  11th), and Phoneme_LgFreq 
(6%, ranked  13th). Two consistency measures had less than 
1% of the importance of word frequency: Chee and col-
leagues’ Onset spelling consistency (0%, ranked  33rd) and 

the toolkit’s Onset/Rime spelling consistency (1%, ranked 
 32nd).

Elastic net regression summary The elastic net regression 
was used as a data-driven approach to assess the relative 
importance of the various predictors, and thus compliments 
the findings from the stepwise regression by adopting a more 
theory-neutral stance. With word frequency being the single 
most important variable for all four outcome measures, it 
is possible to use that measure’s importance as a “bench-
mark” against which to judge the others. In that respect, 
several measures from the toolkit performed very well: look-
ing across all four outcome measures, only five variables 
approached or exceeded 50% of the importance of word 
frequency. Of those five, three were from the toolkit: Pho-
neme_LgFreq for Naming RT and Phonographeme_LgFreq 
for both Naming RT and Accuracy (the other two were word 
length for Naming RT and OLD, the average Levenshtein 
distance from the 20 closest neighbor words, for Lexical 
Decision RT).

Whereas in the stepwise regression phonographeme fre-
quency was forced in as the first measure after surface and 
lexical variables (i.e., in step two), its importance in the elas-
tic net regressions was not determined a priori. Nonetheless, 
it emerged as more important than any of the consistency 
measures, including those from Chee and colleagues, except 
in the case of Lexical Decision RT (where it was nearly 
tied with the Sublexical Toolkit’s Phonographeme spelling 
consistency measure). This is further validation that the pho-
nographemes are important units of sublexical representa-
tion and suggests the possibility that their frequency may be 
more important than their consistency.

Although not the focus of this work, the phoneme and 
grapheme frequency measures from the Sublexical Toolkit 
were also among the most important variables, outperform-
ing not only the consistency measures but also most of the 
surface and lexical variables. In particular, grapheme fre-
quency outranked all of the unigram and bigram measures 
(N1_F, N1_C, N2_F, and N2_C) for Naming RT, Naming 
Accuracy, and Lexical Decision RT (although not Lexical 
Decision Accuracy). This may be an indication that graph-
emes are a more important representational unit than single 
letters or bigrams, but it may also be attributable to the both-
ends position coding scheme used in the toolkit (whereas 
standard unigram and bigram measures are based on serial 
position in the word).

Similar to the results of the stepwise regression, the con-
sistency measures were generally more important for pre-
dicting Naming (both RT and accuracy) than Lexical Deci-
sion, and feedback (spelling consistency) measures were 
generally less important than feedforward (reading consist-
ency) measures. This was particularly true for the higher-
level units such as rimes, also consistent with the findings of 
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the stepwise regression. For example, adding the “feedback” 
Onset/Rime p(G|P) measure resulted in worse model fits per 
BIC values (see Table 3).

Accounting for variability in pseudoword 
reading

A final test of the toolkit measures’ validity assesses their 
ability to account for variance in pseudoword reading at the 
population level, i.e., to account for the distribution of alter-
native pronunciations of pseudowords across a group of par-
ticipants presented with the same words. Recently, Coltheart 
and Ulicheva (2018) addressed the question of the source 
of variability in the pronunciation of pseudowords in adult 
skilled readers of English and identified two factors: dif-
ferences in graphemic parsing and differences in phonemic 
assignment. It is the latter of these factors that the toolkit is 
well equipped to address.

The analyses of Coltheart and Ulicheva (2018) focused on 
variability both within-items (across participants) and within-
participants (across items) in what amounts to the level of pho-
nographeme units. In addition to revealing that the same written 
stimulus may be parsed into different graphemes (e.g., BLUISE 
parsed by some participants as one syllable, others as two syl-
lables BLU-ISE, and still others as three syllables BLU-I-SE), 
they also found that the same graphemic parsing could result in 
different pronunciations due to alternative phonemic assignment 
(e.g., monosyllabic BLUISE read /bluz/ or /blus/). This phenom-
enon was quantified by calculating a measure of entropy, both 
for each grapheme and for each participant. For example, the 
grapheme [B]’s entropy was nearly zero, reflecting that in almost 
all instances (across words and participants) it was mapped to 
the phoneme /b/. However, for the grapheme [Y] entropy was 
very high, reflecting its being mapped alternatively to the pho-
nemes /i/, /j/, /ɪ/ or others, depending on the context (the word 
and/or the participant). These measures were not computed with 
respect to specific positions of graphemes within words, nor 
were they computed for larger units such as rimes.

To the best of our knowledge, no previous work has 
attempted to account for the distribution of specific pseu-
doword reading responses across participants. While some 
previous efforts have investigated factors which contribute 
to pseudoword naming, such as the influence of surrounding 
consonants on vowel pronunciation, the statistical analyses 
have only compared “correct” and “incorrect” responses 
(e.g., Steacy et al., 2019) or proportions of pronunciations 
that met some pre-defined criteria (such as choosing a par-
ticular vowel given specific surrounding contexts; Treiman 
et al., 2003, 2006; Treiman & Kessler, 2023). Ulicheva 
and colleagues (Ulicheva et al., 2021) presented a set of 50 

pseudowords to participants to read repeatedly across mul-
tiple sessions on different days and assessed the stability of 
responses using measures of entropy. The authors reported 
that words whose graphemes afford multiple potential read-
ings were pronounced with more variability from session to 
session (e.g., BUDGORD had 15 unique pronunciations and 
therefore high entropy), compared to words whose graph-
emes afford fewer opportunities for such variability (e.g., 
MISCLEAF, just two unique pronunciations and therefore 
low entropy). Their quantification of the potential number of 
readings (i.e., the number of plausible grapheme-phoneme 
mappings) explained a significant, but very small, amount of 
the total session-to-session variance in responses (R2 ≈ 2%).

To the best of our knowledge, we provide the first attempt 
to account for the specific pronunciations that participants 
generate during reading (but see Authors, 2023, for an appli-
cation of an early version of the toolkit to explaining specific 
written responses in the context of pseudoword spelling to 
dictation). Crucially, this approach does not entail judg-
ments of accuracy, and allows for differentiating between 
responses that would be considered “correct” but nonethe-
less differ in their prominence (as in BLISE read either /
blis/ or /bliz/). Here, we do not seek to account for stability 
of pronunciations across time, nor a measure of entropy that 
collapses the distribution of unique responses into a single 
measure. Instead, we use Poisson regression to model the 
counts of different pronunciations elicited for a large set of 
items presented in a pseudoword reading task. For example 
(Fig. 4), the word BLEASE was read as /bliz/ by 64% of 
participants and /blis/ by 36%; FRAUSE was read as /fɹɔz/ 
by 34%, /fɹaʊs/ by 20%, /fɹeɪ juz/ by 2%, etc. Given that the 
vast majority of English graphemes correspond to multiple 
possible phonemes across the English lexicon, we predict 
that the more common pronunciations should be associated 
with more consistent mappings. This prediction stems from 
the characterization of the sublexical system depicted in 
Figs. 1 and 2. Importantly, these measures are continuous, 
and so support capturing not only which pronunciation will 
be most prevalent, but also the rate at which uncommon-but-
plausible pronunciations may be observed.

Materials The pseudowords and responses were taken from 
the publicly available dataset of Pritchard et al. (2012), 
which were also used in Coltheart & Ulicheva (2018). In 
total, 412 words were presented to 45 speakers who read 
each word aloud. The transcription of the pronunciations 
was carried out by the original authors (Pritchard and col-
leagues), but for our purposes these were re-transcribed to 
account for differences between Australian English (as the 
original dataset was collected in Australia) and American 
English. While there are a number of differences between the 
two, the one that must necessarily be addressed in order to 
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apply the toolkit regards rhotic vowels (“r-colored” vowels). 
Specifically, the non-rhotic pronunciations of the Australian 
participants were re-transcribed as rhotic, simply by insert-
ing an /ɹ/ after the vowel. This is necessary for the toolkit 
because it is based on rhotic American accents and con-
sequently requires that [R] graphemes correspond to some 
phoneme. For example, BROR was read as /bɹɔ/ by nearly 
all participants, with no phoneme corresponding to the sec-
ond R. Had the toolkits been developed based on non-rhotic 
English, the mapping would have been OR ➔ /ɔ/. Instead, 
to fit the American English mappings, the pronunciation was 
re-transcribed as /bɹɔɹ/, so that the second R ➔ /ɹ/. This 
approach was used for all instances where an orthographic 
R (or RR, or WR, etc.) did not correspond to any phoneme 
in the Australian pronunciation.

Across the 412 words, 3233 unique pronunciations were 
elicited (mean = 7.85 unique pronunciations per word, range 
1–23). Of these, 67 words were excluded because a measure 
was not possible for either the onset or the rime (either because 
they do not exist in any real English word, are so uncommon 
that they have not been coded in the toolkit corpus, or simply 
did not exist in the case of the onsets [e.g., the word OOSH has 
no onset]). That left 345 words with 2634 unique pronuncia-
tions. The counts of these pronunciations were taken as the 

dependent measure and modeled using generalized mixed-
effects regression with the Poisson distribution, using the R 
package glmmTMB (version 1.1.5, Brooks et al., 2017). The 
total counts per word ranged somewhat, from 39 to 45, because 
some participants did not provide responses to every single 
word (see Pritchard et al., 2012). The counts per pronunciation 
ranged from 1 to 45 (proportionally, from 2.22% to 100%).

A number of variables were included as predictors that 
might plausibly be associated with the rate at which the vari-
ous pronunciations were observed. As with the regression 
analyses of ELP data, these 14 variables may be categorized 
as surface, lexical, or sublexical. Surface variables: Phoneme 
frequency and Phonotactics (i.e., uniphone and biphone fre-
quency), taken from Vitevich & Luce (2004), number of syl-
lables (as a measure of length as well as graphemic parsing), 
and Phoneme_LgFreq from the Sublexical Toolkit. Note that 
purely orthographic measures, such as bigram frequency or 
the toolkit’s Grapheme_LgFreq, were not included because 
by definition they do not differentiate between alternative 
spoken productions (e.g., bigram frequency cannot contribute 
to explaining why more people pronounce BLISE as /bliz/ 
than /blis/). Lexical variables: lexical status (whether or not 
the pseudoword was pronounced as a real word, e.g., BLISE 
read as BLISS), PTAN (number of phonological neighbors), 

Fig. 4  Examples of various pseudoword pronunciations and their relative frequencies
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and PGTAN (number of phonographic neighbors). PTAN 
was retrieved from the CLEARPOND database (Marian 
et al., 2012), and PGTAN was calculated manually by count-
ing the number of shared phonological and orthographic 
neighbors as indicated by CLEARPOND. Sublexical varia-
bles: Phonographeme_LgFreq, and six consistency measures 
from the toolkit – both p(P|G) reading consistency and p(G|P) 
spelling consistency at the level of phonographemes, onsets, 
and rimes (onsets and rimes measured separately rather than 
as a composite score). It should be emphasized that other 
published consistency measures are not readily able to gener-
ate consistency measures for pseudowords, and thus only the 
toolkit consistency measures were included in the regression.

Whereas the analyses presented up to this point were con-
strained to using the mean across all segments7, this one is free 
to explore alternatives to the mean. Therefore, for the phoneme 
frequency, phonotactic, and sublexical measures, both the mean 
and the minimum across all segments were tested in separate 
models in order to determine which explained the most variance 
in behavior. The total model R2 was higher when using the mini-
mum as the statistic compared to the mean, and therefore only 
that model is reported here (the pattern of results was similar but 
weaker when using the mean as the statistic). Notably, the use of 
the minimum across all segments was also observed to explain 
the most variance in pseudoword spelling behavior in a recent 
study using the toolkit (Authors, 2023). Multicollinearity was 

first assessed when entering all of the variables simultaneously, 
which revealed VIF > 10 for the two Onset consistency measures 
and > 6 for Phonographeme_LgFreq. Onset spelling consistency 
was removed, considering that the reading consistency measure is 
more important for reading, and doing so reduced the VIF to just 
1.3. Phoneme_LgFreq was also removed in consideration that it 
is conceptually similar to the phoneme frequency measure from 
Vitevitch & Luce (2004), which reduced the Phonographeme_
LgFreq VIF to 3.7. All remaining VIF’s were < 6.

In addition to fixed effects for the 12 remaining predic-
tors, random effects were included in the form of a random 
intercept by-pronunciations nested in words. This random 
effect significantly improved model fit compared to a fixed 
effects only model, ∆BIC -4754, log ratio test p value < 
0.001. In addition, the model was checked for overdispersion 
using the R package performance (version 0.9.2, Lüdecke 
et al., 2021), which was found not to be an issue (dispersion 
ratio = 0.218, Chi-squared = 572, p value ≈ 1.0).

Finally, R2 was computed using the R package MuMIn 
with the recommended “trigamma” estimate (version 1.47.1, 
Bartoń, 2022) for both the marginal effects (fixed effects 
only) and conditional effects (fixed+random effects). In 
addition to total R2 for the full model, each predictor was 
assessed for the maximum amount of variance it can explain 
by entering it first in the model (i.e., as the only predictor) as 
well as the amount of variance it uniquely explains (i.e., the 
change in R2 when adding that predictor last in the model).

Pseudoword variability results The results of the Poisson 
regression are reported in Table 4, with the first-in and unique 

Table 4  Results of the mixed-effects Poisson regression predicting 
variability in pseudoword responses. PTAN = number of phonologi-
cal neighbors; PGTAN = number of phonographic neighbors; p(P|G) 
= reading consistency, p(G|P) = spelling consistency. P values based 

on Wald Z-value, *** p < 0.001, ** p < 0.01, * p < 0.05, ~ p < 0.10. 
R2 = pseudo R2, trigamma estimate (Bartoń, 2022); marginal = fixed 
effects only, conditional = fixed+random effects

Regressor Estimate Std. Error Wald Z-value p value

(Intercept) – 2.880 0.031 – 91.77 < 2.00E-16***
Lexical Status 0.006 0.032 0.17 0.86227
Syllables – 0.208 0.024 – 8.68 < 2.00E-16***
Phonemes – 0.044 0.022 – 1.98 0.04788*
Phonotactics 0.036 0.023 1.59 0.11256
PTAN – 0.037 0.023 – 1.6 0.10894
PGTAN 0.055 0.018 3.14 0.00167**
Phonographeme_LgFreq 0.217 0.035 6.19 5.95E-10***
Phonographeme p(P|G) 0.367 0.030 12.23 < 2.00E-16***
Onset p(P|G) 0.305 0.024 12.85 < 2.00E-16***
Rime p(P|G) 0.208 0.041 5.07 4.01E-07***
Phonographeme p(G|P) 0.056 0.033 1.73 0.08291~
Rime p(G|P) 0.174 0.040 4.35 1.37E-05***

marginal conditional
R2 57.05% 87.50%

7 That is because the F/E measures (Plaut et al., 1996) by definition 
provide only one value per word, and the composite measures pro-
vided by Chee et al. (2020) are means.
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variance explained by each predictor reported in Table 5. 
The model with all variables entered simultaneously had 
a total marginal R2 of 57.1% and conditional R2 of 87.5%. 
All predictors explained significant “unique variance” at p 
< 0.05 except for four: lexical status, phonotactics, PTAN, 
and Phonographeme spelling consistency. However, “first-in” 
variance explained was significant even for those predictors 
(marginally so in the case of lexical status).

In terms of the amount of “first-in” or maximal variance 
explained (Table 5), the single most predictive regressor was Pho-
nographeme reading consistency, which alone could account for 
41.1% of the variance. This was followed closely by Phonograph-
eme_LgFreq (39.2%). Critically, the top six variables were all sub-
lexical from the toolkit; the best surface variable was number of 
syllables (7.3%) and the best lexical variable was PGTAN (5.4%).

As for “unique” variance explained, although Phonograph-
eme reading consistency was the most predictive measure when 
entered first, it was only ranked third when entered last (unique 
R2 = 1.8%). The greatest amount of unique variance explained 
was attributed to Onset reading consistency (3.7%), followed by 
the number of syllables (2.0%). Interestingly, although the first-in 
variance explained by feedback Phonographeme spelling consist-
ency was very high (32.4%), virtually all of this variance was 
shared with other variables, reflected in its small, non-significant 
unique variance explained (just 0.02%, p < 0.10).

Pseudoword Variability Summary By coding in the toolkit 
each of the alternative pronunciations generated by the sam-
ple of human participants, it was possible to confirm that 
the most frequently observed pronunciations tended to have 
higher consistency. In fact, all of the significant lexical and 

sublexical predictors showed positive associations8: the most 
common pronunciations were both more consistent and had 
more lexical neighbors. The regression explained the major-
ity of the variance in the counts (57.1% from the fixed effects 
alone, 87.5% including the random effects), and all of the 
most important predictors were those from the toolkit. The 
single most powerful predictor was Phonographeme reading 
consistency (R2 = 41.1%), while the predictor with the great-
est unique variance explained was Onset reading consistency 
(3.7%). Importantly, all of the consistency measures were 
much better predictors than any of the other surface or lexi-
cal measures considered, with only three of those contribut-
ing any amount of unique variance (the number of syllables, 
the number of phonographic neighbors, and the phoneme 
frequency measure of Vitevitch & Luce, 2004).

These results further demonstrate how the Sublexical 
Toolkit supports conducting novel analyses of reading and 
spelling data, in particular because it is readily applicable 
to pseudowords. Parallel to the analyses of the ELP data 
(both oral naming and lexical decision), the simultaneous 
regression supports the hypothesis that sublexical processes 
integrate information across levels of representation (pho-
nographeme and onset/rime). However, due to the nature 
of these data, it is possible that this result is driven by indi-
vidual differences (some participants generate pronuncia-
tions from the phonographeme level, others from the onset/
rime level) or item effects (some items are explained by rime 
processing, others are not), and not necessarily integration 
of levels of processing within-item and within-individuals.

In the specific context of pseudoword reading, there was 
also evidence that “feedback” processes also influenced how 
individuals pronounced the words, potentially adjusting their 
responses to improve their spelling consistency – although it 
should be noted that the variance uniquely explained by the 
feedback measures was relatively small. Finally, the results 
also confirm that the toolkit has validity even when applied to 
data from speakers of a non-American variant of English (here, 
Australian), requiring only modest adaptations (in particular, 

Table 5  Contributions to R2 for variables when added first to the 
model (first-in), and unique R2 contribution (last-in). PTAN = num-
ber of phonological neighbors; PGTAN = number of phonographic 
neighbors; p(P|G) = reading consistency, p(G|P) = spelling consist-
ency. Total model R2 (marginal, i.e., fixed effects only) = 57.05%. p 
values based on Chi-squared test (log likelihood), *** p < 0.001, ** p 
< 0.01, * p < 0.05, ~ p < 0.10

Regressor First-In R2 Unique R2

Phonographeme p(P|G) 41.11%*** 1.811%***
Phonographeme_LgFreq 39.18%*** 1.212%***
Phonographeme p(G|P) 32.41%*** 0.019%~
Rime p(P|G) 20.40%*** 0.558%***
Rime p(G|P) 19.62%*** 0.334%***
Onset p(P|G) 14.52%*** 3.715%***
Syllables 7.29%*** 2.006%***
PGTAN 5.44%*** 0.125%**
Phonotactics 1.46%*** 0.052%
Phonemes 1.18%*** 0.088%*
PTAN 0.52%*** 0.073%
Lexical 0.16%~ – 0.004%

8 The only significant negative associations were with the number 
of syllables and phoneme frequency. While the latter showed a slight 
negative association, it should be noted that its sign flipped from pos-
itive to negative in simultaneous regression, indicating that the rela-
tionship changes once controlling for the other variables.

Fig. 5  A representation of the sublexical system as nodes-and-links 
between phonemes (yellow) and graphemes (blue). A The graph-
emic inventory of Chee et al. (2020); B that of the current work. The 
networks here depict the connections from the phoneme /ʃ/ (circled 
in red) to all of its potential graphemes, as well as between each of 
those graphemes to the phonemes they represent, and so on until no 
other potential mappings remaining. As such, this network represents 
a phonographemic “island” of interrelated phonemes and graphemes. 
The more exhaustive inventory of graphemes in the current work 
results in greater network complexity (panel B compared to panel A)

◂
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an /ɹ/ ➔ R mapping had to be inserted to account for the non-
rhoticity of the Australian accent).

General discussion

The work presented here operationalizes the extraction of meas-
ures of spelling-sound regularities from the English lexicon in a 
novel way. It conceptualizes sublexical processing as a system 
that, via accumulated experience with associating spoken and 
written word forms, develops a network of interconnected pho-
nemes and graphemes of different grain sizes (Fig. 5). Crucially, 
a central assumption of this work is that the sublexical system 
is a productive one that allows individuals to generate spell-
ings or pronunciations for novel words, and as such is critical 
for self-teaching (e.g., Share, 1995). This perspective entails a 
bottom-up approach to measuring spelling-sound consistency, 
as opposed to traditional perspectives that attempt to identify a 
finite set of “rules” that describe the majority of English spell-
ing patterns. An advantage of the bottom-up approach is that no 
arbitrary distinctions are made between “regular” and “irregu-
lar” spellings; rather, all spellings exist on a continuum from 
relatively more or less consistent, determined simply by the fre-
quency with which they are encountered in the lexicon.

The knowledge represented in the toolkit can be visualized 
as nodes-and-links between phonemes and graphemes, as in 
Fig. 5. Portraying the many-to-many sound–spelling map-
pings of English in this way makes it easier to understand 
the origin of “creative spellings” and the inherent difficulty 
of recalling some spellings. For example, the I in FISH could 
instead be spelled Y or I_E, the F could be PH, and the SH 
could be SCH or CH – leading to such alternates as FISHE, 
FISCH, or even PHYCHE (although note that the oft-cited 
GHOTI, e.g., Zimmer, 2010, actually violates positional con-
straints – GH is /f/ only in final positions, as in ROUGH, 
and TI is /ʃ/ only in non-final positions, as in LOTION). The 
figure depicts all of the graphemes connected to the phoneme 
/ʃ/ (highlighted in red), all of the phonemes connected to 
those graphemes, and so on, until an “island” of phoneme-
grapheme connections is complete. The Sublexical Toolkit 
quantifies this network in multiple ways: the strengths of the 
nodes are measured by phoneme and grapheme frequency 
(e.g., the number of words with /ʃ/ in the initial position), and 
the strengths of the links are measured both without respect 
to direction, as phonographeme frequency (e.g., the num-
ber of words with /ʃ/ in the initial position spelled SH), and 
with respect to the spelling direction (e.g., the proportion of 
words with /ʃ/ in the initial position spelled SH) and reading 
direction (e.g., the proportion of words with SH in the initial 
position pronounced /ʃ/). It functions similarly at the onset/
rime level, but with larger grain sizes (such as the onset /ʃl/ 
spelled SCHL or the rime /ɛp/ spelled EP).

We have demonstrated that these measures explain signifi-
cant amounts of variance in a range of behaviors: naming of real 
words, lexical decision, and pseudoword reading. The measures 
from the toolkit either outperformed or were on par with the best 
available consistency measures, in terms of explaining variance 
in data from the English Lexicon Project. However, the strongest 
test of the validity of the toolkit also highlights one of its great-
est contributions, which is its ability to account for behaviors in 
pseudoword tasks. Because a foundational assumption is that the 
sublexical system is used for generating spellings/readings in an 
online fashion, pseudoword reading and spelling tasks are argu-
ably the most informative for revealing what knowledge is actu-
ally represented at the sublexical level – if people make use of a 
phoneme-grapheme mapping to read or spell a pseudoword, by 
definition that mapping is productive within the sublexical system. 
Here we successfully used the toolkit to account for the majority 
of the variance in the frequency of alternative pronunciations in a 
pseudoword reading task, helping explain why a pseudoword like 
DRICHE, for example, was more often pronounced /dɹiʃ/ than /
dɹaɪʃ/ (Fig. 4; Table 4), with distinguishable contributions from 
different grain sizes, feedback (spelling consistency), and lexi-
cal contributions (in the form of phonological and orthographic 
neighbors). To the best of our knowledge, no systematic method 
has previously been published that allows for such analyses, 
largely because most available consistency measures are in the 
form of a list of real words with associated values – as such, they 
are not readily applicable to pseudowords, and therefore it has 
been difficult to quantitatively assess the sound–spelling mappings 
that are actually productive for literate English speakers.

The results presented in this manuscript provide examples 
of the broad range of potential applications of the toolkit 
for studying sublexical processing in written language. 
Moreover, the theoretical framework presented here, while 
grounded in decades of research on English spelling-sound 
consistency, is novel because it more deeply and systemati-
cally considers the implications of thinking of the sublexical 
system as an experience-dependent system. We conceive of 
sublexical knowledge as being acquired by experience with 
cross-modal mapping between phonemes and graphemes, 
and not as the internalization of rules or principles gleaned 
from formal instruction. Instead, it is an emergent network 
of connections between spoken and written forms organized 
in hierarchical fashion, from the whole-word level down to 
individual phonographemes (Fig. 1). As such, the toolkit 
is not intended to capture the entirety of what people know 
about reading and spelling, which also incorporates lexical, 
morphological, syntactic, and other dimensions of knowledge 
that here we define as being external to the sublexical system.

The details presented here about how the toolkit was 
developed, as well as practical guidance on how to use its 
functions, are likewise intended to illustrate the potential 
for addressing research questions that previously were more 
onerous or even intractable. Future research will continue 



6850 Behavior Research Methods (2024) 56:6826–6861

to refine and expand the capabilities in a number of ways 
and will remain open access to researchers interested in 
developing alternative versions. There are many important, 
outstanding questions that can be addressed by applying the 
toolkit’s approach and/or by further enhancing the toolkit’s 
capabilities. A non-exhaustive list of possibilities includes: 
measuring consistency at other grain sizes (oncleus, 
biphone-bigrapheme units, etc.); incorporating other forms 
of knowledge such as morphology; developing accent-spe-
cific corpora (e.g., mapping standard spellings to particu-
lar regional pronunciations); probing the developmental 
trajectory of sound–spelling mappings (e.g., as new words 
enter the child’s lexicon, how does consistency change?); 
developing an orthographic counterpart to the phonological 
parsing Maximum Onset Principle; adjudicating between the 

importance of phonographeme frequency versus consistency 
(related to the issue of “feedforward” versus “feedback” pro-
cessing); assessing errors in reading or spelling; probing the 
sublexical processing of special populations such as neuro-
atypical individuals (e.g., in dyslexia or aphasia) or bilin-
gual individuals; testing alternative position coding schema 
(e.g., serial position versus both-ends); comparing type- and 
token-weighted frequency measures; investigating sublexi-
cal representations through neuroimaging studies; etc. All 
of these are achievable either with the current version of the 
toolkit, by expanding the corpora to include more words, 
and/or by altering how the words are parsed (phonologically 
and/or orthographically). In essence, the hope is that this 
framework establishes a consistent and reliable platform to 
address these types of issues in a new, systematic way.

Appendix 1

Appendix Table 6

Table 6  Table of phoneme-grapheme correspondences for vowels occurring at least 1% of the time and in at least two different word forms

Phoneme Graphemes Word Initial Syllable Initial Medial Syllable Final Word Final

æ A a ba cus pi  a no c at a c a de my y a
A_E Ann e Di  an e b ach e lor -- --
AU aunt -- dr aught l au ghing --
EAH -- -- -- -- y eah

aɪ AI -- -- -- ha w ai i ch ai
AI_E aisl e -- -- -- --
AY ay a to llah -- -- m ay a --
AYE aye -- -- -- --
EI ei ther -- -- n ei ther fah ren h 

eit
EYE eye -- -- -- wa ll eye
I i au thor  ized b ind l i bra ry p i
I_E ic e me mor  iz e pr iz e -- --
IA -- -- -- d ia mond --
IE -- -- a ll ies h ie ro glyph p ie
IGH -- -- l ight h igh light s igh
UY -- -- b uys b uy ing g uy
Y -- -- -- c y cle b y
Y_E -- -- t yp e -- --
YE -- -- -- -- b ye

aʊ AU -- -- sau er kr aut s au di --
O o ur -- -- sc o ur --
OU oust through  out p out gr ou chy th  ou
OU_E ounc e -- bl ous e -- --
OUGH -- -- dr ought -- pl ough
OW ow -- cr owd p ow der br ow
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Table 6  (continued)

Phoneme Graphemes Word Initial Syllable Initial Medial Syllable Final Word Final

ɑ A al mond ko  a la b arn s a ga sp a
A_E -- en tour  ag e l arg e -- --
AH -- -- -- -- sh ah
AU auc tion -- v ault n au ti cal --
AW aw ning -- -- str aw berry cole sl aw
E en tre pre neur -- r en dez vous -- --
O o be lisk bi  o lo gy l oft d o llar --
O_E om e let bri  och e s olv e -- --

eɪ A a ble cre  a ted b ass bl a tant --
A_E ac e gra du  at e r at e -- --
AE ae ge an -- -- -- sun d ae
AI aim li  ai son w ait d ai sy --
AI_E aid e -- co c ain e -- --
AY ay cock -- al w ays m ay be tr ay
E -- car bur  e tor -- d e but ca f e
EA -- -- st eak br ea king y ea
EI -- -- f eign h ei nous --
EIGH eight -- w eight n eigh bor sl eigh
ET -- -- -- -- ba ll et
EY -- -- -- pr ey ing th ey

ə A a gain gi  ant hu m an al ph a bet ca ro li na

A_E -- en cour  ag e ma n ag e -- --

AH -- -- -- -- chee tah

E e ffect cli  ent ham l et con s e quence gen re

E_E -- sci  enc e pre s enc e -- --

I -- de  i ty a n i mal de f i nite --

I_E -- -- en g in e -- --

IA ha wai  ian -- par l ia ment fu schia

O ob sess bay  o net fe l on di n o saur --

OU -- joy  ous hei n ous jea l ou sly --

U u pon tri  umph au g ust i ll u strate --

non-linear E -- ax l e hur dl e -- --
ɛ A a ny fe bru  a ry sc ared em b a rrass --

A_E -- -- c ar e -- --
AE ae ri al -- -- -- --
AI air -- a g ain pr ai rie --
E ec cen tric no  el a ff ect r e bel --
E_E edg e cay  enn e d ens e -- --
EA -- -- br ead tr ea sure --
IE -- -- fr iend -- --

ɚ A -- cow  ard pi ll ar -- --
E er go flow  er po v er ty -- --
E_E -- con ci  erg e v erg e -- --
EA earl -- y earn -- --
HE herb -- she ph erd -- --
I irk e lix  ir f irm -- --
O or i gi nal may  or spon s or -- --
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Table 6  (continued)

Phoneme Graphemes Word Initial Syllable Initial Medial Syllable Final Word Final

OU -- -- a dj ourn -- --
U ur ban so  ur b urn -- --
U_E urg e -- cul t ur e -- --
non-linear E -- py r e o gr e -- --

i E e mo tion hyena her cu l es ro d e o re ci p e
E_E ev e -- sc en e -- --
EA each -- wr eath s ea son p ea
EA_E eas e -- l eagu e -- ii
EE eel -- f eet st ee ple fl ee
EE_E -- -- sl eev e -- --
EI ei ther -- re c eipt c ei ling --
EI_E -- -- de c eiv e -- --
EY -- -- -- vo ll ey ball tur k ey
I -- cour  i er p iz za cham p i on chi l i
I_E -- na  iv e e l it e -- --
IE -- hurr  ied gr ief me d ie val pix  ie
IE_E -- -- re l iev e -- --
Y -- worr  y ing -- po n y tail ug l y

ɪ A_E -- cour  ag e ba gg ag e -- --

E e ffi cient -- ja ck et a m e thyst --

EA ear -- cl ear w ea ry --

EE -- -- d eer ch ee ry --

HI -- ve  hi cle -- -- --

I i cky co  in cide f it t i ckle --

I_E -- ur  in e g iv e -- --

Y -- -- g ym gl y cer in --
ju EU eu ca lyp tus -- f eud f eu dal --

EW -- -- -- -- few
EWE ewe -- -- -- --
HU hu man -- -- -- --
U u ni corn sol  u ble a cc used h u mor me n u
U_E us e vol  um e m us e -- --
UE -- -- c ues -- ar g ue

jʊ EU eu rope -- -- -- --
U u ra ni um -- c ured c u rate --
U_E -- -- p ur e -- --

oʊ EAU -- -- -- -- bu r eau
O o bey coy  o te h old s o cial tri  o
O_E ol e ca sser  ol e cl on e -- --
OA oak -- c oal c oa ster co c oa
OE -- -- p oem j oe y fl oe
OH oh -- -- -- --
OU -- -- s oul -- al th ough
OUGH -- thor  ough ly -- d ough nut --
OW own -- sh own b ow ling gr ow
OWE owe -- -- -- --
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Table 6  (continued)

Phoneme Graphemes Word Initial Syllable Initial Medial Syllable Final Word Final

ɔ A al most -- w art w a rri or --
AU au ra -- di no s aur l au rel --
AUGH -- -- c aught sl augh ter --
AW aw ful -- dr awl cr aw ler cl aw
AWE awe some -- dr awer -- --
O or phan ex tra  or di na ry p ort a d o ra ble --
O_E or e -- ch or e -- --
OA oar -- b oar -- --
OO -- -- p oor fl oo ring --
OU -- -- y our p ou ring --
OUGH ought -- b ought -- --

ɔɪ OI oink -- p oint se qu oi a k oi
OI_E -- -- n ois e -- --
OY oy ster -- b oys l oy al t oy
OY_E -- -- gar g oyl e -- --

u EU -- -- sl euth ma n eu ver --

EW -- -- l ewd s ew er br ew

O -- -- t omb m o vie d o

O_E -- -- pr ov e -- --

OE -- -- sh oes sh oe lace ca n oe

OO oo dles -- b ooth d oo dle z oo

OO_E ooz e -- m oose -- --

OOH ooh -- -- -- p ooh

OU -- -- s oup r ou tine y ou

OU_E -- -- r oug e -- --

U -- -- tr uth c u ckoo fl u

U_E -- -- spr uc e -- --

UE -- -- t ues day bl ue be rry gl ue

UI -- -- fr uit br ui ses --

UI_E -- -- cr uis e -- --
ʌ O on ion -- fr om a n o ther --

O_E -- -- s om e -- --
OU -- -- t ouch c ou sin --
U u gly blow  up g um j u ggle --
U_E -- -- gr udg e -- --
UH uh -- -- -- d uh
non-linear E -- -- a ny on e -- --
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Appendix 2

Appendix Table 7

Table 7  Table of phoneme-grapheme correspondences for consonants occurring at least 1% of the time and in at least two different word forms

Phoneme Graphemes Word Initial Syllable Initial Medial Syllable Final Word Final

b B bag a  ble jo bs lo b ster we b
BB -- lo  bby ro bbed -- e bb

d D dog ban  dage a dze a d mire re d
DD -- che  ddar o dds to dd ler a dd
ED -- -- hun dr eds ti r ed ness train ed

ð TH thus lea  ther clo thes smoo th ness ba the
dʒ D -- ar  du ous -- -- --

DG -- ba  dger -- ju dge ment bu dge
DI -- sol  dier -- -- --
DJ -- a  djust -- -- --
G gin ger stran  ger chan ged ve ge ta ble a ge
GG -- su  ggest -- -- --
GI -- re  gion -- -- --
J jump con  jure -- -- --

f F fast so  fa cle ft a f ter chie f
FF -- o  ffer cu ffs di ffe rence cli ff
GH -- tou  gher drau ght lau gh ter rou gh
LF -- -- -- -- ha lf
PH phan tom tro  phy s phere o ph thal mo lo gy gra ph

g G go a  gain le gs co g ni tion ra g
GG -- nu  gget be gged e gg nog e gg
GH ghoul spa  ghe tti -- -- ar gh
GU guard be  guile ro gues -- lea gue

h H have in  he rit -- -- --
WH whole -- -- -- --

j I -- brill  iant be ha v ior -- --
J -- ha lle lu  jah f jord -- --
LL -- tor ti  lla -- -- --
Y youth be  yond -- -- --

k C cat se  cond a ct ar c tic dis c
CC -- o  ccur -- -- --
CH choir an  chor s chool te ch nique mo nar ch
CK -- bra  cket ba cks ni ck name lu ck
K kale snor  kel ban ks than k ful loo k
LK -- ta  lking fo lks -- yo lk
Q quack fre  quent s queak -- --
QU quiche li  quor mo s qui to -- pla que
X -- -- -- e x cite --

ks X -- -- mi xed e x change he x
kʃ X -- -- -- se x ual --

XI -- -- -- ob no xi ous --
l L lab at  las se lf a l bum pa l

LL -- ba  lloon do lls ha ll way fi ll
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Phoneme Graphemes Word Initial Syllable Initial Medial Syllable Final Word Final

m LM -- sa  lmon psa lms -- pa lm
M mouse le  mon s mug a m ber stor m
MB -- plu  mbing nu mbs thu mb tack co mb
MM -- su  mmer hu mmed -- u mm
MN -- -- da mned -- hy mn

n GN gnat si  gnage rei gned a ssi gn ment be ni gn
KN knack un  known -- -- --
MN -- -- -- -- --
N nail va  nish wa nt fa n cy ma n
NN -- pe  nny ca nned pe nn syl van ia i nn
PN pneu mon ia -- -- -- --

am GN -- la sa  gna -- -- --
N -- se  nor -- -- --

ŋ N -- -- ba nk a n kle --
NG -- -- a ngst ga ng ster ki ng

p P pace u  pon s py tem p ta tion cu p
PP -- ha  ppy ri pped -- schle pp

r R right theo  ry c row to r na do ai r
RH rhyme -- -- -- --
RR -- so  rry o ccu rred cu rr ent pu rr
RRH -- ci  rrho sis -- he mo rrh age my rrh
WR write un  wrap han d wri ting -- --

s C cent fan  cy fa ced i ce berg dan ce
ES -- -- -- -- flak es
S sent fru  strate wai st mi s chief ga s
SC scent cre  scent -- -- re mi ni sce
SS -- go  ssip ki ssed cla ss room cro ss
ST -- whi  stle -- -- --
Z -- pret  zel blit zed mit z vah dit z

ʃ C -- o  cean -- -- li cor i ce
CH chef ma  chine -- -- ni che
CI -- an  cient -- -- --
S su gar en  sure -- -- --
SCH schmuck e  schew -- -- kir sch
SI -- man  sion -- -- --
SH shake mar  shal pu shed marsh mellow wi sh
SS -- ti  ssue -- -- --
SSI -- mi  ssion -- -- --
T -- i ni  ti ate -- -- --
TI -- mar  tial -- -- --

t ED -- -- -- -- dress ed
T toad men  tal ra ts sel t zer ha t
TT -- mi  tten pu tts -- mu tt

tʃ CH chain or  chard rea ched hen ch man ea ch
T -- pic  ture -- -- --
TCH -- ke  tchup i tched wa tch ful wre tch
TI -- ques  tion -- -- --

v V vine na  vy lo ves so ve reign sa ve
LV -- -- ca lves -- ha lve

Table 7  (continued)



6856 Behavior Research Methods (2024) 56:6826–6861

Phoneme Graphemes Word Initial Syllable Initial Medial Syllable Final Word Final

w O one a ny  one n oir -- --
U -- si lho  uette pen g uin -- --
W weed al  ways s witch -- --
WH whale no  where -- -- --

z ES -- -- -- wedn es day mov es
S -- wea  sel clo sed cha ri s ma wa s
SS -- de  ssert -- -- --
X xy lo phone an  xi e ty -- -- --
Z ze bra wi  zard gla zed -- ma ze
ZZ -- bli  zzard bu zzed gri zz ly ja zz

ʒ G -- ba rra  ges -- -- rou ge
S -- plea  sure -- -- --
SI -- a  sia -- -- --
Z -- sei  zure -- -- --

θ TH thank au  thor my ths a ri th me tic wrea th

Appendix 3: Evaluation of corpus size

Two sets of analyses were conducted to assess the adequacy 
of the corpus size in the latest version of the English Sub-
lexical Toolkit (version 1.1), which contains 13,388 words.

Methods

Analysis C1: Relationship between corpus size 
and number of sublexical units

First, we sought to estimate how many sublexical units (pho-
nemes, graphemes, and phonographemes) are encountered 
as the corpus size increases. To do this, we used resampling 
methods – specifically, the full Sublexical Toolkit version 
1.1 corpus of 13,338 words was repeatedly resampled across 
sample sizes ranging from n = 10 words up to n = 10,000 
words. The number of units appearing in each subsample 
was counted, and this process was repeated for 100 itera-
tions (i.e., 100 randomly drawn subsamples of words for 
each sample size). Only units that occur at least twice in 
the full corpus were counted, and the number of these is 
also presented as a “benchmark” for comparing the different 
corpus sizes (i.e., the results are presented as the percentage 
of the units in the full 13,338 word corpus, excluding units 
that may be specific to a single lexical item).

Analysis C2: Reliability of the Sublexical Toolkit 
measures

Second, we also sought to determine the reliability of each 
of the five toolkit measures (Spelling Consistency p(G|P), 
Reading Consistency p(P|G), Phoneme Frequency, Graph-
eme Frequency, and Phonographeme Frequency). We were 
interested in two statistics: given tables of probabilities/fre-
quencies informed by subsets of the full corpus, what are (a) 
the proportion of words not used to inform the tables that 
can be successfully mapped (i.e., all segments parsed, and 
consistency/frequency values assigned), and (b) the degree 
to which the mean and minimum values for successfully 
mapped words are reliable. We used a cross-validation pro-
cedure to obtain these measures, as detailed below. This pro-
cedure also serves to highlight the functions of the R-based 
Sublexical Toolkit (see materials on OSF for details on how 
to use each of the functions).

Details of the procedure:

Step One: The functions map_PG and map_OR take as 
input a list of words (spellings and pronunciations) and 
return as output matrices with the words parsed into pho-
nemes and corresponding graphemes, at the phonograph-
eme level (function map_PG) and the onset/rime level 
(function map_OR). These functions were applied to the 
full 13,338 word corpus of the Sublexical Toolkit ver-

Table 7  (continued)
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9 The number of “phonemes” here does not necessarily match canon-
ical counts of English phonemes, because any phoneme or group of 
phonemes represented by a single grapheme is included in this count. 
Thus, for example, /ks/ is included as a separate unit phonological 
unit from /k/ and /s/, because the grapheme X represents them as a 
single unit.

sion 1.1, and the outputs were randomly sub-sampled to 
create corpora one half or one quarter the full size (6669 
words or 3335 words). This process was repeated for 100 
iterations, generating 200 pairs of corpora based on inde-
pendent split-halves of the full corpus (100 at the phonog-
rapheme level and 100 at the onset/rime level), and 200 
pairs of corpora based on independent split-quarters of 
the full corpus.
Step Two: The function make_tables takes as input 
words already parsed into phonemes and corresponding 
graphemes (i.e., the output of the functions map_PG or 
map_OR) and returns as output tables of probabilities 
and frequencies. This function was applied to each of 
the sub-sampled corpora produced in Step One, produc-
ing pairs of tables with independent estimates of prob-
abilities and frequencies (e.g., one table based on words 
one through 3335 and a second table based on words 
3336 through 6670). In other words, we obtained pairs 
of tables that differ in the probability and frequency 
values because they were informed by independent 
corpora.
Step Three: The function map_values takes as input a 
list of words (phonemes and graphemes) plus a table of 
probabilities and frequencies (i.e., the output of func-
tion make_tables), and returns as output matrices of 
parsed words with values corresponding to the sublexi-
cal mappings (e.g., the Spelling Consistency p(G|P) for 
each mapping in the word). Each of the tables output 
in Step Two were given in turn as input to map_val-
ues, effectively providing multiple independent esti-
mates of the consistency and frequency values for all 
13,338 words in the full corpus. Some words could 
not be scored (e.g., a table based on a corpus lacking 
the word “yacht” fails to then score the word “yacht” 
because it has no entry for the grapheme ACH) – the 
proportion of words that were not used to inform the 
table but could still be scored represents an estimate of 
how well the sub-sampled corpora generalizes to the 
broader lexicon.
Step Four: The function summarize_words takes as input 
matrices in which words have been parsed and values 
applied (i.e., the output of map_values) and provides as 
output descriptive statistics for the parameter(s) of inter-
est. This function was applied to each of the outputs from 
Step Three, to extract the mean and minimum values for 
all five Sublexical Toolkit measures and all words in the 
full corpus. Finally, the Pearson correlation between each 
matched pair of measures was computed to estimate reli-
ability. Note that the final result of this procedure was, for 
each statistic of interest, 100 estimates per level (phonog-
rapheme or onset/rime) and per corpus size (6669 words 
or 3335 words).

Results

Results C1: Relationship between corpus size 
and number of sublexical units

The results of the resampling analyses are presented below 
in Fig. 6. In each panel of the figure, the red line represents 
the number of units empirically observed in the full sample 
of 13,338 words. It can be seen that, overall, there are fewer 
phonological units than graphemic ones (compare top and 
middle rows), and more phonographemic units (i.e., map-
pings between phonemes and graphemes) than anything else 
(bottom row). Similarly, there are more onsets than singular 
phonemes (because the onsets may be clusters), and still more 
rimes (because of the many combinations of vowels with 
codas). In all cases, there is clearly an initial explosion of the 
number of units from the smallest corpus size (n = 10 words) 
up to around n = 500, and then a deceleration in the occur-
rence of new units as the corpus increases further. The lowest 
number of units is for phonemes – in fact, there are only 49 
in the full corpus9, and typically all of them are encountered 
once the corpus size reaches n = 4000 words (Fig. 6 top left). 
There are slightly more phonological onsets, but it can be 
seen that all of these are reliably encountered once the cor-
pus reaches n = 6000 words (Fig. 6 top center). Accordingly, 
it is the rime units that least approach an asymptote as the 
sample size increases (Fig. 6 right column); nonetheless, the 
vast majority of rime units are encountered by the time the 
corpus reaches n = 6000 words, and exceedingly few new 
rimes are encountered when increasing the sample size from 
10000 to 13338 words (this can be seen by the very small 
‘gap’ between the horizontal red line, depicting the number 
of units in the full corpus, and the final endpoint on the blue 
line for subsamples of 10000 words).

Analysis C2: Reliability of the Sublexical Toolkit 
measures

The first set of results from this analysis is presented in 
Table 8, reporting the percentage of words in the full cor-
pus (n = 13,338) that were successfully parsed and mapped 
when using tables of probabilities/frequencies informed by 
only half (6669 words) or a quarter (3335) of the corpus. 
From this it can be seen that half of the corpus is sufficient 
to parse 95.46% of the words that were not used to inform 
the tables, at the phonographeme level. This compares to 



6858 Behavior Research Methods (2024) 56:6826–6861

84.59% at the onset/rime level. This difference is of course 
due to the fact that a corpus may encounter the constituents 
of an onset or rime unit, without actually encountering the 

specific combination of those units that generate that rime. 
For example, a corpus made solely of the words CAT and 
CUP is sufficient to generate mappings at the sublexical 
level for the word CAP (because the medial A and final P 
have been encountered in the corpus), but not for the rime 
-AP (because that combination of vowel and coda is not 
present in either CAT or CUP). Regarding corpora only a 
quarter of the size, a somewhat lower percentage of words 
are successfully mapped at the phonographeme level (≈ 92% 
versus ≈ 95%), whereas the results for the onset/rime level 
decline more precipitously (≈ 75% vs. ≈ 85%). As a point of 
comparison, version 1.0 of the toolkit, based on n = 10650 
words, successfully parses 99.00% of the words added for 
version 1.1 (i.e., 99.00% of the 2688 words on which it was 
not based).
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Fig. 6  The increase in the number of sublexical units occurring at 
least twice (y-axis) as the corpus size increases (x-axis). Corpora 
were randomly resampled 100 times each with sizes of n = 10, 20, 
50, 100, 500, 1000, 2000, 4000, 6000, and 10000 words. Top row: 
phonological units; middle row: graphemic units; bottom row: pho-
nographemic units. Left column: phonographeme level; middle and 

right columns: onset and rime level, respectively. The solid blue line 
reflects the mean number of units across the 100 iterations per sample 
size; dashed lines reflect the 95% confidence interval. The horizontal 
red line reflects the number of units actually observed in the full cor-
pus of 13338 words

Table 8  The percentage of words that were successfully parsed when 
informing the tables of probabilities/frequencies with only half or a 
quarter of the corpus (excludes the words used to inform the tables)

Level: Half corpus Quarter corpus

(n = 6669) 95% CI (n = 3335) 95% CI

Phonograph-
eme

95.46% [94.12, 
96.61]

91.92% [90.52, 93.02]

Onset/Rime 84.59% [91.48, 
93.00]

74.70% [73.09, 76.57]
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The second set of results is depicted in Table 9 and Fig. 7 
below. These indicate that split-half reliability (Fig. 7, dark 
blue for mean values and dark orange for minimum values) 
is excellent, above a Pearson’s r = 0.9 for all but one measure 
(r = 0.892 for reading consistency at the onset/rime level). 
As a further point of validation, reliability when using only 
a quarter of the corpus (Fig. 7, light blue for mean values 
and light orange for minimum values) is in the range of r = 
0.66 (for reading consistency at the onset/rime level) to 0.95 
(for spelling consistency at the phonographeme level). These 
results strongly suggest that the corpus of the Sublexical 
Toolkit (both versions 1.0 and 1.1) is sufficient to provide 
strong internal validity, for both the mean and minimum 
values of all five primary measures (spelling consistency, 
reading consistency, and frequencies of phonemes, graph-
emes, and phonographemes).
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