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Abstract
Cancer cells exhibit significant alterations in their metabolism, characterised by a
reduction in oxidative phosphorylation (OXPHOS) and an increased reliance on gly-
colysis, even in the presence of oxygen. This metabolic shift, known as the Warburg
effect, is pivotal in fuelling cancer’s uncontrolled growth, invasion, and therapeutic
resistance. While dysregulation of many genes contributes to this metabolic shift, the
tumour suppressor gene p53 emerges as a master player. Yet, the molecular mecha-
nisms remain elusive. This study introduces a comprehensive mathematical model,
integrating essential p53 targets, offering insights into how p53 orchestrates its targets
to redirect cancer metabolism towards an OXPHOS-dominant state. Simulation out-
comes align closely with experimental data comparing glucose metabolism in colon
cancer cells with wild-type and mutated p53. Additionally, our findings reveal the
dynamic capability of elevated p53 activation to fully reverse the Warburg effect,
highlighting the significance of its activity levels not just in triggering apoptosis (pro-
grammed cell death) post-chemotherapy but also inmodifying themetabolic pathways
implicated in treatment resistance. In scenarios of p53 mutations, our analysis sug-
gests targeting glycolysis-instigating signalling pathways as an alternative strategy,
whereas targeting solely synthesis of cytochrome c oxidase 2 (SCO2) does support
mitochondrial respiration but may not effectively suppress the glycolysis pathway,
potentially boosting the energy production and cancer cell viability.
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1 Introduction

Cancer cells undergo profound metabolic alterations facilitating their proliferation,
invasion, metastasis, and even drug resistance (Han et al. 2013; Rahman and Hasan
2015). Unlike normal cells, cancer cells derive a substantial amount of their energy
from glycolysis, converting a majority of incoming glucose into lactate in the
cytoplasm rather than metabolising it in the mitochondria through oxidative phos-
phorylation (OXPHOS) (Cairns et al. 2011; Simabuco et al. 2018). This metabolic
adaptation, recognised as the Warburg effect or aerobic glycolysis, leads to decreased
oxygen consumption required by mitochondrial respiration while generating an
increased amount of lactate (Simabuco et al. 2018).

By favouring glycolysis overOXPHOS, cancer cells ensure the availability of essen-
tial building blocks for biomass synthesis and meet the energy demands necessary for
their rapid growth (Hanahan andWeinberg 2011; Simabuco et al. 2018).While glycol-
ysis can produce adenosine triphosphate (ATP), the major cellular energy unit, more
rapidly than oxidative phosphorylation, it is significantly less efficient in terms of ATP
generated per unit of glucose consumed (Cairns et al. 2011; Simabuco et al. 2018).
Consequently, tumour cells increase their glucose uptake at an exceptionally high rate
to adequately satisfy their elevated energy and biosynthesis needs (Cairns et al. 2011;
Simabuco et al. 2018).

The glycolytic phenotype of cancer cells is influenced by various molecular
mechanisms extending beyond hypoxic conditions. Disruptions in signalling path-
ways downstream of growth factor receptors have been observed to affect glucose
metabolism in cancer cells (Zhong et al. 2000; Laughner et al. 2001). Specifically, the
PI3K/AKT/mTOR pathway, which is activated in the vast majority of human cancers
(Hennessy et al. 2005; Danielsen et al. 2015; Vara et al. 2004; Malinowsky et al. 2014;
Wang et al. 2013), and seen to instigate the glycolytic activity of cancer cells by upreg-
ulating the hypoxia-inducible factor 1 (HIF1) and its downstream targets (Cairns et al.
2011; Valvona et al. 2016; Laughner et al. 2001; Zhong et al. 2000).

Another crucial event that can impact cancermetabolism and is commonly observed
in cancer is the inactivation of the tumour suppressor gene p53. Depending on the
cellular conditions, p53 suppresses tumorigenesis by multiple mechanisms, including
cell cycle regulation, initiation ofDNArepair, and induction of apoptosis (programmed
cell death) (Wanka et al. 2012; Simabuco et al. 2018). Moreover, p53 has recently
emerged as a significant metabolic regulator in cancer cells, whether by inhibiting the
PI3K/AKT/mTOR pathway (Feng and Levine 2010), thereby disrupting the glycolytic
phenotype or by supporting mitochondrial respiration activity (Vousden and Ryan
2009; Zhang et al. 2010; Lago et al. 2011; Wanka et al. 2012; Liang et al. 2013;
Flöter et al. 2017; Simabuco et al. 2018; Liu et al. 2019). This idea was investigated by
Matoba et al. in 2006,where they examined the impact of p53 alterations on the cellular
metabolism of human colon cancer cells (Matoba et al. 2006). Experimental results
revealed that p53-deficient cells produced nearly the same amount of ATP but with
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substantially higher levels of lactate and lower oxygen consumption, highlighting the
influence of p53 mutations in changing the energy production mode to one favouring
glycolysis (Matoba et al. 2006).

The metabolic response controlled by p53 is mediated through the AMP-activated
protein kinase (AMPK), a sensor attuned to cellular metabolic stress conditions (Jones
et al. 2005). When activated by AMPK, typically in response to metabolic adversity
such as those experienced by cancer cells, p53 restrains cell growth and division, con-
serves energy, and shifts the cell towards oxidative phosphorylation for more efficient
energy production (Feng and Levine 2010). This may explain why cancer cells with
p53 mutations tend to rely more on glycolysis and have a higher ability to grow and
survive even under stress conditions.

Previous mathematical modelling sheds light on different aspects of cancer
metabolism -ranging from the effect of reactive oxygen species (ROS) on HIF1
stabilisation in ischemic conditions (Qutub and Popel 2008) to the identification
of metabolic targets to hinder cancer migration (Yizhak et al. 2014). Despite these
insights, the genetic complexities underpinning the Warburg effect remain elusive.
Recently, Linglin et al. made a notable contribution by discussing the genetic regula-
tion of the interplay between glycolysis and oxidative phosphorylation (Yu et al. 2017).
Nonetheless, this work did not account for the crucial influence of p53 or demonstrate
its impact on metabolic pathways as observed experimentally in cancer cells.

Undoubtedly, the tumour-suppressive role of p53 has been studied through several
computational modelling approaches. Ma et al. modelled the oscillatory dynamics of
p53, emphasising the correlation between the DNA damage severity and the average
number of p53 pulses (Ma et al. 2005). Further studies by Zhang et al. have elucidated
how the frequency of p53 pulses can influence cellular decisions between repair and
apoptosis (Zhang et al. 2007) and described the transition from cell repair to apoptosis
with an inverse relationship between the apoptosis time and damage strength (Zhang
et al. 2009). Another study has introduced a two-phase dynamic of p53, distinguishing
between partial and complete activation of p53 (Zhang et al. 2011). Our recent study
expanded on these findings by demonstrating that p53 can switch among three dynamic
modes in a DNA damage strength-dependent manner following chemotherapy (Abuk-
waik et al. 2023). Despite these advances, earlier works have mainly concentrated on
p53 dynamic behaviour in response to DNA damage stimuli and the subsequent cell
fate, leaving a substantial gap in understanding its mechanisms regarding cellular
metabolism.

To address this gap, this study develops a mathematical model that unveils the intri-
cate machinery behind the regulation of cancer glucose metabolism by p53. While
numerous p53 targets involved in cellular metabolism have been identified, their com-
plex molecular interactions across different scenarios remain largely unexplored. By
transforming existing experimental data into amathematical framework,we uncovered
hard-to-detect mechanisms and quantitatively analysed the activities of glycolysis and
OXPHOS pathways under different cellular states. This methodology provides valu-
able insights for developing targeted therapeutic approaches aimed at disrupting cancer
metabolism and combating the aggressive behaviour of cancer. Although our primary
focus is on colon cancer cells, the model’s applicability extends to many cancer types
experiencing similar conditions.
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Fig. 1 Schematic diagram depicting the signalling pathway of key molecules involved in glucose oxidation,
spanning glycolysis, the tricarboxylic acid (TCA) cycle, and the electron transport chain (ETC). In our
notation, cytoplasmic, nuclear, and mitochondrial molecular species are indicated by subscripts ‘c’, ‘n’,
and ‘m’, respectively, while the ‘∗’ superscript symbol is used to denote active species in the case of species
that exist in two states (active and inactive)

2 Methods

We constructed a comprehensive theoretical framework aiming to delineate the role of
p53 on cellular metabolism, particularly its involvement in the Warburg effect. While
cancer cells engage in diverse metabolic pathways, the Warburg effect is closely asso-
ciatedwith alterations in glucosemetabolism.Consequently, our primary attentionwas
devoted to glucose metabolism, investigating its main pathways: glycolysis and oxida-
tive phosphorylation. Integrating information from literature, our model incorporated
all well-established p53 targets that markedly manipulate these pathways alongside
the signalling pathways commonly activated in cancer in response to growth factors or
metabolic stress, influencing the decision-making between these pathways, see Fig. 1.
The following section briefly discusses these signalling pathways and their involve-
ment in glucose metabolism.

2.1 Signalling Pathways in Glucose Metabolism

2.1.1 Growth Factor Signalling Pathway

In response to growth factors, extracellular molecules activate specific receptors on
the cell membrane, initiating the intracellular activation of phosphoinositide 3-kinase
(PI3K). PI3K then phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2) into
phosphatidylinositol 3,4,5-trisphosphate (PIP3), facilitating the protein kinase B
(AKT) activation (Danielsen et al. 2015; Vara et al. 2004; Carnero and Paramio 2014).
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Upon AKT activation, a cascade of events occurs, ultimately activating the mech-
anistic target of rapamycin (mTOR) (Dan et al. 2014; Inoki et al. 2002), which
subsequently promotes the synthesis of proteins required for cell growth and prolifer-
ation. One of these proteins is HIF1α (Düvel et al. 2010; Laughner et al. 2001; Hudson
et al. 2002; Treins et al. 2005), a transcription factor that drives the expression of genes
essential for glycolytic metabolism. These genes include glucose transporter-1 and -
3 (GLUT1) and (GLUT3), respectively (Ancey et al. 2018), lactate dehydrogenase
(LDH) (Valvona et al. 2016), and pyruvate dehydrogenase kinase-1 and -3 (PDK1)
and (PDK3), respectively (Anwar et al. 2021; Lu et al. 2011; Wang et al. 2021; Kim
et al. 2006).

2.1.2 Metabolic Stress Signalling Pathway

Different forms of metabolic stress activate AMPK, a crucial enzyme that restores
cellular energy balance by suppressing ATP-consuming processes and promoting ATP
production (Hardie 2011; Hardie et al. 2012; Faubert et al. 2015; Li et al. 2015).
Through this activation,AMPKrestrains cellular growth and increasesATPproduction
efficiency primarily by repressingmTOR activation and stimulating the transcriptional
activity of p53 (Faubert et al. 2015; Li et al. 2015; Inoki et al. 2003).

By phosphorating p53, AMPK disrupts the interaction between p53 and its negative
regulator, murine double minute 2 (MDM2), leading to p53 stabilisation (Jones et al.
2005; Imamura et al. 2001). Consequently, p53 accumulates and translocates to the
nucleus, triggering the promoter activity of its target genes.

2.1.3 p53 Transcriptional Targets and Feedback Mechanisms

p53 exerts its effects through the transcriptional regulation of a wide array of tar-
get genes involved in various cellular processes. Some p53 targets form a negative
feedback loop that dampens its stability, such as MDM2 and wild-type p53-induced
phosphatase 1 (WIP1) (Barak et al. 1993; Batchelor et al. 2011). WIP1 dephospho-
rylates p53, increasing its susceptibility to MDM2-mediated degradation (Batchelor
et al. 2011).

Conversely, p53 activates genes that promote its activation and simultaneously
inhibit the glycolytic regulator HIF1. For instance, p53 induces the expression of
proteins that activate AMPK,which in turn inhibits mTOR activity and its downstream
target HIF1 (Budanov and Karin 2008; Sanli et al. 2012; Feng and Levine 2010). This
process forms a positive feedback loop, as active AMPK phosphorylates p53, further
enhancing its stabilization (Feng and Levine 2010). Another crucial target of p53 is
phosphatase and tensin homolog (PTEN) (Stambolic et al. 2001), which attenuates
the PI3K/AKT/mTOR pathway by converting PIP3 back to PIP2 (Mayo et al. 2002;
Carnero and Paramio 2014; Feng and Levine 2010). The induction of PTEN also
supports p53 by hindering the AKT-dependent translocation of MDM2 to the nucleus,
thereby boosting the transcriptional activity of p53 (Mayo et al. 2002, 2005).

In addition, p53 regulates genes directly involved in glucose metabolic pathways.
This includes diminishing the protein synthesis ofGLUT1,GLUT3 (Ancey et al. 2018;
Schwartzenberg-Bar-Yoseph et al. 2004; Kawauchi et al. 2008), and PDK2 (Anwar
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et al. 2021; Liang et al. 2020), while stimulating the expression of other molecules,
such as the TP53-inducible glycolysis and apoptosis regulator (TIGAR) (Bensaad et al.
2006; Lee et al. 2015), and the synthesis of cytochrome c oxidase 2 (SCO2) (Matoba
et al. 2006).

2.1.4 Glucose Metabolism Pathways

Glucose metabolism comprises three main stages: starting with glycolysis, advancing
to the tricarboxylic acid (TCA) cycle, and finishing with the electron transport chain
(ETC).
Glycolysis.Glucose is transported to the cells by specific glucose transporters located
in the cell membrane (Schwartzenberg-Bar-Yoseph et al. 2004; Szablewski 2013;
Ancey et al. 2018; Mamun et al. 2020), namely GLUT1 and GLUT3 in our model,
which are negatively regulated by p53 and positively by HIF1, controlling glucose
uptake rate (Ancey et al. 2018; Schwartzenberg-Bar-Yoseph et al. 2004; Kawauchi
et al. 2008). Once inside the cell, glucose undergoes an irreversible conversion to
glucose-6-phosphate (G6P), consuming one ATP molecule (Golias et al. 2019). G6P
can then either proceed through glycolysis or enter the pentose phosphate pathway
(PPP) (Jiang et al. 2014), a decision influenced by the p53 target TIGAR,which inhibits
the enzyme catalysing the third step in the glycolysis pathway, diminishing glycolysis
flux (Bensaad et al. 2006; Lee et al. 2015). Continuing with glycolysis, a molecule
of G6P is converted into two molecules of pyruvate, yielding three net ATP and two
reduced nicotinamide adenine dinucleotide (NADH) molecules (Valvona et al. 2016;
Golias et al. 2019).

In the presence of oxygen, pyruvate derived from glycolysis typically enters the
mitochondria for further energy production through oxidative phosphorylation. How-
ever, increased levels of LDH enzyme, driven by HIF1 activation, redirect pyruvate
away from the mitochondria by catalysing its conversion to lactate and oxidising
NADH back to NAD+ (Valvona et al. 2016; Golias et al. 2019). This shift allows cells
to produce ATP less efficiently through glycolysis while consuming more glucose
(Valvona et al. 2016).
TCA cycle. Within the mitochondria, the pyruvate dehydrogenase (PDH) complex
facilitates the first step towards glucose respiration by catalysing the oxidative decar-
boxylation of pyruvate to acetyl-CoA, concurrently reducing one NAD+ into NADH
(Wang et al. 2021; Woolbright et al. 2019; Rodrigues et al. 2015). Acetyl-CoA subse-
quently enters the TCA cycle, undergoing a series of chemical reactions that generate
one energy molecule, three NADH, and one reduced flavin adenine dinucleotide
(FADH2) molecule (Martínez-Reyes and Chandel 2020).

The function of the PDH enzyme is controlled by the PDK family, which phospho-
rylates the E1-α subunit of PDH, blocking its decarboxylation activity (Wang et al.
2021; Woolbright et al. 2019; Rodrigues et al. 2015). HIF1 enhances the promoter
activities of two PDK family members, namely PDK1 and PDK3 (Anwar et al. 2021;
Lu et al. 2011;Wang et al. 2021; Kim et al. 2006), while p53 suppresses the expression
of another PDK member called PDK2 (Anwar et al. 2021; Liang et al. 2020).
ETC. In the last stage, NADH and FADH2 are oxidised back into NAD+ and FAD via
protein complexes in the inner mitochondrial membrane (Ahmad et al. 2018). This

123



p53 Orchestrates Cancer Metabolism… Page 7 of 64 124

oxidation process involves electron transfer from NADH and FADH2 across these
complexes, during which protons are pumped from the mitochondrial matrix to the
intermembrane space. This action creates a proton gradient that drives protons back
into the matrix, facilitating ATP production (Ahmad et al. 2018).

Among these complexes,Complex IVacts as thefinal electron acceptor, channelling
the electrons to molecular oxygen by using 0.5 oxygen (O2) molecules for each pair
of electrons received from NADH or FADH2 (Ahmad et al. 2018). However, the
activity of Complex IV is regulated by SCO2, a p53-regulated gene essential for its
proper assembly and maturation. Thus, deficiency of SCO2 can impair Complex IV
functionality and disrupt the electron flowwithin the ETC (Matoba et al. 2006;Wanka
et al. 2012).

2.2 Mathematical Framework

Our model encompasses the entire glucose oxidation network, spanning three
compartments-cytoplasm, nucleus, and mitochondria. The directional fluxes within
these compartments drive the temporal changes in the concentrations of 33 molecules
involved in glucose oxidation pathways, as illustrated in Fig. 1. Consequently, the
system is governed by 33 differential equations where cytoplasmic, nuclear, and
mitochondrial molecular species are represented by the subscripts ‘c’, ‘n’, and ‘m’,
respectively, while the ‘∗’ superscript symbol indicates active species for those exist-
ing in both active and inactive states. Each term in the model represented by ’v’
notation corresponds to one of the reactions detailed in the model reactions section in
the Appendix (A), where v = v/Vmax or v/k.

dP53c
dt

= k1 − k2Ampk∗
c [v1(P53c)] − k3Mdm2c[v1(P53c)]

+ k4Wip1n[v1(P53n)] − k5P53c, (1)

dP53n
dt

= k2Ampk∗
c [v1(P53c)] − k6Mdm2n[v1(P53n)] − k4Wip1n[v1(P53n)],

(2)

dMdm2c
dt

= k7 + k8[v+
2(P53n)

] − k9Akt
∗
c [v1(Mdm2c)] + k10[v1(Mdm2n)]

− k11Mdm2c, (3)

dMdm2n
dt

= k9Akt
∗
c [v1(Mdm2c)] − k10[v1(Mdm2n)] − k11Mdm2n, (4)

dWip1n
dt

= k12 + k13[v+
2(P53n)

] − k14Wip1n, (5)

dPtenc
dt

= k15 + k16[v+
2(P53n)

] − k17Ptenc, (6)

dSco2m
dt

= k18 + k19[v+
2(P53n)

] − k20Sco2m, (7)

dT igarc
dt

= k21 + k22[v+
2(P53n)

] − k23T igarc, (8)
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d Ampk∗
c

dt
= k24[v1(Ampkc)] + k25[v+

2(P53n)
][v1(Ampkc)] − k26[v1(Ampk∗

c )], (9)

dPip3c
dt

= k27[v1(Pip2c)] − k28Ptenc[v1(Pip3c)], (10)

d Akt∗c
dt

= k29Pip3c[v1(Aktc)] − k30[v1(Akt∗c )], (11)

dMtor∗
c

dt
= k31Akt

∗
c [v1(Mtorc)] − k32Ampk∗

c [v1(Mtor∗
c )] − k33[v1(Mtor∗

c )],
(12)

dHi f 1αc

dt
= k34 + k35Mtor∗

c − k36Mtor∗
c Hi f 1αc − k37Hi f 1αc, (13)

dHi f 1αn

dt
= k36Mtor∗

c Hi f 1αc − k37Hi f 1αn, (14)

dGlut1c
dt

= k38[v−
2(P53n)

] + k39Hi f 1αn − k40Glut1c, (15)

dGlut3c
dt

= k41[v−
2(P53n)

] + k42Hi f 1αn − k43Glut3c, (16)

dPdk13m
dt

= k44 + k45Hi f 1αn − k46Pdk13m, (17)

dPdk2m
dt

= k47[v−
2(P53n)

] − k46Pdk2m, (18)

dLdhc
dt

= k48 + k49Hi f 1αn − k50Ldhc, (19)

dPdh∗
m

dt
= k51 − k52

(
Pdk13m + Pdk2m

)[v1(Pdh∗
m)] + k53[v1(Pdhm)]

− k54Pdh
∗
m, (20)

dPdhm
dt

= k52
(
Pdk13m + Pdk2m

)[v1(Pdh∗
m)] − k53[v1(Pdhm)] − k54Pdhm,

(21)

dGlucosec
dt

= k55
(
Glut1c + Glut3c

)[v3(Glucose)] − k56[v4(Glucosec,Atp)], (22)

dG6pc
dt

= k56[v4(Glucosec,Atp)] − k57[v7(G6pc)] − k58G6pc, (23)

dPyruvatec
dt

= 2k57[v7(G6pc)] − k59[v+
2(Ldhc)

][v4(Pyruvatec,Nadhc)]
− k60[v6(Pyruvate)], (24)

dPyruvatem
dt

= k60[v6(Pyruvate)] − k61Pdh
∗
m[v5(Pyruvatem ,Nadm )], (25)

d Acetylm
dt

= k61Pdh
∗
m[v5(Pyruvatem ,Nadm )] − k62[v7(Acetylm)], (26)

dNadhc
dt

= 2k57[v7(G6pc)] − k59[v+
2(Ldhc)

][v4(Pyruvatec,Nadhc)]
− k63[v6(Nadh)], (27)
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dNadhm
dt

= k61Pdh
∗
m[v5(Pyruvatem ,Nadhm)] + 3k62[v7(Acetylm)] + k63[v6(Nadh)]

− k64Sco2m[v7(Nadhm)], (28)

dFadhm
dt

= k62[v7(Acetylm)] − k64Sco2m[v7(Fadhm)], (29)

dLactatec
dt

= k59[v+
2(Ldhc)

][v4(Pyruvatec,Nadhc)] − k65[v3(Lactate)], (30)

dLactateout
dt

= k65[v3(Lactate)] − k66Lactateout , (31)

d Atp

dt
= −k56[v4(Glucosec,Atp)] + 3k57[v7(G6pc)] + k62[v7(Acetylm)]

+ 2.5k64Sco2m[v7(Nadhm)] + 1.5k64Sco2m[v7(Fadhm)] − k67Atp,
(32)

dO2con
dt

= 0.5k64Sco2m[v7(Nadhm)] + 0.5k64Sco2m[v7(Fadhm)]. (33)

This model applies to all cell types, both normal and cancerous, with certain restric-
tions. Under the assumption that normal cells exist in a healthy environment,metabolic
stress and continuous activation of growth factor signals are exclusively attributed to
cancer cells. Consequently, k24 and k27 are set to zero in normal cells. Additionally,
to differentiate between cancer cell types, reducing k2 to zero in p53-mutated cancer
cells can ensure the absence of p53 response in these cells.

For a comprehensive understanding, detailed descriptions of the model-including
assumptions, reactions, parameter values, experimental justifications, and sensitivity
analysis-are provided in the Appendix (A). Additionally, all numerical simulations in
this study were performed using MATLAB’s ’ode’ routine and Gear’s method in the
XPPAUT software.

3 Results

3.1 p53 Orchestrates theMetabolic Shift in Cancer: Enhancing Oxidative
Phosphorylation, Suppressing Glucose Consumption and Lactate Production

To examine the normal and cancer cellular metabolism and investigate the influence of
p53 deficiency on cancermetabolic pathways seen inmany laboratory experiments, we
simulated the experiment conducted by Wanka et al. (2012), using our mathematical
model.

In-silico, different types of cells (normal, cancer p53+/+, and cancer p53−/−) were
exposed to limited glucose (2mM) for an 8-hour duration. Throughout this timeframe,
the glucose consumed, lactate produced, oxygen consumed, and ATP produced were
systematically monitored and quantified to provide a comprehensive comparison of
metabolic processes across these distinct cell types, as illustrated in Fig. 2.

Our simulations succeeded in clarifying the distinctions in glucose metabolic path-
ways between cancer and normal cells. Cancer cells exhibited heightened glucose
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Fig. 2 A comparison between normal cells and cancer cells (p53+/+, p53−/−) regarding their metabolic
pathways. It shows the time course of the glucose consumption, lactate production, oxygen consumption,
and ATP production by each cell type exposed to 2mM of glucose over 8h

consumption and elevated lactate secretion, signifying their commitment to the aerobic
glycolysis phenotype. Conversely, in normal cells, glucose wasmainlymetabolised by
oxidative phosphorylation, accounting for 92% of the total ATP produced. Moreover,
cancer cells in our model displayed high sensitivity to glucose availability, experi-
encing a notable decline in metabolic activity as glucose levels decreased. However,
normal cellsmaintained relatively stablemetabolic levels that wereminimally affected
by glucose fluctuations.

Our finding further confirms the significant influences of losing p53 in cancer
metabolism, which caused a high tendency towards the glycolytic pathway reducing
the oxygen consumption required for glucose oxidation by 22.5%, compensating that
by increasing glucose consumption and thus producing lactate at higher rates. A com-
parison of our simulation findingswith experimental observations fromvarious studies
reveals a good match (Wanka et al. 2012; Matoba et al. 2006;Wu et al. 2016). Detailed
insights are presented in Table 1, corroborating the consistency between simulated and
experimentally observed data.

3.2 The Influence of Abundant Extracellular Glucose Level on Stimulating
High-Energy Production in Cancer Cells

Considering the dynamic nature of cellular behaviour within the body, it is crucial to
note that experiments may not comprehensively capture the full spectrum of cellular
responses. In the experiment we reproduced, cells were subjected to a limited supply
of glucose that depletes over time. However, this scenario contrasts with the relatively
constant glucose level in the bloodstream that is readily accessible to cells within the
body.

Accordingly, for a more realistic representation of cellular metabolism, we need
to bridge the gap between the laboratory settings and the continuous physiological
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Fig. 3 Glucose metabolism under normoxic and hypoxic conditions. A comparison of key outputs of
metabolic pathways is shown for normal and cancer (p53+/+, p53−/−) cells, considering limited extracel-
lular glucose level that depletes over time (top row) and constant extracellular glucose levels (bottom row).
The glucose consumption, lactate production, oxygen consumption, and ATP production were measured
by simulating each cell type for 8h under normoxic/hypoxic conditions

conditions experienced by cells within the body. In pursuit of this goal, we replicated
previous simulations but this time assumed a consistent extracellular glucose level,
maintaining it at the normal physiological glucose blood concentration (5mM) (Grupe
et al. 1995), regardless of the cellular consumption rate.

By adopting this methodology, our simulations demonstrated that the maintenance
of stable glucose availability prompted both normal and cancer cells to exhibit a sus-
tained rate of glucose consumption throughout the 8-hour duration, which revealed the
distinctive ability of cancer cells to produce markedly higher levels of ATP compared
to our previous simulations and even more than normal cells (Fig. 3, Left).

This insight suggests that lowering the glucose levels in the bloodstream by fol-
lowing a specific regime could substantially diminish the ATP production in cancer
cells, limiting their ability to sustain and spread. In addition, a comparative analysis
of the three cell types under both limited and constant glucose levels highlights that
the more the cell relies on the glycolytic pathway, the more it is affected by reducing
glucose availability.
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3.3 Unravelling Hypoxia’s Metabolism: Adaptive Strategies, Energy Production,
andmTOR Signalling Dynamics in Cancer Progression

In cancer progression, hypoxia emerges as a vital challenge faced by rapidly prolifer-
ating cancer cells due to the formation of regions within the tumour that are deprived of
an adequate blood supply. In response, cancer cells exhibit remarkable adaptive strate-
gies. They undergo complex molecular alterations, activating a cascade of signalling
pathways that drive angiogenesis (the formation of new blood vessels) to restore oxy-
gen balance and intensify the shift toward glycolytic energy production mode to offset
the deficit in respiration (Xu et al. 2019). These dynamic responses are primarily
governed by stabilising HIF1, a regulator suppressed under normal conditions in an
oxygen availability-dependent manner (Valvona et al. 2016; Laughner et al. 2001; Xu
et al. 2019).

To investigate the impact of hypoxic conditions on cellular metabolism, we mim-
icked the hypoxic environment by diminishing the oxygen-dependent degradation
rate of HIF-1, factoring in the HIF-1 half-life observed under hypoxic conditions
(Kubaichuk and Kietzmann 2023). In parallel, we attenuated the activity of the elec-
tron transport chainby an equivalent rate (50%), considering the inadequate availability
of oxygen to facilitate the oxygen reduction process. Additionally, because hypoxia is
often accompanied by a lack of blood supply to cancer cells, we reduced the glucose
availability to cells within the body by the same percentage (from 5mM to 2.5 mM).

By employing this approach, we anticipated and indeed observed a notable increase
in lactate fermentation by both normal and cancer cells to maximise energy produc-
tion as mitochondrial capacity diminishes, consequently escalating overall glucose
consumption (Fig. 3, right). This adaptive strategy mirrors the metabolic response
seen in normal cells during intense exercise, where lower oxygen availability prompts
alternative energy pathways. Furthermore, our simulation closely aligned the observed
glucose metabolism outcomes for colon cancer cells HCT116 (p53+/+ and p53−/−)
under hypoxic conditions (O2 1%) (Wanka et al. 2012), providing a good estima-
tion of the glucose consumption levels with a slight increase in lactate production, as
detailed in Table 1, (b). The discrepancy in lactate production levels may be attributed
to the potential conversion of some lactate back to pyruvate, especially in instances of
extremely high lactate production not accounted for in our model.

On the other hand, our simulations revealed a prominent divergence in the response
to hypoxia between normal and cancer cells regarding their energy production ability.
While hypoxia led to a reduction in ATP production in normal cells, cancer cells
displayed resilience, maintaining their energy productivity close to normal conditions
(Fig. 3, second row). This intriguing observation prompted a thorough investigation
into possible factors that may be missed in our signalling network influencing energy
production under hypoxic conditions.Our investigation unveiled that hypoxia typically
induces the expression of the hypoxia-responsive REDD1 gene (not incorporated in
our model), which, in turn, disrupts mTOR activity as a major control point to inhibit
energy-intensive processes like protein translation (Brugarolas et al. 2004; Connolly
et al. 2006; DeYoung et al. 2008; Horak et al. 2010). This cascade leads to a decrease
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Fig. 4 The effect of mTOR on the cellular metabolism and energy production levels in hypoxic cancer
cells (p53+/+, p53−/−). The glucose consumption, lactate production, oxygen consumption, and ATP
production were calculated under different mTOR-dependent HIF1 activation rates, k35

in HIF1 levels and a dampening of the glycolytic pathway (Brugarolas et al. 2004;
Horak et al. 2010).

Motivated by these findings, we studied the impact of inhibiting mTOR activity on
metabolic pathways and energy production levels under hypoxic conditions. We con-
structed diagrams showcasing the metabolic activity of glycolysis and OXPHOS and
their contributions to energy production under different k35 rates (mTOR-dependent
HIF1 synthesis rate), see Fig. 4.Analysing these diagrams confirms themTOR involve-
ment in producing high energy levels in hypoxic cancer cells, as impeding its activity
drove the cell towards a similar energy level produced in our hypoxic normal cells.

Nevertheless, numerous studies have consistently reported resistance of trans-
formed cells to mTOR inhibition under hypoxic conditions (Connolly et al. 2006).
This phenomenon is seen to preserve the protein synthesis rates and promote cell
proliferation and growth under hypoxia (Brugarolas et al. 2004; Connolly et al. 2006;
DeYoung et al. 2008). The engagement in energy-demandingprocesses, such as protein
synthesis and growth, underscores the cell’s proficiency in generating ample energy.
This concurs with our findings regarding hypoxic cancer cells, where the maintenance
of mTOR activity correlated with a remarkable ability to produce energy even in the
face of oxygen deficiency.

3.4 Dual Stable Steady States in Cancer Cells, Contrasted by Singular Stability in
Normal Cells

In previous sections, normal and cancerous cells, whether possessing wild-type p53 or
mutated p53, manifest distinct metabolic profiles, signifying different stability states.
To explore this further, we developed a phase space presenting the nullclines and
potential steady states of key players in glucose metabolic pathways, p53, HIF1, and
AMPK, across both normal and cancer cells (Fig. 5).

Considering the phase space diagrams, normal cells show a unique stability with no
activation of p53 and HIF1, indicative of a healthy environment. Conversely, cancer
cells display two stable steady states, with an unstable one in between. The first stable
steady state lacks p53 activation but exhibits a high level of HIF1, representing the
case when cancer cells have p53 mutations. In contrast, the other stable steady state
shows high p53 activation with a lower level of HIF1, indicating the state of cancer
cells with wild-type p53.
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Fig. 5 Phase portrait of the system in normal and cancer cells. (Top row) Nullcline corresponding to
nuclear p53 (p53n ) and active AMPK (AMPK∗

c ). (Bottom row) Nullcline corresponding to nuclear HIF1
(HIF1n ) and activeAMPK (AMPK∗

c ). The green, yellow, and blue lines representAMPK∗
c , p53n , andHIF1n

nullclines, respectively. Solid and hollow magenta dots denote stable and unstable equilibria, respectively.
The system exhibits a single stable equilibrium point in normal cells with no p53 and HIF1 activation, while
in cancer cells, two stable and one unstable equilibria are observed. For cancer cells, the stable equilibrium
point with low p53n /high HIF1n levels represents p53-mutated cancer cells. In contrast, the one with high
p53n /low HIF1n concentrations indicates p53-wild-type cancer cells (Color figure online)

The transition between these two states in p53 wild-type cells is governed by the
phosphorylation levels of AMPK, the protein responsible for instigating the p53-
metabolic stress response. This dynamic is further elucidated by the bifurcation
diagram, illustrating the levels of p53 and HIF1 under various AMPK phosphory-
lation rates denoted as k24 (Fig. 6).

Under low phosphorylation rates of AMPK, cells exhibit two stable steady states:
high activation of p53 (Stable SS p53+/+) and no activation of p53 (Stable SS p53−/−).
However, exceeding the bifurcation point by increasing the phosphorylation rate (k24)
induces p53 activation and shifts the cell into a unique stability regime, representing
the p53-wild-type state.

3.5 Restoring Normal Metabolism in Cancer Cells by Increasing the p53 Activation
Levels

Beyond its traditional roles inDNA repair and apoptosis initiation, our study highlights
the enhanced activation potential of p53 to counter theWarburg effect, restoring cancer
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Fig. 6 Bifurcation diagrams demonstrate nuclear p53 and HIF1 levels driven by AMPK phosphoryla-
tion rate, k24, in cancer cells. The diagrams reveal a bistability regime exhibiting low p53/high HIF1
and high p53/low HIF1 levels, which represent the wild-type p53 (p53+/+) and mutated p53 (p53−/−)
states, respectively. However, with high AMPK activation surpassing the bifurcation point, unique stability
emerges, transitioning wild-type cancer cells to high p53 activation levels

cells to amore normalmetabolic state. This transformative impact unfolds across three
distinct phases, depicted in Fig. 7.

During the first phase (yellow area, Fig. 7), the elevation of nuclear p53 levels leads
to a modest reduction in glucose consumption and lactate production. Nevertheless,
energy production levels remain high due to improved glucose respiration, explaining
the increase in oxygen consumption despite the lower amount of glucose consumed.
Glycolysis maintains dominance in this phase, contributing to 47%-35% of the overall
energy produced.

Advancing the p53 activation will shift the cells towards the next phase (magenta
area, Fig. 7), further reducing glucose uptake and lactate formation.However, this time,
the ATP production is negatively impacted as a balanced state between glycolysis and
oxidative phosphorylation is achieved, with glycolysis responsible for 20–34% ofATP
output.

In the third phase (blue area, Fig. 7), oxidative phosphorylation overcomes gly-
colysis, intensifying oxygen consumption while consistently diminishing glucose
utilisation and lactate production. This transition guides the cell towards achieving the
standards of normal cellular metabolism, represented by the dashed black line around
k2 = 0.9. Along this line, glycolysis and OXPHOS are involved in producing energy
with the same percentage seen in our normal cells, attaining standard rates of glucose
consumption and lactate production. However, with high activation of TIGAR, gly-
colysis flux is lower than that of normal cells, resulting in reduced pyruvate production
and overall ATP synthesis compared to the normal cellular state.

This finding sheds light on the crucial role of p53 activation levels in the cellular
outcomes following chemotherapy that activates p53 to trigger apoptosis. Unlike cells
with p53 mutation, those with intact p53 can manipulate cancer cells’ metabolism
in response to chemotherapy, restraining the glycolytic pathway and decreasing the
intracellular ATP levels, thereby boosting cells’ sensitivity to drugs.
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Fig. 7 The effect of p53 activation on cancer metabolism. These diagrams show the steady state levels of
nuclear p53 and four key metabolic indicators: glucose consumption, lactate production, oxygen consump-
tion, and ATP generation, under varying rates of p53 phosphorylation (k2) in cancer cells. Each diagram is
divided into three distinct regions: the yellow region, where glycolysis dominates, contributing to 47–35%
of ATP production; the magenta region, indicating a balanced state between glycolysis and oxidative phos-
phorylation, with glycolysis contributing to 20–34% of total ATP; and the blue region, where OXPHOS
becomes dominant, accounting for more than 80% of ATP production. A black dashed line within the
diagrams marks the targeted normal cellular metabolism (Color figure online)

3.6 Targeting PI3K as an Alternative Player to p53 in Modulating theMetabolism
of p53-Mutated Cancer Cells

In the context of addressing cancer metabolism in cells harbouring p53 mutations,
our analysis suggests an alternative strategy by targeting the growth factors signalling
pathway. This critical pathway plays a central role in instigating the HIF1 and its asso-
ciated targets that mainly support the aerobic glycolysis of cancer (Lien et al. 2016).
The initiation of this pathway involves the activation of PI3K, leading to the transfor-
mation of PIP2 into PIP3 (Danielsen et al. 2015; Vara et al. 2004; Lien et al. 2016).
Thus, our investigation has focused on perturbing this pathway by simulating method-
ologies such as triggering PTEN or blocking PI3K activation with specific inhibitors,
like idelalisib or copanlisib (Lannutti et al. 2011; Liu et al. 2013). The outcomes reveal
a profound and systematic influence on cellular metabolism, manifesting across three
phases (Fig. 8).

In the initial phase (yellow area, Fig. 8), the emphasis is placed on inhibiting the
glycolysis pathway while leaving the oxidative phosphorylation unaffected, leading
to a decrease in total energy production following a loss of more than 20% in PIP3
concentration.Despite the reduction in glycolysis activity, it is considered predominant
in this phase, accounting for over 35% of cellular energy.

As PIP3 levels decrease, the glycolytic pathway continues to diminish, indirectly
prompting the OXPHOS pathway to regain its functionality and bringing the two path-
ways into a balanced state (magenta area, Fig. 8). Restricting pyruvate flux to lactate is
expected to elevate cytosolic pyruvate concentrations, redirecting them towards mito-
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Fig. 8 The impact of disrupting the growth factors signalling pathway on p53-mutated cancer cells
metabolism. These diagrams depict the steady state levels of PIP3 alongside key metabolic metrics-glucose
consumption, lactate production, oxygen consumption, and ATP production-at different PIP2 phospho-
rylation rates (k27) in cancer cells (p53−/−). The diagrams are categorised into three zones: yellow for
glycolytic predominance (accounting for over 35% of ATP production), magenta for a metabolic balance
between glycolysis and oxidative phosphorylation (20–34% of ATP from glycolysis), and blue for oxidative
phosphorylation supremacy (exceeding 80% of energy output). A black dashed line marks the standard for
normal cellular metabolism, with energy contributions of 11% from glycolysis and 89% from OXPHOS
(Color figure online)

chondria and thus promoting pyruvate oxidation. This shift is reflected in the notable
oxygen consumption boost and sustained ATP production levels despite lower glucose
utilisation in this phase.

In the last phase (blue area, Fig. 8), glycolysis experiences a significant decline,
allowing OXPHOS to overcome it, thus improving energy production efficiency. In
this stage, glucose respiration becomes the preferred cellular pathway responsible for
80–90% of the total energy output. The black dashed line in this phase signifies the
targeted normal cellular metabolism, with 11% of energy production attributed to
glycolysis and 89% to OXPHOS.

Our simulations reveal the efficacy of targeting the growth factors signalling path-
way and highlight the potency of PI3K inhibitors in disrupting the aerobic glycolysis
in p53-mutated cancer cells, enhancing therapeutic outcomes.

3.7 SCO2: A Critical Component in Boosting the OXPHOS, Yet Alone Insufficient for
Reversing theWarburg Effect

Numerous studies have emphasised the crucial role of SCO2, a p53 target, in the effi-
cient functioning of themitochondrial respiratory chain and cellular energy production
(Matoba et al. 2006; Wanka et al. 2012). SCO2 is essential for the proper assembly
and function of cytochrome c oxidase (Complex IV in ETC), which catalyses elec-
tron transfer to molecular oxygen in the inner mitochondrial membrane (Matoba et al.
2006; Wanka et al. 2012). Given its significance in cellular respiration, some studies
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have proposed targeting it as a potential strategy to rescue oxygen consumption in
p53-deficient cells and modulate the Warburg effect (Matoba et al. 2006; Wanka et al.
2012).

Inspired by these insights, we delved into the impact of boosting SCO2 levels on
the metabolic phenotypes of cancer cells, particularly those with p53 mutations. In-
silico, we elevated the SCO2 expression levels of p53−/− cells by increasing its basal
production rate, k18 (Fig. 9).

Indeed, our simulations agreed with those studies’ observations (Matoba et al.
2006; Wanka et al. 2012), revealing a substantial activation of aerobic respiration in
a SCO2 level-dependent manner. Additionally, we noticed that when SCO2 concen-
tration achieves its level in wild-type p53 cells, the oxygen consumption activity of
p53−/− cells rises at a rate comparable to that in wild-type p53 cells. This is com-
pletely consistent with what was observed in Matoba’s study, which noted that the
amount of SCO2 protein needed to rescue the deficit in mitochondrial respiration of
the p53−/− cells corresponded well to the physiological levels observed in the p53+/+
cells (Matoba et al. 2006).

On the other hand, our findings also indicate that increasing SCO2 alone is insuffi-
cient to eliminate or reverse the Warburg effect. Enhancing oxidative phosphorylation
does not necessarily lead to efficient suppression of the glycolysis pathway, especially
with continued incentives to consume large amounts of glucose and high activation
of glycolysis enzymes. This clearly explains our results, which show a slight decline
in glycolysis despite a striking increase in the oxidative phosphorylation pathway
(Fig. 9). Consequently, solely targeting SCO2 may elevate energy production levels,
as shown in our simulations, potentially promoting the proliferative capacity of cancer
cells.

In brief, our results demonstrate that SCO2 may indeed play a robust role in trans-
forming cancer cellmetabolism, but in conjunctionwith targeting enzymes stimulating
the glycolysis pathway.

4 Discussion

The Warburg effect is a hallmark of cancer metabolism, granting cancer cells excep-
tional metabolic flexibility that enables their rapid adaptation and survival in hostile
microenvironments. This phenomenon is pivotal in cancer research, with particular
interest in the regulatory mechanisms that govern metabolic pathways. At the fore-
front of these is the tumour suppressor gene p53, whose role extends beyond cell cycle
control and apoptosis to include metabolic processes. Our investigation delves into
the critical role of p53 in modulating cancer cell metabolism, offering novel insights
into its capacity to counteract the Warburg effect phenomenon.

In terms of existing research, Linglin et al. havemade good strides in elucidating the
influence of genetic regulation on glycolysis and oxidative phosphorylation, identify-
ing a hybridmetabolic state unique to cancer cells (Yu et al. 2017). However, this study
did not consider the vital influence of p53, nor did it conduct a quantitative analysis
of how genetic factors impact metabolic outcomes or potential strategies to mitigate
the Warburg effect. Our research bridges these gaps by constructing a comprehensive
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Fig. 9 The role of SCO2 in the metabolism of p53-deficient cancer cells. The diagrams represent steady
state levels of SCO2 alongside key metabolic metrics-glucose consumption, lactate production, oxygen
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signify the altered state after increasing SCO2 concentration tomatch levels observed in p53+/+ cells (Color
figure online)

mathematical framework that dissects the mechanisms through which p53, along-
side other genetic regulations, influences glycolysis and OXPHOS and quantitatively
explores their impact on these pathways under various cellular conditions.

Our model analysis reveals distinct metabolic profiles characterised by different
stability regimes, delineating clear metabolic distinctions between normal and cancer
cells with or without p53 mutations. Importantly, our model successfully replicated
experimental observations on glucose metabolism in both p53-mutated and wild-type
colon cancer cells, underscoring its validity.

By exploring various scenarios, our study uncovers the mechanism of how dimin-
ished glucose availability massively curtails cancer cell proliferation and viability.
We further identify adaptive tactics cancer cells employ under low-oxygen conditions
to maintain energy production and growth, particularly emphasising the crucial role
of mTOR activation. This adaptation starkly contrasts with the energy production
downturn observed in normal cells under similar hypoxic conditions, highlighting the
unique metabolic resilience of cancer cells.

Interestingly, we detect a novel aspect of chemotherapy resistance linked to insuffi-
cient p53 activation levels, suggesting that beyond apoptosis evasion, inadequate p53
activity also impedes the reversal of the Warburg effect, enhancing cellular resistance.

Moreover, this study discusses strategies to combat the Warburg effect in p53-
mutated contexts, evaluating the efficacy of augmenting cellular respiration by
increasing the SCO2 expression levels.While this approach indeed elevates mitochon-
drial respiration, it does so without a noticeable reduction in the glycolysis pathway,
thereby boosting the overall ATP production and potentially supporting cancer cells
even further. Alternatively, we suggest inhibiting the glycolysis pathway using a PI3K
inhibitor, which has shown promising results in our simulations.

123



p53 Orchestrates Cancer Metabolism… Page 21 of 64 124

While our model has shown considerable success and offered valuable insights, it is
important to acknowledge its limitations. Our model does not incorporate the compet-
itive dynamics between p53 and HIF1 over transcriptional coactivators. Transcription
factors like p53 and HIF1 depend on coactivators such as p300/CBP for gene regu-
lation, which involves acetylating histones at specific gene promoters to facilitate the
recruitment of the transcriptional machinery (Grossman 2001; Freedman et al. 2002).
Given the finite availability of these coactivators, competition for access between p53
and HIF1 emerges, affecting their transcriptional activities (Schmid et al. 2004).

Furthermore, our current work concentrated exclusively on glucose metabolism,
yet cells can utilise additional energy sources, such as glutamine and fatty acids.
Integrating these energy sources and the p53 influence on their respective metabolic
pathways might give a more comprehensive overview of the metabolism outcomes
and analyse the p53 role much deeper. Future research aims to expand our signalling
network to include these pathways, providing a more holistic view of p53 impact on
cancer metabolism.

In conclusion, this study broadens our understanding of theWarburg effect through
the lens of p53 regulatory mechanisms, introducing, for the first time, a mathematical
model that captures the observed impact of p53 deficiency on cancer metabolism. This
pioneering model unravels the metabolic underpinnings of cancer, thoroughly scru-
tinising glucose metabolic pathways across different scenarios. Additionally, model
findings propose fresh perspectives to improve therapeutic approaches, significantly
highlighting the importance of optimal p53 activation for reversing theWarburg effect
and the efficacy of PI3K inhibitors in overcoming metabolic adaptations in p53-
mutated cancer cells.

Appendix A: DetailedModel

A.1 Model Assumptions

This section provides a detailed description of the cellular events and the molecule
interactions considered while constructing our model.

A.1.1 Growth Factors Activate PI3K/AKT Pathway

Under normal physiological conditions, the PI3K/AKT pathway activation is tightly
regulated, mainly dependent on external growth signals and nutrient availability
(Danielsen et al. 2015). This activation process is initiated when extracellular growth
molecules bind to specific receptors in the cell membrane. This binding event trig-
gers receptor activation, which subsequently activates intracellular phosphoinositide
3-kinase (PI3K) to catalyse the conversion of phosphatidylinositol 4,5-bisphosphate
(PIP2) lipids into phosphatidylinositol 3,4,5-trisphosphate (PIP3). Following this, pro-
tein kinase B (AKT) undergoes phosphorylation at threonine-308 upon binding to
PIP3, which results in its activation. Once activated, AKT regulates various cellular
processes controlling cell survival, metabolism, and growth (Danielsen et al. 2015;
Vara et al. 2004; Carnero and Paramio 2014).
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In recent years, extensive research has demonstrated that components of the
PI3K/AKT signalling pathway are frequently disrupted in human cancers, resulting
in its sustained activation (Danielsen et al. 2015; Vara et al. 2004; Malinowsky et al.
2014; Wang et al. 2013). Colorectal cancer, in particular, has exhibited a high occur-
rence of PI3K/AKT pathway activation, with reports indicating its involvement in
approximately 70% of colorectal cancer cases (Malinowsky et al. 2014). Thus, our
system assumes persistent activation of the PI3K/AKT pathway in cancer cells.

In terms of cellular compartmentalisation, it is established that PIP2 and PIP3 are
localised to the plasmamembrane (Vara et al. 2004; Carnero and Paramio 2014), while
the protein AKT predominantly resides in the cytoplasm, with some presence in the
nucleus (Yang et al. 2009; Lee et al. 2008). However, the activation of AKT by PI3K
primarily occurs in the cytoplasm, leading to the accumulation of activated AKT in
this particular compartment. Therefore, our model assumes that all components of this
pathway, including PIP2, PIP3, and AKT, function as cytoplasmic proteins.

A.1.2 AKT Mediates mTOR Activating

Upon activation of AKT, various downstream substrates are phosphorylated. One
critical effector of AKT is the mechanistic target of rapamycin (mTOR) (Dan et al.
2014; Inoki et al. 2002). The activation of mTORC1 is vital for the control of cellular
processes such as cell growth and metabolism, primarily through its ability to regulate
the mRNA translation (Dan et al. 2014; Inoki et al. 2002; Düvel et al. 2010).

In normal conditions, the TSC1-TSC2 complex acts as an inhibitor of mTORC1
activation; however, the function of this complex is negatively regulated by AKT
phosphorylation. Activated AKT phosphorylates TSC2, preventing the formation of
the TSC1-TSC2 complex, which, in turn, leads to the activation of mTORC1. Once
mTORC1 is activated, it directly phosphorylates the ribosomal protein S6 kinases
(S6K1 and S6K2) and the eukaryotic initiation factor 4E (eIF4E)-binding proteins
(4E-BP1 and 4E-BP2) controlling the initiation of cap-dependent translation (Dan
et al. 2014; Inoki et al. 2002; Düvel et al. 2010).

For simplicity, in our model, we assume that the mTORC1 activation is modulated
by the phosphorylation of AKT in response to growth factors without explicitly incor-
porating the intermediate molecules involved in this process. Further, since mTORC1
is predominantly cytoplasmic (Rosner and Hengstschläger 2008), and the upstream
and downstream mTORC1 activation occurs in this compartment, our model incorpo-
rates only the cytoplasmic mTORC1.

A.1.3 mTOR Induces the Expression of HIF1˛

Hypoxia-inducible factor 1 (HIF1) is a transcription factor consisting of two subunits,
HIF1α and HIF1β. The β-subunit is constitutively present in the nucleus, while the
α-subunit is rarely detectable in normoxia but strikingly induced in hypoxic conditions
(Valvona et al. 2016; Laughner et al. 2001; Golias et al. 2019; Metzen et al. 2003). The
HIF1α gene is continuously transcribed and translated, but its expression stays low
due to rapid destruction via the ubiquitin-proteasome pathway in an oxygen-dependent
manner (Valvona et al. 2016; Laughner et al. 2001; Golias et al. 2019).
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The oxygen-dependent turnover of HIF1α is controlled by a family of prolyl 4-
hydroxylases (PHDs) that uses oxygen as a substrate to hydroxylate HIF1α in its
oxygen-dependent degradation domain. Prolyl hydroxylation triggers the recognition
of HIF1α by the product of the Von Hippel-Lindau tumour suppressor gene (pVHL),
which acts as an E3 ubiquitin ligase mediating the ubiquitination and subsequent
degradation of HIF1α (Valvona et al. 2016; Golias et al. 2019).

Upon hypoxia, when oxygen availability is low, the activity of PHDs decreases,
thereby diminishingHIF1α recognition by pVHL and subsequent degradation. Conse-
quently, HIF1α accumulates and translocates into the nucleus to form a heterodimeric
complex with HIF1β. This complex binds to specific DNA sequences and activates
the transcription of target genes involved in cellular responses to hypoxia (Valvona
et al. 2016; Laughner et al. 2001).

However, HIF1α is often stabilised in cancer cells even in nonhypoxic conditions
(Laughner et al. 2001; Valvona et al. 2016; Zhong et al. 2000, 1999), suggesting
the involvement of other factors in its activation. Experimental investigations have
revealed that the expression of the HIF1α subunit and its nuclear translocation can
be induced under nonhypoxic conditions through the activation of growth factors-
dependent signalling pathway (Valvona et al. 2016; Laughner et al. 2001; Zhong
et al. 2000; Treins et al. 2005). More specifically, these studies provided evidence
that HIF1α induction in cancer is directly regulated by mTORC1 activation, which
alone is sufficient to stimulate an increase in HIF1α protein levels through activation
of cap-dependent translation (Düvel et al. 2010; Laughner et al. 2001; Hudson et al.
2002; Treins et al. 2005).

In light of these findings, our model assumes that mTORC1 activation promotes
HIF1α protein synthesis andnuclear translocation,while theHIF1α oxygen-dependent
degradation is unaffected in nonhypoxic conditions. Considering the complexity of
the HIF1α oxygen-dependent degradation mechanism, we set the HIF1α degradation
rate based on the half-life of hydroxylated HIF1α under normal conditions (Golias
et al. 2019), without incorporating the intricate molecular process.

A.1.4 HIF1 Promotes Glycolysis Pathway

HIF1 is a critical mediator of cellular responses, activating the transcription of target
genes that regulate various processes, including angiogenesis, glycolysis, and cell
survival. In our system, we focus on some of the HIF1 downstream targets that play a
critical role in shifting the cell towards glycolytic metabolism. These involve glucose
transporter-1 and -3 (GLUT1) and (GLUT3), respectively (Ancey et al. 2018), lactate
dehydrogenase (LDH) (Valvona et al. 2016), and pyruvate dehydrogenase kinase-1
and -3 (PDK1) and (PDK3), respectively (Anwar et al. 2021; Lu et al. 2011; Wang
et al. 2021; Kim et al. 2006).
GLUT1/3. Glucose transporters are a group of membrane proteins that catalyse the
glucose transport across the plasma membrane (Schwartzenberg-Bar-Yoseph et al.
2004; Szablewski 2013; Ancey et al. 2018; Mamun et al. 2020). Once inside the
cell, glucose undergoes glycolysis, a process that converts a molecule of glucose into
two molecules of pyruvate, generating two net ATP and two reduced nicotinamide
adenine dinucleotide (NADH) molecules Valvona et al. (2016); Golias et al. (2019).
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Subsequently, pyruvate can either be converted into lactate in the cytoplasm, oxidising
NADHback toNAD+, or transported into themitochondria, in the presence of oxygen,
for further energy production through OXPHOS, resulting in approximately 36 ATP
molecules (Valvona et al. 2016; Golias et al. 2019).

Tumour cells are known for exhibiting acceleratedmetabolic rates and high glucose
demand (Schwartzenberg-Bar-Yoseph et al. 2004; Ancey et al. 2018). Consequently,
increasing GLUT expression is essential to provide heightened glucose uptake, meet-
ing the elevated metabolic requirements in cancer (Schwartzenberg-Bar-Yoseph et al.
2004; Ancey et al. 2018). GLUT1 and -3, a downstream target of HIF1 (Ancey et al.
2018), are particularly significant in this context as their upregulation is consistently
observed in many cancer types (Schwartzenberg-Bar-Yoseph et al. 2004; Szablewski
2013; Ancey et al. 2018; Mamun et al. 2020), and have been selected as targets to
completely block glucose uptake in cancer cells (Reckzeh and Waldmann 2020).

GLUT1 is the predominant isoform of glucose transporter found in nearly all types
of cells (Szablewski 2013; Mamun et al. 2020), and GLUT3 exhibits the highest
affinity for glucose (Day et al. 2013). Accordingly, our study incorporates these two
types, considering their central role in controlling the glucose uptake of both normal
and cancer cells.
LDH. Another important downstream target of HIF1 is LDH, a tetrameric enzyme
predominantly located in the cytoplasm facilitating the conversion of pyruvate to
lactate (Valvona et al. 2016; Anadón et al. 2014).

Pyruvate derived from glycolysis typically enters the mitochondria to generate ATP
more efficiently. However, when HIF1 is activated, the LDH protein level increases,
directing pyruvate away from the mitochondria by catalysing its conversion to lac-
tate (Valvona et al. 2016). This metabolic shift allows cells to produce ATP through
glycolysis, albeit in a less efficient manner, while consuming more glucose (Valvona
et al. 2016). Therefore, the activation of HIF1 in our system is assumed to support
glycolysis by inducing LDH enzyme.
PDK1/3.Pyruvate ismetabolisedwithin themitochondria via pyruvate dehydrogenase
(PDH) activity. The PDH complex, located in the mitochondrial matrix, catalyses the
oxidative decarboxylation of pyruvate to acetyl-CoA, NADH, and CO2 (Wang et al.
2021; Woolbright et al. 2019; Rodrigues et al. 2015). Acetyl-CoA then enters the
tricarboxylic acid (TCA) cycle, where it undergoes further metabolism, resulting in
the eventual formation of ATP by the electron transport chain (ETC) (Woolbright et al.
2019).

PDK family exerts significant regulatory control over PDH function through their
capacity to phosphorylate its E1-α subunit at three different sites: Ser293, Ser300, and
Ser232 (Wang et al. 2021; Woolbright et al. 2019; Rodrigues et al. 2015). Phospho-
rylation of PDH at any of these sites inhibits its decarboxylation activity, disrupting
pyruvate oxidation (Wang et al. 2021; Woolbright et al. 2019; Rodrigues et al. 2015).

HIF1 enhances the promoter activities of two PDK family members, namely PDK1
and PDK3 (Anwar et al. 2021; Lu et al. 2011; Wang et al. 2021; Kim et al. 2006),
commonly overexpressed in tumours (Jin et al. 2020; Lu et al. 2011; Anwar et al.
2021). Elevated PDK expression and subsequent PDH phosphorylation contribute to
diverting pyruvate to lactate to dispose of excess pyruvate when the mitochondrial
oxidative capacity is limited. Consequently, the activation of HIF1 in our model is
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assumed to trigger the inhibitory regulation of the PDH activity by increasing PDK1
and PDK3 expression levels, both situated within the mitochondrial matrix (Wang
et al. 2021; Woolbright et al. 2019; Rodrigues et al. 2015).

A.1.5 Metabolic Stress Activates AMPK

AMP-activated protein kinase (AMPK) acts as a crucial energy sensor, maintaining
cellular energy homeostasis (Hardie 2011; Hardie et al. 2012; Faubert et al. 2015;
Li et al. 2015). It is activated when cellular ATP levels drop under different forms
of metabolic stress, including glucose deprivation, ischemia, hypoxia, or oxidative
stress (Hardie 2011; Hardie et al. 2012; Faubert et al. 2015; Li et al. 2015). Upon
these stresses, AMPK undergoes phosphorylation at Thr-172 to restore cellular energy
balance by suppressing ATP-consuming processes and promoting ATP production
(Hardie 2011; Hardie et al. 2012; Faubert et al. 2015; Li et al. 2015).

Considering deregulated cellular energetics a hallmark of cancer (Hanahan and
Weinberg 2011), our model incorporates AMPK activation in cancer cells. This acti-
vation restrains cancer growth and promotes ATP production efficiency mainly by
impeding mTORC1 activation via TSC2 phosphorylation and triggering p53 activa-
tion (Faubert et al. 2015; Li et al. 2015; Inoki et al. 2003).

A.1.6 AMPK Activates Tumour Suppressor Gene p53

p53 is a major tumour suppressor gene that plays a critical role in preventing the
propagation of abnormal cells. It functions as a transcription factor, controlling the
expression of various genes involved in cell cycle regulation, repair DNA, apoptosis,
and cellular metabolism (Sun 2015; Nag et al. 2013; Matoba et al. 2006). The p53
protein is continuously produced from the TP53 tumour suppressor gene (Sun 2015).
However, its levels are kept low by the action of murine double minute 2 (MDM2),
an E3 ubiquitin ligase that promotes p53 degradation via the ubiquitin-proteasome
pathway (Nag et al. 2013; Haupt et al. 1997).

Under conditions ofmetabolic stress,AMPKphosphorylates p53 onSer15, promot-
ing its stabilisation by disrupting its binding to MDM2 (Jones et al. 2005; Imamura
et al. 2001). Thus, p53 accumulates and translocates to the nucleus, activating the
transcription of its target genes.

In the basal state, p53 primarily resides in the cytoplasm, where it interacts
with MDM2, preventing its nuclear translocation (Liang and Clarke 2001; Zerfaoui
et al. 2021). Therefore, in our model, p53 is considered a cytoplasmic protein under
unstressed conditions. However, upon AMPK activation, it is stabilised and translo-
cated into the nucleus, where it binds DNA and transcriptionally acts as a tetramer.

A.1.7 p53 Induces Genes Negatively Regulate Its Activation

p53 triggers the production of proteins such as MDM2 and wild-type p53-induced
phosphatase 1 (WIP1) (Barak et al. 1993; Batchelor et al. 2011), which form a negative
feedback loop reducing its stability (Nag et al. 2013; Haupt et al. 1997; Barak et al.
1993; Batchelor et al. 2011).
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MDM2. MDM2 is a p53-negative regulator that can be further induced by p53 acti-
vation (Barak et al. 1993). It is predominantly located in the cytoplasm of unstressed
cells (Marchenko et al. 2010). However, in response to growth factors signalling, AKT
phosphorylatesMDM2 on Ser166 and -186, promoting its translocation from the cyto-
plasm into the nucleus, thereby inhibiting the transcriptional function of p53 (Mayo
and Donner 2001; Xu et al. 2012).

In our system, we assume that p53 activation triggers increased production of the
MDM2 protein, which is primarily cytoplasmic but migrates to the nucleus upon AKT
phosphorylation.
WIP1. Another target of p53 that can negatively affect its stability is WIP1. WIP1
resides exclusively in the nucleus (Fiscella et al. 1997), where it dephosphorylates
nuclear p53, rendering p53 more susceptible to MDM2-mediated degradation (Batch-
elor et al. 2011).

On the other hand, p53 undergoes nuclear export regulated by its nuclear export
signals (NES). The first NES is within the tetramerization domain, masked when p53
forms a tetramer. The second NES is in the MDM2-binding domain, which can be
attenuated by phosphorylating Ser15 via AMPK (Liang and Clarke 2001; Marchenko
et al. 2010). Thus, phosphorylation and tetramerization can inhibit p53 nuclear export
by masking the NESs.

Accordingly, in the model, we assume that phosphorylated p53 forms a tetramer
in the nucleus, yet WIP1-mediated dephosphorylation triggers p53 nuclear export by
unmasking the NES, leading to its relocation to the cytoplasm.

A.1.8 p53 Induces Genes to Promote Its Activation, Simultaneously Inhibiting HIF1

As previously discussed, the mTOR signalling pathway significantly influences HIF1
activation. Therefore, the ability of p53 to inhibit mTORC1 activation aligns with
its function as a negative regulator of HIF1. This inhibition is mainly mediated by
three p53 target genes: sestrin1 (SESN1), sestrin2 (SESN2), and phosphatase and
tensin homolog (PTEN) (Budanov and Karin 2008; Sanli et al. 2012; Feng and Levine
2010).
SESN1/2. p53 induces the expression of SESN1 and SESN2 proteins (Budanov and
Karin 2008; Sanli et al. 2012), which interact with the α-subunits of AMPK, resulting
in AMPK phosphorylation on Thr172. This phosphorylation activates AMPK, which
subsequently inhibits mTORC1 activity (Budanov and Karin 2008; Sanli et al. 2012;
Feng and Levine 2010). Additionally, this activation forms a positive feedback loop
through the phosphorylation of p53 by active AMPK, further supporting the p53
function (Feng and Levine 2010). For simplicity, in our system, we assume that the
activation of p53 directly induces AMPK activation without explicitly incorporating
SESN1/2.
PTEN. Another crucial target gene of p53 involved in regulating mTORC1 activity is
PTEN (Stambolic et al. 2001).Upon induction by p53, PTENpromotes the degradation
of PIP3 to PIP2, effectively suppressing the PI3K/AKT/mTOR pathway (Mayo et al.
2002; Carnero and Paramio 2014; Feng and Levine 2010). The regulation of PTEN
by p53 also serves as a positive feedback loop. PTEN prevents the AKT-dependent
MDM2 translocation to the nucleus, boosting the nuclear p53 transcriptional activity
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(Mayo et al. 2002, 2005). In the model, PTEN is considered to be in the cytoplasm,
negatively regulating the PI3K/AKT/mTOR pathway (Iijima et al. 2004).

A.1.9 p53 Suppresses Glycolysis and Enhances Mitochondrial Respiration

p53 is a key target in cancer cells, exerting its influence on multiple levels. It inhibits
the glycolytic pathway not only by disrupting HIF1 activation but also by regulating
genes directly involved in glucose metabolic pathways, including GLUT1 and -3
(Ancey et al. 2018; Schwartzenberg-Bar-Yoseph et al. 2004; Kawauchi et al. 2008),
PDK2 (Anwar et al. 2021; Liang et al. 2020), TP53-inducible glycolysis and apoptosis
regulator (TIGAR) (Bensaad et al. 2006; Lee et al. 2015), and synthesis of cytochrome
c oxidase 2 (SCO2) (Matoba et al. 2006).
GLUT1/3. Previously, we emphasised the significance of GLUT1 and -3 as preem-
inent actors in the enhanced cellular glucose uptake and the accelerated metabolism
in cancer cells (Ancey et al. 2018; Reckzeh and Waldmann 2020).

p53, as a transcription factor, can either activate or suppress the expression of
specific genes. In the case of GLUT1 and -3, p53 acts as a suppressor, diminishing their
protein levels (Ancey et al. 2018; Schwartzenberg-Bar-Yoseph et al. 2004; Kawauchi
et al. 2008). This repression exerted by p53 is assumed to reduce the baseline levels
of GLUT1 and -3 in our model, inhibiting the glycolytic pathway induced by HIF1.
TIGAR. Within the cell, glucose undergoes an irreversible conversion to glucose-
6-phosphate (G6P), which can then follow either the glycolysis pathway, forming
fructose-6-phosphate (F6P), or the pentose phosphate pathway (PPP) (Jiang et al.
2014). The decision between these pathways is influenced by TIGAR, a p53 target.

TIGAR curtails the activity of the enzyme guiding F6P towards the next glycolytic
step. This inhibition leads to the buildup of F6P, allowing its isomerisation back to
G6P and consequently diminishing glycolysis flux (Bensaad et al. 2006; Lee et al.
2015). Thus, TIGAR functions as a cytoplasmic protein in our model (Tang et al.
2021), triggered by p53 to slow down the glycolysis rate.
PDK2. The irreversible pyruvate decarboxylation, catalysed by the PDH complex
in the mitochondria, is a critical step in determining the metabolic fate of pyruvate
towards OXPHOS (Anwar et al. 2021; Wang et al. 2021; Woolbright et al. 2019;
Rodrigues et al. 2015).

As mentioned earlier, HIF1 activation in cancer cells upregulates PDK, particu-
larly PDK1 and -3, inhibiting PDH complex activity (Anwar et al. 2021; Wang et al.
2021; Woolbright et al. 2019; Rodrigues et al. 2015; Lu et al. 2011). However, p53
counteracts HIF1’s inhibitory effect on PDH by suppressing the expression of another
PDK member called PDK2 (Anwar et al. 2021; Liang et al. 2020). Consequently,
the activation of p53 in our model is assumed to repress the PDK2 protein synthesis,
promoting mitochondrial respiration over glycolysis.
SCO2. Within the mitochondria, pyruvate is converted into acetyl-CoA, entering the
TCA cycle to undergo a series of chemical reactions. Each round of the TCA cycle
yields one energy molecule, three NADH molecules, and one reduced flavin adenine
dinucleotide (FADH2) molecule (Martínez-Reyes and Chandel 2020). The NADH
and FADH2 produced are then oxidised back into NAD+ and FAD via ETC protein
complexes (I, II, III, and IV) embedded in the inner mitochondrial membrane (Ahmad
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et al. 2018). Complex I and II facilitateNADHand FADH2oxidation, respectively, and
transfer the received electrons to Complex III and then to Complex IV (Ahmad et al.
2018). As electrons traverse these complexes, protons pump from the mitochondrial
matrix to the intermembrane space. Each pair of electrons from NADH pumps ten
protons (4 from Complex I, 4 from Complex III, and 2 from Complex IV), while
FADH2 pumps only six (4 from Complex III, and 2 from Complex IV) (Ahmad et al.
2018).

Complex IV acts as the ultimate electron acceptor in this chain. It transfers these
electrons to molecular oxygen, promoting the reduction of oxygen to water (Ahmad
et al. 2018). However, electron transfer efficiency within Complex IV is highly regu-
lated by the p53 target, SCO2. SCO2 is a mitochondrial protein (Maxfield et al. 2004),
that is essential for the proper assembly and maturation of Complex IV, ensuring its
optimal functionality. Any deficiency or malfunction of SCO2 can impair Complex
IV function and its ability to efficiently consume oxygen in the final step, disrupting
the smooth flow of electrons through the ETC (Matoba et al. 2006;Wanka et al. 2012).

The protonmovement across themembrane while transferring electrons establishes
an electrochemical gradient, creating a higher concentration of protons in the inter-
membrane space compared to the matrix. Consequently, protons flow back into the
mitochondrial matrix through Complex V, ATP synthase, driving the ATP synthesis
(for every four protons, one ATP is produced) (Ahmad et al. 2018).

Based on the above, each acetyl-CoA entering the TCA cycle in our model pro-
duces oneATP, oneFADH2, and threeNADHmolecules (Martínez-Reyes andChandel
2020). Considering that each NADH and FADH2 contributes nearly ten and six pro-
tons, respectively, and every four protons result in one ATP molecule, in our model,
NADH and FADH2 are assumed to yield 2.5 and 1.5 ATP molecules, respectively
(Ahmad et al. 2018). Regarding oxygen consumption, eachNADHor FADH2 transfers
a pair of electrons to Complex IV, which is then converted to water (H2O), consum-
ing 0.5 oxygen (O2) molecules (Ahmad et al. 2018). Therefore, we assume that each
NADH or FADH2 entering the ETC consumes 0.5 oxygen molecules. Finally, p53
activation in our model is assumed to maintain mitochondrial respiration by inducing
the synthesis of SCO2, supporting Complex IV function and enhancing ETC activity.

A.2 Model Reactions

The phosphorylation and dephosphorylation processes occurring at themolecular level
for p53, MDM2, AMPK, PIP2/3, AKT, mTOR, and PDH-impacting their locations,
functions, or activations- are represented in our model as enzyme-catalysed reactions
employing monosubstrate Michaelis-Menten kinetics. Likewise, the ubiquitination
process, facilitating species degradation, involving the p53 ubiquitination by MDM2,
is modelled using the same kinetic framework. This modelling choice is based on the
analogous catalytic roles of a protein kinase, phosphatase, or ubiquitin ligase and an
enzyme in converting a substrate into a product. The general form of this reaction is
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expressed as:

v1(S) = Vmax

( [S]
[S] + Km

)
,

where Vmax denotes the maximum speed of the reaction, often regulated by the total
concentration of the protein enacting the phosphorylation, dephosphorylation, or ubiq-
uitination processes. Km is a Michaelis-Menten constant that represents the substrate
level [S] (the species undergoing phosphorylation, dephosphorylation, or ubiquitina-
tion) at which half of the maximum reaction velocity is achieved. The speed of this
reaction increases linearly with the substrate [S] when the substrate concentrations
are low, while saturating and achieving the maximum speed for large concentrations
when [S] � Km .

p53 is a tetramer transcription factor that activates the production of proteins, includ-
ing MDM2, WIP1, PTEN, SCO2, and TIGAR, while suppressing the synthesis of
others, such as GLUT1/3 and PDK2. Accordingly, the production rates controlled by
the tetrameric p53 in the nucleus are modelled by a Hill function with coefficient four,
represented as:

v+
2(S) = Vmax

( [S]h
[S]h + Kh

m

)
, f or activation

v−
2(S) = Vmax

(
Kh
m

[S]h + Kh
m

)
, f or inhibi tion

here Vmax denotes the maximum velocity, with [S] representing the concentration of
nuclear p53. The parameter h, set to four, is the Hill coefficient that determines the
steepness of the Hill function, while Km signifies the activation/inhibition threshold
constant, where the p53 influence kicks in by exceeding this threshold constant.

All species in our model undergoing modifications exclusively post-translation
without affecting their concentration levels, encompassing processes like phosphory-
lation, reduction, and oxidation, are assumed to be at a steady-state point, where the
total protein concentration across all forms remains constant over time. This applies to
various species, such as AMPK/AMPK*, PIP2/PIP3, AKT/AKT*, mTOR/mTOR*,
ADP/ATP, NAD+/NADH, and FAD/FADH2.

The diffusivity of glucose and lactate molecules across the cell membrane, facili-
tated by transporters within the cellular membrane, is represented by a net flux. This
flux is determined by subtracting the amount of substrate moving out of the cell from
the amount moving into, depending on the substrate concentration inside and outside
the cell. Both inward and outward fluxes are modelled using the Michaelis-Menten
equation, accounting for the saturation process when all transporters become saturated
by the substrate (glucose/lactate). The general function can be expressed as follows:

v3(S) = Vmax

( [Sout ]
[Sout ] + Km

− [Sin]
[Sin] + Km

)
,
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in this reaction, the first and second terms describe the influx and efflux, respectively,
where [Sin], and [Sout ] denote the concentration of the substrate (glucose/lactate) in
and out the cell. Km is the Michaelis-Menten constant, reflecting the affinity of each
substrate to its transporter.

In the metabolic pathways, some reactions involve more than one substrate and
product, such as the first and last step of the glycolysis pathway: (Glucose + ATP →
G6P + ADP) and (Pyruvate + NADH → Lactate + NAD+). These two reactions were
classified to follow an order Bi-Bi sequential mechanism, where Hexokinase binds
the ATP molecule first then Glucose, releasing G6P first and then ATP (Toews 1966).
Similarly, the LDH enzyme binds the NADH first followed by the Pyruvate molecule
to produce Lactate first and then NAD+ (Chang et al. 1991). Accordingly, these two
reactions are represented in our model by the order Bi-Bi Michaelis-Menten equation
(Toews 1966; Chang et al. 1991; Kuby 2019), which can be given by:

v4(S1,S2) = Vmax

( [S1][S2]
[S1][S2] + Ks1[S2] + Ks2[S1] + Ks1Ks2

)
,

in which [S1] and [S2] represent the first and second substrate concentrations
(ATP/NADH and Glucose/Pyruvate, respectively), whereas Ks1 and Ks2 represent
the enzyme’s Km values for their respective ligands.

On the other hand, the reaction catalysed by the PDH enzyme, involving the con-
version of Pyruvate and NAD+ into Acetyl-CoA and NADH, was assumed to follow
a multisite ping-pong mechanism (Reid et al. 1977). This mechanism is characterised
by the alternating binding of substrates and the release of products in a stepwise man-
ner. Thus, the kinetics of this reaction is modelled in our system using ping-pong
Michaelis-Menten equation (Reid et al. 1977; Kuby 2019), expressed as:

v5(S1,S2) = Vmax

( [S1][S2]
[S1][S2] + Ks1[S2] + Ks2[S1]

)
,

where [S1] and [S2] denote the concentrations of Pyruvate and NAD+, respectively.
And the parameters Ks1 and Ks2 correspond to the enzyme’s affinity constants (Km
values) for Pyruvate and NAD+, respectively.

Pyruvate, a product of cytoplasmic glycolysis, is transported into the mitochon-
dria via the mitochondrial pyruvate carrier (MPC) located in the outer mitochondrial
membrane (Ruiz-Iglesias and Mañes 2021). This pyruvate mitochondrial import is
integrated into our model as a constant rate influenced negatively by mitochondrial
pyruvate concentrations to prevent excessive accumulation within the mitochondrial
compartment. Furthermore, cytoplasmic NADH typically travels into the mitochon-
dria through theMalate-Aspartate Shuttle (MAS) for oxidation in the respiratory chain
(Bhagavan 2002). The NADH mitochondrial import by MAS is significant for more
efficient ATP production and maintaining a high NAD+/NADH ratio in the cytosol
(Bhagavan 2002). To streamline our model, we simplified the representation of NADH
movement, considering a direct influx into the mitochondria at a constant rate sub-
ject to inhibition regulation by the mitochondrial NADH level. These mitochondrial
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import reactions can be generally expressed as:

v6(S) = k[Sc]
(

Km

[Sm] + Km

)
,

where k represents the mitochondrial import rate, and [Sc] and [Sm] designate the
concentration of Pyruvate/NADH in the cytoplasm and mitochondria, respectively.
Km here serves as the inhibition threshold coefficient for mitochondrial import.

In our system, glycolysis, the TCA cycle, and the ETC are individually modelled as
one-step processes, considering themaximumvelocity of each. These processes follow
kinetics reactions, saturating at high levels of its respective initial substrates, G6P for
glycolysis, Acetyl-CoA for TCA cycle, and NADH/FADH2 for ETC. However, as
these processes involve ADP phosphorylation and NAD+/FAD reduction, deficiency
of these molecules can impact the overall reaction speed. Therefore, the maximal
velocity is assumed to be governed by the total levels of ADP, NAD+, and FAD if they
are participants in the reaction. Comprehensively, the reaction can be described as:

v7(S) = Vmax

( [S]
[S] + Km

)( [A]
[A] + Ka

)( [N ]
[N ] + Kn

)( [F]
[F] + K f

)
,

where [S] and Km represent the initial substrate concentration (G6P, Acetyl-CoA, or
NADH/FADH2) and their Michaelis-Mentent constant. [A], [N ], and [F] denotes the
concentration ofADP,NAD+, and FAD, respectively,with Ka , Kn , and K f accounting
for their threshold constants. Not all terms have to be involved in each reaction;
only the term where its corresponding molecule participates. Moreover, owing to
TIGAR’s noncompetitive inhibition on the glycolysis pathway, we adjust the first
term in glycolysis as follows:

⎛

⎜⎜
⎝

[S]
[S]

(
1 + [I ]

Ki

)
+ Km

(
1 + [I ]

Ki

)

⎞

⎟⎟
⎠

Mathematically, noncompetitive inhibition influences the maximum reaction speed
(Vmax ) (Kuby 2019), where [I ] represents the inhibitor concentration, TIGAR in our
case, along with the inhibition threshold constant [Ki ].

Finally, in all metabolic reactions when the catalysing protein (whether transporter
or enzyme) is part of our system, the maximum velocity is regulated by the catalysing
protein concentration (Vmax = kcat [E]tot ). Except in the case of the LDH enzyme,
where its influence on the reaction speed is characterised by a Hill function with a
hill coefficient of four (similar to v+

2(S)), considering the required tetramer formation
before catalysing the reaction (Fan et al. 2011; Valvona et al. 2016).
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A.3 Model Equations

The constructed differential equations, alongside their corresponding chemical reac-
tions and parameter values, are explicitly presented below.

A.3.1 Cytoplasmic and Nuclear p53 Equations

Let the concentration of cytoplasmic p53, nuclear p53, active cytoplasmic AMPK,
cytoplasmic MDM2, nuclear MDM2, and nuclear WIP1 be denoted by P53c, P53n ,
Ampk∗

c , Mdm2c, Mdm2n , and Wip1n , respectively.
Chemical reactions:

• k1−→ P53c

P53c + Ampk∗
c

k2−→ P53n + Ampk∗
c

P53c + Mdm2c
k3−→ • + Mdm2c

P53n + Wip1n
k4−→ P53c + Wip1n

P53c
k5−→ •

P53n + Mdm2n
k6−→ • + Mdm2n

Equations:

dP53c
dt

= k1 − k2Ampk∗
c

(
P53c

P53c + Kp1

)
− k3Mdm2c

(
P53c

P53c + Kp2

)

+ k4Wip1n

(
P53n

P53n + Kp3

)
− k5P53c, (34)

dP53n
dt

= k2Ampk∗
c

(
P53c

P53c + Kp1

)
− k6Mdm2n

(
P53n

P53n + Kp4

)

− k4Wip1n

(
P53n

P53n + Kp3

)
. (35)

A.3.2 Cytoplasmic and Nuclear MDM2 Equations

Let Akt∗c denote the active cytoplasmic AKT concentration.
Chemical reactions:

• k7−→ Mdm2c

P53n
k8−→ P53n + Mdm2c

Mdm2c + Akt∗c
k9−→ Mdm2n + Akt∗c
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Mdm2n
k10−→ Mdm2c

Mdm2c
k11−→ •

Mdm2n
k11−→ •

Equations:

dMdm2c
dt

= k7 + k8

(
P53nh

P53nh + Kp53
h

)
− k9Akt

∗
c

(
Mdm2c

Mdm2c + Km1

)

+ k10

(
Mdm2n

Mdm2n + Km2

)
− k11Mdm2c, (36)

dMdm2n
dt

= k9Akt
∗
c

(
Mdm2c

Mdm2c + Km1

)
− k10

(
Mdm2n

Mdm2n + Km2

)

− k11Mdm2n . (37)

A.3.3 WIP1, PTEN, SCO2, and TIGAR Equations

Let the concentration of the cytoplasmic PTEN,mitochondrial SCO2, and cytoplasmic
TIGAR be denoted by Ptenc, Sco2m , and T igarc, respectively.
Chemical reactions:

• k12−→ Wip1n

P53n
k13−→ P53n + Wip1n

Wip1n
k14−→ •

• k15−→ Ptenc

P53n
k16−→ P53n + Ptenc

Ptenc
k17−→ •

• k18−→ Sco2m

P53n
k19−→ P53n + Sco2m

Sco2m
k20−→ •

• k21−→ T igarc

P53n
k22−→ P53n + T igarc

T igarc
k23−→ •
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Equations:

dWip1n
dt

= k12 + k13

(
P53nh

P53nh + Kp53
h

)
− k14Wip1n, (38)

dPtenc
dt

= k15 + k16

(
P53nh

P53nh + Kp53
h

)
− k17Ptenc, (39)

dSco2m
dt

= k18 + k19

(
P53nh

P53nh + Kp53
h

)
− k20Sco2m, (40)

dT igarc
dt

= k21 + k22

(
P53nh

P53nh + Kp53
h

)
− k23T igarc. (41)

A.3.4 Active AMPK, PIP3, AKT, andmTOR Equations

Let the concentration of cytoplasmic PIP3 and active cytoplasmic mTOR be denoted
by Pip3c and Mtor∗

c , respectively, while Ampkc, Pip2c, Aktc and Mtorc represent
the concentrations for the inactive form of the corresponding variable.
Chemical reactions:

Ampkc
k24−→ Ampk∗

c

P53n + Ampkc
k25−→ P53n + Ampk∗

c

Ampk∗
c

k26−→ Ampkc

Pip2c
k27−→ Pip3c

Pip3c + Ptenc
k28−→ Pip2c + Ptenc

Aktc + Pip3c
k29−→ Akt∗c + Pip3c

Akt∗c
k30−→ Aktc

Mtorc + Akt∗c
k31−→ Mtor∗

c + Akt∗c
Mtor∗

c + Ampk∗
c

k32−→ Mtorc + Ampk∗
c

Mtor∗
c

k33−→ Mtorc

Equations:

d Ampk∗
c

dt
= k24

(
Ampktot − Ampk∗

c

Ampktot − Ampk∗
c + Ka1

)
+ k25

(
P53nh

P53nh + Kp53
h

)

×
(

Ampktot − Ampk∗
c

Ampktot − Ampk∗
c + Ka1

)
− k26

(
Ampk∗

c

Ampk∗
c + Ka2

)
, (42)
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dPip3c
dt

= k27

(
Piptot − Pip3c

Piptot − Pip3c + Kpip1

)
− k28Ptenc

(
Pip3c

Pip3c + Kpip2

)
,

(43)

d Akt∗c
dt

= k29Pip3c

(
Akttot − Akt∗c

Akttot − Akt∗c + Kakt1

)
− k30

(
Akt∗c

Akt∗c + Kakt2

)
, (44)

dMtor∗
c

dt
= k31Akt

∗
c

(
Mtortot − Mtor∗

c

Mtortot − Mtor∗
c + Kmtor1

)
− [k32Ampk∗

c + k33]

×
(

Mtor∗
c

Mtor∗
c + Kmtor2

)
. (45)

A.3.5 Cytoplasmic and Nuclear HIF1 Equations

Let Hi f 1αc and Hi f 1αn denote the concentrations of cytoplasmic andnuclearHIF1α,
respectively.
Chemical reactions:

• k34−→ Hi f 1αc

Mtor∗
c

k35−→ Mtor∗
c + Hi f 1αc

Mtor∗
c + Hi f 1αc

k36−→ Mtor∗
c + Hi f 1αn

Hi f 1αc
k37−→ •

Hi f 1αn
k37−→ •

Equations:

dHi f 1αc

dt
= k34 + k35Mtor∗

c − k36Mtor∗
c Hi f 1αc − k37Hi f 1αc, (46)

dHi f 1αn

dt
= k36Mtor∗

c Hi f 1αc − k37Hi f 1αn . (47)

A.3.6 GLUT1, GLUT3, PDK1/3, PDK2, and LDH Equations

Let the concentration of cytoplasmic GLUT1, cytoplasmic GLUT3, mitochondrial
PDK1 and 3, mitochondrial PDK2, and cytoplasmic LDH be denoted by Glut1c,
Glut3c, Pdk13m , Pdk2m , and Ldhc, respectively.
Chemical reactions:

• k38−→ Glut1c

Hi f 1αn
k39−→ Glut1c + Hi f 1αn
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Glut1c
k40−→ •

• k41−→ Glut3c

Hi f 1αn
k42−→ Glut3c + Hi f 1αn

Glut3c
k43−→ •

• k44−→ Pdk13m

Hi f 1αn
k45−→ Pdk13m + Hi f 1αn

Pdk13m
k46−→ •

• k47−→ Pdk2m

Pdk2m
k46−→ •

• k48−→ Ldhc

Hi f 1αn
k49−→ Ldhc + Hi f 1αn

Ldhc
k50−→ •

Equations:

dGlut1c
dt

= k38

(
Kp53

h

P53nh + Kp53
h

)
+ k39Hi f 1αn − k40Glut1c, (48)

dGlut3c
dt

= k41

(
Kp53

h

P53nh + Kp53
h

)
+ k42Hi f 1αn − k43Glut3c, (49)

dPdk13m
dt

= k44 + k45Hi f 1αn − k46Pdk13m, (50)

dPdk2m
dt

= k47

(
Kp53

h

P53nh + Kp53
h

)
− k46Pdk2m, (51)

dLdhc
dt

= k48 + k49Hi f 1αn − k50Ldhc. (52)

A.3.7 Active and Inactive PDH Equations

Let the concentration of active and inactive mitochondrial PDH be denoted by Pdh∗
m

and Pdhm , respectively.
Chemical reactions:

• k51−→ Pdh∗
m

Pdh∗
m + Pdk13m

k52−→ Pdhm + Pdk13m

123



p53 Orchestrates Cancer Metabolism… Page 43 of 64 124

Ta
bl
e
7

Pa
ra
m
et
er

va
lu
es

of
E
qs
.(
48

)–
(5
2)

Pa
ra
m
et
er

D
es
cr
ip
tio

n
V
al
ue

U
ni
t

R
ef
er
en
ce
s

k 3
8

G
L
U
T
1 c

ba
sa
lp

ro
du

ct
io
n
ra
te

0.
00

00
5

μ
M
/m

in
E
st
im

at
ed

(S
ch
w
ar
tz
en
be
rg
-B
ar
-Y
os
ep
h
et
al
.2

00
4)

k 3
9

H
IF
1α

n
-d
ep
en
de
nt

G
L
U
T
1 c

pr
od
uc
tio

n
ra
te

0.
48

/m
in

E
st
im

at
ed

(D
üv
el
et
al
.2

01
0)

k 4
0

G
L
U
T
1 c

ba
sa
ld

eg
ra
da
tio

n
ra
te

0.
00
19

/m
in

E
st
im

at
ed

(K
ha
ya
te
ta
l.
19

98
)

k 4
1

G
L
U
T
3 c

ba
sa
lp

ro
du

ct
io
n
ra
te

0.
00

00
1

μ
M
/m

in
A
ss
um

ed

k 4
2

H
IF
1α

n
-d
ep
en
de
nt

G
L
U
T
3 c

pr
od
uc
tio

n
ra
te

0.
09
5

/m
in

E
st
im

at
ed

(W
oo
d
et
al
.2

00
7)

k 4
3

G
L
U
T
3 c

ba
sa
ld

eg
ra
da
tio

n
ra
te

0.
00
07
5

/m
in

E
st
im

at
ed

(K
ha
ya
te
ta
l.
19

98
)

k 4
4

PD
K
1,
3 m

ba
sa
lp

ro
du

ct
io
n
ra
te

0.
00

02
μ
M
/m

in
A
ss
um

ed

k 4
5

H
IF
1α

n
-d
ep
en
de
nt

PD
K
1,
3 m

pr
od
uc
tio

n
ra
te

0.
7

/m
in

E
st
im

at
ed

(L
u
et
al
.2

01
1)

k 4
6

PD
K
m
ba
sa
ld

eg
ra
da
tio

n
ra
te

0.
00
19

/m
in

E
st
im

at
ed

(C
re
w
e
et
al
.2

01
7;

H
ua
ng

et
al
.2

00
2)

k 4
7

PD
K
2 m

ba
sa
lp

ro
du

ct
io
n
ra
te

0.
00

01
μ
M
/m

in
H
al
f
k 4

4
,(
L
ia
ng

et
al
.2

02
0)

k 4
8

L
D
H
c
ba
sa
lp

ro
du

ct
io
n
ra
te

0.
00

01
μ
M
/m

in
L
ik
e
k 4

7

k 4
9

H
IF
1α

n
-d
ep
en
de
nt

L
D
H
c
pr
od
uc
tio

n
ra
te

0.
85

/m
in

E
st
im

at
ed

(H
u
et
al
.2

00
6)

k 5
0

L
D
H
c
ba
sa
ld

eg
ra
da
tio

n
ra
te

0.
00
08
25

/m
in

E
st
im

at
ed

(G
ar
cí
a-
A
gu
ila
r
et
al
.2

01
9)

123



124 Page 44 of 64 R. Abukwaik et al.

Pdh∗
m + Pdk2m

k52−→ Pdhm + Pdk2m

Pdhm
k53−→ Pdh∗

m

Pdh∗
m

k54−→ •
Pdhm

k54−→ •

Equations:

dPdh∗
m

dt
= k51 − k52Pdk13m

(
Pdh∗

m

Pdh∗
m + Kpdh1

)
− k52Pdk2m

×
(

Pdh∗
m

Pdh∗
m + Kpdh1

)
+ k53

(
Pdhm

Pdhm + Kpdh2

)
− k54Pdh

∗
m, (53)

dPdhm
dt

= k52Pdk13m

(
Pdh∗

m

Pdh∗
m + Kpdh1

)
+ k52Pdk2m

(
Pdh∗

m

Pdh∗
m + Kpdh1

)

− k53

(
Pdhm

Pdhm + Kpdh2

)
− k54Pdhm . (54)

A.3.8 Metabolic Equations

Let the concentration of cytoplasmic glucose, G6P, pyruvate, NADH, NAD+, and
lactate be denoted by Glucosec, G6pc, Pyruvatec, Nadhc, Nadc, and Lactatec,
respectively. Meanwhile, the mitochondrial concentrations of pyruvate, acetyl-CoA,
NADH, NAD+, FADH2, and FAD are represented by Pyruvatem , Acetylm , Nadhm ,
Nadm , Fadhm , and Fadm . Additionally, Glucoseout and Lactateout respectively
represent the concentration of glucose and lactate outside the cell, whereas Atp, Adp,
and O2con indicate the total concentration of ATP, ADP, and oxygen consumption,
respectively.
Chemical reactions:

Glucoseout + Glut1c

k55←−−−→ Glucosec + Glut1c

Glucoseout + Glut3c

k55←−−−→ Glucosec + Glut3c

Glucosec + Atp
k56−→ G6pc + Adp

G6pc + 2Nadc + 3Adp
k57−→ 2Pyruvatec + 2Nadhc + 3Atp

G6pc
k58−→ PPP

Pyruvatec + Nadhc + Ldhc
k59−→ Lactatec + Nadc + Ldhc

Pyruvatec
k60−→ Pyruvatem
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Pyruvatem + Nadm + Pdh∗
m

k61−→ Acetylm + Nadhm + Pdh∗
m

Acetylm + 3Nadm + Fadm + Adp
k62−→ 3Nadhm + Fadhm + Atp

Nadhc
k63−→ Nadhm

Nadhm + 2.5Adp + Sco2m
k64−→ Nadm + 2.5Atp + 0.5O2con + Sco2m

Fadhm + 1.5Adp + Sco2m
k64−→ Fadm + 1.5Atp + 0.5O2con + Sco2m

Lactatec

k65←−−−→ Lactateout

Lactateout
k66−→ •

Atp
k67−→ Adp

Equations:

dGlucosec
dt

= k55Glut1c

(
Glucoseout

Glucoseout + Kg1
− Glucosec

Glucosec + Kg1

)

+ k55Glut3c

(
Glucoseout

Glucoseout + Kg2
− Glucosec

Glucosec + Kg2

)

− k56

(
Glucosec Atp

Glucosec Atp + KatpGlucosec + Kg3Atp + KatpKg3

)
, (55)

dG6pc
dt

= k56

(
Glucosec Atp

Glucosec Atp + KatpGlucosec + Kg3Atp + KatpKg3

)

− k57

⎛

⎜⎜
⎝

G6pc

G6pc

(
1 + T igarc

Ktig

)
+ Kg4

(
1 + T igarc

Ktig

)

⎞

⎟⎟
⎠

×
(

Nctot − Nadhc
Nctot − Nadhc + Knadc

)(
Atot − Atp

Atot − Atp + Kadp

)

− k58G6pc, (56)

dPyruvatec
dt

= 2k57

⎛

⎜
⎜
⎝

G6pc

G6pc

(
1 + T igarc

Ktig

)
+ Kg4

(
1 + T igarc

Ktig

)

⎞

⎟
⎟
⎠

×
(

Nctot − Nadhc
Nctot − Nadhc + Knadc

)(
Atot − Atp

Atot − Atp + Kadp

)

− k59

(
Ldhcm

Ldhcm + Kl
m

)

×
(

PyruvatecNadhc
PyruvatecNadhc + KncPyruvatec + Kpyr1Nadhc + KncK pyr1

)

− k60Pyruvatec

(
Kpyr2

Pyruvatem + Kpyr2

)
, (57)
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dPyruvatem
dt

= k60Pyruvatec

(
Kpyr2

Pyruvatem + Kpyr2

)
− k61Pdh

∗
m

×
(

Pyruvatem(Nmtot − Nadhm)

(Pyruvatem + Kpyr3)(Nmtot − Nadhm) + Knadm1Pyruvatem

)
,

(58)
d Acetylm

dt
= k61Pdh

∗
m

×
(

Pyruvatem(Nmtot − Nadhm)

(Pyruvatem + Kpyr3)(Nmtot − Nadhm) + Knadm1Pyruvatem

)

− k62

(
Acetylm

Acetylm + Kace

)(
Nmtot − Nadhm

Nmtot − Nadhm + Knadm2

)

×
(

Fmtot − Fadhm
Fmtot − Fadhm + K f adm

)(
Atot − Atp

Atot − Atp + Kadp

)
, (59)

dNadhc
dt

= 2k57

⎛

⎜
⎜
⎝

G6pc

G6pc

(
1 + T igarc

Ktig

)
+ Kg4

(
1 + T igarc

Ktig

)

⎞

⎟
⎟
⎠

×
(

Nctot − Nadhc
Nctot − Nadhc + Knadc

)(
Atot − Atp

Atot − Atp + Kadp

)

− k59

(
Ldhcm

Ldhcm + Kl
m

)

×
(

PyruvatecNadhc
PyruvatecNadhc + KncPyruvatec + Kpyr1Nadhc + KncK pyr1

)

− k63Nadhc

(
Knm

Nadhm + Knm

)
, (60)

dNadhm
dt

= k61Pdh
∗
m

×
(

Pyruvatem(Nmtot − Nadhm)

(Pyruvatem + Kpyr3)(Nmtot − Nadhm) + Knadm1Pyruvatem

)

+ 3k62

(
Acetylm

Acetylm + Kace

)(
Nmtot − Nadhm

Nmtot − Nadhm + Knadm2

)

×
(

Fmtot − Fadhm
Fmtot − Fadhm + K f adm

)(
Atot − Atp

Atot − Atp + Kadp

)

+ k63Nadhc

(
Knm

Nadhm + Knm

)
− k64Sco2m

(
Nadhm

Nadhm + Ke

)

×
(

Atot − Atp

Atot − Atp + Kadp

)
, (61)

dFadhm
dt

= k62

(
Acetylm

Acetylm + Kace

)(
Nmtot − Nadhm

Nmtot − Nadhm + Knadm2

)

×
(

Fmtot − Fadhm
Fmtot − Fadhm + K f adm

)(
Atot − Atp

Atot − Atp + Kadp

)

− k64Sco2m

(
Fadhm

Fadhm + Ke

)(
Atot − Atp

Atot − Atp + Kadp

)
, (62)
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dLactatec
dt

= k59

(
Ldhcm

Ldhcm + Kl
m

)

×
(

PyruvatecNadhc
PyruvatecNadhc + KncPyruvatec + Kpyr1Nadhc + KncK pyr1

)

− k65

(
Lactatec

Lactatec + Klac
− Lactateout

Lactateout + Klac

)
, (63)

dLactateout
dt

= k65

(
Lactatec

Lactatec + Klac
− Lactateout

Lactateout + Klac

)

− k66Lactateout , (64)

d Atp

dt
= −k56

(
Glucosec Atp

Glucosec Atp + KatpGlucosec + Kg3Atp + KatpKg3

)

+ 3k57

⎛

⎜
⎜
⎝

G6pc

G6pc

(
1 + T igarc

Ktig

)
+ Kg4

(
1 + T igarc

Ktig

)

⎞

⎟
⎟
⎠

×
(

Nctot − Nadhc
Nctot − Nadhc + Knadc

)(
Atot − Atp

Atot − Atp + Kadp

)

+ k62

(
Acetylm

Acetylm + Kace

)(
Nmtot − Nadhm

Nmtot − Nadhm + Knadm2

)

×
(

Fmtot − Fadhm
Fmtot − Fadhm + K f adm

)(
Atot − Atp

Atot − Atp + Kadp

)

+ 2.5k64Sco2m

(
Nadhm

Nadhm + Ke

)(
Atot − Atp

Atot − Atp + Kadp

)

+ 1.5k64Sco2m

(
Fadhm

Fadhm + Ke

)(
Atot − Atp

Atot − Atp + Kadp

)

− k67Atp, (65)

dO2con
dt

= 0.5k64Sco2m

(
Nadhm

Nadhm + Ke

)(
Atot − Atp

Atot − Atp + Kadp

)

+ 0.5k64Sco2m

(
Fadhm

Fadhm + Ke

)(
Atot − Atp

Atot − Atp + Kadp

)
. (66)

A.4 Discussion of Parameter Values

This section offers a detailed explanation of the methodologies and mechanisms
employed to derive several parameters within our model.
k2: AMPK∗

c -dependent p53c phosphorylation rate.
For effective gene activation in response to stimuli, p53 must maintain its active
(phosphorylated) state for a certain period. Consequently, we assumed a faster phos-
phorylation rate for p53 than its dephosphorylation rate (k4), ensuring that p53 remains
active long enough to complete the transcription of necessary genes. Furthermore, we
discussed the impact of varying this parameter on the model outcomes through bifur-
cation diagrams, as shown in Fig. 7.
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k18 and k20: SCO2m basal production and degradation rates, respectively.
Due to the lack of experimental data to estimate the production and degradation rates
of SCO2, we have chosen to align them with those of WIP1. However, since SCO2
exclusively impacts the ETC activity in our model, we adjusted the process speed
to reflect normal activity at the SCO2 steady-state level. Therefore, any variations in
SCO2 concentrations-either increases or decreases-directly affect the ETC’s baseline
functioning, enhancing or diminishing it.
k19: p53n-dependent SCO2m production rate.
Experimental findings by Wanka et al. reveal that in colon cancer cells possessing
wild-type p53 (HCT116 p53+/+), SCO2 levels are approximately 2.3 times higher
than in cells with mutated p53 (HCT116 p53−/−) (Wanka et al. 2012). Based on this
data, we estimated that the activation of p53 in wild-type cells elevates SCO2 levels
by 2.3-fold.
k21: TIGARc basal production rate.
TIGAR expression was undetectable in normal colon cells (Al-Khayal et al. 2016).
Accordingly, we assumed a minimal basal production rate for TIGAR, resulting in
negligible levels that do not exert TIGAR influence under normal conditions.
k22: p53n-dependent TIGARc production rate.
We used a least squares method to estimate the induction rate of TIGAR by p53,
drawing on data from Lee et al., which demonstrated how various p53 levels affect
TIGAR protein concentrations (Lee et al. 2015).
k23: TIGARc basal degradation rate.
We determined the TIGAR degradation rate based on its half-life, which is approxi-
mately 10h, as reported in (Zeng et al. 2021).
k24: AMPKc phosphorylation rate.
p53 activation is a critical adaptive response to metabolic stress, triggered by the
activation of AMPK (Jones et al. 2005; Imamura et al. 2001). Thus, for effective
p53 response in stressed cells, AMPK activation levels must be sufficiently high. To
determine this threshold, we analysed the impact of different AMPK activation rates
on the nuclear accumulation of p53, aiming to identify the activation rate required for
a robust p53 response, see Fig. 6.
k25: p53n-dependent AMPKc phosphorylation rate.
The kinetics of AMPK phosphorylation, whether initiated by metabolic stress or p53
activation, may differ based on the triggering event, cell type, and current physiolog-
ical state. Despite these variations, since both mechanisms engage similar cofactors
and protein-protein interactions and target the same phosphorylation site on AMPK,
we assumed that the phosphorylation speed catalysed by p53 is consistent with that
induced by metabolic stress (k24).
k26: AMPK∗

c dephosphorylation rate.
The activation process of AMPK also involves dephosphorylation inhibitory mech-
anisms that guarantee AMPK stays active sufficiently to re-establish cellular energy
balance (Oakhill et al. 2011). Therefore, we assumed the AMPK dephosphorylation
rate to be ten-fold slower than its phosphorylation rate (k24/k26=10), enabling cells
to adapt swiftly to metabolic stress and gradually return to baseline once the stress is
mitigated.
k31: AKT∗

c -dependent mTORc activation rate.
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Lacking experimental data to measure mTOR activation and inactivation rates, our
study proceeds under the assumption that the speed ofmTORactivation byAKT is akin
to that ofAKTactivation by PIP3 (k29). This assumption is grounded in the observation
that both steps are integral components of the PI3K/AKT/mTOR signalling pathway,
known for its rapid and tightly regulated response.While the precise kinetics of mTOR
activation involve different mechanisms, the need for synchronised actions within the
signalling cascade suggests these key activation events occur at comparable rates. This
assumption simplifies our model, enabling us to explore the broader dynamics of the
PI3K/AKT/mTOR pathwaywithout being hindered by the lack of detailed kinetic data
for each step.
k32 and k33: AMPK∗

c -dependent and independent mTORc inactivation rates, respec-
tively.
In line with our assumptions, we set the mTOR inactivation rate slightly lower than
its activation rate (k31), allowing cellular responses to persist adequately for desired
physiological effects. Additionally, we introduced a minimal AMPK-independent
inactivation rate for mTOR, ensuring its regression after stimuli removal, even in
the absence of AMPK activity. Our assumption allows effective mTOR response to
cellular signals and returns to a basal state when necessary.
k34: HIF1αc basal production rate.
As we do not have direct laboratory measurements to estimate the HIF1α production
rate confidently, we infer an appropriately low rate, guided by the rapid degradation
mechanisms that maintain minimal HIF1α levels under normoxic conditions (Valvona
et al. 2016; Laughner et al. 2001; Golias et al. 2019). Then, by establishing this low
steady-state level as a baseline,we accuratelymodel the influence ofHIF1α on its target
genes, ensuring that any deviation from this baseline-under conditions that inhibit its
degradation or increase its synthesis-precisely reflects the increased activity of HIF1α
on its target genes’ expression.
k35: mTOR∗

c -dependent HIF1αc induction rate.
mTOR signalling is recognized for its role in boostingHIF1α protein levels by promot-
ing its mRNA translation (Laughner et al. 2001; Hudson et al. 2002; Düvel et al. 2010).
Activation ofmTORhas been observed to elevate HIF1α expression by about 2.3-fold,
as seen in (Düvel et al. 2010). The same increase in HIF1α levels was also evident in
colon cancer cells compared to normal cells (Lu et al. 2011). Based on these findings,
we estimated the induction rate of HIF1α by mTOR to reflect a 2.3-fold increase in
HIF1α levels.
k36: mTOR∗

c -dependent HIF1αc nuclear import rate.
HIF1α is predominantly found in the cytoplasm under nonhypoxic conditions (Kallio
et al. 1998). However, the HIF1α protein induced by growth factors, specifically
by mTOR, has been noted to localise exclusively within the nucleus (Treins et al.
2005). Hence, we set this parameter to ensure exclusive HIF1α nuclear localisation in
response to growth factor signals.
k37: HIF1α basal degradation rate.
Hydroxylated HIF1α exhibits high instability in vitro, with a half-life of less than five
minutes (Golias et al. 2019). Accordingly, we considered that the half-life of HIF1α
under nonhypoxic conditions is five minutes, estimating the HIF1α degradation rate
at k37 = 0.1386 / min.
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k38: GLUT1c basal production rate.
The introduction of wild-type p53 expression vectors was found to dose-dependently
decrease theGLUT1promoter activity byup to50%of its basal levels (Schwartzenberg-
Bar-Yoseph et al. 2004). Based on this evidence, and considering that p53 activation
in our cancer cells induces an average level of p53, we hypothesise a mean reduc-
tion of approximately 35% in the GLUT1 production rate (from 0.00005 μM/min to
0.000032 μM/min) due to p53 activation in cancerous environments.
k39: HIF1αn-dependent GLUT1c production rate.
mTOR activation elevated HIF1α expression by 2.3-fold, which subsequently induced
a 3.4-fold increase in GLUT1 concentration (Düvel et al. 2010). From these observa-
tions, we infer that a 2.3-fold rise in HIF1α, triggered by mTOR activation, will lead
to a 3.4-fold enhancement in GLUT1 levels.
k40 and k43: GLUT1c and GLUT3c basal degradation rate, respectively.
The half-life of the GLUT1 and GLUT3 proteins has been reported to be around 6 and
15h, respectively (Khayat et al. 1998). Thus, we calculated their degradation rates to
be 0.0019 and 0.00075 / min, respectively.
k41: GLUT3c basal production rate.
GLUT1 is known as the most abundantly expressed glucose transporter within the
GLUT family, facilitating basal glucose uptake in nearly all cell types (Sargeant
and Pâquet 1993; Schwartzenberg-Bar-Yoseph et al. 2004; Dai et al. 2020). In con-
trast, GLUT3 expression is more selective and less common under normal conditions.
Accordingly, we made the assumption that the expression of GLUT3 protein is lower
than that of GLUT1, estimating this parameter to yield approximately half of GLUT1
concentration in normal cells.
k42: HIF1αn-dependent GLUT3c production rate.
Given that both GLUT1 and GLUT3 respond similarly to HIF1α induction under
hypoxia (Wood et al. 2007), we extend this pattern to predict a 3.4-fold increase in
GLUT3 levels following a 2.3-fold rise in HIF1α, mirroring the GLUT1 response.
k44, k47, k48, and k51: PDK1,3m , PDK2m , LDHc, and PDH∗

m basal production rate,
respectively.
Under normal physiological conditions, LDH and PDK proteins are typically main-
tained at modest levels, consistent with their roles in metabolic regulation under
non-stressed states. Consequently, we have set a low basal production rate for them
at 0.0001 μM/min to reflect the minimal activity required for metabolic homeostasis.
In contrast, for effective aerobic respiration, PDH levels must significantly exceed the
levels of PDK to guarantee efficient conversion of pyruvate to acetyl-CoA within the
mitochondria. Thus, we estimated the PDH production rate to be ten times that of
PDK, 0.001 μM/min.

Despite this arbitrary production rate for these enzymes, we accurately reflect their
impact on cellularmetabolism. These enzymes catalyse keymetabolic reactions in glu-
cose metabolism, where their activities directly influence the corresponding reaction
rates. Therefore, we derived the maximum velocity (Vmax ) of these reactions under
standard conditions from literature and then correlated these with enzymes’ basal
steady-state levels in our model. This approach allows us to predict how variations in
enzyme levels-increases or decreases under different physiological scenarios- affect
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reaction speeds and metabolic outcomes, even in the absence of exact production rate
data.
k45: HIF1αn-dependent PDK1,3m production rate.
PDK3 levelswere found to be roughly 2-fold higher in colon cancer cells than in normal
cells, aligning with a 2.3-fold enhancement in HIF1α levels detected in these cancer
cells (Lu et al. 2011). Given this correlation, we estimate a 2-fold escalation in PDK3
expression in response to the 2.3-fold rise in HIF1α. In a similar vein, PDK1 exhibited
a comparable upsurge to PDK3 under hypoxic conditions in colorectal cancer cells
(Lu et al. 2011), leading us to anticipate an analogous increase in PDK1 in response
to HIF1α elevation.
k46: PDKm basal degradation rate.
Measuring the PDK protein stability over time in cells treated with cycloheximide
revealed that PDK1 and PDK2 levels remain stable for up to two hours (Crewe et al.
2017). Another study indicates the mRNA half-life of PDK2 extends beyond six hours
(Huang et al. 2002). However, due to a lack of direct data specifying the half-life of
each PDK protein, for simplicity, we assume that PDK1, PDK2, and PDK3 uniformly
exhibit a half-life of six hours. This assumption leads to an estimated degradation rate
of 0.0019 / min.
k47: PDK2m basal production rate.
The expression level of PDK2 is regulated by the p53 target gene miR-149-3p. Com-
parative analyses between HCT116 cells, which have a high miR-149-3p level, and
HCT116/F cells, exhibiting reduced miR-149-3p levels due to loss of p53 function,
showed that PDK2 expression is approximately 1.4-fold higher in HCT116/F cells
(Liang et al. 2020). Consistent with this, the p53 activation in our cancer cells effec-
tively reduces PDK2 basal expression to a comparable extent.
k49: HIF1αn-dependent LDHc production rate.
Under hypoxic conditions, LDH protein levels increased due to HIF1α induction at the
same rate as GLUT1 (Hu et al. 2006). Therefore, we estimated this rate to instigate a
3.4-fold boost in LDH protein level in response to a 2.3-fold rise in HIF1α expression.
k50: LDHc basal degradation rate.
The half-life of LDH in HCT116 cells is reported to be 14h (García-Aguilar et al.
2019), which corresponds to a degradation rate of 0.000825 / min.
k52 and k53: PDKm-dependent PDH∗

m phosphorylation and PDHm dephosphorylation
rates, respectively.
According to a study investigating colon cancer cells with high miR-149-3p levels
(HCT116) versus those with diminished miR-149-3p due to p53 loss (HCT116/F), the
observed 1.4-fold increase in PDK2 levels in HCT116/F cells led to a higher PDH
phosphorylation level by 1.8-fold than HCT116 (Liang et al. 2020). As a result, we
estimated elevated PDK levels in our p53-mutated cancer cells to induce a 1.8-fold
increase in PDH phosphorylation relative to cells with wild-type p53.
k54: PDHm basal degradation rate.
We calculated the PDH degradation rate by considering its half-life, which varies from
41 to 49h (Hu et al. 1983), opting to use the shorter duration of 41h for our estimation.
k58: G6Pc undergoing the PPP rate.
Studies indicate that under typical physiological conditions, glucose metabolism pro-
ceeds primarily via the glycolytic pathway, with a small fraction, around 5%, being
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directed into the PPP (Kight and Fleming 1995). Guided by this evidence, we have
estimated this rate to drive a similar proportion of G6P to the PPP in normal conditions,
with the remainder metabolised through glycolysis.
k60: Pyruvatec mitochondrial import rate.
Pyruvate concentrations were quantified within the mitochondria and cytoplasm in
mouse prostate cancer cells (Li et al. 2017). The data revealed that mitochondrial
pyruvate concentration is significantly lower than that in the cytosol by approximately
80-fold. Drawing on this data, we estimated this rate to maintain pyruvate concentra-
tions between the compartments relatively close to the experimental findings.
k61: PDH∗

m-dependent Acetyl-CoAm and NADHm formation rate.
We assumed that the rate of pyruvate conversion into acetyl-CoA matches the rate of
pyruvate conversion into lactate, set at 300 μM/min. This rate aligns with a calculated
constant of k61 = [300μM/min] / [the normal PDH∗

m level (3.176μM)], yielding a rate
of 95 /min. Our assumption is based on the premise that, under certain conditions, the
cell’s metabolic machinery adjusts to utilize pyruvate efficiently for both anaerobic
and aerobic pathways, allowing for comparable conversion rates.
k62: Maximal TCA cycle rate.
It has been reported that glycolysis operates at a rate approximately ten times faster
than oxidative phosphorylation (Devic 2016). Based on this insight, we inferred that
the maximal rate of the TCA cycle is likely around ten times slower than glycolysis,
leading to a rate of k57/10 = 4 μM/min for the TCA cycle.
k63: NADHc mitochondrial import rate.
NADHenters themitochondria through theMalate-Aspartate Shuttle (MAS), essential
for preserving a high cytosolic NAD+/NADH ratio (Bhagavan 2002). This shuttle
is represented implicitly in our model without experimental data to define its rate.
However, varying this parameter in our simulations showed the system’s robustness,
with no notable sensitivity to the model outcomes. Consequently, we have assigned
an arbitrary rate of 0.1 /min.
k64: SCO2m-dependent ETC rate.
The TCA cycle comprises a series of sequential chemical reactions, each depending
on the completion of the previous step and catalysed by different enzymes. In contrast,
the ETC primarily involves electron transfer and proton pumping, processes that can
proceed rapidly once initiated. Given these characteristics, we assumed that the ETC
operates relatively faster than the TCA cycle, estimating it to be three times quicker.
Thus, we set k64 = [12 μM/min] / [the standard SCO2 level (0.1 μM)] = 120 /min.
k66: Lactateout degradation rate.
This rate was determined based on the half-life of lactate in healthy cells, which is
around 60 min (Rosenstein et al. 2018).
k67: ATP basal consumption rate.
This rate was selected arbitrarily to facilitate a comparative analysis of ATP steady-
state levels across all three cell types: normal, cancer p53+/+, and cancer p53−/−.
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A.5 Parameter Robustness Analysis

To investigate our model’s robustness against parameter uncertainties, we performed
a global sensitivity analysis across both cancer cell phenotypes using Morris method
(Morris 1991), see Fig. 10 for p53+/+ and Fig. 11 for p53−/−.

Morris method evaluates the Elementary Effects (EEs) of input parameters by
randomly sampling the input space and conducting a series of one-at-a-time (OAT)
experiments. In each experiment, one input parameter is varied while the others are
kept fixed, and the resultant change in the output is observed. This process is repeated
multiple times to explore different regions of the input space.

Following these experiments, the mean (μ) and standard deviation (σ ) of these EEs
are determined, providing insights into the influence and interaction of each parameter
on the model’s outcomes. The higher μi , the higher the overall impact of parameter
ki on the output is, while a high standard deviation σi indicates that ki ’s impact on
the output is variable depending on the region of the parameter space, suggesting
non-linearity or interactions with other parameters.

Applying this method to the main model’s outcomes reveals that cancer cells with
intact p53 are more sensitive to parameter variations, especially in terms of glucose
consumption and lactate production, compared to p53-mutant cells. Conversely, pro-
cesses like oxygen consumption andATPproductionweremore robust,with sensitivity
indices below 0.5 in both cell types. This robustness suggests that these processes are
maintained consistently to sustain cellular energy balance even under different condi-
tions.

The parameters significantly affecting glucose consumption and lactate production
outcomes in p53-wild type cells were primarily associated with the dynamics of p53
activation and deactivation by WIP1 (k2, k4, k13, and k14), as well as those regulating
growth factor signalling pathways (k16, k17, k27, k28, k29, and k30). These pathways
are intricately linked to the metabolic processes, and their sensitivity underscores the
importance of p53 in maintaining metabolic homeostasis and responding to cellular
stressors.

On the other hand, the oxygen-dependent degradation rate of HIF1 (k37) and the
rate of glucose transport (k55) were critical for both cell types. These parameters,
however, exhibited a low standard deviation, indicating that their impact is consistent
and linear across different regions of the parameter space. This consistency implies
that these parameters have a predictable and stable influence on cellular metabolism,
regardless of the p53 status.
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Fig. 10 Global sensitivity analysis for cancer cells p53+/+ using Morris method. The mean (yellow) and
standard deviation (blue) of the Elementary Effect are shown for each parameter for key model outcomes:
glucose consumption, lactate production, oxygen consumption, and ATP production. A higher mean indi-
cates greater influence of the parameter on the model outcome, while a higher standard deviation suggests
greater interaction of the parameter with other parameters (Color figure online)
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Fig. 11 Global sensitivity analysis for cancer cells p53−/− using Morris method. The mean (yellow) and
standard deviation (blue) of the Elementary Effect are shown for each parameter for key model outcomes:
glucose consumption, lactate production, oxygen consumption, and ATP production. A higher mean indi-
cates greater influence of the parameter on the model outcome, while a higher standard deviation suggests
greater interaction of the parameter with other parameters (Color Figure Online)
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