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Glycans and glycoconjugates, predominant and vital
biomolecules in living systems, are key actors in
many biological processes and can either be

detrimental or beneficial to the human host. These extremely
complex and fascinating molecules are recognized and
engaged by several types of bacteria, viruses, and parasites,
and targeted by a plethora of toxins. In most cases, toxins are
proteins released by bacteria to influence host−pathogen
interactions, driving the outcome of these encounters toward
the benefit of the pathogen while causing specific lesions and
symptoms in the host.1,2 An example is the diarrheal disease
of cholera, responsible for over 100,000 deaths every year,
which is caused by the bacterium Vibrio cholerae. This
potentially lethal bacterium produces the highly efficient
cholera toxin (CT) that, through its binding to the glycolipid
GM1 exposed on the plasma membrane of enterocytes,
among other cells, exerts its action in the small intestine,
causing the extreme intestinal fluid secretion characteristic of
cholera patients.3 GM1 is a ganglioside composed of a lipid
chain (ceramide) and an oligosaccharide (Figure 1), with the
latter being the target of the pentameric B subunit of CT
(CTB5). Previous studies have shown that two key sugars of
the GM1 oligosaccharide, galactose (Gal) and sialic acid
(Sia), are involved in the interaction. In particular, galactose
forms important hydrogen bonds between its C2 hydroxyl
group and two asparagine residues (Asn90 and Asn14) of the
CTB5 protein, resulting in the strongest glycan-protein
interaction known. Considering the effects of this interaction

on the progression of cholera, it is not surprising that several
approaches have been tested to evaluate and confirm the
relevance of hydroxyl groups in sugar units for binding to
CTB5. Nevertheless, direct editing approaches to analyze this
hypothesis are still missing in the literature, thus limiting the
use of galactose (or other sugar derivatives) as a source for
designing selective ligands that could inhibit such dangerous
interactions.

From a molecular recognition perspective, 19F NMR
spectroscopy has tremendous potential to dissect protein−
glycan interactions in a fast and reliable manner. Fluorine is
an isosteric mimic of the hydroxyl group, but it lacks the
capability to act as a hydrogen-bond donor and has low
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hydrogen-bond acceptor competence. By substituting
hydroxyl group(s) with fluorine, it is possible to track how
these hydroxyl groups interact with the related recognition
protein. This provides information on the binding mode and
typically simplifies NMR analysis, making this approach a
valuable tool to investigate molecular recognition events from
a biomedically promising perspective.4

Gilmour and co-workers have already successfully devel-
oped fluorinated glycostructures as a molecular editing
strategy in pharmaceutical design. In this issue of ACS Central
Science, they report the total synthesis of a selectively
fluorinated GM1 analog (F-GM1), whose binding affinity to
CTB5 was fully described by NMR and protein crystallog-
raphy.1 Using this unique synthetic procedure, which involved
19 steps, a properly protected Gal(1-3)GalNAc disaccharide
was joined to a Sia(2-3)Gal(1-4)Glc trisaccharide. The donor
disaccharide was obtained in three steps from a galactose

derivative already fluorinated at position 2 via fluorine-
directed glycosylation. The trisaccharide was obtained through
a sequence of glycosylation and protection/deprotection
reactions with high yield and excellent stereocontrol.1 The
combination of these two sugar motifs produced an advanced
intermediate that, after three deprotection steps, resulted in
F-GM1. In these final deprotection steps, they observed that
the major:minor ratio of two doubly fluorinated conformers
present in the final mixture increased from 7:3 to 8:2 to 95:5.
The proposed explanation is that the removal of protecting
groups causes steric decompression, thus lowering the barrier
for conformer interconversion. This was also elegantly
confirmed by temperature-varying 19F-NMR experiments,
which showed that above 40 °C, the NMR signal broadened
due to the fast exchange between conformers. This supported
that the two species were not diastereoisomers, thereby
demonstrating that the final glycosylation reaction achieved
exceptional levels of diastereocontrol.1

Once the final product was obtained, the binding affinity
of F-GM1 for CTB5 was again analyzed by 19F-NMR and
compared to that of the natural compound and other cholera
toxin ligands, i.e., the natural GM1, the GM1 pentasaccharide
(GM1-PS), and the receptor antagonist m-nitrophenyl-galacto-
side (MNPG), which acted as inhibitors of the F-GM1-CTB5

Figure 1. (A) Cartoon of the intestinal epithelial cell line, where native GM1 is exposed and binds with high affinity to the cholera toxin subunit B
(CTB5). The establishment of H-bonds between the hydroxyl group at position C2 of the terminal galactose of the GM1 oligosaccharide and
Asn14 and Asn90 of CTB5, which are crucial for a successful interaction, has been reported. Crucially, these H-bonds are not formed when the
fluorinated-GM1 derivative (F-GM1) is used for binding to the protein. (B) The structures of both native GM1 and F-GM1 are reported, along
with their representations drawn using the Symbol Nomenclature for Glycans (SNFG).
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binding. Experimentally, the release of F-GM1 from CTB5
in the presence of increasing concentrations of the three
inhibitors was plotted as a function of the signal of free
F-GM1. The relative affinities of the compounds were then
determined based on their IC50 values. Except for MNPG, the
other inhibitors showed much higher affinity than F-GM1,
further demonstrating the importance of having a hydroxyl
group at the C2 position of the terminal galactose to establish
the H-bonds crucial for interaction with the protein. In
addition, these experiments demonstrated that the binding
mode and almost all other interactions of F-GM1 with CTB5
were preserved.1

To gain atomic resolution insights into this “diverse”
binding, a high-resolution crystal structure (2.10 Å) of the
complex was prepared. Interestingly, Gilmour and co-workers
showed that F-GM1 binds to CTB5 in the same manner
as the native GM1, but with one crucial difference in the
terminal fluorinated galactose; i.e., the substitution of the
hydroxyl group with fluorine led to a change in the sugar ring
conformation. As a result, the quasi-axial arrangement of the

C2-fluorine bond enabled the establishment of other
interactions involving the carbonyl group of the adjacent
GalNAc unit and the Ans90 residue of the CTB5 protein.
This arrangement disrupted crucial H-bonds and confirmed
that only the intended H-bonds between the fluorinated
ligand and the protein were eliminated.1

Overall, this is an extremely interesting study that
provides compelling evidence of the utility of hydroxyl-by-
fluorine substitution in glycobiology. Smart use of mono-
and polyfluorinated glycan structures has strongly emerged
on the scientific panorama due to their capability to behave
as excellent bioisosteres of 2-deoxy sugars and their
promising properties for enhancing pharmacokinetic profiles
and metabolic stability.5 Nevertheless, methods for the
preparation of fluorinated oligosaccharides are still under-
developed. Therefore, the work by Gilmour and co-workers
represents a two-fold success. They developed a highly effective
synthetic protocol to meet the clear demand for pharmaceutical
candidates as well as molecular probes. Additionally, they
delivered fluorinated gangliosides that not only will simplify
structural delineation of such a crucial protein−ligand
interaction but also provide new molecules with high potential
and tremendous implications for probing glycan signal
transduction, drug discovery, and vaccine development.
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