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Abstract Dynamic mode decomposition (DMD) and
its variants, such as extended DMD (EDMD), are
broadly used to fit simple linear models to dynamical
systems known from observable data. As DMD meth-
ods work well in several situations but perform poorly
in others, a clarification of the assumptions underwhich
DMD is applicable is desirable. Upon closer inspec-
tion, existing interpretations of DMD methods based
on the Koopman operator are not quite satisfactory:
they justify DMD under assumptions that hold only
with probability zero for generic observables. Here,
we give a justification for DMD as a local, leading-
order reduced model for the dominant system dynam-
ics under conditions that hold with probability one for
generic observables and non-degenerate observational
data. We achieve this for autonomous and for period-
ically forced systems of finite or infinite dimensions
by constructing linearizing transformations for their
dominant dynamicswithin attracting slow spectral sub-
manifolds (SSMs). Our arguments also lead to a new
algorithm, data-driven linearization (DDL), which is a
higher-order, systematic linearization of the observable
dynamics within slow SSMs. We show by examples
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how DDL outperforms DMD and EDMD on numeri-
cal and experimental data.

1 Introduction

In recent years, there has been anoverwhelming interest
in devising linear models for dynamical systems from
experimental or numerical data (see the recent review
by Schmid [51]). This trend was largely started by the
dynamic mode decomposition (DMD), put forward in
seminal work by Schmid [50]. The original exposition
of the method has been streamlined by various authors,
most notably by Rowley et al. [49] and Kutz et al. [32].

To describe DMD, we consider an autonomous
dynamical system

ẋ = f(x), x ∈ R
n, f ∈ C1 (

R
n) , (1)

for some n ∈ N
+. Trajectories {x(t; x0)}t∈R of this

system evolve from initial conditions x0. The flowmap
Ft : Rn → R

n is defined as the mapping taking the
initial trajectory positions at time t0 = 0 to current
ones at time t , i.e.,

Ft (x0) = x(t; x0). (2)

As observations of the full state space variable x
of system (1) are often not available, one may try
to explore the dynamical system (1) by observing d
smooth scalar functionsφ1(x), . . . , φd(x) along trajec-
tories of the system. We order these scalar observables
into the observable vector
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φ(x) =
⎛

⎜
⎝

φ1(x)
...

φd(x)

⎞

⎟
⎠ ∈ C1 (

R
n) (3)

The basic idea of DMD is to approximate the observed
evolution of φ

(
Ft (x0)

)
of the dynamical system with

the closest fitting autonomous linear dynamical system

φ̇ = Lφ, L ∈ R
d×d , (4)

based on available trajectory observations.
This is a challenging objective for multiple reasons.

First, the original dynamical system (1) is generally
nonlinear whose dynamics cannot be well approxi-
mated by a single linear system on a sizable open
domain. For instance, one may have several isolated,
coexisting attracting or repelling stationary states (such
as periodic orbits, limit cycles or quasiperiodic tori),
which linear systems cannot have. Second, it is unclear
why the dynamics of d observables should be gov-
erned by a self-contained autonomous dynamical sys-
tem induced by the original system (1), whose dimen-
sion isn. Third, the result of fitting system (4) to observ-
able data will clearly depend on the initial conditions
used, the number and the functional form of the observ-
ables chosen, as well as on the objective function used
in minimizing the fit.

Despite these challenges, we may proceed to find an
appropriately defined closest linear system (4) based
on available observable data. We assume that for some
fixed time step �t , discrete observations of m ini-
tial conditions, x1(t0), . . . , xm(t0), and their images
F�t (x1(t0)), . . . , F�t (xm(t0)), under the sampled flow
map F�t are available in the data matrices

� =
[
φ
(

x1(t0)
)

, . . . ,φ
(
xm(t0)

)]
,

�̂ =
[
φ
(

F�t (x1(t0))
)

, . . . ,φ
(
F�t (xm(t0)

))]
,

(5)

respectively. We seek the best fitting linear system of
the form (4) for which

�̂ ≈ D�, D = eL�t , (6)

holds. The eigenvalues of such a D are usually called
DMD eigenvalues, and their corresponding eigenvec-
tors are called the DMD modes.

Various norms can be chosen with respect to which
the difference of �̂ and D� is to be minimized. The
most straightforward choice is the Euclidean matrix

norm | · |, which leads to the minimization principle

D∗ = argmin
∣∣∣�̂ − D�

∣∣∣
2

D∈Rd×d

. (7)

An explicit solution to this problem is given by

D =
(
�̂�T

) (
�̂�T

)†
, (8)

with the dagger referring to the pseudo-inverse of a
matrix (see, e.g., Kutz et al. [32] for details). We note
that the original formulation of Schmid [50] is for dis-
crete dynamical processes and assumes observations of
a single trajectory (see also Rowley et al. [49]).

Among several later variants of DMD surveyed by
Schmid [51], themost broadly used one is the Extended
Dynamic Mode Decomposition (EDMD) of Williams
et al. [58]. This procedure seeks the best-fitting lin-
ear dynamics for an a priori unknown set of functions
K(φ(x)) ofφ(x), rather than forφ(x) itself. In practice,
one often chooses K as an N (d, k)-dimensional vector
of d-variate scalar monomials of order k or less, where

N (d, k) =
(
d + k
k

)
is the total number of all such

monomials. The underlying assumption of EDMD is
that a self-contained linear dynamical system of the
form
d

dt
K
(
φ(Ft (x0))

) = LK
(
φ(Ft (x0))

)
(9)

can be obtained on the feature space RN (d,k) by opti-
mally selecting L ∈ R

N (d,k)×N (d,k). For physical sys-
tems, the N (d, k)-dimensional ODE in Eq. (9) defined
on the feature space R

N (d,k) can be substantially
higher-dimensional than the d-dimensional ODE (4).
In fact, N (d, k) may be substantially higher than the
dimension n of the phase space Rn of the original non-
linear system (1).

Once the function library used in EDMD is fixed,
one again seeks to choose L so that

K(�̂) ≈ DK(�), D = eL�t .

This again leads to a linear optimization problem that
can be solved using linear algebra tools. For higher-
dimensional systems, a kernel-based version of EDMD
was developed by Williams et al. [59]. This method
computes inner products necessary for EDMD implic-
itly, without requiring an explicit representation of
(polynomial) basis functions in the space of observ-
ables. As a result, kernel-based EDMD operates at
computational costs comparable to those of the orig-
inal DMD.
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2 Prior justifications for DMD methods

Available justifications for DMD (see [49]) and EDMD
(see [58]) are based on the Koopman operator, whose
basics we review in Appendix A.1 for completeness.
The argument starts with the observation that special
observables falling in invariant subspaces of this oper-
ator in the space of all observables obey linear dynam-
ics. Consequently, DMD should recover the Koopman
operator restricted to this subspace if the observables
are taken from such a subspace.

In this sense, DMD is viewed as an approximate,
continuous immersion of a nonlinear system into an
infinite dimensional linear dynamical system. While
such an immersion is not possible for typical nonlinear
systems with multiple limit sets (see [38,39]), one still
hopes that this approximate immersion is attainable via
DMD or EDMD for nonlinear systems with a single
attracting steady state that satisfies appropriate nonde-
generacy conditions (see [33]). In that case, unlike clas-
sic local linearization near fixed points, the lineariza-
tion via DMD or EDMD is argued to be non-local, as it
covers the full domain of definition of Koopman eigen-
functions spanning the underlying Koopman-invariant
subspace.

However, Koopman eigenfunctions, whose exis-
tence, domain of definition and exact form are a priori
unknown for general systems, are notoriously difficult–
if not impossible–to determine accurately from data.
More importantly, even if Koopman-invariant sub-
spaces of the observable space were known, any count-
able set of generically chosen observables would lie
outside those subspaces with probability one. As a
consequence, DMD eigenvectors (which are generally
argued to be approximations of Koopman eigenfunc-
tions and can be used to compute Koopman modes1)
would also lie outside Koopman-invariant subspaces,
given that such eigenvectors are just linear combina-
tions of the available observables. Consequently, prac-
tically observed data sets would fall under the realm of
Koopman-based explanation for DMD with probabil-
ity zero. This is equally true for EDMD, whose flexi-
bility in choosing the function set K(φ(x)) of observ-

1 Assuming that each coordinate component x j of the full
phase space vector x of system (1) falls in a span of the
same set of Koopman eigenfunctions {φ1(x), . . . , φN (x)}, one
defines the j th Koopman mode associated with x j as the vector

v j = (
v1 j , . . . , vN j

)T for which x j = ∑N
i=1 vi jφi (x) (see, e.g.,

Williams et al. [58]).

ables also introduces further user-dependent heuristics
beyond the dimension d of the DMD.

One may still hope that by enlarging the dimension
d of observables in DMD and enlarging the function
library K(φ(x)) in EDMD, the optimization involved
in these methods brings DMD and EDMD eigenvec-
tors closer and closer to Koopman eigenfunctions. The
required enlargements, however, may mean hundreds
or thousand of dimensions even for dynamical sys-
tem governed by simple, low-dimensional ODEs [59].
These enlargements succeed in fitting linear systems
closely to sets of observer trajectories, but they also
unavoidably lead to overfits that give unreliable pre-
dictions for initial conditions not used in the training
of DMD or EDMD. Indeed, the resulting large linear
systems can perform substantially worse in prediction
than much lower dimensional linear or nonlinear mod-
els obtained from other data-driven techniques (see,
e.g., Alora et al. [1]).

Similar issues arise in justifying the kernel-based
EDMD of Williams et al. [59] based on the Koopman
operator. Additionally, the choice of the kernel function
that represents the inner product of the now implicitly
defined polynomial basis functions remains heuristic
andproblem-dependent.Again, the accuracyof the pro-
cedure is not guaranteed, as available observer data is
generically not in a Koopman eigenspace. AsWilliams
et al. [59] write: “Like most existing data-driven meth-
ods, there is no guarantee that the kernel approach will
produce accurate approximations of even the leading
eigenvalues and modes, but it often appears to produce
useful sets of modes in practice if the kernel and trun-
cation level of the pseudoinverse are chosen properly.”

Finally, a lesser known limitation of the Koopman-
based approach to DMD is the limited domain in
the phase space over which Koopman eigenfunctions
(and hence their corresponding invariant subspaces)
are defined in the observable space. Specifically, at
least one principal Koopman eigenfunction necessar-
ily blows up near basin boundaries of attracting and
repelling fixed points and periodic orbits (see Proposi-
tion 1 of our Appendix A.4 for a precise statement and
Theorem 3 of Kvalheim and Arathoon [33] for a more
general related result).

Expansions of observables in terms of such blowing-
up eigenfunctions have even smaller domains of con-
vergence, as was shown explicitly in a simple exam-
ple by Page and Kerswell [44]. This is a fundamental
obstruction to the often envisioned concept of global

123



18642 G. Haller , B. Kaszás

linear models built of different Koopman eigenfunc-
tions over multiple domains of attraction (see, e.g.,
Williams et al. [58], p. 1309).While it is broadly known
that such models would be discontinuous along basin
boundaries [33,38,39], it is rarely noted (see Kvalheim
and Arathoon [33] for a rare exception) that such mod-
els would also generally blow up at those boundaries
and hence would become unmanageable even before
reaching the boundaries.

For these reasons, an alternative mathematical foun-
dation for DMD is desirable. Ideally, such an approach
should be defined on an equal or lower dimen-
sional space, rather than on higher or even infinite-
dimensional spaces, as suggested by the Koopman-
based viewonDMD.This should help in avoiding over-
fitting and computational difficulties. Additionally, an
ideal treatment of DMD should also provide specific
non-degeneracy conditions on the underlying dynam-
ical system, on the available observables, and on the
specific data to be used in the DMD procedure.

In this paper, we develop a treatment of DMD that
satisfies these requirements. This enables to derive con-
ditions for DMD to approximate the dominant lin-
earized observable dynamics near hyperbolic fixed
points and periodic orbits of finite- and infinite-
dimensional dynamical systems.

Our approach to DMD also leads to a refinement
of DMD which we call data-driven linearization (or
DDL, for short). DDL effectively carries out exact local
linearization via nonlinear coordinate changes on a
lower-dimensional attracting invariant manifold (spec-
tral submanifold) of the dynamical system. We illus-
trate the increased accuracy and domain of validity of
DDLmodels relative to those obtained from DMD and
EDMDon examples of autonomous and forced dynam-
ical systems.

3 A simple justification for the DMD algorithm

Here we give an alternative interpretation of DMD and
EDMD as approximate models for a dynamical system
known through a set of observables. The main idea (to
be made more precise shortly) is to view DMD exe-
cuted on d observables φ1, . . . , φd as a model reduc-
tion tool that captures the leading-order dynamics of
n ≥ d phase space variables along a d-dimensional
slow manifold in terms of φ1, . . . , φd .

Such manifolds arise as slow spectral submanifolds
(SSMs) under weak non-degeneracy assumptions on

the linearized spectrumat stable hyperbolic fixed points
of the n-dimensional dynamical system (see [10,12,
22]). Specifically, a slow SSMW (E) is tangent to the
real eigenspace E spanned by the d slowest decaying
linearized modes at the fixed point. If m sample tra-
jectories

{
x j (t)

}m
j=1 are released from a set of initial

conditions
{
x j (0)

}m
j=1at time t = 0, then due to their

fast decay along the remaining fast spectral subspace F
, the x j (t) trajectories will become exponentially close
to W (E) by some time t = t0 ≥ 0, and closely syn-
chronize with its internal dynamics, as seen in Fig. 1.

If W (E) admits a non-degenerate parametrization
with respect to theobservablesφ1, . . . , φd , thenone can
pass to these observables as new coordinates in which
to approximate the leading order, linearized dynamics
inside W (E). Specifically, DMD executed over time
the interval [t0, t0 + �t] provides the closest linear fit
to the reduced dynamics of W (E) from the available
observable histories φ1

(
x j (t)

)
, . . . , φd

(
x j (t)

)
for t ∈

[t0, t0 + �t], as illustrated in Fig. 1. This fit is a close
representation of the actual linearized dynamics on the
SSM W (E) if the trajectory data

{
x j (t)

}m
j=1 is suffi-

ciently diverse for t ≥ t0. The resulting DMD model
with coefficient matrixD will then be smoothly conju-
gate to the linearized reduced dynamics onW (E)with
an error of the order of the distance of

{
x j (t)

}m
j=1 fromW (E) between the times t0 and t0 + �t .

The slow SSM W (E) may also contain unstable
modes in applications. Similar results hold for that
case as well, provided that we select a small enough
�t , ensuring that the trajectories

{
x j (0)

}m
j=1are not

ejected from the vicinity of the fixed point origin for
t ∈ [t0, t0 + �t]. As DMD will show sensitivity with
respect to the choice of t0 and �t in this case, we will
not discuss the justification ofDMDnear unstable fixed
points beyond Remarks 1 and 7.

In the following sections, we make this basic idea
more precise both for finite and infinite-dimensional
dynamical systems. This approach also reveals explicit,
previously undocumented non-degeneracy conditions
on the underlying dynamical system, on the available
observable functions and on the specific data set used,
under which DMD should give meaningful results.

3.1 Justification of DMD for continuous dynamical
systems

We start by assuming that the observed dynamics take
place in a domain containing a fixed point,which is
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Fig. 1 The geometric meaning of DMD performed on d observ-
ables, φ1(x), . . . , φd (x), after initial fast transients die out at an
exponential rate in the data. DMD then identifies the leading-
order (linear) dynamics on a d-dimensional attracting spectral
submanifold (SSM) W (E) tangent to the d-dimensional slow

spectral subspace E . These linearized dynamics can be expressed
in terms of the SSM-restricted observables ϕ = φ|W(E). Also
shown is the spectral subspace F of the faster decaying modes
and its associated nonlinear continuation, the fast spectral sub-
space W (F)

assumed to be at the origin, without loss of generality,
i.e.,

f(0) = 0. (10)

We can then rewrite the dynamical system (1) in the
more specific form

ẋ = Ax + f̃(x), x ∈ R
n, A = Df(0),

f̃(x) = o (|x|) , (11)

where the classic o (|x|) notation refers to the fact that

limx→0

[∣∣∣f̃(x)

∣∣∣ / |x|
]

= 0.

Most expositions of DMD methods and their vari-
ants do not state assumption (10) explicitly and hence
may appear less restrictive than our treatment here.
However, all of them implicitly assume the existence
of such a fixed point, as all of them end up returning
homogeneous linear ODEs or mappings with a fixed
point at the origin. Indeed, all known applications of
these methods that produce reasonable accuracy target
the dynamics of ODEs or discrete maps near their fixed
points.

Assumption (10) can be replaced with the existence
of a limit cycle in the original system (1), in which case
the first return map (or Poincaré map) defined near the
limit cycle will have a fixed point. We give a separate
treatment on justifyingDMDas a linearization for such
a Poincaré map in Sect. 3.2.

We do not advocate, however, the often used pro-
cedure of applying DMD to fit a linear system to the
flow map (rather than the Poincaré map) near a stable
limit cycle. Such a fit only produces the desired limiting
periodic behavior if one or more of the DMD eigenval-
ues are artificially constrained to be on the complex
unit circle by the user of DMD. This renders the DMD

model both structurally unstable and conceptually inac-
curate for prediction. Indeed, the model will approxi-
mate the originally observed limit cycle and conver-
gence to it only within a measure zero, cylindrical set
of its phase space. Outside this set, all trajectories of
the DMD model will converge to some other member
of the infinite family of periodic orbits or invariant tori
within the center subspace corresponding to the unitary
eigenvalues. These periodic orbits or tori have a con-
tinuous range of locations and amplitudes, and hence
represent spurious asymptotic behaviors that are not
seen in the original dynamical system (1).

In the special case of d = n and for the special
observable �(x) = x, the near-linear form of Eq. (11)
motivates the DMDprocedure because a linear approx-
imation to the system near x = 0 seems feasible. It is
a priori unclear, however, to what extent the nonlinear-
ities distort the linear dynamics and how DMD would
account for that. Additionally, in a data-driven analysis,
choosing the full phase space variable x as the observ-
able φ(x) is generally unrealistic. For these reasons,
a mathematical justification of DMD requires further
assumptions, as we discuss next.

Let λ1, . . . , λn ∈ C denote the eigenvalues of A and
let e1, . . . , en ∈ C

n denote the corresponding general-
ized eigenvectors. We assume that at least one of the
modes of the linearized system at x = 0 decays expo-
nentially and there is at least one othermode that decays
slower or even grows. More specifically, for some pos-
itive integer d < n, we assume that the spectrum of A
can be partitioned as

Reλn ≤ . . . ≤ Reλd+1 < Reλd ≤ . . . ≤ Reλ1 < 0.

(12)
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This guarantees the existence of a d-dimensional, nor-
mally attracting slow spectral subspace

E = span {Re e1, Im e1, . . . ,Re ed , Im ed} (13)

for the linearized dynamics, with linear decay rate
towards E strictly dominating all decay rates inside
E . Note that the set of vectors Re e1, Im e1, . . . ,Re ed ,
Im ed is, in general, not linearly independent, but
they span a d-dimensional subspace. We also define
the (real) spectral subspace of faster decaying linear
modes:

F = span {Re ed+1, Im ed+1, . . . ,Re en, Im en} . (14)

We will also use matrices containing the left and
right eigenvectors of the operator A and of its restric-
tions, A|E and A|F , to its spectral subspaces E and F ,
respectively. Specifically, we let

T = [TE , TF ] , P =
[

PE

PF

]
, (15)

where the columns of TE ∈ R
n×d are the real and

imaginary parts of the generalized right eigenvectors
of A|E and the columns of TF ∈ R

n×(n−d) are defined
analogously forA|F . Similarly, the rows ofPE ∈ R

d×n

are the real and imaginary parts of the generalized left
eigenvectors ofA|E and the rows ofPF ∈ R

(n−d)×n are
defined analogously forA|F .Under assumption (12), F
is always a fast spectral subspace, containing all trajec-
tories of the linearized system that decay faster to the
origin as any trajectory in E .

We will use the notation

X =
[
x1(t0), . . . , xm(t0)

]
,

X̂ =
[
F�t (x1(t0)), . . . , F�t (xm(t0)

)]
(16)

for trajectory data in the underlying dynamical system
(1) on which the observable data matrices � and �̂

defined in (5) are defined. In truly data-driven applica-
tions, thematricesX and X̂ are not known.Wewill nev-
ertheless use them to make precise statements about a
required dominance of the slow linearmodes of E in the
available data. Such a dominance will arise for generic
initial conditions if one selects the initial conditions
x1(t0), . . . , xm(t0) after initial fast transients along F
have died out. This can be practically achieved by ini-
tializing x1(t0), . . . , xm(t0) after a linear spectral anal-
ysis of the observable datamatrix� returns a number of
dominant frequencies consistent with a d-dimensional
SSM.

We now state a theorem that provides a general jus-
tification for the DMD procedure under explicit non-
degeneracy conditions and with specific error bounds.
Specifically, we give a minimal set of conditions
under which DMD can be justified as an approximate,
leading-order, d-dimensional reduced-order model for
an nonlinear system of dimension n ≥ d near its
fixed point. Based on relevance for applications, we
only state Theorem1 for stable hyperbolic fixed points,
but discuss subsequently in Remark 1 its extension to
unstable fixed points.

Theorem 1 (Justification of DMD for ODEs with sta-
ble hyperbolic fixed points) Assume that

(A1) The origin, x = 0, is a stable hyperbolic fixed
point of system (11) with a spectral gap, i.e., the
spectrum Spect [A] satisfies Eq. (12).

(A2) f ∈ C2 in a neighborhood of the origin.
(A3) For some integer d ∈ [1, n], a d-dimensional

observable functionφ ∈ C2 and thed-dimensional
slow spectral subspace E of the hyperbolic fixed
point x = 0 of system (11) satisfy the non-
degeneracy condition

rank [Dφ (0) |E ] = d. (17)

(A4) The data matrices � and �̂ are non-degenerate
and the initial conditions in X and X̂ have been
selected after fast transients from the modes out-
side E have largely died out, i.e.,

rankrow � = d, |PFX| ,
∣∣∣PF X̂

∣∣∣ ≤ |PEX|1+β ,

(18)

for some β ∈ (0, 1].
Then the DMD computed from� and �̂ yields a matrix
D that is locally topologically conjugate with order
O (|PEX|β) error to the linearized dynamics on a
d-dimensional, slow attracting spectral submanifold
W(E) ∈ C1 tangent to E at x = 0. Specifically, we
have

D = Dφ(0)TEe
�E�t (Dφ(0)TE )−1 + O (|PEX|β) .

(19)

Proof Under assumptions (A1) and (A2), any trajec-
tory in a neighborhood of the origin in the nonlinear
system (11) converges at an exponential rate eReλd+1t to
a d-dimensional attracting spectral submanifoldW(E)

tangent to a d-dimensional attracting slow spectral sub-
space E of the linearized system at the origin. This
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follows from the C1 linearization theorem of Hartman
[23], which is applicable toC2 dynamical systemswith
a stable hyperbolic fixed point. Under assumption (A3),
the d-dimensional observable function φ(x) restricted
to W(E) can be used to parametrize W(E) near the
origin, and hence a d-dimensional, self-contained non-
linear dynamical system can be written down for the
restricted observable ϕ = φ|W(E) alongW(E). Under
the first assumption in (A4), the available observational
data matrices � and �̂ are rich enough to character-
ize the reduced dynamics onW(E). Under the second
assumption in (A4), transients from the faster modes
outside E have largely died out before the selection
of the initial conditions in X, so that the linear part of
the dynamics onW(E) can be approximately inferred
from � and �̂. In that case, up to an error proportional
to the distance of the training data from W(E), the
matrix D ∈ R

d×d returned by DMD is similar to the
time-�t flow map of the linearized flow of the under-
lying dynamical system restricted to W(E). This lin-
earized flow then acts as a local reduced-order model
with which nearby trajectory observations synchronize
exponentially fast in the observable space. We give a
more detailed proof of the theorem in Appendix (B). �	
Remark 1 In Theorem1, we can replace assumption
(A1) with

Reλn ≤ ... ≤ Reλd+1 < 0,

Reλd+1 < Reλd ≤ ... ≤ Reλ1,

Reλ j 
= 0, j = 1, ..., n

(20)

This means that the x = 0 fixed point is only assumed
hyperbolic with a spectral gap and A has an attracting
d-dimensional spectral subspace E that possibly con-
tains some instabilities, i.e., eigenvalues with positive
real parts. Then the statements of Theorem1 still hold,
butW(E) will be only be guaranteed C1 at x = 0 and
Hölder-continuous at other points near the fixed point.
This follows by replacing the linearization theorem of
Hartman [23] with that of van Strien [56], which still
enables us to use Eq. (79) in the proof. Therefore, slow
subspaces E containing a mixture of stable and unsta-
ble modes can also be allowed, as long as F contains
only fast modes consistent with the splitting assume in
Eq. (12). In that case, however, the time t0 + �t must

be chosen carefully to ensure that
∣
∣∣PF X̂

∣
∣∣ ≤ |PEX|1+β

still holds, i.e., the data used in DMD still samples a
neighborhood of the origin.

Remark 2 In related work, Bollt et al. [7] construct
the transformation relating a pair of conjugate dynam-
ical systems based on a limited set of matching Koop-
man eigenfunctions, which are either known explicitly
or constructed from EDMD with dictionary learning
(EDMD-DL; see [36]). In principle, this could be used
to construct linearizing transformation as well. How-
ever, even when the eigenfunctions are approximated
fromdata, the approach assumes that the linearized sys-
tem, as well as a linearized trajectory and its preimage
under the linearization, are available. As these assump-
tions are not satisfied in practice, only very simple and
low-dimensional analytic examples are treated by Bollt
et al. [7].

In Appendix (B), Remarks 4 and 5 summarize tech-
nical points on the application and possible further
extensions of Theorem1. In practice, Theorem1 pro-
vides previously unspecified non-degeneracy condi-
tions on the linear part of the dynamical system to be
analyzed via DMD (assumption (A1)), on the regu-
larity of the nonlinear part of the system (assumption
(A2)), on the type of observables available for the anal-
ysis (assumption (A3)) and on the specific observable
data used in the analysis (assumption (A4)). The lat-
ter assumption requires that there have to be at least
as many independent observations in time as observ-
ables. This specifically excludes the popular use of tall
� observable data matrices which provide more free
parameters to pattern-match observational data but will
also lead to an overfit that diminishes the predictive
power of the DMDmodel on initial conditions not used
in its training.

To illustrate these points, we demonstrate the neces-
sity of assumptions (A2)–(A4) ofTheorem1 inAppendix
C on simple examples.

3.2 Justification of DMD for discrete and
for time-periodic continuous dynamical systems

The linearization results we have applied to deduce
Theorem1 are equally valid for discrete dynamical sys-
tems defined by iterated mappings. Such mappings are
of the form

xn+1 = f(xn) = Axn + f̃(xn), x j ∈ R
n,

A ∈ R
n×n, f̃(x) = o (|x|) . (21)

We will use a similar ordering for the eigenvalues of A
as in the continuous time case:

|λn| ≤ . . . ≤ |λd+1| < |λd | ≤ . . . ≤ |λ1| < 1. (22)
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As in the continuous time case, we will use the observ-
able data matrices

� = φ (X) , �̂ = φ (f (X)) , (23)

with the initial conditions for the map f stored in X.
With these ingredients, we need only minor modifi-

cations in the assumptions of the theorems that account
for the usual differences between the spectrum of an
ODE and a map.

Theorem 2 (Justification of DMD for maps with sta-
ble hyperbolic fixed points) Assume that

(A1) x = 0 is a stable hyperbolic fixed point of system
(21), i.e., assumption (22) holds.

(A2) In Eq. (21), f̃ ∈ C2 holds in a neighborhood of
the origin.

(A3) For some integer d ∈ [1, n], a d-dimensional
observable functionφ ∈ C2 and thed-dimensional
slow spectral subspace E of the hyperbolic fixed
point x = 0 of system (21) satisfy the non-
degeneracy condition

rank [Dφ (0) |E ] = d. (24)

(A4) The data matrices � and �̂ collected from itera-
tions of system (21) are non-degenerate and are
dominated by data near E, i.e.,

rankrow � = d,

|PFX| ,
∣
∣∣PF X̂

∣
∣∣ ≤ |PEX|1+β , (25)

for some β ∈ (0, 1).

Then the DMD computed from� and �̂ yields a matrix
D that is locally topologically conjugate with order
O (|PEX|β) error to the linearized dynamics on a d-
dimensional attracting spectral submanifold W(E) ∈
C1 tangent to E at x = 0. Specifically, we have

D = Dφ(0)TE�E (Dφ(0)TE )−1 + O (|PEX|β) .(26)
The spectral submanifold W(E) and its reduced
dynamics are of class C1 at the origin, and at least
Hölder continuous in a neighborhood of the origin.

Proof The proof is identical to the proof of Theorem1
but uses the discrete version of the linearization result
by Hartman [23] for stable hyperbolic fixed points of
maps.

Theorem1 can be immediately applied to justify
DMD as a linearization tool for period-one maps
(or Poincaré maps) of time-periodic, non-autonomous

dynamical systems near their periodic orbits. This
requires the data matrices� and �̂ to contain trajecto-
ries of such a Poincaré map. Remark 8 on the treatment
of slow spectral subspaces E containing possible insta-
bilities also applies here under themodified assumption

|λn| ≤ . . . ≤ |λd+1| < 1,

|λd+1| < |λd | ≤ . . . ≤ |λ1| ,∣∣λ j
∣∣ 
= 1, j = 1, . . . , n, (27)

which only requires the fixed point to be hyperbolic
andA to have a d-dimensional normally attracting sub-
space.

3.3 Justification of
DMD for infinite-dimensional dynamical systems

Most data sets of interest arguably arise from infinite-
dimensional dynamical systems of fluids and solids.
Examples include experimental or numerical data
describing fluid motion, continuum vibrations, cli-
mate dynamics or salinity distribution in the ocean.
In the absence of external forcing, these problems are
governed by systems of autonomous nonlinear par-
tial differential equations that can often be viewed
as evolutionary differential equations in a form sim-
ilar to Eq. (1), but defined on an appropriate infinite-
dimensional Banach space.Accordingly, time-sampled
solutions of these equations can be viewed as iter-
ated mappings of the form (21) but defined on Banach
spaces.

Our approach to justifying DMD generally carries
over to this infinite-dimensional setting, as long as the
observable vectorφ(x) remains finite-dimensional, and
both the Banach space and the discrete or continu-
ous dynamical system defined on it satisfy appropriate
regularity conditions. These regularity conditions tend
to be technical, but when they are satisfied, they do
guarantee the extension of Theorems1 and2 to Banach
spaces. This offers a justification to use DMD to obtain
an approximate finite-dimensional linear model for the
dynamics of the underlying continuum system on a
finite-dimensional attracting slow manifold (or inertial
manifold) in the neighborhood of a non-degenerate sta-
tionary solution.

To avoid major technicalities, we only state here a
generalized version of Theorem1 to justify the use of
DMD for observables defined on Banach spaces for a
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discrete evolutionary process with a stable hyperbolic
stationary state. We consider mappings of the form

xn+1 = f(xn) = Axn + f̃(xn), x j ∈ B,

f̃ : U ⊂ B → B, f̃(0) = 0 ∈ U, (28)

where B is a Banach space, U is an open set in B,
and A : B → B is an invertible linear operator that
is bounded in the norm defined on B. The function f
can be here the time-sampled version of an infinite-
dimensional flow map of an autonomous evolutionary
PDE or the Poincaré map of a time-periodic evolu-
tionary PDE. We assume that for some α ∈ (0, 1),
f̃ ∈ C1,α(U ) holds, i.e., f̃ is (Fréchet-) differentiable in
U and its derivative, Df̃ , is Hölder-continuous in x ∈ U
with Hölder exponent α.

The spectral radius of A is defined as

ρ(A) = lim
k→∞

∣∣∣Ak
∣∣∣
1
k
.

We recall that in the special case B = R
n treated in

Sect. 3.2, we have ρ(A) = max1≤ j≤n
∣∣λ j
∣∣. For some

α ∈ (0, 1), the linear operatorA is calledα-contracting
if

ρ(A)1+αρ
(

A−1
)

< 1, (29)

which can only hold if ρ(A) < 1 (see [41]). Therefore,
in the simple case of B = R

n , A is α-contracting if it is
a contraction (i.e., all its eigenvalues are less than one
in norm) and

|λ1|1+α < |λn| ,
showing that the spectrum of A is confined to an annu-
lus of outer radius |λ1| < 1 and inner radius |λ1|1+α .
We can now state our main result on the justification
of DMD for infinite-dimensional discrete dynamical
systems.

Theorem 3 (Justification of DMD for infinite-
dimensional maps with stable hyperbolic fixed points)
Assume that

(A1) For some α ∈ (0, 1), the linear operator A is α-
contracting (and hence the x = 0 fixed point of
system (28) is linearly stable).

(A2) In Eq. (28), f̃ ∈ C1,α(U ) holds in a U neighbor-
hood of the origin.

(A3) For some integer d ∈ N
+, there is a splitting

B = E ⊕ F of B into two A-invariant subspaces
E, F ⊂ B such that E is d-dimensional and slow,
i.e.,

ρ (A|E ) <
1

ρ
(
A−1|F

) (30)

Furthermore, a d-dimensional observable func-
tion φ ∈ C2 satisfies the non-degeneracy condi-
tion

rank [Dφ (0) |E ] = d. (31)

(A4) The data matrices � and �̂ collected from itera-
tions of system (28) are non-degenerate and are
dominated by data near E, i.e.,

rankrow � = d,

|PFX| ,
∣∣
∣PF X̂

∣∣
∣ ≤ |PEX|1+β , (32)

for some β ∈ (0, 1).

Then the DMD computed from� and �̂ yields a matrix
D that is locally topologically conjugate with order
O (|PEX|β) error to the linearized dynamics on a
d-dimensional attracting spectral submanifold W(E)

tangent to E at x = 0. Specifically, we have

D = Dφ(0)TE�E (Dφ(0)TE )−1 + O (|PEX|β) .(33)
The spectral submanifold W(E) and its reduced
dynamics are of class C1 in a neighborhood of the ori-
gin.

Proof The proof follows the steps in the proof of The-
orem 2 but uses an infinite-dimensional linearization
result, Theorem3.1 ofNewhouse [41], for stable hyper-
bolic fixed points of maps on Banach spaces. Specifi-
cally, if A is α-contracting, then Newhouse [41] shows
the existence of a near-identity linearizing transforma-
tion x = y + h(y) for the discrete dynamical system
(28) such thath ∈ C1,α(B)holds on a small enoughball
B ⊂ U centered at x = 0. Using this linearization theo-
rem instead of its finite-dimensional version fromHart-
man [23],we can follow the same steps as in the proof of
Theorem2 to conclude the statement of the theorem. �	

In Appendix B, Remarks 6 and 7 summarize tech-
nical remarks on possible further extensions of Theo-
rem3.

4 Data-driven linearization (DDL)

4.1 Theoretical foundation for DDL

Based on the results of the previous section, we now
refine the first-order approximation to the linearized
dynamics yielded by DMD near a hyperbolic fixed
point. Specifically, we construct the specific nonlinear
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coordinate change that linearizes the restricted dynam-
ics on the attracting spectral submanifold W(E) illus-
trated in Fig. 1. This classic notion of linearization on
W(E) yields a d-dimensional linear reduced model,
which can be of significantly lower dimension than
the original n-dimensional nonlinear system. This is
to be contrasted with the broadly pursued Koopman
embedding approach (see, e.g., [8,40,49]), which seeks
to immerse nonlinear systems into linear systems of
dimensions substantially higher (or even infinite) rela-
tive to n.

The following result gives the theoretical basis for
our subsequent data-driven linearization (DDL) algo-
rithm. We will use the notation Ca for the class of
real analytic functions. We also use the notation �x�
to denote the integer part of x .

Theorem 4 (DDL principle for ODEs with a stable
hyperbolic fixed points) Assume that the origin, x = 0
is a stable hyperbolic fixed point of system (11) and the
spectrum ofA has a spectral gap as inEq. (12). Assume
further that for some r ∈ N

+ ∪ {∞, a}, the following
conditions are satisfied:

(B1) f2 ∈ Cr and the nonresonance conditions

λk 
=
n∑

j=1

m jλ j , m j ∈ N, k = 1, ..., n,

2 ≤
n∑

j=1

m j ≤ Q ≤ r,

Q :=
⌊
maxi |Re λi |
mini |Re λi |

⌋
+ 1, (34)

hold for the eigenvalues of A.
(B2) For some integer d ∈ [1, n], a d-dimensional

observable functionφ ∈ Cr and thed-dimensional
slow spectral subspace E of the stable fixed point
x = 0 of system (11) satisfy the non-degeneracy
condition.

rank [Dφ (0) |E ] = d. (35)

Then the following hold:

(i) On the unique d-dimensional attracting spectral
submanifold W(E) ∈ Cr tangent to E at x = 0,
the reduced observable vector ϕ = φ|W(E) can be
used to describe the reduced dynamics as

ϕ̇ = Bϕ + q (ϕ) ,

B = Dφ(0)TE�E (Dφ(0)TE )−1 ,

q (ϕ) = O
(
|ϕ|2

)
. (36)

(ii) There exists a unique, Cr change of coordinates

ϕ = κ(γ ) = γ + �(γ ), (37)

that transforms the reduced dynamics onW(E) to
its linearization

γ̇ = Bγ (38)

inside the domain of attraction of x = 0 within the
spectral submanifold W(E).

(iii) The transformation (37) satisfies the d-dimensional
system of nonlinear PDEs

Dγ �(γ )Bγ = B�(γ ) + q (γ + �(γ )) . (39)

If r ∈ N
+ ∪ {∞}, solutions of this PDE can locally

be approximated as

�(γ ) =
r∑

|k|=2
lkγ k+o

(|γ |r ) , k ∈ N
d , lk ∈ R

d ,

γ k := γ
k1
1 · · · γ kd

d . (40)

If r = a, then the local approximation (40) can be
refined to a convergent Taylor series

�(γ ) =
∞∑

|k|=2

lkγ k, k ∈ N
d , lk ∈ R

d ,

γ k := γ
k1
1 · · · γ kd

d (41)

in a neighborhood of the origin. In either case,
the coefficients lk can be determined by substi-
tuting the expansion for �(γ ) into the PDE (39),
equating coefficients of equal monomials γ k and
solving the corresponding recursive sequence of d-
dimensional linear algebraic equations for increas-
ing |k|.

Proof The proof builds on the existence of the d-
dimensional spectral submanifold W (E) guaranteed
by Theorem 1. For a Cr dynamical system with r ∈
N

+ ∪ {∞, a}, W (E) is also Cr smooth based on
the linearization theorems of Poincaré [46] and Stern-
berg [52], as long as the nonresonance condition (34)
holds. Condition (35) then ensures that W (E) can be
parametrized locally by the restricted observable vec-
tor ϕ and hence its reduced dynamics can be written
as a nonlinear ODE for ϕ. This ODE can again be lin-
earized by a near-identity coordinate change (37) using
the appropriate linearization theorem of the two cited
above. The result is the restricted linear system (38) to
which the dynamics is Cr conjugate within the whole
domain of attraction of the ϕ = 0 fixed point inside

123



Data-driven linearization of dynamical systems 18649

W (E). The invariance PDE (39) can be obtained by
substituting the linearizing transformation (37) into the
reduced dynamics on W (E). This PDE can then be
solved via a Taylor expansion up to order r . We give
more a more detailed proof in Appendix D. �	

Note that 1:1 resonances are not excluded by the
condition (34), and hence repeated eigenvalues arising
from symmetries in physical systems are still amenable
to DDL. Also of note is that the non-resonance condi-
tions (34) do not exclude frequency-type resonances
among imaginary parts of oscillatory eigenvalues.
Rather, they exclude simultaneous resonances of the
same type between the real and the imaginary parts of
the eigenvalues. Such resonances will be absent in data
generated by generic oscillatory systems.

Assuming hyperbolicity is essential for Theorem4
to hold, since in this case the linearization is the same
as transforming the dynamics to the Poincaré-normal
form. For a non-hyperbolic fixed point, this normal
form transformation results in nonlinear dynamics on
the center manifold. This would, however, only arise
in highly non-generic systems, precisely tuned to be at
criticality. Since this is unlikely to happen in experi-
mentally observed or numerically simulated systems,
the hyperbolicity assumption is not restrictive.

Finally, under the conditions of Theorem3, the
DDL results of Theorem4 also apply to data from
infinite-dimensional dynamical systems, such as the
fluid sloshing experiments we will analyze using DDL
in Sect. 5.4. In practice, the most restrictive condi-
tion of Theorem3 is (A1), which requires the solution
operator to have a spectrum uniformly bounded away
from zero. Such uniform boundedness is formally vio-
lated in important classes of infinite-dimensional evo-
lution equations, presenting a technical challenge for
the direct applications of SSM results to certain delay-
differential equations (see [54]) and partial differential
equations (see, e.g., [9,30]). However, this challenge
only concerns rigorous conclusions on the existence
and smoothness of a finite-dimensional, attracting
SSM. If the existence of such an SSM is convincingly
established from an alternativemathematical theory (as
is [9]) or inferred from data (as in [54]), then the DDL
algorithm based on Theorem4 can be used to obtain a
data-driven linearization of the dynamics on that SSM.

4.2 DDL versus EDMD

Here we examine whether there is a possible relation-
ship between DDL and the extended DMD (or EDMD)
algorithm of Williams et al. [58]. For simplicity, we
assume analyticity for the dynamical system (r = a)
and hence we can write the inverse of the linearizing
transformation (40) behind theDDLalgorithmas a con-
vergent Taylor expansion of the form

γ = κ−1 (ϕ) = ϕ +
∞∑

|k|=2

qkϕk. (42)

We then differentiate this equation in time to obtain
from the linearized equation (38) a d-dimensional sys-
tem of equations

ϕ̇ +
∞∑

|k|=2

qk
d

dt
ϕk = Bϕ +

∞∑

|k|=2

Bqkϕk

that the restricted observable ϕ and its monomials ϕk

must satisfy. This last equation can be rewritten as a
d-dimensional autonomous system of linear system of
ODEs,
[

Id×d Q2
] d

dt

[
ϕ

K≥2 (ϕ)

]
=[B BQ2

] [ ϕ

K≥2 (ϕ)

]
,

(43)

for the reducedobservableϕ and the infinite-dimensional
vector K≥2(ϕ) of all nonlinear monomials of ϕ. Here
Id×d denotes the d-dimensional identity matrix and Q2

contains all coefficients qk as column vectors starting
from order |k| = 2.

If we truncate the infinite-dimensional vector of
monomials K≥2 (ϕ) to the vector Kk

2 (ϕ) of nonlinear
monomials up to order k, then Eq. (43) becomes

[
Id×d Qk

2

] d

dt

[
ϕ

Kk
2 (ϕ)

]
=[B BQk

2

] [ ϕ

Kk
2 (ϕ)

]
.

(44)

This is a d-dimensional implicit system of linear ODEs
for the dependent variable vector

(
ϕ, Kk

2 (ϕ)
)
whose

dimension is always larger than d. Consequently, the
operator

[
Id×d Qk

2

]
is never invertible and hence, con-

trary to the assumption of EDMD, there is no well-
defined linear system of ODEs that governs the evolu-
tion of an observable vector and the monomials of its
components.

The above conclusion remains unchanged even if
one attempts to optimize with respect to the choice of
the coefficients qk in the matrix Qk

2.
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4.3 Implementation and applications of DDL

4.3.1 Basic implementation
of DDL for model reduction and linearization

Theorem4 allows us to define a numerical procedure
to construct a linearizing transformation on the d-
dimensional attracting slow manifold W(E) system-
atically from data. From Eq. (44), the matrices B and
Q are to be determined, given a set of observed trajec-
tories. In line with the notation used in Sect. 4.2, let the
data matrix Kk

2 (ϕ) contain monomials (from order 2

to order k) of the observable vector ϕ and let K̂k
2 (ϕ)

contain denote the evaluation of Kk
2 (ϕ) time �t later.

Passing to the discrete version of the invariance equa-
tion (44), we obtain

[
I Q

]
[

ϕ̂

K̂k
2 (ϕ)

]

= [B BQ
] [ ϕ

Kk
2 (ϕ)

]

for some matrices Q ∈ R
d×N (d,k)−d and B = eB�t ∈

R
d×d . Moreover, the inverse transformation of the lin-

earization on the SSM W (E) is well-defined, and
hence with an appropriate matrixQinv ∈ R

d×N (d,k)−d ,
we can write
[

I Qinv
] [ ϕ + QKk

2 (ϕ)

Kk
2

(
ϕ + QKk

2 (ϕ)
)
]

= ϕ.

This allows us to define the cost functions

L(1)(Q,B) =
∣
∣∣∣∣
[

I Q
]
[

ϕ̂

K̂k
2 (ϕ)

]

− [B BQ
] [ ϕ

Kk
2 (ϕ)

]∣∣
∣∣

2

,

L(2)
(

Q, Qinv
)

=
∣∣∣QKk

2 (ϕ)

+QinvKk
2

(
ϕ + QKk

2 (ϕ)
)∣∣∣

2
, (45)

where L(1) measures the invariance error along the
observed trajectories andL(2) measures the error due to
the computation of the inverse. We aim to jointly mini-
mizeL(1) andL(2). To this end, we define the combined
cost function

Lν

(
Q, Qinv,B

)
= L(1)(Q,B)

+νL(2)
(

Q, Qinv
)

, (46)

for some ν ≥ 0. In our examples, we choose ν = 1,
which puts the same weight on both terms in the cost

function (46). Minimizers of Lν provide optimal solu-
tions to the DDL principle and can be written as

(Q
, Qinv,
B
) = argmin
Q,Qinv,B

Lν(Q, Qinv,B), (47)

or, equivalently, as solutions of the system of equations

∂Lν

∂Qi j
= 0 i = 1, ..., d, j = 1, ..., N (d, k) − d,

(48)

∂Lν

∂Qinv
i j

= 0, i = 1, ..., d, j = 1, ..., N (d, k) − d,

∂Lν

∂Bi j
= 0 i, j = 1, ..., d. (49)

The optimal solution (47) does not necessarily coin-
cide with the Taylor-coefficients of the linearizing
transformation (41). Instead of giving the best local
approximation, (Q
, Qinv,
B
) approximates the lin-
earizing transformation and the linear dynamics in a
least-squares sense over the domain of the training data.
This means that DDL is not hindered by the conver-
gence properties of the analytic linearization. Note that
for d = 1, one can estimate the radius of convergence
of (41), for example, by constructing the Domb–Skyes
plot (see [15]), or by finding the radius of the circle
in the complex plane onto which the roots of the trun-
cated expansion accumulate under increasing orders
of truncation (see [25,47]). For d > 1, such analy-
sis is more difficult, since multivariate Taylor-series
havemore complicated domains of convergence. In our
numerical examples, we estimate the domain of con-
vergence of such analytic linearizations as the domain
on which κ ◦ κ−1 = I holds to a good approximation.
As we will see, this domain of convergence may be
substantially smaller the domain of validity of trans-
formations determined in a fully data-driven way.

Since the cost function (45) is not convex, the opti-
mization problem (47) has to be solved iteratively start-
ing from an initial guess (Q0, Qinv

0 ,B0). For the exam-
ples presented in the paper, we use the Levenberg–
Marquardt algorithm (see [4]), but other nonlinear opti-
mization methods, such as gradient descent or Adam
(see [29]) could also be used. For our implementation,
which is available from the repository [28], we used
the Scipy and Pytorch libraries of Virtanen et al. [57],
Paszke et al. [45]. In summary, we will use the follow-
ing Algorithm1 in our examples for model reduction
via DDL.

123



Data-driven linearization of dynamical systems 18651

Algorithm 1: Model reduction with DDL
Data:
d: Dimension of the slow SSM W(E).
k: Maximal polynomial order.
ϕ, ϕ̂ ∈ R

d×nsamples : Data matrices of the reduced
coordinates and their forward-shifted images. The input
data may need to be truncated, in order to ensure that it
lies sufficiently close to the SSM. This needs to be
checked, e.g., by time-frequency analysis (see [12]).

ν ≥ 0: Weight parameter in the cost function
tol: Tolerance value for the cost function.

Result:
Q ∈ R

d×N (d,k)−d : Coefficients of the transformation
ϕ = κ(γ ).

Qinv ∈ R
d×N (d,k)−d : Coefficients of the inverse

transformation γ = κ−1(ϕ).
B: The linear dynamics.

1 Compute the monomials Kk
2 (ϕ),

K̂k
2 (ϕ) ∈ R

N (d,k)−d×nsamples

2 Choose an initial guess, either randomly or inferred from
DMD

3 (Q, Qinv,B) ← (Q0, Qinv
0 ,B0)

4 while Lν(Q, Qinv,B) > tol do
5 Compute the monomials Kk

2

(
ϕ + QKk

2 (ϕ)
)

6 Evaluate
Lν

(
Q, Qinv,B) = L(1)(Q,B) + νL(2)

(
Q, Qinv

)

7 Perform Optimization step (e.g., Levenberg-Marquardt
or gradient descent)

8 (Q, Qinv,B) ← (Qnew, Qinv
new,Bnew)

9 end

Remark 3 The expressions (45)–(46) define one of the
possible choices for the cost function.With ν = 0, (46)
simply corresponds to a one-step-ahead predictionwith
the linearizeddynamics.Alternatively, amulti-steppre-
diction can also be enforced. For a training trajectory
ϕ(t), the invariance

[
I Q

] [ ϕ

Kk
2 (ϕ)

]
= [B1:m B1:mQ

] [ ϕ(0)
Kk

2 (ϕ(0))

]

could be required, whereB1:m is a tensor composed of
powers of the linear mapB. Optimizing over the entire
trajectory is, however, more costly than simply mini-
mizing (45), and we found no noticeable improvement
in accuracy in our numerical examples.

4.3.2 Relationship with DMD implementations

Note that setting Q = Qinv = 0 in the optimization
problem (47) turns the problem into DMD. In this case,
the usual DMD algorithm surveyed in the Introduction

returns

B0 = argmin
B

L0(0, 0,B),

which is a good initial guess for the non-convex opti-
mization problem (47). More importantly, since The-
orem 4 guarantees the existence of a near-identity lin-
earizing transformation, we expect that the true min-
imizer is close to the DMD-solution. Therefore, we
may explicitly expand the cost function (45) around
the DMD solution as

Lν(Q, Qinv,B) = Lν(0, 0,B0)

+ DL(0,0,B0) ·
⎛

⎝
Q

Qinv

B − B0

⎞

⎠

+ 1

2

⎡

⎣D2L(0,0,B0) ·
⎛

⎝
Q

Qinv

B − B0

⎞

⎠

⎤

⎦ ·
⎛

⎝
Q

Qinv

B − B0

⎞

⎠

+
(

|Q|3 ,

∣∣∣Qinv
∣∣∣
3
, |B − B0|3

)
,

where DL(0,0,B0) and D
2L(0,0,B0) are the Jacobian and

the Hessian of the cost function evaluated at the DMD
solution, respectively. Since the Jacobian is nonsingu-
lar at the DMD solution, the minimum of the quadratic
approximation of the cost function satisfies the linear
equation

− DL(0,0,B0) = D2L(0,0,B0)

⎛

⎝
Q

Qinv

B − B0

⎞

⎠ . (50)

This serves as the first-order correction to the DMD-
solution in the DDL procedure. The Eq. (50) is explic-
itly solvable and is equivalent to performing a sin-
gle Levenberg–Marquardt step on the non-convex cost
function (45), with the DMD solution (0, 0,B0) serv-
ing as an initial guess.

Minimization of (45) leads to a non-convex opti-
mization problem. Besides computing the leading-
order approximation (50), a possible workaround to
this challenge is to carry out the linearization in two
steps. First, one can fit a polynomial map to the reduced
dynamics by linear regression. Then, if the reduced-
dynamics is non-resonant, it can be analytically lin-
earized. Axås et al. [3] follow this approach to auto-
matically find the extended normal form style reduced
dynamics on SSMs using the implementation of SSM
Tool by Jain et al. [24]. Although this procedure does
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convert the DDL principle into a convex problem,
the drawback is that the linearization is obtained as
a Taylor-expansion, with possibly limited convergence
properties.

4.3.3 Using DDL to construct spectral foliations

The mathematical foundation of SSM-reduced model-
ing is that any trajectory converging to a slow SSM
is guaranteed to synchronize up to an exponentially
decaying error with one of the trajectories on the
SSM. This follows from the general theory of invari-
ant foliations by Fenichel [18], when applied to the
d-dimensional normally hyperbolic invariant manifold
W(E).2 The main result of the theory is that off-
SSM initial conditions synchronizing with the same
on-SSM trajectory turn out to form a class Cr−1

smooth, (n − d)-dimensional manifold, denoted Fp,
which intersects W(E) in a unique point p ∈ W(E).
The manifold Fp is called the stable fiber emanating
from the base point p. Fenichel proves that any off-
SSM trajectory x(t; x0)with initial condition x0 ∈ Fp0

converges to the specific on-SSM trajectory p(t; p0) ∈
W(E) with initial condition p0 ∈ W(E) faster than
any other nearby trajectory might converge to p(t; p0).

Recently, Szalai [55] studied this foliation in more
detail under the name “invariant spectral foliation”,
discussed its uniqueness in an appropriate smoothness
class and proposed its use in model reduction.

To predict the evolution of a specific, off-SSM initial
condition x0 up to time t from an SSM-based model,
we first need to relate that initial condition to the base
point p0 of the stable fiber Fp0 . Next, we need to run
the SSM-based reduced model up to time t to obtain
p(t; p0). Based on the exponentially fast convergence
of the full solutionx(t; x0) to theSSM-reduced solution
p(t; p0), we obtain an accurate longer-term prediction
for x(t; x0) using this procedure. Such a longer-term
prediction is helpful, for instance, whenwewish to pre-
dict steady states, such as fixed points and limit cycles,
from the SSM-reduced dynamics.

2 More precisely, Fenichel’s foliation results become applica-
ble after the wormhole construct in Proposition B1 of Eldering
et al. [17] is applied to extend W(E) smoothly into a com-
pact normally attracting invariant manifold without boundary.
This is needed because Fenichel’s results only apply to compact
normally attracting invariant manifolds with an empty or over-
flowing boundary, whereas the boundary of W(E) is originally
inflowing.

Constructing this spectral foliation directly from
data, however, is challenging for nonlinear systems.
Indeed, one would need a very large number of initial
conditions that cover uniformly awhole open neighbor-
hood of the fixed point in the phase space. For example,
while one or two training trajectories are generally suf-
ficient to infer accurate SSM-reduced models even for
very high-dimensional systems (see e.g., [3,12,13]),
thousands of uniformly distributed initial conditions in
a whole open set of a fixed point are required to infer
accurate spectral foliation-based models even for low-
dimensional systems (see [55]). The latter number and
distribution of initial conditions is unrealistic to acquire
in a truly data-driven setting.

To avoid constructing the full foliation, onemay sim-
ply project an initial condition x0 orthogonally to an
observed spectral submanifoldW(E) to obtain p0, but
this may result in large errors if E and F are not orthog-
onal. In that case,W(E) may divert substantially from
E (see [42,43,48] for a discussion of the limitations of
this projection for general invariant manifolds).

A better solution is to project x0 orthogonally to the
slow spectral subspace E over whichW(E) is a graph
in an (often large) neighborhood of the fixed point.
This approach assumes that E and F are nearly normal
and W(E) is nearly flat. As the latter is typically the
case for delay-embedded observables [2], orthogonal
projection onto E has been the choice so far in data-
driven SSM-based reduction via the SSMLearn algo-
rithm [11]. This approach has produced highly accurate
reduced-order models in a number of examples (see
[3,12,13]). There are nevertheless examples in which
the linear part of the dynamical system is significantly
non-normal and hence E and F are not close to being
orthogonal (see [6]).

Near hyperbolic fixed points, the use of DDL elimi-
nates the need to construct involved nonlinear spectral
foliations. Indeed, let us assume that the slow spectral
subspace E in Theorem4 can be decomposed into a
direct sum E = E1⊕E2, where E1 denotes the slowest
spectral subspacewith dim E1 = d1 and E2 denotes the
second-slowest spectral subspace with dim E2 = d2,
as sketched in Fig. 2. Reducing the dynamics to the
SSMW(E) is accurate for transient times given by the
decay rate of E2.This initial reduction can be done sim-
ply by a normal projection onto E . Inside E , one can
simply locate spectral foliations of the DDL-linearized
systems explicitly and map them back to the original
nonlinear system under the DDL transformation κ (γ ).
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Fig. 2 a The linearized
phase space geometry
governed by the slow
spectral subspace
E = E1 ⊕ E2 and the slow
invariant foliation within E .
b) Phase space geometry in
the original coordinates

The unique class Ca foliation of a linear system within
E is the family of stable fibers forming the affine space

Fp = p + E2,

where p ∈ E1. The trajectories started inside Fp all
synchronize with p ∈ E1. The linear projection PE2

onto E1 along directions parallel to E2, when applied
to an initial condition y ∈ Fp, returns the base point

PE2y = p. (51)

In the nonlinear system (1), the leaves of the smooth
foliation within W(E)

F0
κ(p) = κ

(Fp
) ⊂ W(E),

where κ (p) ∈ W(E1) is the image of p under the
mapping κ defined in (37). The SSM W(E) can then
be parametrized via the foliation

W(E) =
⋃

q∈W(E1)

F0
q .

4.3.4 Using DDL to predict
nonlinear forced response from unforced data

We now discuss how DDL performed near the fixed
point of an autonomous dynamical system can be used
to predict nonlinear forced response under additional
weak periodic forcing in the domain of DDL. The addi-
tion of such small forcing is frequent in structural vibra-
tion problems in which the unforced structure (e.g., a
beam or disk) is rigid enough to react with small dis-
placements under practically relevant excitation levels
(see, e.g., [12,13] for specific examples).

We append system (11) with a small, time-periodic
forcing term εF(x, t) to obtain the system

ẋ = Ax + f̃(x) + εF(x, t), x ∈ R
n,

A = Df(0), f̃(x) = O
(
|x|2

)
, 0 ≤ ε � 1,(52)

with F(x, t) = F(x, t + T ) for some period T > 0. If
the conditions of Theorem4 hold for the system (52)
for ε = 0, then, for ε > 0 small enough, exists a unique
d-dimensional, T -periodic, attracting spectral subman-
ifold Wε(E, t) ∈ Cr of a locally unique attracting T -
periodic orbit xε(t) perturbing from x = 0 (see, e.g.,
[10,22]). The manifold Wε(E, t) is O(ε) C1-close to
W0(E, t) ≡ W(E) and hence its reduced dynamics
can be parametrized using the reduced observable vec-
tor ϕ = φ|W(E) in the form

ϕ̇ = Bϕ + q (ϕ) + εF̂(ϕ, t),

B = Dφ(0)TE�E (Dφ(0)TE )−1 ,

q (ϕ) = O
(
|ϕ|2

)
,

F̂(ϕ, t) = (Dφ(0)TE )−1 (I + Dh (ϕ, 0))−1 F(0, t)

+ O
(
ε |ϕ|2

)
, (53)

where we have relegated the details of this calculation
to Appendix E.

Then the unique, Cr change of coordinates,

ϕ = κ (γ ) = γ + �(γ ), (54)

guaranteed by statement (iii) of Theorem4 transforms
the reduced dynamics (53) to its final form

γ̇ = Bγ + ε(I + D�(γ ))−1F̂(0, t). (55)

The transformation is valid on trajectories of (52) as
long as they remain in the domain of definition of the
coordinate change (54).

Note that Eq. (55) is a weakly perturbed, time-
periodic nonlinear system. The matrix B and the non-
linear terms �(γ ) can be determined using data from
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the unforced (ε = 0) system. As a result, nonlinear
time-periodic forced response can be predicted solely
from unforced data by applying numerical continua-
tion to system (55) for ε > 0. This is not expected
to be as accurate as SSM-based forced response pre-
diction (see, e.g., [2,3,12,13]), but nevertheless offers
a way to make predictions for non-linearizable forced
response based solely on DDL performed on unforced
data. These predictions are valid for forced trajectories
that stay in the domain of convergence of DDL car-
ried out on the unforced system.We will illustrate such
predictions using actual experimental data from fluid
sloshing in Sect. 5.4.

Setting �(γ ) = 0 in formula (55) enables us to carry
out a forced-response prediction based on DMD as
well. Such a prediction will be fundamentally linear
with respect to the forcing and can only be reason-
ably accurate for very small forcing amplitudes, as we
will indeed see in examples. There is no systematic
way to model the addition of non-autonomous forcing
in the EDMD procedure, and hence EDMD will not
be included in our forced response prediction compar-
isons.

We also note, that one might be tempted to solve an
approximate version of (55) by assuming

ε(I + D�(γ ))−1 ≈ εI. (56)

This assumption simplifies the computation of the
forced response of the nonlinear system (55) to those of
a simple linear system. Although the forced response
computed using this approximate DDL method turns
out to be more accurate than DMD on our exam-
ple, we do not recommend this approach. This is
because neglecting the nonlinear effects of the coor-
dinate change in (55) is, in general, inconsistent with
�(γ ) 
= 0. We give more detail on this approximation
in Appendix F of the Supplementary Information.

5 Examples

In this section, we compare the DMD, EDMD and
DDL algorithms on specific examples. When appli-
cable, we also compute the exact analytic lineariza-
tion of the dynamical system near its fixed point as a
benchmark. On a slow SSMW (E), an observer trajec-
tory ϕ(t), starting from a select initial condition ϕ(0),
will be tracked as the image of the linearized reduced
observer trajectory γ (t) under the linearizing transfor-

mation (54):

ϕ(t) = κ
(
eBtγ (0)

)
= eBtγ (0) + �

(
eBtγ (0)

)
,

γ (0) = κ−1 (ϕ(0)) . (57)

When model reduction has also taken place, i.e., when
the observable vector ϕ is not defined on the full phase
space, we will nevertheless provide a prediction in the
full phase space via the parametrization of the slow
SSM.

By Theorem1, DMD can be interpreted as setting
�(γ ) ≡ 0 in (57) and finding the linear operator B as a
best fit from the available data. In contrast, DDL finds
the linear operatorB, the transformationϕ = γ +�(γ ),
and its inverse simultaneously. As we explained in
Sect. 4.2, EDMDcannot quite be interpreted in terms of
the linearizing transformation (57) as it is an attempt to
immerse the dynamics into a higher dimensional space.
For our EDMD tests, we will use monomials of the
observable vector ϕ.

5.1 1D nonlinear system with two isolated fixed points

Consider the one-dimensional ODE obtained as the
radial component of the Stuart–Landau equation, i.e.,

ṙ = μr − r3,

which can be rescaled to

Ṙ = R − R3. (58)

For R ≥ 0, the system has a repelling fixed point at
R = 0 and an attracting one at R = 1. Page and Ker-
swell [44] show that local expansion of observables in
terms of the Koopman eigenfunctions computed near
each fixed point are possible, but the expansions at the
two fixed points are not compatible with each other
and both diverge at R = √

2/2 ≈ 0.7071. This is a
consequence of the more general result that the Koop-
man eigenfunctions themselves inevitably blowupnear
basin boundaries (see our Proposition 1 in Appendix A
of the Supplementary Information). Both DMD and
EDMD can nevertheless be computed from data, even
for a trajectory crossing the turning point at R = √

2/2,
but the resulting models cannot have any connection to
the Koopman operator.

In each comparison performed on system (58), we
generate a single trajectory in the domain of attraction
of the R = 1 fixed point and use it as training data for
DMD, EDMD and DDL. In each subplot of Fig. 3, the
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single training trajectory starts from the intersection of
the red horizontal line “IC of training trajectory” with
the t = 0 dashed line. We then also generate a new
test trajectory (black) with its initial condition denoted
with a black dot over the line t = 0.We place this initial
condition slightly outside the domain of linearization
for system (58) (under the grey line labeled “Turning
point”). We use DMD, order-k = 5 EDMD, and DDL
trained on a single training trajectory to make predic-
tions for the black testing trajectory (not used in the
training).

Figure3a shows DDL to be the most accurate of the
three methods when applied to forward-time (t ≥ 0)
segments of the test trajectory. If we try to predict the
backward-time (t < 0) segment of the same trajectory
as it leaves the training domain, DDL diverges imme-
diately upwards, whereas DMD and EDMD diverge
more gradually downwards. As we increase the train-
ing domain in Fig3b, DDL continues to be the most
accurate in both forward and backward time until it
reaches the domain of its training range in backward
time. At that point, it diverges quickly upwards, while
DMD and EDMD diverge more slowly downwards.

Importantly, increasing the approximation order for
DDL first to k = 10 then to k = 18 (see Fig. 3c, d),
makes DDL predictions more and more accurate in
backward time inside the training domain. At the same
time, the same increase in order makes EDMD less
and less accurate inside the same domain. This is not
surprising for EDMD because it seeks to approximate
the dynamics within a Koopman-invariant subspaces
for increasing k, and Koopman mode expansions blow
up at the “Turning point line”, as shown both analyti-
cally and numerically by Page andKerswell [44]. Inter-
estingly, however, EDMD becomes less accurate even
within the domain of linearization under increasing k.
This is clearly visible in Fig. 3d which shows spurious,
growing oscillations in the EDMD predictions close to
the R = 1 fixed point.

In summary, of the threemethods tested,DDLmakes
the most accurate predictions in forward time. This
remains true in backward time as longs as the trajectory
remains in the training rangeused for the threemethods,
even if this range is larger than the theoretical domain
of linearization. Inside the training range, an increase
of the order k of themonomials used increases the accu-
racy of DDL but introduces growing errors in EDMD.

5.2 3D linear system studied via nonlinear observables

Wu et al. [60] studied the ability of DMD to recover a
3D linear systembased on the time history of three non-
linear observables evaluated on the trajectories of the
system. To define the linear system, they use a block-
diagonal matrix� and a basis transformation matrix R
of the form

� =
⎛

⎝
a −b 0
b a 0
0 0 c

⎞

⎠ , a, b, c ∈ R,

R =
⎛

⎝
1 0 sin θ1 cos θ2
0 1 sin θ1 sin θ2
0 0 cos θ2

⎞

⎠ , (59)

to define the linear discrete dynamical system

x(n + 1) =
(

R�R−1
)

x(n). (60)

The linear change of coordinates R rotates the real
eigenspace of � corresponding to the eigenvalue c and
hence introduces non-normality in system (60). This
system is then assumed to be observed via a 3D non-
linear observable vector

y(x) =
⎛

⎝
x1 + 0.1

(
x21 + x2x3

)

x2 + 0.1
(
x22 + x1x3

)

x3 + 0.1
(
x23 + x1x2

)

⎞

⎠ . (61)

Ideally, DMD should closely approximate the linear
dynamics of system (60) because the observable func-
tion defined in Eq. (61) is close to the identity and has
only weak nonlinearities. Wu et al. [60] find, however,
that this system poses a challenge for DMD, which
produced inaccurate predictions for the spectrum of
R�R−1.

Following one of the parameter settings of Wu et al.
[60], we set a = 0.45

√
3, b = 0.5, c = 0.6, θ1 = 1.5,

and θ2 = 0. We initialize three training trajectories
with ‖x(0)‖ < 1, each containing 100 iterations of
system (60). We then compute the predictions of a 5th

order DDL model and compare to those of DMD and
EDMD on a separate test trajectory not used in training
these three methods. The predictions and the spectrum
obtained from the three methods are shown in Fig. 4.

The predictions of DMD and EDMD can only be
considered accurate for very low amplitude oscilla-
tions, while DDL returns accurate predictions through-
out the whole trajectory. This example consists of lin-
ear dynamics and monomial observables of the state,
and hence should be an ideal test case for EDMD.
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Fig. 3 Predictions of
DMD, EDMD and DDL on
trajectories of (58). a
Training trajectory starts
inside the domain of
convergence of the
linearization, i.e.
R(0) = 0.8 (see [44]). For
both DDL and EDMD the
order of the monomials used
is k = 5. b Same for a
different training trajectory
with R(0) = 0.4 and k = 5
c same for R(0) = 0.1 and
k = 10 d same for
R(0) = 0.1 and k = 18

Fig. 4 Predictions by
DMD, EDMD, and DDL on
the discrete dynamical
system (59) and (61). a
Predicted and true
y1−components of a test
trajectory. b Spectra
identified by DMD, EDMD,
and DDL superimposed on
the true spectrum (marked
by crosses). The dashed line
represents the unit circle.
(Color figure online)

Yet, EDMD is inaccurate in identifying the spectrum
of system (60). Indeed, as seen in Fig. 4b, a number
of spurious eigenvalues arise from EDMD, both real
and complex. DMD performs clearly better but it is
still markedly less accurate than DDL. These inaccu-
racies in the predictions of EDMD and DMD spectra
are also reflected by considerable errors in their pre-
dictions for trajectories, as seen in Fig. 4a. In contrast,
DDL produces the most accurate prediction for the test
trajectory.

5.3 Damped and periodically forced Duffing equation

We consider the damped and forced Duffing equation

ẋ = y,

ẏ = x − x3 − dy + ε cos�t, (62)

with damping coefficient d = 0.0141, forcing fre-
quency � and forcing amplitude ε. We perform a
change of coordinates (x, y) �→ ϕ = (ϕ1, ϕ2) that
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Fig. 5 Comparison of the time evolution of the linearized trajec-
tories (red) and the full trajectories of the nonlinear system (63)
(blue), (63). a–d Analytic linearization, DMD, EDMD and DDL

models trained and evaluated on trajectories inside the domain
of convergence. e–h Same as (a)–(d) but outside the domain of
convergence of the analytic linearization. (Color figure online)

moves the stable focus at (x, y) = (1, 0) to the origin
andmakes the linear part block-diagonal. The resulting
system is of the form

ϕ̇ = Aϕ + f (ϕ) + εF̂(t), f (ϕ) = O
(
|ϕ|2

)
, (63)

where

A =
(−α −ω

ω −α

)
, ω = 1.4142, α = 0.00707,

(64)

and F̂(t) is the transformed image of the physical
forcing vector in (62). We first consider the unforced
system with ε = 0. In this case, the 2D slow SSM of
the fixed point coincides with the phase space R2 and
hence no further model reduction is possible. However,
since the non-resonance conditions (34) hold for the
linear part (64), the system is analytically linearizable
near the origin. The linearizing transformation and its
inverse can both be computed from Eq. (63), as out-
lined in Eq. (41). For reference, we carry out this lin-
earization analytically up to order k = 9. The Taylor
series of the linearization is estimated to converge for
|ϕ| < Rcrit ≈ 0.15. The details of the calculation can
be found in the repository [28].

We now compare the analytic linearization results it
to DMD, EDMD and DDL, with all three trained on

the same three trajectories, launched both inside and
outside the domain of convergence of the analytic lin-
earization. The polynomial order of approximation is
k = 5 for both the EDMD and the DDL algorithms.
The performance of the various methods is compared
in Fig. 5. Close to the fixed point, in the domain of con-
vergence of the analytic linearization, all three meth-
ods perform well. Moving away from the fixed point,
the analytic linearization is no longer possible. Both
DMD and EDMD perform worse, while DDL contin-
ues to accurately linearize the system even outside the
domain of convergence of the analytic linearization.

Using formula (55) and our DDL-based model, we
can also predict the response of system (63) for the
forcing term of the form

εF̂(t) = ε

(−0.006
1.225

)
cos�t, (65)

without using any data from the forced system. As the
forcedDDLmodel (55) is nonlinear, it can capture non-
linearizable phenomena such as coexisting of stable
and unstable periodic orbits arising under the forcing.
We can also make a forced response prediction from
DMD simply by setting D�(γ ) = 0 in Eq. (55). As an
inhomogeneous linear system of ODEs, however, this
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Fig. 6 Periodic response of theDuffing oscillator under the forc-
ing (63). The three distinctly colored forced response curves cor-
respond to ε = 0.001, 0.002, 0.0028. a Actual nonlinear forced
response from numerical continuation (blue) and prediction for

it from analytic linearization (purple) b forced response predic-
tions from DDL (red) c forced response predictions from DMD
(green). The training data for panels b and c is the same unforced
trajectory data set as the one used in Fig. 5. (Color figure online)

forced DMD model cannot predict coexisting stable
and unstable periodic orbits.

In Fig. 6, we compare the forced predictions of the
analytic linearization, DMD, and DDL to those com-
puted from the nonlinear system directly via the con-
tinuation software COCO of Dankowicz and Schilder
[14]. Since the forced and linearized systems are also
nonlinear, we use the same continuation software to
determine the stable and unstable branches of periodic
orbits.

As expected, the analytic linearization is accurate
while the forced response is inside the domain of
convergence but deteriorates quickly for larger ampli-
tudes. DMD gives good predictions for the peaks of the
forced response diagrams, but cannot account for any
of the nonlinear softening behavior, i.e., the overhangs
in the curves that signal multiple coexisting periodic
responses at the same forcing frequency. In contrast,
while the DDL model of order k = 5 starts becom-
ing inaccurate for peak prediction at larger amplitudes
outside the domain of analytic linearization, it contin-
ues to capture accurately the overhangs arising from
non-linearizable forced response away from the peaks.
Notably, DDL even identifies the unstable branches
(in dashed lines) of the periodic response accurately.
For completeness, we also show results of approximate
DDL, by assuming (56) in Appendix F.

5.4 Water sloshing experiment in a tank

In this section, we analyze experimental data generated
by Bäuerlein and Avila [5] for forced and unforced
fluid sloshing in a tank. Previous studies of this data
set used nonlinear SSM-reduction to predict forced
response [2,3,12]. Here we will use DMD and DDL
to extract and compare linear reduced-order models
from unforced trajectory data, then use them to predict
and verify forced response curves obtained from forced
trajectory data. Neither DMD nor DDL is expected to
outperform the fully nonlinear approach of SSM reduc-
tion, so we will only compare them against each other.

The tank in the experiments is mounted on a plat-
form that is displaced sinusoidally in time with var-
ious forcing amplitudes and frequencies (Fig. 7a). To
train DMD and DDL, we use unforced sloshing data
obtained by freezing the movement of the tank near a
resonance and recording the ensuing decaying oscilla-
tions of the water surface with a camera under they die
out. The resulting videos serve as input data to our anal-
ysis. Specifically, the horizontal position of the center
of mass of the fluid is extracted from each video frame
tracked and used as the single scalar observable.

During such a resonance decay experiment, the sys-
tem approaches its stable unforced equilibrium via
oscillations that are dominated by a single mode. In
terms of the phase space geometry, this means an
approach to a stable fixed point along its 2D slow SSM
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Fig. 7 a Schematic
representation of the
experimental setup (adopted
from [12]). b Prediction of
the decay of a test trajectory
with order-k = 5 DDL. c
Prediction of the forced
response from DMD. d
Prediction of the forced
response from DDL. Light
shading indicates the
domain, in which training
data for DMD and DDL was
available

W (E) tangent to the slowest 2D real eigenspace E . As
we only have a single observable from the videos, we
use delay embedding to generate a larger observable
space that can accommodate the 2D manifold W (E).
As discussed by Cenedese et al. [12], we need an at
least 5D observable space for this purpose by the Tak-
ens embedding theorem. In this space,W (E) turns out
to be nearly flat for short delays (see [2]), which allows
us to use a linear approximation for its parametriza-
tion. The reduced coordinates onW (E) ≈ E can then
be identified via a singular value decomposition of the
data after one removes initial transients from the exper-
imental data. The end of the transients can be identified
as a point beyondwhich a frequency analysis of the data
shows only one dominant frequency, the imaginary part
of the eigenvalue corresponding to E .

All this analysis has been carried out using the pub-
licly available SSMLearn package Cenedese et al. [11].
With W (E) identified, we use the DDL method with
order k = 5 to find the linearizing transformation and
the linearized dynamics onW (E). In Fig 7b we show
the prediction of the model on a decaying trajectory
reserved for testing. The displacements are reported as
percentage values, with respect to the depth of the tank.
In Fig. 7c and d, we show predictions from DMD and
DDL models for the forced response, compared with
the experimentally observed response. Since the exact

forcing function is unknown, we follow the calibra-
tion procedure outlined by Cenedese et al. [12] to find
an equivalent forcing amplitude in the reduced-order
model.

We present data for three forcing amplitudes. The
DDL predictions are accurate up to 0.17% ampli-
tude, even capturing the softening trend. The largest-
amplitude forcing resulted in response significantly
outside the range of the training data; in this range,
we were unable to find the converged forced response
from DDL. We also show the corresponding DMD-
predictions in Fig. 7c. Although the linear response can
formally be evaluated for any forcing amplitude, DMD
shows no trace of the softening trend, and is even inac-
curate for low forcing amplitudes.

5.5 Model reduction
and foliation in a nonlinear oscillator chain

As a final example, we consider the dynamics of a chain
of nonlinear oscillators, which has been analyzed in
the SSMLearn package [11]. Denoting the positions
of the oscillators as qi for i = 1, ..., 5, we assume
that the springs and dampers are linear, except for the
first oscillator. The non-dimensionalized equations of
motion can be written as

Mq̈ + Cq̇ + Kq + f(q, q̇) = 0, (66)
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Fig. 8 Reduced coordinates of the 4D SSMW(E) for the oscil-
lator chain. The slow 2D SSM W(E1), a typical trajectory and
its projection to the slow SSM along the fibers F0

q2D
0

are also

shown. Panel a shows the linearized coordinates computed from
DDL, and b shows their image under the inverse of the lineariz-
ing transformation. The order of approximation used in DDL is
3

where M = I; the springs have the same linear stiff-
ness k = 1 which is encoded in K via nearest-neighbor
coupling. The damping is assumed to be proportional,
i.e., we specifically set C = 0.002M + 0.005K.

Three numerically generated training trajectories
show decay to the q = 0 fixed point, as expected
from the damped nature of the linear part of the sys-
tem. In this example, we also seek to capture some of
the transients, which motivates us to select the slow
SSM W(E) to be 4D, tangent to the spectral sub-
space E = E1 ⊕ E2 spanned by the the slowest mode
(E1) and the second slowest mode (E2). As the mode
corresponding to E2 does disappear over time from
the decaying signal, there is no resonance between
the eigenvalues and hence Theorem4 is applicable. As
already noted, numerical data from a generic physical
system described by Eq. (66) will be free from reso-
nances. An exception is a 1 : 1 resonance arising from
a perfect symmetry, but this resonance is not excluded
by Theorem4 and has is amenable to DDL.

Within the 4D SSM W(E), we also demonstrate
how to optimally reduce the dynamics to its 2D slow-
est SSMW(E1). As explained in Sect. 4.3.3, to find the
trajectory inW(E1)withwhich a given trajectory close
to W(E) ultimately synchronizes, we need to project
along a point q0 of the full trajectory q(t) first onto
W(E) orthogonally to obtain a point q4D

0 ∈ W(E).We
then need to identify the stable fiber Fq2D

0
inW(E) for

which q4D
0 ∈ Fq2D

0
holds. Finally, one has to project

along Fq2D
0

to locate its base point q2D
0 ∈ W(E1).

The trajectory through q2D
0 in W(E1) will then be the

one with which the full trajectory q(t) will synchro-
nize faster than with any other trajectory. As noted in
Sect. 4.3.3, computing the full nonlinear stable foliation

W(E) =
⋃

q2D
0 ∈W(E1)

F0
q2D
0

(67)

of W(E) is simple in the linearized coordinates, in
which it can be achieved via a linear projection along
the faster eigenspace E2.

We use a third-order polynomial approximation for
W(E) based on the three training trajectories. The
polynomials depend on the reduced coordinates we
introduce along E using a singular value decomposition
of the trajectory data. These reduced coordinates are
shown in Fig. 8, where we show a representative train-
ing trajectory, the 2D slowSSM E1, as well as the folia-
tion (67) computed fromDDL for this specific problem.

We also evaluate the DDL-based predictions on
W(E) and W(E1) by comparing them to predictions
from DMD and EDMD. Performing DMD and EDMD
with the data first projected to E can be interpreted
as finding the linear approximation to the dynamics in
W(E). Similarly, performing DMD and EDMD with
the data first projected to E1 can be interpreted as find-
ing the linear approximation to the dynamics inW(E1).
These are to be contrasted with performing DDL that
finds the linearized reduced dynamics within W(E),
which in turn contains the linearized reduced dynamics
within W(E1). Figure9 shows that DMD and EDMD
both perform similarly toDDL onW(E). However, the
2D DMD and EDMD results obtained for W(E1) are
noticeably less accurate than the DDL results.
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Fig. 9 Predictions of a DMD b EDMD and c DDLmodels on a
test trajectory of the oscillator chain. The order of approximation
for DDL and EDMD is k = 3

6 Conclusions

We have given a new mathematical justification for the
broadly used DMD procedure to eliminate the short-
comings of prior proposed justifications. Specifically,
we have shown that under specific non-degeneracy con-
ditions on the n-dimensional dynamical system, on
d ≤ n observable functions defined for that system,
and on the actual data from these observables, DMD
gives a leading-order approximation to the observable
dynamics on an attracting d-dimensional spectral sub-
manifold (SSM) of the system.

This result covers both discrete and continuous
dynamical systems even for n = ∞. Our Theorem1

only makes explicit non-degeneracy assumptions on
the observables which will hold with probability one
in practical applications. This is to be contrasted with
prior approaches to DMD and its variants based on the
Koopman operator, whose assumptions on the observ-
ables fail with probability one on generic observables.

Our approach also yields a systematic procedure
that gradually refines the leading-order DMD approx-
imation of the reduced observable dynamics on SSMs
to higher orders. This procedure, which we call data-
driven linearization (DDL), builds a nonlinear coor-
dinate transformation under which the observable
becomes linear on the attracting SSM. We have shown
on several examples how DDL indeed outperforms
DMD and extended DMD (EDMD), as expected.
In addition to this performance increase, DDL also
enables a prediction of truly nonlinear forced response
from unforced data within its training range. Although
we have only illustrated this for periodically forced
water sloshing experiments in a tank, recent results
on aperiodically time-dependent SSMs by Haller and
Kaundinya [19] allow us to predict more general forced
response using DDL trained on unforced observable
data.

Despite all these advantages, DDL (as any lineariza-
tion method) remains applicable only in parts of the
phase space where the dynamics are linearizable. Yet
SSMs continue to exist across basin boundaries and
hence are able to carry characteristically nonlinear
dynamics with multiple coexisting attractors. For such
nonlinearizable dynamics, data-driven nonlinear SSM-
reduction algorithms, such as SSMLearn and fastSSM,
are preferable and have been showing high accuracy
and predictive ability in a growing number of physical
settings (see, e.g., [1,3,12,13,26,27,37]).
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