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Abstract
Surface facial electromyography (EMG) is commonly used to detect emotions from subtle facial expressions. Although there 
are established procedures for collecting EMG data and some aspects of their processing, there is little agreement among 
researchers about the optimal way to process the EMG signal, so that the study-unrelated variability (noise) is removed, and 
the emotion-related variability is best detected. The aim of the current paper was to establish an optimal processing pipeline 
for EMG data for identifying emotional expressions in facial muscles. We identified the most common processing steps 
from existing literature and created 72 processing pipelines that represented all the different processing choices. We applied 
these pipelines to a previously published dataset from a facial mimicry experiment, where 100 adult participants observed 
happy and sad facial expressions, whilst the activity of their facial muscles, zygomaticus major and corrugator supercilii, 
was recorded with EMG. We used a resampling approach and subsets of the original data to investigate the effect and robust-
ness of different processing choices on the performance of a logistic regression model that predicted the mimicked emotion 
(happy/sad) from the EMG signal. In addition, we used a random forest model to identify the most important processing 
steps for the sensitivity of the logistic regression model. Three processing steps were found to be most impactful: baseline 
correction, standardisation within muscles, and standardisation within subjects. The chosen feature of interest and the signal 
averaging had little influence on the sensitivity to the effect. We recommend an optimal processing pipeline, share our code 
and data, and provide a step-by-step walkthrough for researchers.
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Introduction

Surface facial electromyography (EMG) is commonly used in 
the affective science and psychological fields as a non-inva-
sive tool to assess subtle facial emotional expressions in order 
to study emotional cognition and facial mimicry (e.g. Kret 
et al., 2013a). Electrodes placed on the skin record the signal 
from facial muscles that represents the magnitude and the fre-
quency of the action potentials responsible for the muscles’ 
contraction when expressing an emotion. Importantly, before 
the EMG signal can be analysed, it needs to go through dif-
ferent processing steps which require researchers to make a 
series of decisions. Crucially, they must choose which feature 
extracted from the data best summarises the facial muscle 
activity, and which standardisation method best deals with 
the between-participants and between-muscle variance that 
is unrelated to emotional expressions and the studied effect.

To identify the most commonly used processing steps in 
the literature, we conducted a literature review prior to this 
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study that included 31 papers on emotional facial mimicry 
published between 2007 and 2020. We identified a variety 
of processing practices employed in existing literature on 
adults and children, with over 15 unique combinations of 
extracting features of interest and standardisation methods. 
In addition, we also observed that in many cases, some pro-
cessing details were unclear or omitted. For new research, 
it is inefficient to systematically evaluate many different 
analysis pipelines on one’s data, especially given the risk of 
this resulting in selective reporting and p-hacking (Wicherts 
et al., 2016). However, to date, there has been no systematic 
investigation on how the multitude of choices in the analysis 
pipeline influence the quantification of the EMG signal in 
retaining the emotion-related information, and consequently, 
to what extent it can be used to examine facial emotional 
expressions in research. This paper aims to establish an opti-
mal standard for processing facial EMG data. To this end, 
we outline how emotional expressions are measured using 
facial EMG, review the most common approaches for pre-
processing, quantifying, and analysing EMG features, and 
review which standardisation methods are used to reduce 
within- and between-subject variance. Subsequently, using 
a large existing facial EMG dataset with an established emo-
tional contrast effect (Vacaru et al., 2021), we systematically 
compare processing methods and report on the processing 
decisions that retain the maximum emotional information, 
while addressing the extrinsic, unwanted variability in the 
EMG signal.

Quantifying emotional expressions using facial EMG

Surface facial EMG is a widely implemented method in 
research on emotions with adult (e.g., Fridlund & Cacioppo, 
1986; van Boxtel, 2010; Kret et al., 2013a) and develop-
mental populations (e.g., Addabbo et al., 2020; Kaiser et al., 
2017; Schröer et al., 2022). Pioneering work by Cacioppo 
and colleagues (1986) and Larson and colleagues (2003) 
demonstrated that electromyographic activity of the facial 
muscles differentiates the emotional valence and intensity of 
an observed facial expression. In addition to the behavioural 
work of Ekman (1989) who described the facial action units 
characterising specific overt emotional facial expressions, 
the introduction of facial EMG advanced the emotion and 
affect information processing field by assessing also covert 
emotional processes. Facial EMG captures the activity of 
muscle action potentials, even when muscle contraction and 
movement is too small to be visible to the bare eye. That is 
why it has been adopted as a standard measure for detecting 
facial emotional expressions and their mimicry, that is, the 
mirroring of another person’s facial expression occurring 
outside one’s awareness (Fischer & Hess, 2017; Geangu 
et al., 2016; Vacaru et al., 2019).

By comparing the mean amplitudes of EMG signals from 
facial muscles related to specific emotions within a certain 
time interval, evidence has accumulated for its potential 
of reliably assessing several basic facial emotional expres-
sions with EMG (e.g., happy, sad, angry, pain, surprise; 
Fischer & Hess, 2017; Seibt et al., 2015; Vacaru et al., 
2019). For example, a happy expression is characterised by 
higher amplitudes in the zygomaticus major (ZM), a muscle 
involved in smiling, and lower amplitudes in the corrugator 
supercilii (CS), a muscle involved in frowning, compared 
to a resting state (Cacioppo et al., 1986; van Boxtel, 2010). 
The opposite pattern holds true for a sad expression. Due 
to the rapid advancement and relative “ease of use” of sur-
face facial EMG, many fields of study complemented their 
methods with such recordings, even in the absence of prior 
electrophysiology expertise. While this allows researchers 
to bridge previously separated scientific fields or address 
new research questions, it also poses limits to the thorough 
understanding and appropriate execution of signal process-
ing and data analysis. To our understanding, while there is 
wide agreement over the recording procedures (Cacioppo 
et al., 1986), there is no consensus on EMG signal process-
ing. This is an important issue because the standardised 
electrode placement cannot account for the anatomical dif-
ferences between participants’ faces and their facial muscles. 
Optimal signal processing can take these differences into 
consideration, whilst simultaneously capturing the vari-
ability in the EMG signal related to the research question 
(Halaki & Ginn, 2012).

EMG signal preprocessing

An essential first step in the EMG signal analysis is pre-
processing of the data, as it removes noise from the data and 
capitalises on the signal of interest. Any contribution to the 
recorded signal that did not originate from the muscle being 
studied can be considered noise, such as artefacts due to the 
electrodes moving relative to the skin, or the noise generated 
by electrical equipment (Kale & Dudul, 2009). The EMG 
signal is routinely filtered with a 20–500 Hz bandpass filter 
to encompass the optimal bandwidth for facial EMG (van 
Boxtel, 2001; 2010), although there might be slight differ-
ences in filter frequencies chosen by individual researchers 
that focus on different facial muscles (van Boxtel, 2001). In 
addition, a 50 Hz or 60 Hz notch filter is often employed to 
remove power-line interference (Altimari et al., 2012; van 
Boxtel, 2010). Data segments of relevance for further analy-
sis (also called epochs) are then selected for further pro-
cessing; these for instance correspond to experimental tri-
als. A next step is to identify and remove segments affected 
by motion artefacts. The data are then full-wave-rectified, 
that is, negative values are converted to positive ones (Alt-
mari et al., 2012). Subsequently, to smooth the data, the 
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high-frequency rectified EMG signal is often passed through 
a low-pass filter (van Boxtel, 2010; Moody & McIntosh, 
2011; de Klerk et al., 2018). For more information on the 
preprocessing of the EMG signal, see for example van Box-
tel (2010), Vigotsky et al. (2018), Altimari et al. (2012), 
and Hamedi (2011). There appears to be little disagreement 
within the field on these individual steps in preprocessing 
surface EMG signals, hence their signal-analytical rationale 
and optimal settings are not further covered here. We instead 
focus on the subsequent quantification and normalisation 
of the EMG measure to compare muscles and conditions to 
detect emotional expressions.

Quantifying and analysing EMG features

Following preprocessing, we still have a continuous signal 
consisting of many data points within each trial, that is, the 
EMG signal has a high temporal dimension. The next step is 
to reduce our signal to the temporal dimension of one trial, 
so to summarise all the data points within a trial with just 
one data point. Therefore, we need to find an index that best 
represents the signal in one trial by extracting from it the 
feature of interest. Our literature review identified three most 
commonly used features of interest: mean absolute value 
(MAV; e.g., Kret et al., 2013a, 2013b), root mean square 
(RMS; e.g., Datyner et  al., 2017), and integrated EMG 
(iEMG; e.g., Minio-Paluello et al., 2020; for mathematical 
definitions of these features, see Phinyomark et al., 2012).

The most frequently used metric appears to be the MAV, 
an average of the absolute (full-wave-rectified) value of 
the EMG amplitude over the experimental time window 
of interest (i.e., the trial; Phinyomark et al., 2012). This is 
also sometimes referred to as average rectified value, aver-
age absolute value, or mean rectified value (Phinyomark 
et al., 2012; Clancy et al., 2002). A less frequently used 
feature of interest is the iEMG. It is the integral (area under 
the curve) of the rectified EMG signal; its values are often 
 log10-transformed to reduce the impact of outliers (Moody 
et al., 2007). From a mathematical point of view, MAV and 
iEMG provide corresponding results, which means that after 
extracting MAV and iEMG from the same trial, the exact 
values will differ, but by a specific factor. Thus, the pattern 
of results, such as which value is higher and which is lower, 
will be the same. We have still decided to include both MAV 
and iEMG in our investigation, as it might make it easier for 
the researchers to compare their processing pipelines with 
ours. The least frequently used feature of interest is RMS 
(root mean square). It is calculated as the square root of the 
average (over the time window of interest) of the squared 
EMG amplitudes. There is evidence that both RMS and 
MAV are appropriate for estimating EMG amplitudes, but 
that RMS is more accurate when contraction level is high 
(i.e., higher than 10% of maximum voluntary contraction of 

the muscle), and MAV when it is low (Clancy et al., 2002). 
Facial mimicry research is mostly concerned with subtle 
changes in the activation of facial muscles, which suggests 
that MAV could be a better feature of interest than RMS. 
The influence of the choice between MAV, RMS, and iEMG 
on the detectability of mimicked emotional expressions is 
investigated in this paper, alongside the effect of standardi-
sation practices.

Dealing with within‑ and between‑subjects variance

The third step in the analysis of the EMG signal is stand-
ardisation (often referred to as normalisation). The EMG 
signal varies within subjects due to the physiological and 
anatomical differences between muscles. Furthermore, the 
EMG signal varies between subjects due to differences in 
the anatomy of the same muscle, different placement of 
electrodes (Besomi et al., 2020; van Boxtel, 2010), and dif-
ferent facial expressions and levels of emotional mimicry. 
The purpose of standardisation is to enable comparisons 
of task-induced experimental effects between muscles and 
between individuals. We have identified three standardisa-
tion methods typically used in the literature that examines 
facial EMG: baseline correction, standardisation within 
muscles, and standardisation within subjects. The first 
method is baseline correction, and it is done by expressing 
the EMG amplitude during the experimental time window 
of interest as a proportion of the baseline activity (baseline 
division; e.g., Kret et al., 2013b), or subtracting the baseline 
from it (baseline subtraction; e.g., Drimalla et al., 2019). 
The baseline is usually a time window before the experi-
mental time window of interest, when no emotional stimuli 
are presented. Although we found both types of baseline 
correction frequently used in the literature, baseline division 
has been proposed to be more appropriate than baseline sub-
traction (van Boxtel, 2010). This is because the EMG signal 
recorded from facial muscles, unlike other types of psycho-
physiological responses, is measured on a ratio scale (hav-
ing absolute zero origin), rather than an interval scale (not 
having a zero origin). The second standardisation method is 
standardisation within muscles, and it involves expressing 
the EMG signal amplitude as z-scores over each muscle of 
each participant. It is often used in combination with base-
line correction, and sometimes instead of baseline correc-
tion, in studies with small infants, when their baseline activ-
ity is contaminated and cannot be reliably determined (e.g. 
de Klerk et al., 2019). The third standardisation method is 
standardisation within subjects, which involves expressing 
the EMG signal amplitude as z-scores over all the muscles of 
each participant (e.g. de Klerk et al., 2018, 2019). From the 
literature review, it is not entirely clear how often this type 
of standardisation is employed, due to often vague descrip-
tions of the processing steps. This method of standardisation 
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might only be useful when comparing responses of a specific 
muscle within a specific person.

Current study

The aim of the current study was to establish optimal pro-
cessing practices for surface facial EMG data in emotional 
and facial mimicry research. As the field of psychological 
research on emotional expressions and facial mimicry con-
ducted with facial EMG is still developing, different process-
ing practices of the facial EMG signal are currently being 
used, but the rationale behind employing specific practices 
is not always clear. EMG research with human participants 
is a costly and time-consuming process, and it is especially 
challenging with children and infants due to the restrictions 
in instructing the participants, resulting in only a few useful 
trials and many motion artefacts. Therefore, it is important 
to identify the methods that optimise the quantification of 
the EMG signal to be sensitive for the detection of emotion 
effects. Importantly, it involves not only detecting the main 
effects of emotional expressions on the EMG signal, but also 
being able to detect task-specific individual differences and 
interactions that might be small.

In this paper, we took a data-driven approach examin-
ing the effects of the above-mentioned, commonly chosen 
features of interest (MAV, RMS, iEMG) and standardisa-
tion methods on previously collected adult facial EMG data 
from a facial mimicry experiment (Vacaru et al., 2021). 
In addition, our literature review highlighted another pro-
cessing step of the EMG signal, signal averaging, where 
the trials from one muscle in each condition are averaged 
together. This can be done before or after other process-
ing steps (sometimes referred to as data reduction). We cre-
ated 72 individual processing pipelines from the different 
combinations that result from systematically varying all 
the possible choices in processing steps: signal averaging 
and data reduction, feature of interest, baseline correction, 
standardisation within muscle, and standardisation within 
subject. We resampled the data from 100 participants by 
splitting it into three sub-samples of 33 participants, a sam-
ple size that is representative of the average sample size 
in the literature. We repeated this 500 times, resulting in 
1500 sub-samples that we used for the analysis. This enabled 
us to repeatedly evaluate the performance of each process-
ing pipeline independently of the distribution of partici-
pants between the samples. To assess the extent to which 
the EMG signal can be used to detect a mimicked emotion 
(happy or sad), we fitted a logistic regression model to the 
data for each sub-sample processed with each pipeline. We 
averaged the performance of the models for each pipeline 
across different sub-samples to evaluate which processing 
pipeline leads to the best detectability of mimicked emotion 
from the EMG signal. We then used a random forest model 

to quantify which processing steps in the pipelines had the 
biggest impact on the detectability of mimicked emotion. 
Following these analyses, we made recommendations for 
the optimal processing choices for the EMG data in emo-
tional, facial mimicry research. Additionally, we provide a 
walkthrough for a recommended pipeline. All data and the 
scripts used in the paper are available online in a data reposi-
tory (Rutkowska et al., 2023) and on GitHub (https:// github. 
com/ Tomma soGhi lardi/ EMG_ Pipel ines).

Methods

Data acquisition

The data used in this project was collected by Vacaru and 
colleagues (Vacaru et al., 2021) to study the modulation 
of emotional facial mimicry by attachment tendencies in 
healthy adults. Facial surface EMG recordings were col-
lected from 100 participants (68 females; Mage = 24.54 
years, SDage = 3.90, range: 18–35) recruited in a middle-
sized city in the Netherlands. The signal was recorded from 
two muscles—ZM and CS—used to assess emotional mim-
icry from happy and sad emotional expressions, respectively. 
EMG responses were measured via 4-mm Ambu-Neuro-
line 700 Ag/AgCl surface electrodes, using Brain Vision 
Recorder (Brainproducts GmbH, 2009). The participants’ 
skin was first cleaned using a scrubbing gel (Nuprep Skin 
Prep Gel) and medical alcohol. Next, the electrodes were 
applied with a bipolar montage and 10 mm inter-electrode 
distance between their centres on the muscle sites of inter-
est, and two additional areas for the ground electrodes on the 
forehead and a common reference electrode on the mastoid 
bone behind the ear (see Fig. 1). Some conductive OneStep 
Cleargel was added to the already pre-gelled electrodes to 
improve impedances. Impedances were kept below 10 kilo-
hms. A sampling rate of 2500 Hz was used with a high-pass 
cutoff frequency of 10 Hz and low-pass cutoff frequency of 
1000 Hz.

The participants watched stills of emotional facial expres-
sions of white female models (Radboud Faces Database; 
Langner et al., 2010). In the original study, happy, sad, and 
neutral facial expressions were used, but this paper uses the 
data from the happy and sad expressions only because there 
is no established effect of neutral expressions on facial mus-
cles. Nineteen models featured happy and sad facial expres-
sions, each repeated four times, for a total of 152 trials, pre-
sented in a pseudo-randomized manner (MIX; van Casteren 
& Davis, 2006). Each trial lasted 4000 ms: 1000 ms fixation 
cross, 2000 ms stimulus presentation, and 1000 ms inter-
stimulus interval (see Fig. 1). With the onset of the fixation 
cross, a short beep was played as an attention getter, after 
which the stimulus was displayed on a computer monitor.

https://github.com/TommasoGhilardi/EMG_Pipelines
https://github.com/TommasoGhilardi/EMG_Pipelines
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Preprocessing

Raw data files acquired from Vacaru and colleagues (Vacaru 
et al., 2021) were preprocessed with a custom MATLAB 
script based on the FieldTrip toolbox (Oostenveld et al., 
2010). To obtain bipolar signals, the signal from one elec-
trode on each muscle site (ZM and CS) was re-referenced 
to the other electrode from the same muscle site. Next, a 
20–500 Hz bandpass filter was applied. The mean and stand-
ard deviation (SD) were calculated for the rectified data in 
each channel for each participant. For artefact rejection, the 
data were divided into 1000-ms-long epochs. Epochs with 
mean amplitude above or below three SD from the grand 
mean in at least one channel were identified and flagged for 
rejection. Next, the data were re-divided into trials start-
ing 500 ms before the stimulus onset (baseline) and ending 
2000 ms after the stimulus onset. Trials overlapping with 
the flagged artefacts were excluded from the analysis (M = 
0.42% trials, maximally five trials per participant).

Creating different processing pipelines

We conducted a literature review to find the most frequently 
used methods for quantifying and analysing EMG features 
and for dealing with within- and between-subject variance 
(see Introduction). The starting point for the review consisted 
of domain-specific articles the authors were already familiar 
with, and the others were found through those article’s refer-
ences and from reverse referencing. Forty-seven papers that 

used surface facial EMG to measure facial mimicry or emo-
tion matching in adults and children were found (see Article 
list in  Supplementary materials). From these articles, six 
consecutive processing steps were identified:

1. Signal averaging:
a. None: the step was skipped, and the raw signal was used.
b. Average: the data were averaged within one participant 

across trials for each muscle for each condition before 
further processing.

2. Feature of interest:
a. RMS: root mean square was extracted from each trial.
b. MAV: mean absolute value was extracted from each 

trial.
c. iEMG: integral (area under the curve) was extracted 

from each trial.

3. Baseline correction:
a. None: the step was skipped.
b. Divide by baseline: the signal from a trial was divided 

by the mean signal from the baseline.
c. Subtract the baseline: the mean signal from a trial’s 

baseline was subtracted.

4. Standardization within muscle:
a. None: this step was skipped.
b. Z-score: a z-score was calculated over each muscle 

within participants.

Fig. 1  Schematic illustration of the study design and the positions of the electrodes assessing the activation over the ZM and CS facial muscles. 
Taken from Vacaru et al. (2021)
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5. Standardization within subject:
a. None: this step was skipped.
b. Z-score: a z-score was calculated over all the muscles 

within participants.

6. Data reduction:
a. None: this step was skipped.
b. Average: the data were averaged within one participant 

across trials for each muscle for each condition.

Seventy-two different processing pipelines were created 
based on these steps (see Fig. 2 and Table 1 in Supplemen-
tary materials) in MATLAB using the Fieldtrip toolbox 
(Oostenveld et al., 2010). Importantly, all pipelines included 

the same data averaging step, where the data were averaged 
within one participant across trials for each muscle for each 
condition, either during signal averaging (1b) or during data 
reduction (6b), but the data were never averaged twice.

Naming the processing pipelines

We used a consistent naming scheme for the pipelines based 
on the processing steps that they entail. Every pipeline was 
named accordingly to the following template: Ax_xxx_Bx_
Mx_Sx, reflecting every processing step (Averaging, Base-
line correction, standardisation within Muscle, standardisa-
tion within Subject), with the processing choice to be filled 

Fig. 2  A A diagram of processing steps and their possible sequences. 
All pipelines included a data averaging step, either during signal aver-
aging (first step) or during data reduction (last step), but the data were 
never averaged twice. B An example pipeline, including (1) no sig-
nal averaging in the first step, (2) mean absolute value as a feature of 
interest, (3) division by baseline as a baseline correction, (4) z-scor-

ing within each muscle within participants, (5) no z-scoring between 
muscles within participants, and (6) averaging across trials in the data 
reduction step. It corresponds to pipeline Aa_MAV_Bd_Ms_Sn (see 
Table 1 in Supplementary materials and Naming the processing pipe-
lines)
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(x). All the pipeline names and explanations can be found 
in Table 1 in the Supplementary materials.

1. The first two letters refer to whether the data were aver-
aged across trials at the beginning or at the end of the 
processing (whether step 1 or step 6 in Fig. 2 was carried 
out): ‘A’ for ‘Averaged’, and ‘b’ for before, or ‘a’ for 
after; Thus, ‘Ab’ stands for ‘averaged before’ step 1 was 
carried out, and ‘Aa’ stands for ‘averaged after’ step 6 
was carried out.

2. The following three or four letters refer to the feature of 
interest used (step 2 in Fig. 2): ‘iEMG’ for integral of 
the EMG, ‘RMS’ for Root-Mean-Square, and ‘MAV’ 
for Mean Absolute Value.

3. The following two letters refer to the baseline correc-
tion used (step 3 in Fig. 2): ‘B’ for Baseline, and ‘s’ for 
subtraction, or ‘d’ for division, or ‘n’ for no correction; 
Thus, ‘Bs’ stands for baseline subtraction, ‘Bd’ stands 
for baseline division, and ‘Bn’ stands for no baseline 
correction.

4. The following two letters refer to whether the standardi-
sation within muscle was used (step 4 in Fig. 2): ‘M’ for 
within Muscle, and ‘s’ for standardised or ‘n’ for not 
standardised; Thus, ‘Ms’ stands for standardised within 
muscles, and ‘Mn’ stands for not standardised within 
muscle.

5. The last two letters refer to whether the standardisation 
within subject was used (step 5 in Fig. 2): ‘S’ for within 
Subject, and ‘s’ for standardised or ‘n’ for not standard-
ised; Thus, ‘Ss’ stands for standardised within subject, 
and ‘Sn’ stands for not standardised within subject.

As an example, let us take the pipeline from Fig. 2B.

1. The signal was averaged after the other processing steps 
(in step 6): ‘Aa’.

2. The feature of interest used was mean absolute value: 
‘MAV’.

3. The baseline correction method was baseline division: 
‘Bd’.

4. The standardisation within muscle was carried out: ‘Ms’.
5. There was no standardisation within subject: ‘Sn’.

Thus, the pipeline name is: Aa_MAV_Bd_Ms_Sn.

Resampling

We used resampling on the large dataset to evaluate the pipe-
line performance across different distributions of data, mak-
ing our results more robust, whilst using a sample size that is 
representative of the usual sample sizes in the field. The data 
were first exported to RStudio (version 2023.06.1, RStudio 

Team, 2020). Then, the data from the 100 participants were 
randomly resampled without replacement 500 times into 
three sub-samples of 33 participants. We chose a sub-sample 
size of 33 based on the median number of the sample sizes 
used in the studies included in the literature review (median 
= 34). Furthermore, we decided to make the subsample size 
33 instead of 34, so that with each resampling we were able to 
make three non-overlapping subsamples instead of two. Res-
ampling the data 500 times into three sub-samples resulted in 
a final number of 1500 sub-samples for the analysis.

Evaluating pipeline performance with logistic 
models

Each of the 1500 sub-samples of the data was processed 
with each of the 72 pipelines. Before any statistical analysis, 
a final artefact rejection was conducted on the data of each 
sub-sampled pipeline. Data exceeding two standard devia-
tions from the mean was considered an artefact and rejected. 
After cleaning the data, we fitted a logistic model to each of 
the sub-sampled pipelines, estimated with maximum likeli-
hood. A logistic model is a statistical model that is used for 
predicting binary outcomes (i.e., emotion: happy and sad). 
The model uses a logistic function (also called a sigmoid 
function) to model the probability (between 0 and 1) that 
an observation belongs to a certain class. With the logistic 
model being applied to each of the pipelines and each of the 
1500 sub-samples, this comprises a multiverse analysis that 
enables us to systematically explore the impact of different 
processing pipelines on the EMG data’s ability to predict the 
mimicked emotion (Steegen et al., 2016; Harder, 2020) and 
to identify the pipeline features with the best results.

All logistic models were fitted with emotion as the depend-
ent variable (happy and sad). The electrophysiological data 
extracted from ZS and CS muscles and their interactions were 
added as independent variables (Emotion ~ CS * ZS). After 
fitting the models, we calculated the sensitivity (true positive 
rate) and specificity (false positive rate) for each of them 
using the performance_roc function from the performance 
package (Lüdecke et al., 2021), and then determined the area 
under the curve for each model using the area_under_curve 
function from the BayestestR library (Makowski et al., 2019).

After fitting all models, one area under the curve (AUC) 
value was calculated for each pipeline by averaging over sub-
samples. The AUC is a commonly used metric for evaluating 
the performance of binary classification models, including 
logistic regression models (Bradley, 1997). The AUC pro-
vides a single scalar value that represents the overall per-
formance of a model by summarising the model's ability to 
distinguish between the rates of true positives (sensitivity) 
and false positives (specificity). AUC ranges in value from 
0 to 1, with a value of 0.5 indicating a model that performs 
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no better than chance and a value of 1 indicating a model 
that perfectly separates the two classes. Thus, the higher 
the AUC, the better the logistic model is at classifying the 
mimicked emotion based on the EMG data.

Evaluating different processing choices 
with a random forest

To further investigate which preprocessing steps had the 
strongest impact on the results of logistic models, a ran-
dom forest analysis using the randomForest package was 
conducted (Fife & D’Onofrio, 2022, version 4.7-1.1). This 
machine learning algorithm creates multiple decision trees 
that predict the outcome variable, making it a useful tool for 
determining which variables had the most substantial impact 
on the prediction. In our case, we used a random forest to 
determine which processing step had the biggest impact 
on the ability to determine the mimicked emotion from the 
EMG signal, measured by the AUC of the logistic models.

The AUC values from all the logistic models were split 
into a training and test dataset with an 80:20 ratio. Before 
running the model, the function tuneRF was used to deter-
mine the best mtry value, which determines the number of 
variables selected at each split. The random forest model 
was then fitted on the AUC values of the training dataset, 
with the predictors being the different processing choices: 
feature of interest (RMS, MAV, iEMG), signal averaging 
(before or after other processing steps), baseline correction 
(none, divide by baseline, subtract the baseline), standardisa-
tion within subjects (none or z-scores), and standardisation 
within muscle (none or z-scores). The model was run with 
a parameter of mtry of 2 for 1000 trees and showed conver-
gence. To evaluate the model's robustness, the results were 
then fitted to the test dataset, and the root mean squared 
error (RMSE) was used to assess the model's goodness of fit. 
This analysis helped to identify which preprocessing steps 
had the strongest impact on the AUC of the logistic model, 
reflecting the detectability of emotions from the EMG sig-
nal preprocessed by each pipeline. We have also generated 
partial dependence plots showing predicted AUC for each 
level of each variable in our random forest model. These 
values reflect how each processing choice, such as choos-
ing to standardise within muscle or not, influences predicted 
detectability of emotions from the EMG signal.

Results

Pipeline performance

The averaged area under the curve (AUC) for each pipe-
line is compared in Fig. 3. AUC values ranged from 0.52 to 
nearly 0.79. The following conclusions were drawn:

1. The pipelines that include only extracting a feature of 
interest and signal averaging perform worse than other 
pipelines that include more processing steps.

Those pipelines perform only slightly better than chance 
(AUC = 0.52) because they do not implement any base-
line correction or standardisation, either within muscles or 
participants. That means that they do not account for the 
unwanted variability in the data that arises due to anatomical 
differences between muscles and people that can hinder the 
detection of emotional expressions from the EMG signal. 
These are for instance pipelines: Ab_iEMG_Bn_Mn_Sn, 
Aa_MAV_Bn_Mn_Sn, or Aa_RMS_Bn_Mn_Sn.

2. Standardisation within muscle is important.

Standardisation within muscle by z-scoring was present in 
all top-performing pipelines, that is, pipelines with AUC > 
0.75, which shows that it is important independently of other 
processing choices. To see the importance of the standardi-
sation within muscle, let us compare the pipelines with the 
same signal averaging and feature of interest: Aa_MAV_Bd_
Ms_Ss (includes standardisation within muscles and subjects, 
and baseline correction by division; AUC = 0.79) and Aa_
MAV_Bd_Mn_Ss (includes standardisation within subjects 
and baseline correction by division, but not standardisation 
within muscles; AUC = 0.71) or even Aa_MAV_Bn_Ms_Sn 
(includes only standardisation within muscles; AUC = 0.74).

3. Different processing steps and choices interact with 
each other.

The impact of some processing choices on the pipeline 
performance is sometimes dependent on other present pro-
cessing choices.

a. Performing baseline correction (either by dividing by 
baseline or subtracting it) has a more positive impact if 
the pipeline includes standardisation within muscle.

For instance, compare the pipeline with the same signal 
averaging and feature of interest, and no standardisation 
within subject: Aa_iEMG_Bd_Ms_Sn (includes both stand-
ardisation within muscle and baseline correction by divi-
sion; AUC = 0.79) with Aa_iEMG_Bd_Mn_Sn (includes 
only baseline correction by division; AUC = 0.68) and 
Aa_iEMG_Bn_Ms_Sn (includes only standardisation 
within muscle; AUC = 0.74): The combination of base-
line correction and standardisation within muscle yields 
the best result. All top-performing pipelines (with AUC > 
0.75) include standardisation within muscle combined with 
a baseline correction step (either division by baseline or its 
subtraction).
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b. Standardisation within subject has little effect if the 
pipeline includes standardisation within muscle as well, 
but can be beneficial otherwise.

For instance, compare the pipelines that differ only in the 
inclusion or exclusion of standardisation within subject: Aa_
MAV_Bd_Ms_Sn and Aa_MAV_Bd_Ms_Ss, both AUC = 
0.79, or Aa_RMS_Bs_Ms_Ss and Aa_RMS_Bs_Ms_Sn, both 
AUC = 0.77. In contrast, including standardisation within 
subject if there is no standardisation within muscle improves 
the pipeline performance. For instance, compare the pipelines 
that differ only in the inclusion or exclusion of standardisation 
within subject: Ab_iEMG_Bs_Mn_Ss (AUC = 0.71) and Ab_
iEMG_Bs_Mn_Sn (AUC = 0.52), or Aa_MAV_Bs_Mn_Ss 
(AUC = 0.72) and Aa_MAV_Bs_Mn_Sn (AUC = 0.68).

4. There is not one best feature of interest or signal averag-
ing practice.

We did not find systematic differences between the per-
formance of the pipelines that include different features of 
interest (MAV, RMS, or iEMG) or different signal aver-
aging practices (before or after other processing steps). 
Thus, those processing choices do not have a big impact on 
the ability to detect emotional expressions from the EMG 

signal and should be considered in combination with other 
processing steps.

The impact of processing choice on the pipeline 
performance

Indicating the robustness of the random forest model, the 
RMSE of the test model showed a good fit, RMSE = 0.062. 
The importance of each variable choice is presented in Fig. 4 
using the mean decrease in accuracy. This measure can be 
interpreted as the decrease in the accuracy of the model 
when the values of the variable are randomly shuffled, and 
other variables are kept intact. Thus, the more the model 
accuracy suffers when the variable is kept random, the more 
important the variable is for the ability to detect emotions 
from the EMG signal by the logistic models.

The random forest model suggests that the standardisa-
tion within muscle was the most important, followed by the 
standardisation within subject and baseline correction. Signal 
averaging and the features of interest were classified as the 
least important. Please note that the random forest variable 
importance does not indicate which of the available options 
is the correct choice, such as which baseline correction is the 
best. This can be examined using the partial dependence plots 
for each variable in Fig. 5. Firstly, pipeline performance is 

Fig. 3  A The results of the analysis of the resampled data processed 
with different pipelines, with the logistic models predicting emotional 
expression (happy or sad). The area under the curve (AUC) represents 
the overall performance of the models, with higher AUC meaning 
better performance, and AUC > 0.5 indicating better performance 

than chance. The AUC is averaged over all 1500 subsamples of data, 
and standard deviation error bars are displayed for each pipeline. B 
The results for the top 24 performing pipelines (AUC > 0.75) are dis-
played.
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improved when standardisation within muscles and subjects 
is conducted, compared to when it is not. Secondly, baseline 
correction by division shows increased predicted pipeline 
performance, compared to no baseline correction or baseline 
subtraction. Finally, different features of interest and signal 
averaging before or after other processing steps make little 
difference to predicted pipeline performance.

Discussion

Although surface facial EMG is an established method for 
assessing emotional expressions, emotional cognition, and 
facial mimicry, there is no consensus on the optimal processing 

of the EMG signal. In fact, our literature review revealed that 
many different pipelines have been used to process EMG 
data. Thirteen of those pipelines directly corresponded to the 
pipelines assessed in this paper. Remarkably, according to our 
evaluation, the performance of these pipelines ranges from poor 
(AUC = 0.62) to very good (AUC = 0.89), showing a whole 
spectrum of sensitivity. The wide range in performance arises 
due to the lack of available guidelines for signal processing, 
and highlights the importance of and the need for more reli-
able research methods. A better understanding of the impact of 
different processing choices on the ability to detect emotional 
expressions is pivotal for future studies that will be able to ana-
lyse their data with the most sensitive pipeline recommended 
in this paper.

Fig. 4  Random forest model variable importance, measured with 
mean decrease in accuracy, in predicting pipeline performance (meas-
ured with average AUC). The higher the variable importance, the 

more impact it had on the performance of the pipelines. Note: The 
signal averaging variable refers to the choice to average before or 
after other processing steps

Fig. 5  Partial dependence plot showing predicted pipeline AUC for each level of each variable in our random forest model. Higher expected 
AUC value indicates more positive impact on pipeline performance
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Recommended processing practices

Based on the current outcomes, we recommend using the 
Aa_MAV_Bd_Ms_Sn pipeline (see Naming the process-
ing pipelines, Fig. 3, Table 1 in Supplementary materials) 
to process the EMG signal when comparing facial muscle 
activation to detect even subtle emotional expressions. This 
pipeline had the best performance in the logistic model anal-
ysis, together with the Aa_MAV_Bd_Ms_Ss pipeline that 
differs only by the presence of within-subject standardisation 
(see Fig. 3). The Aa_MAV_Bd_Ms_Sn pipeline uses MAV, 
the mean absolute value, as a feature of interest extracted 
from the signal in each trial. It includes two processing 
steps that were recognised as most impactful on the perfor-
mance: standardisation within muscle and baseline correc-
tion by dividing by baseline. In line with our findings, it has 
recently been shown that dividing the signal by baseline, 
instead of subtracting it, leads to a more reliable assessment 
of relationships between facial EMG responses to emotional 
stimuli and other behavioural indices of socio-cognitive pro-
cesses (van Boxtel & van der Graaff, 2024). Conveniently, 
using the mean as a feature of interest might be more intui-
tive for the researchers new to the field, and easier for the 
broader scientific community to interpret, compared to using 
RMS or iEMG. This pipeline also averages the signal at the 
last processing step compared to the first, which is optimal 
when used in combination with its other processing choices 
(see Fig. 3b for the difference in performance between Aa_
MAV_Bd_Ms_Sn and Ab_MAV_Bd_Ms_Sn, the pipeline 
with all the same steps except averaging the signal before 
the other processing steps). A step-by-step walkthrough of 
the recommended pipeline, together with the complete code 
from the processing script used in this paper, can be found 
in the Supplementary materials.

If, for specific reasons, like existing lab procedures, a 
preference exists for using a different pipeline, we never-
theless strongly recommend including both baseline correc-
tion and standardisation within muscle. All the pipelines 
that included those processing steps performed well (AUC 
> 0.75) and ranked in the 24 top-performing pipelines (see 
Fig. 3). However, it is worth pointing out that in studies 
involving EMG signals from multiple muscles involved in 
the expression of one emotion, the use of standardisation 
within muscle might obscure the contribution of individual 
muscles. In contrast, the experimental set-up used to collect 
our data involved recording each muscle contributing to one 
emotional expression only (zygomaticus major - happy, cor-
rugator supercilii - sad), as is common practice in emotional 
facial mimicry research. Given that one includes baseline 
correction and standardisation within muscle in their pro-
cessing of the EMG signal, other choices will likely have 
limited impact. Therefore, one can choose any feature of 
interest, to standardise data within subjects or not, and to 

average the signal before or after other processing steps 
based on their practical or theoretical relevance. If one’s 
processing pipeline does not include standardisation within 
muscle, standardisation within subjects can be included. 
The findings from this paper can be used flexibly by the 
researchers to make informed decisions about their specific 
data processing needs.

Practical scope and applications

The findings of this paper are directly applicable to neu-
ropsychological research on emotional expressions, emo-
tional cognition, and facial mimicry that uses surface facial 
EMG. We aim to empower researchers to make informed 
decisions about their signal processing practices that will 
have a positive impact on their ability to extract relevant 
information from their EMG data. Importantly, we aim to 
make the optimal processing as accessible as possible, also 
to researchers with limited programming experience. To this 
end, we have made our data and annotated scripts, includ-
ing all the different pipelines, available online (Rutkowska 
et al., 2023; https:// github. com/ Tomma soGhi lardi/ EMG_ 
Pipel ines). This enables researchers to rerun all scripts on 
our data, and to adapt our scripts to run on their own data. 
In addition, our step-by-step walkthrough should allow them 
to recreate all processing steps in their respective software, 
even if they do not make use of the same underlying sig-
nal processing toolbox as used here. Thus, the analyses and 
material provided in this paper should enable researchers 
both to determine the best processing pipeline for their data 
and to implement it.

The ability to process surface EMG data in the most 
sensitive way to detect emotional expressions is especially 
important when the effect size is expected to be small or the 
statistical power to detect the effect is low, for example due 
to limits in the sample size. Both are widespread challenges 
in different fields of psychology and cognitive neuroscience 
(e.g., Szucs & Iodannidis, 2017; Lovakov & Agadullina, 
2021) and pose problems because, in those instances, the 
effect of emotional stimuli could remain undetected due to 
the noise in the data and suboptimal processing. This is also 
particularly relevant to researchers collecting data from more 
challenging populations, such as infants or young children, 
which often results in only a few trials per participant (more 
noise) and smaller sample sizes than in research with adult 
participants. This kind of research might benefit the most 
from using our recommendations.

With the current paper, we aim to contribute to the open 
science movement, particularly to reproducibility, replicabil-
ity, open methods, and pre-registrations, as follows. From 
the study conception to the publication, researchers in gen-
eral make many choices (also called “researcher degrees of 
freedom”) that are often arbitrary from a methodological 

https://github.com/TommasoGhilardi/EMG_Pipelines
https://github.com/TommasoGhilardi/EMG_Pipelines


7342 Behavior Research Methods (2024) 56:7331–7344

point of view or might even sometimes be aimed at achiev-
ing a statistically significant result (Wicherts et al., 2016). 
The latter is sometimes called “p-hacking” and increases 
the chance of finding a false positive result and inflating 
the effect sizes. This results in published research findings 
that are hard to reproduce on the same dataset or to repli-
cate with a new one (Simmons et al., 2011; Ioannidis, 2005; 
Asendorpf et al., 2013). This paper specifically addresses 
one of these researcher degrees of freedom, namely data 
cleaning and processing. The processing of the data should 
be pre-specified prior to the start of the experiment, and 
should not be decided ad hoc by running the data through 
several processing pipelines and choosing the pipeline that 
provides the preferred results. Instead, the analysis pipeline 
can be documented as part of a pre-registration, along with 
the details about the study design before data collection. 
We encourage researchers to use our findings to decide on 
the EMG processing pipeline in advance and to include that 
in their pre-registration. We also encourage the researchers 
to use our published code to create and evaluate their own 
processing pipelines, and likewise share them together with 
the data at the time of publication.

To study other, non-emotion-related cognitive processes, 
our findings might be relevant to a limited extent. One 
example is the research on action prediction that measures 
the activity in the mylohyoid muscle with EMG (e.g., Cat-
taneo et al., 2007; Turati et al., 2013; Natale et al., 2014; 
Rutkowska et al., 2021). In the study presented here, we 
focused on predicting observed emotions from the interac-
tion between the activities of two facial muscles. In contrast, 
the analysis of activity in the mylohyoid muscle relies on 
only one muscle located in the neck, which might decrease 
the importance of some of the standardisation measures 
in the preprocessing pipeline. In addition, the anatomical 
differences between small facial and larger neck muscles 
affect the recorded EMG signal, which may have an impact 
on the choice of appropriate processing methods (van Box-
tel, 2001). Future research could address this by examin-
ing the optimal EMG processing practices in other fields of 
research, and this paper can provide the first stepping stone 
to these endeavours.

Conclusions

So far, there has been no consensus on the best process-
ing methods for EMG data in neuropsychological research 
on emotional expressions, emotional cognition, and facial 
mimicry. This paper took a data-driven approach to exam-
ine which processing practices are optimal for identifying 
emotional expressions in facial muscles. We found that three 
processing steps heighten the sensitivity of emotion effect 
on the EMG signal: baseline correction (preferably through 

division by baseline) and standardisation within muscles 
and within subjects. The choice of the feature of interest or 
the signal averaging before or after other processing steps 
had little influence. In addition to providing guidelines for 
designing new experiments, our recommendations can also 
be used for re-processing and re-analysis of existing data that 
might have been discarded due to null results arising from 
inadequate processing practices. We recommend the best-
performing processing pipeline and provide a step-by-step 
walkthrough. This provides researchers with the knowledge 
to make informed data processing choices and with the tools 
necessary to implement it in their own research.
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