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Abstract
Working memory capacity (WMC) has been measured with a plethora of cognitive tasks. Several preeminent automated 
batteries of working memory (WM) tasks have been developed recently. However, despite all their advantages, most batter-
ies were programmed in paid platforms and/or only included a single WM paradigm. To address these issues, we developed 
the OpenWMB, an automated battery comprising seven tasks from three distinct paradigms (complex spans, updating tasks, 
and binding tasks) that tap into several functional aspects of WM (simultaneous storage and processing, updating, and bind-
ing). The battery runs on open-source software (OpenSesame) and is freely available online in a ready-to-download format. 
The OpenWMB possesses flexible features and includes a data processing script (that converts data into a format ready for 
statistical analysis). The instrument is available in Portuguese and English. However, we only assessed the psychometric 
properties of the former version. The Portuguese version presented good internal consistency and considerable internal and 
predictive validity: all tasks loaded into a single factor. Additionally, the WMC estimate was strongly correlated with a fluid 
intelligence factor. This study also tried to contribute to the ongoing debate regarding the best method to assess WMC. We 
computed a permutation analysis to compare the amount of variance shared between a fluid intelligence factor and (1) each 
WM task, (2) homogenous WMC factors (based on multiple tasks from the same paradigm), and (3) heterogeneous WMC 
factors (derived from triplets of tasks from different paradigms). Our results suggested that heterogeneous factors provided 
the best estimates of WMC.
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Introduction

Working memory (WM) is a limited-capacity system that 
temporarily stores, manipulates, and retrieves information 
necessary for ongoing cognitive processes (Baddeley, 2012; 

Unsworth et al., 2009; Wilhelm et al., 2013). The underlying 
structure of WM remains a subject of broad debate. Some 
authors propose that WM can be fractionated into separable 
functional aspects (simultaneous storage and processing of 
information, updating of mental representations, and binding 
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of information elements into structures) (Ecker et al., 2010; 
Himi et al., 2019; Oberauer et al., 2003) and specific content 
domains (verbal-numeric and visuospatial) (Oberauer et al., 
2000; Waris et al., 2017), while others view this process as 
a global cognitive resource (Engle et al., 1999; Kane et al., 
2004).

WM has been associated with a multitude of high-level 
cognitive abilities, such as rationality (Burgoyne et  al., 
2023), fluid intelligence (Gf) (Felez-Nobrega et al., 2018; 
Rey-Mermet et al., 2019), reading comprehension (Pham 
& Hasson, 2014), speech production (Herman et al., 2013), 
drawing capacity (Trojano et al., 2004), and arithmetical 
abilities (Hubber et al., 2014). Moreover, it influences differ-
ent aspects of everyday life — e.g., multi-tasking (Hambrick 
et al., 2010), and resisting the continued influence of mis-
information (Brydges et al., 2018). Additionally, a decline 
in WM has been linked with several cognitive deficits and 
clinical pathologies, including attention deficit disorder 
(Kofler et al., 2019) and schizophrenia (Braun et al., 2021).

Considering the crucial role of WM in human cognition, 
the development of universally accessible and well-vali-
dated tools to measure individual differences in WM capac-
ity (WMC) is critical (Redick et al., 2012). While recently 
several notable examples of automated batteries of WM 
tasks have been freely made available online (Foster et al., 
2015; Lewandowsky et al., 2010; Ma et al., 2017; Oswald 
et al., 2015; Stone & Towse, 2015; Unsworth et al., 2005, 
2009), many were programmed in paid platforms making 
them inaccessible to researchers who do not have access to 
such resources. Furthermore, these batteries are still only 
available in certain languages — for instance, none of these 
instruments includes a Portuguese version. To address these 
needs, we developed the OpenWMB, an open-source and 
automated battery that contains multiple tasks from three 
WM paradigms (complex spans, updating tasks, and bind-
ing tasks) and is available in both Portuguese and English. 
In this article, we offer a comprehensive description of the 
features of the battery and provide a step-by-step guide on 
how to install and run the OpenWMB, and how to process 
data collected with this instrument. We also report the vali-
dation study that was conducted to assess the psychometric 
proprieties of the Portuguese version of the OpenWMB. 
Additionally, we used the data collected in this study to 
evaluate which method yielded the best estimate of WMC 
among (1) single WM tasks, (2) homogenous WMC factors 
(based on multiple tasks from the same paradigm), and (3) 
heterogeneous WMC factors (derived from triplets of tasks 
from different paradigms). To test this, we compared the 
amount of variance shared between a Gf factor and all pos-
sible combinations of single WM tasks, homogenous, and 
heterogeneous WMC factors.

Due to its intangible nature, WM is evaluated with tasks 
that measure WMC indirectly (Schmiedek et al., 2014). In 

the past years, three paradigms have been regularly adminis-
trated to assess WMC: complex spans (Daneman & Carpen-
ter, 1980; Turner & Engle, 1989), updating tasks (Kirchner, 
1958; Salthouse et al., 1991), and binding tasks (Quinette 
et al., 2006; Wilhelm et al., 2013). Complex spans are dual 
tasks that require keeping information in an active state 
while completing a secondary task (Redick et al., 2012; 
Unsworth et al., 2009). Updating tasks involve continuously 
refreshing mental representations (Ecker et al., 2010). In 
binding tasks, the participants need to link several charac-
teristics of the stimuli (e.g., position and verbal content) to 
build structures and establish new relationships (Oberauer 
et al., 2003; Wilhelm et al., 2013).

Several studies suggested that these three classes of WM 
tasks are reliable and valid measures of WMC. They present 
good internal consistency (Schmiedek et al., 2009; Wilhelm 
et al., 2013) and temporal stability (Redick et al., 2012; Sov-
eri et al., 2018). They also present good predictive validity: 
unlike cognitive tasks that only encompass storage demands 
(such as simple spans), WM paradigms predict high-level 
cognitive abilities such as Gf (Engle et al., 1999; Kane et al., 
2004; Wilhelm et al., 2013). Furthermore, there is some evi-
dence that suggests that even though these paradigms pre-
sent different structures and requirements they measure the 
same underlying construct. Several studies (Lewandowsky 
et al., 2010; Schmiedek et al., 2009, 2014; Waris et al., 2017; 
Wilhelm et al., 2013) suggested that complex spans, updat-
ing tasks, and binding tasks presented high loadings on gen-
eral WMC factors, which is evidence of convergent validity. 
However, these findings are not consensual. For instance, 
Jaeggi et al. (2010) and Kane et al. (2007) found weak cor-
relations between complex spans and the n-back task (which 
is classified as an updating task according to the definitions 
used in this article).

The differences between the results of these studies may 
be explained by the use of different analytical techniques 
to assess the relationship between different classes of WM 
tasks: Lewandowsky et al. (2010), Schmiedek et al. (2009, 
2014), Waris et al. (2017), and Wilhelm et al. (2013) used 
factorial analyses — a statistical procedure that extracts 
common variance shared by the observed variables to 
identify latent factors — to assess the aforementioned rela-
tionship, while Jaeggi et al. (2010) and Kane et al. (2007) 
employed correlations (a method that estimates the relation-
ship between two variables at the observed level) to evalu-
ate this phenomenon. Thus, using different analytical pro-
cedures may have changed the intensity and directions of 
the relationships between the WM tasks which may explain 
the different conclusions regarding this issue (Schmiedek 
et al., 2009).

There are other technical aspects that need to be consid-
ered during the administration of WM tasks because they 
may also lead to different reliability estimates and change 
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the nature of the measurements of these tasks. Among 
these aspects, we would like to highlight the use of differ-
ent scoring techniques (e.g., partial-credit scoring vs. abso-
lute scoring) (Conway et al., 2005), administration methods 
(computer-paced, experimenter-paced, or participant-paced) 
(Bailey, 2012; Friedman & Miyake, 2004), and presenta-
tion orders (presenting blocks of trials with different sizes 
in ascending order vs. presenting blocks of trials with 
different sizes in random order) (Unsworth et al., 2005). 
For instance, Friedman and Miyake (2004) found that an 
experimenter-paced version of a complex span presented a 
stronger correlation with reading comprehension measures 
than a participant-paced version of the same task. These 
authors argued that the participants may have used different 
strategies to complete the two versions of the complex span 
and that these differences may have changed the nature of 
what the task was actually measuring. A thorough review 
of the consequences of these technical issues is beyond the 
scope of this article. However, see Conway et al. (2005) and 
Friedman and Miyake (2004) for an extensive discussion 
regarding these topics.

Another important aspect that needs to be considered in 
investigations that seek to assess WMC is the number of 
tasks that need to be employed to achieve the best measure-
ment of this construct. Given the good reliability indexes 
and the established validity of most WM tasks, depending 
on the objectives of the investigation, the administration of 
a single test to estimate WMC is feasible (Wilhelm et al., 
2013). However, despite their good psychometric proprie-
ties, no WM task is a perfect measure of WMC. Every one 
of these tests taps into variance caused by individual dif-
ferences in WMC but also encapsulates variance produced 
by the idiosyncratic features of the paradigm and the task 
(e.g., the structure of the task or the content domain of the 
stimuli), and measurement error (Engle et al., 1999; Foster 
et al., 2015). Applying a single task makes it difficult to 
separate variance caused by individual differences in WMC 
from variance caused by the specific features of the task 
(Schmiedek et al., 2014) — this can be particularly prob-
lematic for studies that need to extract “pure” WMC meas-
urements. Furthermore, it is unlikely that a single task will 
cover the wide range of functions and domains attributed to 
WM (Lewandowsky et al., 2010).

To bypass this issues, if the time and resources are avail-
able, several authors recommend using more than one task 
to measure WMC and estimate this construct based on a 
composite score (computed by averaging the performance on 
all administrated tasks) (Schmiedek et al., 2014) or a latent 
factor (Conway et al., 2005; Foster et al., 2015; Wilhelm 
et al., 2013). Between the two approaches, only factorial 
analysis separates construct variance from paradigm and 
task-specific variance and measurement error (Schmiedek 
et al., 2009). Previous research suggested that there are some 

benefits in extracting the latent factor(s) from tasks from 
different paradigms because a factor based on tasks from 
the same paradigm will likely group paradigm-specific and 
WMC variance together (Lewandowsky et al., 2010; Redick 
et al., 2012). On the other hand, deriving WMC factors from 
several tasks from multiple paradigms that tap into different 
content domains and functional aspects ascribed to WM will 
significantly reduce bias in the interpretation of the derived 
factor(s) while also partialling out construct-irrelevant vari-
ance (Oswald et al., 2015; Schmiedek et al., 2014; Waris 
et al., 2017).

However, there is still no definitive answer about the best 
method to assess WMC (Kane et al., 2004; Schmiedek et al., 
2009). Task selection should always consider the particulari-
ties of each investigation. Different combinations of tasks 
may be appropriate depending on whether researchers are 
only interested in assessing some dimensions of WM — e.g., 
binding tasks are particularly well suited to assess binding 
mechanisms (Oberauer et al., 2003) —, the characteristics of 
the target population (e.g., some tasks are more appropriate 
for children than adults) (Scharfen et al., 2018), or the time 
available to implement the experiment (e.g., administrating 
complex spans usually requires more time than employing 
updating or binding tasks) (Wilhelm et al., 2013).

In fact, administrating some WM tasks can be quite time-
consuming. This may be one of the main reasons behind 
the implementation of a single task in several studies (Fos-
ter et al., 2015; Ma et al., 2017). To tackle this issue, sev-
eral automated batteries of WM tasks have been developed 
in recent years. Automated WM batteries present several 
advantages in comparison to their pen-and-paper counter-
parts. They are usually less time-consuming, present auto-
matic scoring, can randomize the presentation order of the 
trials, and can vary the number of trials in each administra-
tion (Oswald et al., 2015; Redick et al., 2012). Above all 
else, these batteries may be administered in group settings, 
allowing data collection from multiple participants simulta-
neously (Ma et al., 2017; Stone & Towse, 2015).

Currently, researchers have at their disposal some out-
standing examples of automated WM batteries available 
online (Foster et al., 2015; Lewandowsky et al., 2010; Ma 
et al., 2017; Oswald et al., 2015; Stone & Towse, 2015; 
Unsworth et al., 2005, 2009). Most of these batteries were 
subjected to extensive validation. Some include tasks from 
different paradigms and possess flexible features — e.g., 
users can choose to administrate only a portion of the tasks 
and determine the number of trials they want to run in each 
task. Additionally, some of these instruments are available 
in multiple languages (e.g., English (Foster et al., 2015; 
Lewandowsky et al., 2010; Oswald et al., 2015; Stone & 
Towse, 2015), Chinese (Lewandowsky et al., 2010), and 
Spanish (Felez-Nobrega et  al., 2018)) which is vital to 
establish the psychometric proprieties of these tools across 
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different cultures — however, to the best of our knowledge, 
currently there is no automated battery of WM tasks freely 
accessible in a ready-to-download format for the Portuguese 
population. Despite all their notable advantages, the avail-
able automated WM batteries also present some drawbacks: 
most instruments were programmed in paid platforms, like 
Matlab or E-Prime, which means that researchers must have 
institutional access or purchase a commercial license for this 
software to use these batteries (which may not be an option 
for some researchers, especially PhD students). Additionally, 
most of them only include complex spans which may reduce 
their utility for investigators who need to separate unique 
WMC variance from paradigm-specific variance.

To help solve these gaps, we developed the OpenWMB, 
an automated battery of WM tasks that is entirely open-
source and possesses several flexible features. The Open-
WMB was programmed in OpenSesame (Mathôt et  al., 
2012) using Python and OpenSesame scripting. The battery 
can be downloaded from the GitHub repository associated 
with the webpage https://​zenodo.​org/​doi/https://​doi.​org/​10.​
5281/​zenodo.​10600​494 — to access this repository you will 
need to locate and click on the GitHub URL that is presented 
on the Zenodo page.

The instrument includes three complex spans (reading 
span, operation span, and symmetry span), two updating 
tasks (n-back task and memory updating task), and two bind-
ing tasks (binding and maintenance task and multimodal 
span). We selected these tasks because they presented high 
loadings on both general and functional or content-specific 
factors of WMC in previous studies (Kane et al., 2004; 
Schmiedek et al., 2009; Unsworth et al., 2009; Wilhelm 
et al., 2013). Also, they presented large correlations with 
Gf tasks (Oswald et al., 2015; Schmiedek et al., 2014). We 
included three paradigms in our battery because we believe 
they may help to account for a larger proportion of WMC 
variance. After all, it is probable that each paradigm taps 
into different functional aspects and content domains of 
WM (Oberauer et al., 2000, 2003). Thus, complex spans 
were included to capture variance prompted by the capacity 
to store and process information simultaneously; updating 
tasks were selected to evaluate the ability to continuously 
refresh mental representations; and binding tasks were cho-
sen as measures of the capacity to link characteristics of 
information to form new structures.

We programmed three complex spans with stimuli from 
different content domains because some studies suggested 
that a small but non-negligible portion of the variance in 
these tasks was content-specific (verbal/numerical vs. spa-
tial) (Kane et al., 2004; Oberauer et al., 2000). On the other 
hand, we only selected two updating tasks and two binding 
tasks because most investigations suggested that the abil-
ity to continuously update mental representations and the 
capacity to bind characteristics of information to form new 

structures are domain-general (Baddeley, 2000; Oberauer 
et al., 2003; Waris et al., 2017) — although some studies 
disagree with this premise (Nee et al., 2013). Even though 
a single updating task and a single binding task may have 
sufficed to account for the variance shared between these 
two paradigms and the complex spans, we included two 
updating tasks and two binding measures to control for task-
specific variance. Thus, the OpenWMB includes heteroge-
neous measures that produce a reliable and valid general 
estimate of WMC by tapping both into its functional aspects 
(simultaneous storage and processing, updating, and binding 
abilities) and content domains (verbal, numeric, and spatial) 
while reducing paradigm-specific and task-specific variance.

The OpenWMB has some flexible features that can be 
implemented without any programming knowledge. For 
instance, users can choose only to administrate a portion 
of the tasks or just a single task. The battery is suitable for 
group testing, is entirely computer-paced, has embedded 
instructions for each task, and has automatic scoring. Addi-
tionally, the OpenWMB includes a data processing script 
that converts all data collected into an easily interpretable 
format that is ready for data analysis (in platforms like R or 
SPSS). A detailed description of the features of the instru-
ment is presented in the Appendix.

The OpenWMB is available in Portuguese and English. 
However, we only assessed the psychometric properties of 
the Portuguese version — all analyses presented in this paper 
concern this version of the battery. All the information and 
caveats regarding the English version are presented in the 
last subsection of the Appendix. To assess the psychometric 
properties of the Portuguese version of the instrument, we 
administered the WM tasks included in the OpenWMB and 
three Gf measures to a sample of Portuguese adults. This 
study assessed the internal consistency, convergent valid-
ity, and predictive validity of the OpenWMB. The internal 
consistency of the battery was determined by calculating 
Cronbach’s alpha (α) and McDonald’s omega (ω) for each 
task. Its convergent validity was established by examining 
the relationships between the WM tasks at a latent level. 
To determine the predictive validity of the OpenWMB, we 
assessed the magnitude of the correlation between a latent 
factor derived from all WM tasks included in the battery 
and a latent factor extracted from the three Gf measures. 
Additionally, this study tested which method provided the 
best estimate of WMC among (1) single WM tasks, (2) 
homogenous WMC factors (based on multiple tasks from 
the same paradigm), and (3) heterogeneous WMC factors 
(derived from triplets of tasks from different paradigms). For 
this purpose, we compared the amount of variance shared 
between the Gf factor and all possible combinations of single 
WM tasks, homogenous, and heterogeneous WMC factors. 
A detailed account of the validation study will be presented 
in the following sections of the article.

https://zenodo.org/doi/
https://doi.org/10.5281/zenodo.10600494
https://doi.org/10.5281/zenodo.10600494


6884	 Behavior Research Methods (2024) 56:6880–6903

Method

Participants

One hundred and sixty-nine individuals participated in a sin-
gle experimental session. The participants were recruited 
through e-mail and direct contact (personal referrals and 
direct approaches at the campuses). The participants did not 
receive any payment or other benefits for participating in the 
study. Participation in this study was restricted to Portuguese 
citizens aged 18 to 35 years who held at least a high school 
degree. Data from five participants were discarded because 
they did not meet the inclusion criteria (three participants 
did not possess Portuguese citizenship, and another two were 
older than 35 years). One participant scored 0 in more than 
one cognitive task and was excluded. Another participant 
was classified as a multivariate outlier and was excluded 
from further analyses. Thus, our analyses were based on 
data from 162 participants (52 male; age range = 18-33 
years, mean age = 22.25, SD = 4.12). The sample had a 
diverse academic background. Approximately 67.9% of the 
participants were university students — 54.9% were under-
graduate students, and 13% were postgraduate students. The 
rest of the sample consisted of participants who had already 
completed their studies. 9.3% of the participants held a high 
school degree, while 22.8% completed at least one higher 
education degree.

Apparatus, design, and procedure

The tasks were programmed in OpenSesame (version 3.3.11) 
(Mathôt et al., 2012). The Mousetrap plugin for OpenSes-
ame (Kieslich & Henninger, 2017) was used to track mouse 
movements in the symmetry and multimodal spans. The 
participants completed the WM and Gf tasks in a single 
session. Up to 12 participants were tested simultaneously 
in a soundproof room. The test session took approximately 
2h20. In the middle of the session, the participants were 
granted a 20-minute break during which they were offered 
snacks (water, juice, fruit, cookies, and sandwiches). Gen-
eral instructions were provided at the start of the session. 
Specific instructions for each task were embedded in the 
program and were presented on the computer screen. Prac-
tice trials were completed before each task.

The order of the tasks was counterbalanced between-
participants with a Latin square design (a form of partial 
counterbalancing) (Grant, 1948). The order of the tasks was 
controlled by an algorithm embedded in our program that 
ensured that all tasks were presented an equal number of 
times in each position across participants.

Materials

Complex spans

Reading span (Daneman & Carpenter, 1980). Several 
blocks1 of interleaved sentences and letters were presented 
in this task. The participants were required to read sentences 
and determine if they presented syntactic errors while try-
ing to remember the sequence of presented letters. At the 
end of each block, the participants had to recall the to-be-
remembered letters in the same order they were presented.

The processing and memorization portions of the task 
were presented on different canvases — the same paradigm 
was used in the operation and symmetry spans. Each trial1 
began with the presentation of a fixation dot (for 500 ms). 
Then, a sentence was displayed. Each sentence had 11 or 
12 words and 45 to 57 characters. The participants were 
instructed to press the key ‘1’ when they thought the sen-
tence did not present a syntactic error and the key ‘2’ when 
they thought the sentence contained a syntactic error. Half of 
the sentences presented correct syntax. Syntactically incor-
rect sentences had a single error.

The time that each participant had to read a sentence and 
state if it presented a syntactic error was adjusted for each 
participant — a calibration task was completed before the 
reading span. In this task, the participants read 20 sentences 
and signaled if they presented syntactic errors or not. The 
time each participant had to process each sentence in the 
reading span was the same as his mean reaction time in the 
calibration task + 2.5 standard deviations (Unsworth et al., 
2009). Several authors suggested that constraining the time 
each participant has to process sentences reduces the influ-
ence of different rehearsal strategies, which leads to a purer 
estimate of the simultaneous storage and processing capac-
ity of the participants (Redick et al., 2012; Unsworth et al., 
2005).

After each sentence, a single letter was displayed for 
1000 ms. The sequences of to-be-remembered letters were 
randomly generated by an algorithm. Thus, the sequences 
of letters changed in each administration of the task. This 
enabled us to control possible order effects. Additionally, 
our algorithm ensured that each letter only appeared a single 
time in each block of trials. The participants were asked to 
memorize the letters in the same order they were presented.

At the end of each block, they were required to type the 
to-be-remembered letters on a response box. There was no 

1  In this article we use the term “trial” to describe a single instance in 
which a stimulus is presented and processed according to the require-
ments of the task (e.g., in the reading span a trial comprises the pres-
entation of a sentence, the assessment of the presence of a syntactical 
error, and the presentation and memorization of the to-be-remem-
bered letter). We use the term “block” to define a set of trials.
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time constraint for the recall of the to-be-remembered letters. 
To-be-remembered letters were lowercase monosyllabic — 
in Portuguese — consonants (b, c, d, f, g, p, q, t, v, x, z). We 
selected these letters to ensure that all to-be-remembered 
letters had a similar rehearsal cost. We decided to use let-
ters instead of words as to-be-remembered items because 
word knowledge may account for some of the variance 
shared between measures of higher-order cognitive functions 
and span tasks that use words as to-be-remembered items 
(Engle et al., 1990). At the end of each block, the partici-
pants received feedback regarding the number of correctly 
recalled to-be-remembered letters and the number of correct 
responses in the processing portion of the task.

Block sizes ranged from two to six (total number of tri-
als: 60) and were presented in ascending order. Three blocks 
were administrated per set size. This task also included two 
practice blocks, each containing two sentences and two to-
be-remembered letters.

Operation span (Turner & Engle, 1989). Like in the read-
ing span, the participants had to perform a processing task 
while simultaneously holding unrelated information in mem-
ory. A schematic overview of the operation span is presented 
in Fig. 1a. In this case, they had to solve several blocks of 
equations and indicate if the result presented by our program 

was correct while trying to remember a sequence of let-
ters. At the end of each block, they had to recall the to-be-
remembered letters.

A fixation dot was presented at the beginning of each 
trial (for 500 ms). Then, an equation was displayed. Each 
equation had the same structure (e.g., (5 * 2) + 4 = 14): 
The first term was a multiplication or a division (presented 
inside brackets) between two integers between 1 and 9. The 
result of this operation was a positive integer between 1 and 
20. The second term was a sum or a subtraction between 
the resulting number of the first term and an integer ranging 
from 1 to 9. The result of the second term was also com-
prehended between 1 and 20 (Pardo-Vazquez & Fernandez-
Rey, 2008). The participants had to press the key ‘1’ if they 
considered that the result of the equation was correct or the 
key ‘2’ if they thought that the result was incorrect. Half of 
the equations presented correct results. In trials with incor-
rect results, the difference between the proposed and correct 
results was never higher than 2. The time each participant 
had to solve an equation and state if the result was correct 
or incorrect was adjusted for each individual with a method 
similar to the one used for the reading span. In this calibra-
tion task, the participants were asked to solve 20 equations 
(Unsworth et al., 2005). This version of the operation span 

Fig. 1   Schematic representation of some of the tasks included in the OpenWMB. (a) Operation span; (b) n-back task; (c) binding and mainte-
nance task; ISI, interstimulus interval
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comprised the same proportion of (1) equations with a mul-
tiplication on the first term and an addition on the second 
term and a correct result, (2) equations with a multiplication 
on the first term and an addition on the second term and an 
incorrect result, (3) equations with a multiplication on the 
first term and a subtraction on the second term and a correct 
result, (4) equations with a multiplication on the first term 
and a subtraction on the second term and an incorrect result, 
(5) equations with a division on the first term and an addition 
on the second term and a correct result, (6) equations with a 
division on the first term and an addition on the second term 
and an incorrect result, (7) equations with a division on the 
first term and subtraction on the second term and a correct 
result, and (8) equations with a division on the first term 
and subtraction on the second term and an incorrect result. 
The presentation order of the equations was counterbalanced 
with a Latin square design (Grant, 1948) that ensured that 
each type of equation was presented an equal number of 
times in each position to every participant.

After each equation, a single random letter was displayed 
for 1000 ms (each letter only appeared once in each block). 
Sequences of to-be-remembered letters were randomly gen-
erated by an algorithm and changed in each administration. 
The participants were asked to memorize this set of letters 
in the same order they were presented.

At the end of each block, they typed the to-be-remem-
bered letters on a response box. No time constraint was 
imposed on the recall of the to-be-remembered letters. The 
list of to-be-remembered letters was the same as the reading 
span (b, c, d, f, g, p, q, t, v, x, z). At the end of each block, 
feedback was provided regarding the amount of correctly 
recalled to-be-remembered letters and the number of correct 
responses in the processing portion of the task.

Block sizes ranged from two to six (total number of tri-
als: 60) and were presented in ascending order. Three blocks 
were administrated per set size. This task also included two 
practice blocks, each containing two equations and two to-
be-remembered letters.

Symmetry span (Kane et al., 2004). Like in the other two 
complex spans, each trial of this task included interleaved 
processing and memory sub-tasks. In the processing seg-
ment, the participants had to indicate whether 8 × 8 matrices 
of black and white squares were symmetrical. After each 
matrix, the participants had to memorize the position of a 
red square presented on a 4 × 4 grid. They were asked to 
recall the position of all red squares in the same order they 
were presented at the end of each block of trials.

The presentation of a fixation dot for 500 ms signaled the 
beginning of each trial. Then, an 8 × 8 matrix of black and 
white squares was presented. The participants had to decide 
whether the pattern of black and white squares was sym-
metrical along its vertical axis (the left half of the matrix had 
to mirror the right half). The participants were instructed to 

press the key ‘1’ when they thought the matrices were sym-
metrical or press the key ‘2’ when they considered this was 
not the case. Half of the matrices were symmetrical. On dis-
symmetrical trials, only a single square was different on the 
right and the left halves of the matrices. Like in the reading 
span and the operation span, the time each participant had to 
complete the processing portion of the task was individually 
adjusted. In this case, the participants were asked whether 
20 matrices were symmetrical or not in the calibration task 
(Unsworth et al., 2009).

After each matrix — in the memory portion of the sym-
metry task — a 4 × 4 grid containing a single red square was 
presented for 1000 ms. The sequences of red squares were 
randomly generated by an algorithm and changed in each 
administration. The participants were instructed to memo-
rize the positions of the red squares.

At the end of each block of trials, they had to recall the 
sequence of red squares and type them on an empty 4 × 4 
grid with the mouse. Each time a red square was typed, the 
respective cell was highlighted (it turned red for 500 ms). No 
time constraint was imposed on the recall of the positions 
of the red squares. At the end of each block, feedback was 
provided regarding the number of correctly recalled to-be-
remembered red squares and the number of correct decisions 
in the symmetrical/dissymmetrical sub-task.

Set sizes ranged from two to six (total number of trials: 
60) and were presented in ascending order. Three blocks 
were administrated per set size. This task also included 
two practice blocks, each containing two similar/dissimilar 
matrices and two to-be-remembered red squares.

Updating tasks

N-back task (Kirchner, 1958; Schmiedek et al., 2009). A 
graphical overview of this task is shown in Fig. 1b. A series 
of letters was continuously presented on a 3 × 3 grid. In this 
version of the n-back task, the participants were required 
to constantly update both verbal and spatial contents of the 
stimuli. The participants had to assess whether the stimulus 
presented on the grid was identical to the stimulus presented 
two trials ago — the same letter presented in the same cell 
of the grid. The participants were asked to press the key ‘m’ 
if this condition was met. When the condition was not met, 
the participants did not need to press any key. Every time 
the key ‘m’ was pressed, the cell in which the stimulus was 
presented was highlighted (the borders of the cell turned 
red) to let the participants know that the computer collected 
their response.

The n-back task included a practice block and a test 
block. The practice block included eight trials, and the 
test block contained 38. However, the first two trials of 
each block were preparatory because they had no refer-
ence stimulus to be compared with. Thus, only six trials 
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of the practice block and 36 trials of the test block were 
scored. In both blocks, 1/3 of the trials were targets — tri-
als in which the presented stimulus was the same as the 
one presented two trials ago. On the other 2/3 of the tri-
als, there was a mismatch between the position and/or the 
verbal content of the presented stimulus and the stimulus 
presented two trials ago.

The list of to-be-updated letters was the same one used 
in the reading and operation spans (b, c, d, f, g, p, q, t, v, 
x, z). These ensured that the rehearsal and updating costs 
of all stimuli were identical. The sequence of stimuli pre-
sented in each administration of the n-back tasks was ran-
domly generated by an algorithm and changed in each task 
administration. Furthermore, the n-back task was completely 
computer-paced.

The beginning of each block of trials was signaled by 
a fixation dot presented for 500 ms. Then, each letter was 
presented for 500 ms. When a letter disappeared, there was 
an interstimulus interval (ISI) of 2000 ms before the fol-
lowing letter was presented. The participants could type 
their response when the to-be-updated letter was presented 
or during the ISI. At the end of each block, the participants 
received feedback regarding the number of trials in which 
they correctly identified the target and non-target trials.

Memory updating task (Salthouse et al., 1991; Schmiedek 
et al., 2009). In this task, the participants had to continuously 
update the three digits presented at the beginning of the trial.

A fixation dot was presented at the beginning of each 
trial for 500 ms. Then, two rows with three frames each 
were displayed. A single-digit number was presented in each 
frame of the first row for 2000 ms. The participants were 
asked to memorize these digits. Then, a continuous sequence 
of subtractions and sums was presented in the second row 
of frames. The participants had to continuously update the 
numbers presented at the beginning of the trial by applying 
the mathematical operations (e.g., ‘+4’ or ‘-7’) presented in 
the corresponding frame of the second row and memorize 
the updated numbers. A single row with three empty frames 
was displayed when all updating operations were presented. 
The participants were requested to use the keyboard to type 
the updated digits in the corresponding frames. No time con-
straint was imposed in this segment of the task.

Each updating operation ranged from ‘-8’ to ‘+8’ and 
was displayed for 2000 ms (there was a 500 ms interval 
between each pair of operations). The results of all opera-
tions (both intermediate and final) were comprised between 
1 and 9. In each trial, two non-consecutive updating opera-
tions were displayed in each frame of the second row. Thus, 
six updating operations were presented in each trial. Half 
of the operations were sums, and half were subtractions. 
All participants completed the same updating sequences. 
However, the sequences were presented in random order to 
prevent order effects.

This task consisted of a practice block and a test block. 
The participants had to complete two trials on the practice 
block and 12 trials in the test block. At the end of each trial, 
the participants received feedback regarding the number of 
digits they were able to successfully update — the correctly 
updated digits were also presented on the feedback screen. 
They also received feedback about the total number of cor-
rectly updated digits at the end of each block (a maximum 
of six digits in the practice block and 36 digits in the test 
block).

Binding tasks

Binding and maintenance task (Quinette et al., 2006). In this 
task, the participants had to bind verbal and spatial charac-
teristics of the stimuli and keep this association in mind for 
varying periods. A schematic representation of the binding 
and maintenance task is presented in Fig. 1c.

Each trial began with a fixation dot presented for 2000 
ms. Then, a 5 × 4 grid with four colored (red, yellow, blue, 
and green) uppercase letters at its center was displayed for 
5000 ms. This grid also contained four crosses with match-
ing colors placed randomly in the remaining 17 squares. 
The participants were requested to associate and bind each 
colored letter with the location of the cross with a match-
ing color. Next, the grid with colored letters and crosses 
was replaced by a white fixation dot. This fixation dot was 
presented for 1000 ms in half of the trials and 8000 ms in 
the other half. The participants were expected to maintain 
the association between the colored letters and the matching 
crosses while this fixation dot was presented. A grid with a 
single white lowercase letter was shown in the last segment 
of each trial. The participants had 4000 ms to indicate if 
the position of the white letter matched the position of the 
cross with the same color as the corresponding letter in the 
first grid. The participants were instructed to press the key 
‘1’ when the position of the white letter was the same as the 
cross with the same color as the corresponding letter in the 
first grid or the key ‘2’ when this condition was not met. 
There was a match between the position of the white letter 
and the position of the corresponding colored cross in half 
of the trials.

This version of the binding and maintenance task was 
completely computer-paced. The task included a prac-
tice block with four trials and a test block with 16 tri-
als. A quarter of the trials in each block corresponded 
to (1) matching trials with a 1000 ms interval between 
the first and second grid, (2) mismatching trials with a 
1000 ms interval between the first and second grid, (3) 
matching trials with an 8000 ms interval between the first 
and second grid, and (4) mismatching trials with an 8000 
ms interval between the first and second grid. All par-
ticipants completed the same trials — however, the trials 
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were presented in random order. At the end of the practice 
and test blocks, the participants received feedback regard-
ing the number of trials in which they correctly signaled 
whether the white letter was in the same position as the 
matching colored cross or not.

Multimodal span (Quinette et al., 2006). The partici-
pants were required to replicate several sequences of let-
ters presented on a grid. Each trial began with a fixation 
dot displayed for 500 ms. Then, a series of letters was 
displayed sequentially on a 4 × 4 grid. Each letter was 
presented for 1000 ms (ISI: 1000 ms). After the presenta-
tion of each sequence, an empty 4 × 4 grid appeared. The 
participants tried to reproduce the presented sequences on 
the empty grid by typing the letters on the cells in which 
they were presented.

To type each letter, the participants were instructed 
first to use the mouse to select a cell — the borders of 
the cells turned red when they were pressed — and then 
to type the letter using the keyboard (the letter appeared 
for 500 ms inside the cell after it was typed). No time 
constraint was imposed when the participants were trying 
to replicate the sequence.

Each sequence was randomly generated by an algo-
rithm. Thus, sequences changed in each administration 
of the task. Like in the other WM tasks, the set of letters 
used in this task was restricted to lowercase monosyllabic 
(in Portuguese) consonants — b, c, d, f, g, p, q, t, v, x, 
z. Each letter was only presented once in each sequence. 
Additionally, letters could not be presented in the same 
position twice in the same sequence.

The multimodal span included a practice block and a 
test block. In both blocks, the first sequence had a length 
of three elements (three letters presented sequentially in 
three different positions). If the participants were able to 
reproduce a sequence correctly — every letter needed to 
be typed in the correct positions in the same order that 
they were presented — the computer generated a new 
sequence with the same length as the previous sequence + 
1 element. Sequence lengths ranged from three to 11. The 
test block was terminated if the participants were not able 
to replicate a sequence with a given length in two con-
secutive trials or if the participants were able to reproduce 
a sequence with a length of 11 elements. The practice 
block included sequences with lengths of three and four 
elements. In this block, the participants were allowed to 
complete all trials even if they were not able to replicate 
a sequence with a given length in two consecutive trials. 
In both practice and experimental blocks, feedback was 
provided at the end of each trial, informing participants 
if they were able to replicate the last presented sequence 
correctly.

Gf tasks

Letter series (Schrepp, 1999; Simon & Kotovsky, 1963). 
This task was used to assess verbal inductive reasoning. In 
each trial, a series of letters (e.g., ‘abmcdmefmghm’) that 
followed some unstated logical pattern was presented — in 
this example, the series can be broken down into segments 
of three letters (e.g., ‘abm’, ‘cdm’). The first two letters of 
each segment move along the alphabet (‘ab’, ‘cd’), while the 
third letter is kept constant (‘m’). The participants had to 
identify the logical pattern, guess the next three letters of the 
sequence (‘ijm’ in this case), and type them on a response 
box with the keyboard.

In the test block, the participants had five minutes to com-
plete a maximum of 15 letter series. The participants were 
free to manage their time and spend as much time as they 
wanted in each trial (within the 5-minute limit). They were 
informed about the time remaining at the beginning of every 
trial. Letter series were presented in ascending order of dif-
ficulty. This task included two practice trials. The partici-
pants were informed if they were able to figure out the next 
three letters of the series at the end of each trial (a textbox 
with the correct response was also presented in the feedback 
canvas). At the end of each block, they were informed about 
the number of correct responses.

Number series (Thurstone, 1938). This task can be 
viewed as the numeric counterpart of the letter series. The 
number series was used as a measure of numerical induc-
tive reasoning. A series of digits (e.g., ‘3’, ‘10’, ’24’, ’45’, 
’73’) that followed a logical rule was displayed in each trial 
— here, digits increased from left to right, and each new 
number was obtained by adding the number on its left with 
the next multiple of seven (e.g., 10 = 3 + (7*1); 24 = 10 + 
(7*2)). The participants needed to identify the logical rule, 
estimate the next digit(s) of the sequence (‘108’), and type 
their responses with the keyboard.

Fifteen number series were included in the test block. 
Like in the letter series, the participants had five minutes to 
complete as much series as they could — they could manage 
their time as they saw fit and spend as much time as they 
wanted in each trial (within the 5-minute limit). A canvas 
with the remaining time was presented at the beginning of 
each trial. The series was presented in ascending order of 
difficulty. Two practice trials were completed before the 
test block. At the end of each trial, the participants were 
told if their responses were correct or incorrect. They also 
received feedback about the correct response in each trial. At 
the end of each block, they were informed about the number 
of series in which they provided a correct response.

Raven’s Advanced Progressive Matrices (RAPM) (Raven 
et al., 1998). This task was used to evaluate figural inductive 
reasoning. In each trial of this task, the participants assessed 
a pattern of black and white figures arranged on a 3 × 3 
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schema where the bottom-right figure was missing. The fig-
ures established a relational pattern between them (from left 
to right and from top to bottom). The participants had to 
choose among eight alternatives the figure that completed 
the pattern presented on the 3 × 3 schema. The participants 
pressed the numeric keys from ‘1’ to ‘8’ to select the figure 
they thought completed the pattern.

The participants completed the 18 odd-numbered prob-
lems from set II of the RAPM in the test block. They were 
allowed 10 minutes to solve as many problems as possible 
— the participants were informed about the remaining time 
at the beginning of every trial. They could manage their time 
and spend as much time as they wanted in each trial (within 
the 10-minute limit). Trials were presented in ascending 
order of difficulty. Before the test block, the participants 
completed the first two even-numbered problems of set II 
of the RAPM as practice trials. At the end of each trial, the 
participants were informed if they were able to select the 
figure that completed the pattern. They were also informed 
about the correct figure that completed the pattern. At the 
end of each block, they were informed about the number of 
correct responses.

Scoring

The raw scores of all complex spans reflect the proportion 
of correctly recalled trials in the memory portions of these 
tasks (e.g., the proportion of correctly recalled to-be-remem-
bered letters in the reading and operation spans and the pro-
portion of correctly recalled red squares in the symmetry 
span). This scoring method is designated as partial-credit 
load scoring in the context of the complex span paradigm 
(Conway et al., 2005). We used this method because in past 
studies partial-credit scores presented higher internal con-
sistencies than absolute scores (proportion of trials in which 
all to-be-remembered items were recalled in the right order) 
(Conway et al., 2005; Redick et al., 2012). Additionally, as 
Redick et al. (2012) stated, absolute scoring methods dis-
card information that can be used to get better estimates 
of individual differences between participants. In the mem-
ory updating task, 1 point was awarded for each correctly 
updated digit. Thus, the possible score for each trial ranged 
from 0 to 3. Raw scores in the n-back task were calculated 
by adding the number of correct responses in target trials2. 

The length of the last sequence that each participant was 
able to recall correctly was used as the raw score in the mul-
timodal span. The number of correct responses was used as 
the raw score in the binding and maintenance task2 and the 
Gf tasks. All raw scores were normalized — raw scores were 
converted to a scale that ranged from 0.00 to 1.00 through 
min-max normalization (Gajera et al., 2016). All subsequent 
analyses were based on normalized scores.

Power analysis

Proactive Monte Carlo simulations (Wolf et al., 2013) were 
conducted to estimate the minimum sample size required 
to calculate all proposed structural equation models (SEM) 
and confirmatory factor analyses (CFA). The Monte Carlo 
simulations were computed in RStudio (version 4.1.3) with 
the package “simsem” (version 0.5.16) (Pornprasertmanit 
et al., 2022).

In proactive Monte Carlo simulation, multiple simulated 
datasets with a specified sample size are generated from a 
population model with known parameter values — these 
values can be derived from previous research. Then, the 
parameters of interest and their respective standard errors 
are estimated for each simulated dataset based on the known 
population values. Parameter estimates and standard errors 
are then averaged over all the simulated datasets (Beaujean, 
2014). Several statistics are calculated from the average esti-
mated parameters. Some of these statistics (relative param-
eter estimate bias, relative standard error bias, coverage, and 
statistical power) are used to determine if the specified sam-
ple size is sufficient to reproduce the population values and 
to obtain statistically significant parameter estimates (Wolf 
et al., 2013).

We followed the procedure outlined by Muthén and 
Muthén (2002) to compute the Monte Carlo simulations. 
These authors suggested running two Monte Carlo simula-
tions with different seeds for each model to ensure the stabil-
ity of the results (the seed determines the starting point for 
the random draws of the simulated datasets). 10,000 samples 
should be generated in each simulation. Muthén and Muthén 
(2002) also recommended some criteria to ensure that the 
chosen sample size is sufficient to achieve the desired statis-
tical power and unbiased parameter estimates: relative bias 
and standard error bias must be ≤ .10 for all parameters — 
furthermore, relative standard error bias must be ≤ .05 for 
the parameters of interest. Coverage should range between 
.91 and .98, and statistical power should be at least .80.

We ran a proactive Monte Carlo simulation for every 
CFA and SEM conducted in our analysis. Parameter val-
ues used in the population model were taken from previ-
ous investigations. Parameter values for the reading span 
(.70), operation span (.66), n-back task (.55), binding and 
maintenance task (.86), letter series (.71), and number series 

2  The OpenWMB also computes alternative raw scores for the n-back 
task and the binding and maintenance task. The alternative raw score 
of the n-back task is estimated by adding the number of correct 
responses in target and non-target trials. The alternative raw scores of 
the binding and maintenance task are based on the ‘accuracy score’ 
and the ‘processing score’ proposed by Quinette et al. (2006). How-
ever, all analyses presented in this article were computed with esti-
mates based on the scoring procedures presented in the “scoring” 
subsection.
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(.70) were collected from the study of Wilhelm et al. (2013). 
The parameter value of the correlation between the WMC 
and the Gf factors (.83) was also derived from this study. 
Parameter values for the symmetry span (.73) and the RAPM 
(.76) were taken from the study of Kane et al. (2004), and 
the value for the memory updating task (.64) was obtained 
from the study of Schmiedek et al. (2009). We could not 
find a single investigation that used the multimodal span to 
assess the relationship between WMC and Gf or to derive 
a WMC factor. Thus, a value of .50 was attributed to this 
parameter (Katz, 2019). The results of the proactive Monte 
Carlo simulations suggested that a minimum sample size of 
160 was necessary to compute the proposed SEM and CFA 
and to avoid a type I error (α = .05).

Data treatment

Our initial database consisted of data from 169 participants. 
Data from five participants was dropped because they did not 
meet the inclusion criteria. Another participant was excluded 
from the analyses because he scored zero in more than one 
task.

Raw scores were converted to a scale that ranged from 
0.00 to 1.00 through min-max normalization (Gajera et al., 
2016). Then, the data were screened to detect univariate out-
liers with Microsoft Excel (version 2211). Any score that 
deviated more than 3 SD from the mean was considered a 
univariate outlier (Ang & Lee, 2010; Lewandowsky et al., 
2010). Univariate outliers and zero scores were set to miss-
ing. A total of 33 scores (approximately 2% of the data) were 
set to missing.

Missing values were replaced by plausible values through 
multiple imputation. Multiple imputation generates several 
datasets (m) with slightly different estimates for missing 
values. Imputed values are predicted by a set of regres-
sion equations derived from the other observed variables 
included in the model plus a normally distributed residual 
term (Enders & Gottschall, 2011). A simulation study car-
ried out by Graham et al. (2007) provided some guidelines 
about the number of datasets that need to be generated to 
calculate reliable estimates for missing data. The fraction of 
missing information (γ) in the original data influences the 
number of datasets that need to be generated. The smallest 
γ tested by Graham et al. (2007) was .10. These authors 
recommend using an m = 20 when this amount of missing 
data is present. Considering that the highest γ among our 
observed variables was equal to .07 (for the n-back task), we 
used multiple imputation to generate 20 datasets and replace 
the 33 missing values in our database. Imputed databases 
were generated in RStudio with the “mice” package (ver-
sion 3.15.0) (Van Buuren & Groothuis-Oudshoorn, 2011). 
Missing values in WM tasks were exclusively derived from 
scores in other WM tasks, and missing values in reasoning 

tasks were solely derived from scores in other reasoning 
tasks. Additionally, observed values in the n-back task and 
the multimodal span were not included in the regression 
equations used to estimate the imputed values for each of 
these tasks because their scores presented a low and non-
significant correlation (r = .14, p = .09). All analyses pre-
sented from this point forward were either based on these 20 
datasets or pooled estimates of their data based on Rubin’s 
(1987) rules.

Next, we estimated Mahalanobis distances with the R 
package “stats” (version 4.1.3) (R Core Team, 2013) to 
assess the presence of multivariate outliers. The scores from 
one participant deviated significantly from the distribution 
(p < .001) and were excluded from further analysis.

At last, we evaluated the existence of univariate and mul-
tivariate normality in each of the 20 imputed datasets. The 
cutoffs suggested by Kline (2015) were considered to assess 
univariate normality in the scores of each task. According to 
this author, skewness indexes below 2 and kurtosis values 
under 4 indicate normal distributions. The amount of skew-
ness and kurtosis inherent in the distribution of all variables 
in each of the 20 datasets was smaller than these values, 
suggesting the presence of univariate normality. Pooled 
estimates of skewness and kurtosis for each observed vari-
able are displayed in Table 1. Mardia’s coefficients were 
computed to assess multivariate kurtosis in each of the 20 
datasets. All coefficients were smaller than 3 and non-signif-
icant (p > .05), which was indicative of multivariate normal 
distributions (Romeu & Ozturk, 1993).

Statistical analysis

Descriptive statistics, reliability estimates, correlational 
analyses, exploratory factorial analysis (EFA), CFA, and 
SEM were computed in R with the packages “psych” (ver-
sion 2.2.3) (Revelle, 2022), “miceadds” (version 3.15.21) 
(Robitzsch & Grund, 2022), “stats” (version 4.1.3) (R Core 
Team, 2013), “semTools” (version 0.5.6) (Jorgensen et al., 
2022), and “semPlot” (version 1.1.6) (Epskamp, 2022).

α and ω were calculated for each task to assess their inter-
nal reliability. α and ω were computed at the level of individ-
ual trials. In both EFA and CFA, factors were extracted with 
maximum likelihood (ML) and an oblique rotation (promax) 
because our data was continuous and normally distributed 
(Fabrigar et al., 1999; Kline, 2015). Rubin’s rules (1987) 
were used to pool average parameter estimates and standard 
errors across the 20 imputed datasets.

Prior to the factor analysis, we computed the Kaiser-
Meyer-Olkin measure (KMO) and Bartlett's test of sphe-
ricity to assess if our data was adequate for EFA. A KMO 
above .50 (Kaiser & Rice, 1974) and a significant Bartlett's 
test of sphericity value (Field, 2017) suggest that the char-
acteristics of the data are adequate for factor analysis. A 
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scree test (Zwick & Velicer, 1986) and a parallel analysis 
(Hayton et al., 2004) were conducted to evaluate how many 
factors should be extracted. We also applied Kaiser’s crite-
rion (1970) to decide how many factors to retain (eigenval-
ues > 1).

For each CFA and SEM, standardized parameter esti-
mates, squared multiple correlations, and error terms are 
presented in graphic representations of the models. As 
recommended by various authors (Beaujean, 2014; Hu & 
Bentler, 1995; Kline, 2015), several fit statistics were used 
to assess the adequacy of each CFA and SEM. The value 
of the chi-square test (χ2) is considered a key statistic in 
the assessment of model fit. This statistic reflects how simi-
lar the model-implied and the observed covariance matrix 
are. Higher χ2 values reflect larger differences between the 
model-implied and the observed covariance matrices. How-
ever, it is not recommended to rely solely on the value of 
the χ2 test to assess model fit because this test is sensitive to 
sample size (slight differences between the model-implied 
and the observed covariance matrices may lead to a signifi-
cant χ2 value in models with moderate-to-high sample sizes) 
(Byrne, 2001). One way to bypass this issue is to divide the 
χ2 value by the degrees of freedom (χ2/df). Values smaller 
than 3 indicate an acceptable fit (Kline, 2015). We also 
report the comparative fit index (CFI) because this measure 
is less sensitive to sample size. The CFI is an incremental 
fit index that compares how much better the fit of the test 
model fares against an independent model with no correla-
tions between the manifest variables. CFI values close to 
0.95 suggest a good model fit (Hu & Bentler, 1999). Values 
above .90 are considered acceptable by some authors (Marsh 
et al., 2004). The root mean square error of approximation 
(RMSEA) estimates the difference between the model-
implied and the observed covariance matrices per degree of 
freedom. RMSEA values smaller than 0.05 are considered 

excellent, values ranging from 0.05 to 0.08 are deemed 
acceptable, and values between .08 and .10 are regarded as 
mediocre (MacCallum et al., 1996). The standardized root 
mean square residual (SRMR) reflects the average of the 
standardized residuals between the model-implied and the 
observed covariance matrices. SRMR values smaller than 
0.08 suggest a good model fit (Hu & Bentler, 1995).

Results

Descriptive statistics, reliability estimates, 
and correlations

Descriptive statistics for each WM and Gf task are presented 
in Table 1. Quartile, tercile, and median-based percentiles 
for the WM tasks are presented in Table 2. Descriptive sta-
tistics and percentiles were computed by pooling the values 
of the 20 datasets generated through multiple imputation.

Table 1 also displays α and ω values for each task. Reli-
ability was acceptable for all WM tasks except for the multi-
modal span (α = .49; ω = .53). The low reliability estimates 
of this task may be explained by its structure which was 
unique among the paradigms administrated in this study — 
the multimodal span was interrupted when the participants 
were not able to replicate two consecutive sequences with 
a given length. Furthermore, scores on this task were by far 
the lowest among the WM tasks (scores obtained in this task 
ranged from .27 to .54). This means that the participants 
were only able to replicate a maximum of four sequences. 
Thus, the reliability estimates of the multimodal span were 
calculated based on a small number of items (four trials), 
which may explain their low values (Tavakol & Dennick, 
2011). Considering this, the results concerning this task 
should be interpreted with caution. However, we decided to 

Table 1   Descriptive statistics and reliability estimates of the WM and Gf measures

N = 162; WM, working memory; Gf, fluid intelligence; SD, standard deviation; α, Cronbach’s alpha; ω, McDonald’s omega; RS, reading span; 
OS, operation span; SS, symmetry span; NB, n-back task; UT, memory updating task; MS, multimodal span; BT, binding and maintenance task; 
LS, letter series; NS, number series; RAPM, Raven's Advanced Progressive Matrices

Tasks Mean SD Range Skewness Kurtosis α ω

RS .76 .16 .27 – 1.00 -0.98 0.47 .92 .92
OS .76 .15 .33 – 1.00 -0.50 -0.30 .91 .90
SS .65 .17 .23 – 1.00 -0.24 -0.38 .90 .89
NB .63 .24 .08 – 1.00 -0.24 -0.82 .82 .82
UT .56 .27 .06 – 1.00 0.04 -1.29 .93 .93
MS .38 .07 .27 - .55 0.33 -0.23 .49 .53
BT .81 .15 .31 – 1.00 -0.85 0.17 .77 .77
LS .38 .14 .07 - .73 0.19 0.03 .69 .74
NS .41 .11 .13 - .80 0.67 0.57 .66 .72
RAPM .48 .16 .06 - .89 0.13 -0.23 .65 .65
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retain the multimodal span in subsequent analyses because 
the magnitude of its zero-order correlations with other WM 
tasks was similar to the correlations between the binding 
and maintenance task and the other WM tests (Kane et al., 
2004). Given their similar configurations, we hypothesize 
that both tasks measure the ability to bind characteristics of 
information to form new structures.

Additionally, some reliability estimates of the Gf tasks did 
not achieve the conventional thresholds for acceptable reli-
ability — α and ω values ≥ .70 suggest acceptable internal 
consistency (Adadan & Savasci, 2012; McDonald, 1999). 
The α and ω values of the Gf tasks ranged from .65 to .74. 
However, the letter and number series and the RAPM are 
established Gf measures. Many studies have applied these 
tasks and obtained high reliability estimates (Buehner et al., 
2005; Wiley et al., 2011). We believe that the relatively low 
reliability estimates found in this study are justified by the 
time restrictions imposed on these tasks — participants had 
five or 10 minutes to solve as many problems as possible. 
Similar α and ω values were found in studies that imposed 
analogous time constraints in these tasks (Wilhelm et al., 
2013).

The correlation matrix of all WM tasks is presented in 
Table 3. The matrix was also computed by pooling the values 

of the 20 datasets generated through multiple imputation. All 
values were positive (most rs > .30) and significant, except 
for the correlation between the n-back task and the multi-
modal span. The magnitude of the correlations was similar 
to those verified in previous studies (Lewandowsky et al., 
2010; Oswald et al., 2015; Schmiedek et al., 2014). The lack 
of a significant correlation between the n-back task and the 
multimodal span was not regarded as particularly problem-
atic because we considered that the n-back task and the mul-
timodal span measure different specific aspects of WM. The 
moderate magnitudes of the correlations were adequate for 
CFA and SEM because they were not high enough to suggest 
the presence of multicollinearity (R2 > .90) (Kline, 2015) 
and not low enough to imply potentially spurious associa-
tions among the indicators (Kane et al., 2004).

Factor analyses

An EFA was computed to freely evaluate the underlying 
structure of the WM tasks. The KMO (.83) (Kaiser & Rice, 
1974) and Bartlett’s test of sphericity (χ2(21) = 301.53, p < 
.001) suggested that our data was adequate to conduct this 
analysis. The results of the scree test, the parallel analysis, 
and Kaiser’s criterion (1970) suggested that a single factor 

Table 2   Percentiles for the WM tasks

N = 162; WM, working memory; RS, reading span; OS, operation span; SS, symmetry span; NB, n-back task; UT, memory updating task; MS, 
multimodal span; BT, binding and maintenance task

Percentile RS OS SS NB UT MS BT

5% .40 .48 .35 .25 .14 .27 .50
25% .67 .67 .55 .42 .33 .36 .70
33% .75 .70 .58 .50 .39 .36 .75
50% .78 .78 .66 .67 .53 .36 .88
66% .85 .84 .73 .75 .72 .36 .88
75% .88 .88 .75 .83 .81 .45 .94
95% .97 .97 .92 1.00 .97 .54 1.00

Table 3   Correlation matrix of the WM tasks

N = 162; WM, working memory; RS, reading span; OS, operation span; SS, symmetry span; NB, n-back task; UT, memory updating task; MS, 
multimodal span; BT, binding and maintenance task
*  p < .01. ** p < .001

Task RS OS SS NB UT MS BT

RS –
OS .53** –
SS .52** .41** –
NB .35** .35** .27** –
UT .48** .56** .54** .37** –
MS .22* .26* .30** .14 .39** –
BT .27* .24* .33** .33** .30** .28** –
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was enough to accommodate all WM tasks (eigenvalue = 
2.64), which is indicative of convergent validity. This factor 
accounted for 38% of the variance in the WM measures. 
This corresponds to a large effect size (ƒ2 = .52). All tasks 
presented acceptable factor loadings (> .40) (Field, 2017). 
We interpreted this factor as an indirect estimate of WMC.

Then, a CFA was computed to confirm that the general 
WMC factor extracted in the EFA presented an adequate 
structure to accommodate all seven tasks included in the 
battery. The loadings of all WM tasks were freely estimated 
(Beaujean, 2014). Model 1 provided a good fit to the data, 
χ2(14) = 22.00, p = .08; χ2:df = 1.57; CFI = 0.97; RMSEA 
= 0.059; SRMR = 0.046. All factor loadings were accept-
able and significant (p > .001), which indicated high factor-
based reliability. Standardized factor loadings, squared mul-
tiple correlations, and standardized error terms are presented 
in Fig. 2. Additionally, Model 1 presented good reliability (ω 
= .80). The examination of the standardized residual matrix 
of covariances revealed no significant residual values. Thus, 
no post hoc modifications were applied to the model.

A SEM was computed to assess the predictive validity of 
the battery. Gf measures have been widely used as a criterion 
to validate WM tasks because WM is considered one of the 
main predictors of Gf (if not the major one) (Kane et al., 

2004; Oswald et al., 2015; Wilhelm et al., 2013). Thus, we 
extended model 1 to include a Gf factor. This factor was 
derived from three reasoning tasks that covered the verbal, 
numeric, and visuospatial domains typically attributed to Gf 
(Unsworth et al., 2009).

The correlation between the WMC and Gf factors was 
estimated. The loadings of the reasoning tasks on the Gf fac-
tor were freely estimated (Beaujean, 2014). The chi-square 
test associated with Model 2 was significant (χ2(34) = 64.95, 
p = .001). However, as previously stated, significant χ2 val-
ues are not uncommon for moderate-to-larger sample sizes 
because this test is sensitive to sample size (Kline, 2015). 
Due to this, the χ2/df is considered a more appropriate meas-
ure to assess model fit. Values smaller than 3 are considered 
acceptable. Model 2 presented a χ2/df of 1.94, which indi-
cated an acceptable model fit. Additionally, all alternative fit 
indexes suggested that Model 2 provided an acceptable fit to 
the data: CFI = .93; RMSEA = 0.075; SRMR = 0.054. All 
factor loadings were significant (p > .001), which implied 
high factor-based reliability. The WMC factor was largely 
correlated with the Gf factor (r = .86, p < .001). The mag-
nitude of this correlation was similar to those found in other 
studies (Hicks et al., 2016; Schmiedek et al., 2009, 2014; 
Wilhelm et al., 2013). Standardized factor loadings, squared 

Fig. 2   Model 1: CFA for the unifactorial model of WMC. Circles 
represent latent factors. Rectangles represent manifest variables. 
Curved arrows represent standardized error terms. RS, reading span; 

OS, operation span; SS, symmetry span; NB, n-back task; UT, mem-
ory updating task; MS, multimodal span; BT, binding and mainte-
nance task; WMC, working memory capacity
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multiple correlations, and standardized error terms are pre-
sented in Fig. 3. The Gf factor presented good reliability 
(ω = .70). The examination of the standardized residual 
matrix of covariances revealed significant residual values 
between the scores of the memory updating task and the 
number series (3.17) and the scores of the number series 
and the RAPM (-2.88) — values > 2.58 are considered large 
(Byrne, 2001). Despite the discrepancy between observed 
and expected values, no post-hoc modifications were applied 
to Model 2 because we wanted the WM indicators to behave 
in the same way as they did in Model 1 — the main pur-
pose of this model was to assess the external validity of 
the unifactorial model of WMC. Additionally, Model 2 had 
acceptable fit values.

Using single tasks, homogenous factors, 
and heterogenous factors to estimate WMC

The importance of employing several paradigms to get an 
accurate measurement of WMC is an issue that has been 
regularly highlighted in WMC research (Ecker et al., 2010; 
Kane et al., 2004; Wilhelm et al., 2013). However, WMC has 
been gauged with a single task (Monk et al., 1997; Xie et al., 
2020) or several tasks from the same paradigm (Burgoyne 

et al., 2023; Felez-Nobrega et al., 2018) in several studies. 
Using a single task or paradigm to assess WMC can lead 
to contamination due to task-specific or paradigm-specific 
variance. Considering this, several authors have suggested 
that it is important to employ multiple paradigms that assess 
different functional aspects of WM to get a precise evalua-
tion of WMC (Lewandowsky et al., 2010; Schmiedek et al., 
2014; Wilhelm et al., 2013). However, to our knowledge, 
only a single study (Schmiedek et al., 2014) tried to assess 
how different combinations of heterogeneous sets of WMC 
paradigms fare against WMC factors exclusively composed 
of tasks from a single paradigm. The results of this investi-
gation suggested that heterogenous triplets of WMC tasks 
correlated more strongly with a reasoning factor than combi-
nations of three tasks from the same paradigms (e.g., updat-
ing tasks).

We conducted a similar analysis to assess if heterogene-
ous sets of WMC tasks provide a better estimate of WMC 
than groups of tasks from the same paradigm or single 
tasks. In this analysis, we estimated the amount of unique 
variation shared between a Gf factor — a construct highly 
related to WMC (Kane et al., 2004; Oswald et al., 2015; 
Wilhelm et al., 2013) — and (1) each WM task individually, 
(2) homogenous latent factors based on tasks from the same 

Fig. 3   Model 2: SEM assessing the relationship between WMC and 
Gf. Circles represent latent factors. Rectangles represent manifest var-
iables. Curved arrows represent standardized error terms. RS, reading 
span; OS, operation span; SS, symmetry span; NB, n-back task; UT, 

memory updating task; MS, multimodal span; BT, binding and main-
tenance task; WMC, working memory capacity; Gf, fluid intelligence; 
LSer, letter series; NSer, number series; RAPM, Raven’s Advanced 
Progressive Matrices
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paradigm (complex spans, updating tasks, or binding tasks), 
and (3) heterogeneous latent factors extracted from all pos-
sible combinations of triplets that included a task from each 
of the three paradigms included in our battery.

We computed seven SEM in which WMC was repre-
sented by a single task, three SEM in which the WMC factor 
was derived from a single paradigm (complex spans, updat-
ing tasks, or binding tasks), and twelve SEMs in which the 
WMC factor was computed based on three WM tasks from 
different paradigms (e.g., operation span, n-back task, and 
binding and maintenance task). In models that only included 
updating and binding tasks, the loadings of the WM tasks 
were set to equal because the measurement model of WMC 
only included two indicators (e.g., memory updating task 
and n-back task) (Beaujean, 2014). In SEM models in which 
WMC was represented by a single task no latent WMC fac-
tor was created. We assessed the amount of unique variance 
shared between the single WM task and the latent Gf factor 
(Muthén & Muthén, 2003). The fit indices of all models esti-
mated in the permutation analysis are presented in Table 4. 
These values are ranked according to the amount of variance 
shared between the WMC and the Gf factors — however, 

poorly fitted models are presented at the bottom of the table. 
All factor loadings from every model were significant (p < 
.001).

The results of this analysis suggested that heterogeneous 
factors provided better estimates of WMC than homogenous 
factors or single tasks. All acceptable heterogenous WMC 
factors shared more variance with the Gf factor than any 
single task or the only acceptable WMC factor derived from 
a single paradigm — the acceptable heterogenous WMC 
factor that shared the least variance with the Gf factor was 
still able to account for more variance (65%) than the only 
acceptable homogenous WMC factor (52%) or the most 
valid single WM task (23%).

Discussion

The main purpose of this study was to assess the psycho-
metric properties of the OpenWMB, an open-source and 
automated battery of heterogenous WM tasks for OpenS-
esame. The battery was validated in an experiment involv-
ing a sample of Portuguese citizens, aged between 18 and 

Table 4   Variance shared between the WMC and Gf factors and fit indexes for all models included in the permutation analysis

N = 162; R2, amount of variance shared between the Gf factor and a WMC factor derived from the tasks displayed in the columns “Indicators”; 
χ2, chi-square statistic; p, p-value; χ2:df, chi square-to degrees of freedom ratio; CFI, comparative fit index; RMSEA, root mean square error of 
approximation; SRMR, standardized root mean squared residual; HeF, heterogeneous latent factor; HoF, homogenous latent factor; ST, single 
task; RS, reading span; OS, operation span; SS, symmetry span; NB, n-back task; UT, memory updating task; MS, multimodal span; BT, bind-
ing and maintenance task

Indicators R2 χ2 p χ2:df CFI RMSEA SRMR

RS-UT-BT (HeF) .90 15.33 .050 1.92 0.97 0.07 0.04
OS-UT-BT (HeF) .83 19.38 .010 2.42 0.95 0.09 0.05
SS-NB-MS (HeF) .79 14.20 .080 1.78 0.96 0.07 0.04
RS-UT-MS (HeF) .78 17.33 .030 2.17 0.96 0.08 0.04
OS-NB-MS (HeF) .77 16.06 .040 2.01 0.95 0.08 0.04
RS-NB-MS (HeF) .75 12.74 .120 1.59 0.97 0.06 0.04
OS-NB-BT (HeF) .75 14.60 .070 1.83 0.96 0.07 0.04
OS-UT-MS (HeF) .75 19.80 .010 2.48 0.95 0.10 0.05
SS-NB-BT (HeF) .68 10.31 .240 1.29 0.99 0.04 0.04
RS-NB-BT (HeF) .65 8.65 .370 1.08 1.00 0.02 0.04
RS-OS-SS (HoF) .52 19.06 .010 2.38 0.95 0.09 0.05
BT (ST) .23 0.81 .670 0.41 1.00 0.00 0.01
RS (ST) .22 4.55 .100 2.28 0.98 0.09 0.03
MS (ST) .19 0.69 .710 0.35 1.00 0.00 0.01
NB (ST) .14 2.26 .320 1.13 1.00 0.03 0.03
MS-BT (HoF) .64 10.37 .070 2.07 0.96 0.08 0.09
SS-UT-MS (HeF) .73 25.84 < .001 3.23 0.93 0.12 0.05
SS-UT-BT (HeF) .81 28.23 < .001 3.53 0.92 0.12 0.05
OS (ST) .29 8.70 .010 4.35 0.94 0.14 0.04
UT (ST) .55 9.29 .010 4.65 0.95 0.15 0.04
SS (ST) .25 9.50 .010 4.75 0.94 0.15 0.04
NB-UT (HoF) .89 28.44 < .001 5.69 0.87 0.17 0.12
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35 years, who completed at least a high school degree. 
We provided detailed descriptions of the performance of 
the participants on all seven WM tasks included in our 
battery (we presented measures of central tendency, vari-
ability, and percentiles) because there is a limited amount 
of data available regarding the WMC of the Portuguese 
population. To our knowledge, only one study used one 
of the tasks included in our battery (the reading span) to 
assess the WMC of a sample of Portuguese adults (Gaspar 
& Pinto, 2001). Thus, the data reported in this article pro-
vides one of the few accounts of the WMC of Portuguese 
citizens.

The battery as a whole and the great majority of the WM 
tasks included in this instrument presented good internal 
consistency (Adadan & Savasci, 2012; McDonald, 1999). 
Based on previous research, these values were within the 
expected range (Lewandowsky et al., 2010; Oswald et al., 
2015; Schmiedek et al., 2014; Wilhelm et al., 2013). The 
only exception to this trend was the multimodal span (α 
= .49; ω = .53). As we stated in the Results section, we 
believe that these values are explained by the small number 
of trials that the participants completed in this task (Tava-
kol & Dennick, 2011). The poor performance in this task 
may be explained by the fact that the multimodal span was 
interrupted when the participants were not able to replicate 
two consecutive sequences with a given length. However, 
we kept the multimodal span in the battery because its 
correlations with other WM tasks presented a magnitude 
similar to those of the binding and maintenance task (Kane 
et al., 2004). Additionally, the multimodal span presented 
an acceptable and significant loading in the WMC factor. 
Nonetheless, researchers who intend to use this task in future 
studies should interpret its results with caution.

The OpenWMB has an appropriate convergent validity: 
this was substantiated by the moderate to high positive cor-
relations between the WM tasks (most rs > .30) and the 
results of the EFA and CFA. The magnitude of the cor-
relations was similar to those verified in previous studies 
(Lewandowsky et al., 2010; Oswald et al., 2015; Schmiedek 
et al., 2014). All tasks loaded into a single latent factor that 
captured a common source of variance. The variance shared 
by the tasks was probably caused by individual differences in 
WMC. The single factor accounted for a substantial amount 
of variance in the WM tasks (38%), which denotes a large 
effect size (ƒ2 = .52).

We would like to highlight that both binding tasks loaded 
significantly in the WMC factor, suggesting that this para-
digm is a valid method to measure WMC. To our knowledge, 
this is the first available battery to include binding tasks, 
even though these tasks loaded in the same latent factor 
as complex spans and updating tasks in several individual 
differences studies (Oberauer et al., 2003; Wilhelm et al., 
2013).

The general WMC factor also presented a large and sig-
nificant correlation with a latent factor derived from three 
Gf tasks (r = .86, p > .001). Thus, our results replicated the 
common finding that WMC and Gf are highly correlated, 
which indicates that our battery presented good predic-
tive validity. Several studies found a correlation between 
Gf and WMC with a magnitude > .80 (Schmiedek et al., 
2009, 2014; Wilhelm et al., 2013). However, the size of this 
correlation is relatively larger than the ones found in other 
studies (Engle et al., 1999; Felez-Nobrega et al., 2018; Kane 
et al., 2004; Oswald et al., 2015) — the correlations between 
WMC and Gf ranged from .47 to 0.69 in these investiga-
tions. The different magnitudes of these correlations may be 
explained by the distinct methods used to derive the WMC 
factor in these studies. Similarly to Schmiedek et al. (2009, 
2014) and Wilhelm et al. (2013), we extracted our WMC 
factor from multiple tasks from different paradigms. On the 
contrary, Engle et al. (1999), Felez-Nobrega et al. (2018), 
Kane et al. (2004), and Oswald et al. (2015) used tasks from 
the same paradigm (complex spans) to compute their WMC 
factors. Thus, these results provide some support to the argu-
ment that using several tasks from different paradigms leads 
to better WMC estimates (Foster et al., 2015; Wilhelm et al., 
2013).

To get a more systematic view of the best method to esti-
mate WMC, we performed a permutation analysis in which 
we calculated the amount of variance shared between the Gf 
factor and (1) each WM task individually, (2) homogenous 
latent factors exclusively based on tasks from the same para-
digm (complex spans, updating tasks, or binding tasks), and 
(3) heterogeneous latent factors extracted from all possible 
combinations of triplets that included a task from each of the 
three paradigms included in our battery. The results of this 
analysis suggested that heterogenous WMC factors provided 
the best estimates of WMC (see Table 4), which replicated 
the findings of Schmiedek et al. (2014). All acceptable het-
erogeneous factors shared more variance with the Gf factor 
than any single WM task or the only acceptable homog-
enous factor (which was derived from three complex spans). 
In fact, the gap between the heterogeneous factors and the 
other types of estimates was probably even wider than is 
suggested by the permutation analysis: in models derived 
from single tasks, the variance shared between the WMC 
indicator and Gf probability reflected a mixture of WMC and 
task-specific and paradigm-specific variance. This estimate 
probably involved an amount of paradigm-specific variance 
that was inseparable from WMC variance in models that 
included homogenous WMC factors.

The superiority of the WMC estimates derived from 
heterogenous factors may be explained by the inclusion of 
tasks with different structures that probably measured vari-
ous functional aspects of WM — complex spans require 
simultaneous storage and processing of information (Redick 
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et al., 2012; Unsworth et al., 2009) while updating tasks 
demand continuous refreshing of mental representations 
(Ecker et al., 2010), and binding tasks involve linking sev-
eral characteristics of stimuli to form new structures and 
relationships (Oberauer et al., 2003; Wilhelm et al., 2013). 
Conversely, assessing WMC with a single task or a latent 
factor derived from tasks from the same paradigm probably 
neglects some functional aspects of WM which probably 
leads to a biased view of this construct. Our results sug-
gested that, ideally, WMC estimations should be extracted 
from several tasks from multiple paradigms that tap into the 
different content domains and functional aspects ascribed 
to this system (Waris et al., 2017). This approach will sig-
nificantly increase the amount of WMC variance captured 
by the model and partial out construct-irrelevant variance, 
which will reduce bias in the interpretation of the derived 
factor(s) (Oswald et al., 2015; Schmiedek et al., 2014).

We would like to stress that we derived the heteroge-
neous latent factors from three tasks because this structure 
contained the minimum number of indicators needed to rep-
resent all paradigms included in our battery in the measure-
ment models of WMC. However, the acceptable WMC esti-
mates obtained in the permutation analysis suggested that a 
small number of WM tasks is enough to get a valid estimate 
of WMC with a reduced time cost. This approach may be 
particularly useful for investigations with a limited testing 
time that cannot administer a set of tasks that covers the full 
range of functional aspects and content domains of WMC.

Before we conclude this section, we would like to discuss 
some limitations of our work and provide suggestions for 
future research.

First, we only assessed the psychometric proprieties of the 
Portuguese version of the battery. Another validation study 
should be conducted for the English version of the Open-
WMB to evaluate if the battery is a psychometrically valid 
method to assess WMC in English-speaking populations.

Second, we only administrated the OpenWMB once with 
a single sample. Thus, we did not evaluate retest effects. It 
would be interesting to assess if our battery is permeable 
to this phenomenon, as some studies suggested that WM 
tasks are prone to retest effects (Scharfen et al., 2018). In the 
future, the battery should be administered multiple times to 
samples with different characteristics to evaluate if the psy-
chometric properties of the instrument are constant across 
multiple administrations and various samples.

Third, unlike other automated instruments (Oswald et al., 
2014; Redick et al., 2012; Stone & Towse, 2015), our battery 
does not randomize the order of blocks with different set 
sizes in the complex spans. Thus, the participants involved 
in the validation study could anticipate the number of stimuli 
that would be presented in each block. This may have led to 
the development of rehearsing strategies that may have intro-
duced some confounding variance in the WMC estimate. 

Randomizing the number of stimuli presented in each block 
could have helped to curtail such strategies (Unsworth et al., 
2005).

Fourth, in the permutation analysis, the models with fac-
tors exclusively composed of updating and binding tasks 
(models NB-UT (HoF) and MS-BT (HoF) from Table 4) 
were extracted from two tasks. Even though it is possible 
to derive a latent factor from two indicators, these models 
tend to be more problematic as this method requires con-
straining the factor loadings of both indicators to equal to 
get a just-identified model. This is why most authors recom-
mend deriving latent factors from at least three indicators 
(Beaujean, 2014; Kline, 2015). Thus, the aforementioned 
models were probably not the best WMC estimates exclu-
sively derived from updating and binding tasks. Future stud-
ies should attempt to replicate this analysis using a higher 
number of updating and binding tasks as indicators of WMC 
and evaluate how they fare against WMC factors extracted 
from tasks from distinct paradigms.

The last limitation that we would like to discuss con-
cerns a possible flaw in the design of our battery. As we 
previously stated, we included three complex spans because 
previous studies suggested that a non-negligible portion of 
the variance in these tasks is content-specific (Kane et al., 
2004; Oberauer et al., 2000). Thus, we included a verbal, a 
numeric, and a spatial complex span to partial out domain-
specific variance from our WMC estimates. On the other 
hand, we only selected two updating tasks and two binding 
tasks because most authors suggested that the ability to con-
tinuously update mental representations and the capacity to 
bind characteristics of information to form new structures 
are domain-general (Baddeley, 2000; Oberauer et al., 2003; 
Waris et al., 2017) — although this premise is not univer-
sally accepted (Nee et al., 2013). However, only including 
two updating and two binding tasks in our battery may have 
hampered the emergence of a second line of latent factors 
that could reflect some of the functional aspects of WM 
(simultaneous storage and processing, updating, and bind-
ing) in the EFA and subsequent CFA. Future studies should 
attempt to replicate our study with a larger number of tasks 
per paradigm and assess if it leads to an acceptable WMC 
model that can identify some of the functional aspects attrib-
uted to WMC by other authors (Oberauer et al., 2000, 2003).

To recap and conclude, various preeminent automated 
batteries of WM tasks have been developed in the past years 
(Foster et al., 2015; Lewandowsky et al., 2010; Ma et al., 
2017; Oswald et al., 2015; Stone & Towse, 2015; Unsworth 
et al., 2005, 2009). However, some of these instruments 
were programmed on platforms that require the purchase of 
a commercial license, while others only included a single 
class of WM tasks. Furthermore, these batteries are still only 
available in certain languages — none of these instruments 
includes a Portuguese version. To address these issues, we 
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programmed the OpenWMB, an automated battery that 
includes seven WM tasks from three distinct paradigms 
(complex spans, updating tasks, and binding tasks). The 
OpenWMB is available in Portuguese and English. The tool 
runs on an open-source platform — OpenSesame (Mathôt 
et al., 2012) — and is freely available online in a ready-to-
download format.

The OpenWMB presented good psychometric proper-
ties (internal consistency, convergent validity, and predic-
tive validity). Additionally, it produces a reliable and valid 
general estimate of WMC by tapping both into its functional 
aspects (e.g., simultaneous storage and processing, updat-
ing, and binding abilities) and content domains (verbal, 
numeric, and spatial) while reducing paradigm-specific and 
task-specific variance.

The battery possesses some flexible features that can be 
implemented without any programming knowledge (e.g., 
users can choose to only administrate a portion of the tasks) 
and includes a data processing script that converts all data 
collected into an easily interpretable format that is ready for 
data analysis (in platforms like R or SPSS). In its current 
form, the OpenWMB only runs the WM tasks in a fixed for-
mat. However, because of its open-source nature (the battery 
and the processing script were programmed using Python 
and OpenSesame scripting), users can adapt our source code 
to create alternative versions of the WM tasks (e.g., augment 
the number of trials, remove practice blocks, create short 
versions of the tasks).

The battery is suitable for group testing, is entirely 
computer-paced, has embedded instructions for each task, 
and has automatic scoring. Thus, the OpenWMB can eas-
ily be adapted to the needs of different investigations (e.g., 
researchers with limited testing time can choose to admin-
istrate a reduced version of the battery) and can be used in 
individual differences, experimental, and clinical studies.

Appendix

Using the OpenWMB

Download and tutorials

The battery can be downloaded from the GitHub repository 
associated with the webpage https://​zenodo.​org/​doi/https://​
doi.​org/​10.​5281/​zenodo.​10600​494 — again, to access this 
repository you will need to locate and click on the GitHub 
URL that is presented on the Zenodo page. This repository 
contains four folders with different versions of the battery 
(OpenWMB_EN_macOS.zip, OpenWMB_EN_Windows.
zip, OpenWMB_PT_macOS.zip, and OpenWMB_PT_Win-
dows.zip).

Each of these folders includes the “.osexp” file that runs 
the OpenWMB and a data-processing script named “Script_
Organize_log_files.py”. They also hold several documents 
with tutorials and examples that explain how to download, 
install, and use the OpenWMB and how to analyze and inter-
pret data collected with this instrument.

To learn how to properly download and use the Open-
WMB, it is paramount to read the ‘README’ section of the 
repository that contains the battery (we recommend down-
loading the OpenWMB from the GitHub repository because 
the 'README' section is not displayed on the Zenodo page).

Requirements and installation

The OpenWMB runs on OpenSesame (Mathôt et al., 2012). 
Thus, our instrument requires the installation of this plat-
form. The OpenWMB was programmed and tested on 
OpenSesame v3.3.11. However, the battery also works 
well with more recent versions of OpenSesame v3.3. Our 
program also requires the Mousetrap plugin developed by 
Kieslich and Henninger (2017). Both OpenSesame and 
Mousetrap are freely available online. Installation files and 
instructions can be found at https://​osdoc.​cogsci.​nl/​3‌.3/​
downl​oad/ and https://​github.​com/​Pasca​lKies​lich/​mouse​
trap-​os, respectively. Because our instrument depends on 
OpenSesame and Mousetrap, the authors that intend to use 
the OpenWMB should also cite the articles of Kieslich and 
Henninger (2017) and Mathôt et al. (2012).

The OpenWMB works well with Microsoft Windows 
(Vista or above) and Apple macOS (the battery was tested 
in macOS Ventura, version 13.2.1). The .zip folders that con-
tain the different versions of the OpenWMB (available on 
the webpage https://​zenodo.​org/​doi/https://​doi.​org/​10.​5281/​
zenodo.​10600​494 and on the corresponding GitHub reposi-
tory) include an installation guide with further details.

Running the tasks

As stated in previous sections, the OpenWMB includes 
seven WM tasks (reading span, operation span, symmetry 
span, n-back task, memory updating task, binding and main-
tenance task, and multimodal span). The battery is suitable 
for group testing, is entirely computer-paced, has embedded 
instructions for each task, and has automatic scoring.

The order of presentation of the tasks is counterbalanced 
by an algorithm that applies a Latin square design which 
ensures that all tasks are presented an equal number of times 
in each position across participants (on complete adminis-
trations). The participant number determines the order of 
presentation in each administration of the OpenWMB — 
OpenSesame will request the participant number when the 
battery is launched. The counterbalancing algorithm con-
tinuously subtracts seven from the participant number until 

https://zenodo.org/doi/
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the resulting digit is between 1 and 7. Then, this number is 
divided by 7. The fractional portion of the division deter-
mines the order of presentation of the tasks. All possible 
presentation orders are described on page two of the user 
guide.

When the participant number is selected, the battery will 
request the location where the file with collected data should 
be stored. The main folder of the OpenWMB includes a sub-
folder entitled “data_participants”. It is paramount to store 
all data files in this sub-folder. The OpenWMB includes a 
data processing script called “Script_Organize‌_Log‌_Files.
py”. This script will only function properly if the data files 
are stored in the sub-folder “data_participants”.

At this point, the battery will be launched. The first 
menu lets the users choose which tasks they want to use. By 
default, the program administrates the seven tasks included 
in the instrument and a brief sociodemographic question-
naire. However, it is possible to only apply a portion of the 
tasks. To deactivate one or more tasks, the users simply need 
to change the tick in the homonymous checkbox(s) to “No” 
in the first menu of the battery. The sociodemographic ques-
tionnaire can also be deactivated. Thus, the OpenWMB can 
be used in studies that want to measure WMC with a single 
task (e.g., operation span), for example. In this case, the 
users simply need to deactivate all other tasks. By the same 
standard, the OpenWMB can also be applied in investiga-
tions that only want to employ a single task paradigm (e.g., 
complex span) and studies that wish to use a small set of 
tasks from different WM paradigms (e.g., operation span, 
memory updating task, and binding and maintenance task).

After task selection, a canvas with the general instruc-
tions of the battery will appear on the screen. When this 
canvas is presented, the users/researchers can start to admin-
istrate the battery to their participants. The battery is entirely 
automated and contains detailed instructions for each task. 
Thus, the participants should be able to complete the battery 
independently from this point forward.

The OpenWMB includes a user guide that explains all 
these features in detail. In its current form, the OpenWMB 
only runs the WM tasks in a fixed format. However, because 
of its open-source nature, users with experience with Python 
and OpenSesame scripting can modify the source code of 
the .osexp file that contains the battery and the Python data 
processing script to create alternative versions of the WM 
tasks (e.g., augment the number of trials, remove practice 
blocks, create short versions of the tasks).

Data processing

As previously stated, the OpenWMB includes a data pro-
cessing script entitled “Script_Organize_Log_Files.py”. 
This script was programmed in Python and converts data 
collected by the battery in an easily interpretable format 

that is ready for data analysis (in platforms like R or SPSS). 
This script also normalizes the raw scores of the partici-
pants in each WM task and calculates some descriptive 
statistics (e.g., mean, standard deviation) for these scores 
and the sociodemographic variables. This script will only 
work properly if the data files are stored in the sub-folder 
“data_participants”.

To run this script, the users need to double-click on it. 
This will open Rapunzel (a code editor that runs Python 
scripts) (Mathôt, 2023). To run the data processing script, 
the users simply need to click on the ‘Run project or file’ 
button of Rapunzel. A detailed set of instructions explaining 
how to use the data processing script is available in section 
II of the user guide of the OpenWMB.

When the script is executed, an Excel file called “BD_
WM_Battery” will appear in the main folder of the battery. 
This file contains several sheets. The first sheets present the 
same name as the administered WM tasks (e.g., ‘symmetry 
span’, ’n-back task’, ‘binding and maintenance task’). Each 
sheet contains important information regarding the corre-
sponding WM task (e.g., score, RT, stimuli displayed, type 
of condition). A detailed description of the data stored in 
relevant columns of each sheet is presented in the homony-
mous notepad that can be found in the sub-folder “inter-
pret_loggers”. The file “BD_‌WM_‌Battery” also includes 
sheets with the raw and normalized scores of the partici-
pants in every WM task that was administered. The latter 
contains the scores of the participants in each WM task on 
a scale ranging from 0.00 to 1.00. The sheets with raw and 
normalized scores can be directly imported into statistical 
analysis software such as R or SPSS. The last two sheets of 
the file include descriptive statistics (e.g., mean, standard 
deviation, minimum, maximum, and quartiles) for the raw 
and normalized scores of each WM task and the sociode-
mographic variables.

English version

The Zenodo record located at https://​zenodo.​org/​doi/https://​
doi.​org/​10.​5281/​zenodo.​10600​494 and the corresponding 
GitHub repository also includes English versions of the 
OpenWMB that run on Windows and macOS operating sys-
tems. These versions are equal to their Portuguese counter-
parts in all accounts, except for the instructions presented at 
the beginning of each task. Additionally, the English version 
does not include the reading span (because the sentences for 
this task were formulated in Portuguese).

However, we would like to stress that no validation study 
was conducted for the English version of the battery — all 
analyses presented in this article were conducted with a Por-
tuguese sample and only concerned the Portuguese version 
of the battery. Furthermore, the English version of the Open-
WMB was translated by the authors of this manuscript (all 
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native Portuguese speakers). No forward or backward transla-
tion was carried out (Fenn & Hambrick, 2012).

We translated the battery to English because the Portuguese 
and the English languages share the same alphanumeric char-
acters and the stimuli used on all the alphanumeric tasks, apart 
from the reading span, were single letters or numbers. Thus, 
the other six WM tasks required no translation besides the 
initial instructions.

Above all else, we decided to offer an English version of 
the OpenWMB because these paradigms are universally used 
to measure WMC. We believe that a free English battery of 
WM tasks may help researchers who want to evaluate WMC in 
English-speaking populations by offering them a broad, flex-
ible, and fully automated range of WM paradigms. However, 
the researchers who decide to use the English version of the 
battery should consider the caveats presented in this section.

Any researchers who wish to validate the English version of 
the battery or help to improve its translation are invited to con-
tact the authors of this manuscript. Researchers who use the 
English version of the OpenWMB should also cite this article.
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